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Abstract 

The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is 

mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the 

future fluctuations of these time series should be predicted to increase the reliability of the power network. In 

this paper, the dynamic characteristics and short-term predictability of hourly wind speed and power time 

series are investigated via nonlinear time series analysis methods such as power spectral density analysis, 

time series histogram, phase space reconstruction, the slope of integral sums, the  𝛿 − 𝜀 method, the 

recurrence plot and the recurrence quantification analysis. Moreover, the interactive behavior of the wind 

speed and wind power time series is studied via the cross correlation, the cross and joint recurrence plots as 

well as the cross and joint recurrence quantification analyses. The results imply stochastic nature of these 

time series. Besides, a measure of the short-term mimic predictability of the wind speed and the underlying 

wind power has been derived for the experimental data of Spain’s wind farm. 

 

Keywords: Stochastic Behavior, Recurrence Plot, Recurrence Quantification Analysis, Time Series 

Analysis, Wind Speed, Wind Power. 

1. Introduction 

Wind energy is a free, renewable resource of clean 

energy. Compared with the conventional power 

plants, wind plants emit no air pollution or 

greenhouse gases. In fact, wind-based generation 

is the fastest growing source of renewable energy 

[1]. However, despite significant environmental 

benefits, wind power could be highly fluctuating 

because of the earth’s natural atmospheric 

variability [1]. This variability can put at risk the 

power system reliability, which in turn requires 

more backup than the conventional generation in 

the form of reserve and regulation services. It also 

poses economical risks for wind farm owners, 

especially in competitive electricity markets [1]. 

To fully benefit from a large fraction of wind 

energy in an electrical grid, it is therefore 

necessary to predict the electrical energy 

generated by the wind [2]. The wind production 

depends on wind speed of the station. Therefore, 

forecasting the wind speed is an important issue 

that has increasingly received attentions of many 

researchers as well [2-7]. In order to forecast the 

wind power production, two major questions 

should be answered. Those are: what is the nature 

of the wind speed/power time series dynamics and 

how predictable these time series are? The 

developed models for wind speed and power 

dynamics are derived inevitably form these time 

series. Therefore, one should characterize the 

nature and predictability of the recorded time 

series of the wind speed and the related wind 

power to find the proper model structure as well 

as the model inputs and to be able to claim the 

validity of its model.  

Based on the above discussions in this paper, we 

are looking for the nature of the fluctuations of the 

recorded wind speed and power data to find out 

whether the fluctuations are from stochastic 

systems or not. If not, it maybe from a highly 

nonlinear deterministic or a chaotic systems. 

Chaotic behavior has been reported in a broad 

range of scientific disciplines including 

astronomy, biology, chemistry, ecology, 

engineering, and physics [8-9] as well as power 
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market indices [10-12]. On the other hand, 

stochastic time series contains a collection of 

random variables and is the probabilistic 

counterpart to a deterministic system. Some 

examples of stochastic time series are stock 

market and exchange rate fluctuations, speech, 

audio and video signals and medical data such as 

patient’s EEG [12]. Time series analysis] is 

commonly used for responding to the first 

mentioned question. Different time series 

approaches have been widely used in the literature 

for characterizing the properties of natural 

phenomena [13-15]. In [16], the chaotic behavior 

of wind time series for averaged weekly wind 

time series of wind speed has been shown by 

means of time series analysis tools. Next, in [17], 

the fractional of this time series has been derived. 

In [18], a comparative study of different hybrid 

prediction models has been performed by the 

authors to forecast the wind power time series 

from Alberta, Canada. In this study, the time 

series has been analyzed, briefly based on 

recurrence plots and correlation analysis to select 

the proper input sets for the forecasting models. 

The results of this paper is accordance with the 

observations in [18] and justifies them, but is 

more compromising.  However, up to authors’ 

knowledge, further study has been done on the 

characterization and predictability analysis of 

neither the wind speed nor the wind power. 

Besides, a question has been remained 

unanswered for prediction of wind power, that is, 

how predictable is the wind power in terms of its 

own time series and in terms of wind speed time 

series, or both? 

In order to answer the above questions, in this 

paper, at first the experimental wind speed and 

wind power data from Spain's wind farm has been 

investigated via different time series analysis 

methods. The examined methods are power 

spectral density (PSD) analysis, phase space 

reconstruction and test of surrogates, test of the 

fractional dimension and the slope of integral 

sums, the δ-ε method, and the recurrence plots 

[19]. The results of these analyses not only 

emphasize the stochastic nature of these time 

series with a mimic predictability but also show 

that there exists some type of the seasonality and 

non-stationarity in the system dynamics. This 

result implies that a fixed model cannot perform 

properly, even in case of de-trended input data, 

and so, multiple or adaptive models should be 

developed to forecast such time series. 

Further, the individual, cross and joint recurrence 

quantification analyses have been applied to the 

wind speed and wind power time series’ to 

investigate the individual and interactive 

predictability of them.  In this context, the degree 

of synchronization between wind speed and wind 

power time series dynamics, and the mean and 

maximum range of validity for the prediction 

models built based on individual/joint inputs of  

these time series' will be discussed thoroughly. 

The remainder of the paper is organized as 

follows: In section 2, the experimental data and its 

time series analysis is provided. In section 3, the 

interaction analysis of wind speed and wind 

power time series is performed. The paper is 

concluded in section 4. 

 

2. The experimental data and time series 

analysis 
Seeking for the nature of the wind time series, in 

this section, the experimental wind data of Spain’s 

wind farm on May 2005 [5] will be closely 

studied. The available data that are the hourly 

wind speed and its related wind power time series 

for 5 weeks (1200 hours) as shown in figure 1; 

where figure 1(a) shows the wind speed time 

series and figure 1(b) shows the related wind 

power of the interested period versus time in 

hours. According to figures 1 (a and b), no 

obvious hallmark of periodicity (such as daily or 

weekly periodicity) can be observed either in the 

wind speed or in the wind power time series. 

These time series behavior may come from both 

chaotic and stochastic dynamics. Besides, the 

stationarity of it is under question which should be 

investigated. From one point of view, wind speed 

and wind power can be considered as system 

parameter and system operating point, 

respectively. Based on this interpretation, the 

wind power values versus wind speed have been 

plotted in figure 2. From this figure, with 

increasing the wind speed, some type of 

bifurcation occurs in the corresponding wind 

power values. This bifurcation diagram may, 

however, be due to a chaotic or stochastic nature 

of a nonlinear process [20-21]. To distinguish 

between these two types of processes, several 

methods such as power spectrum analysis, phase 

space reconstruction, surrogate testing, test of the 

fractional dimension and the slope of integral 

sums, the δ-ε method, and recurrence plots will be 

performed using the TISEAN package [22] and 

CRP toolbox of MATLAB [23] as our tools. 

Besides, the stationarity of the dynamics will be 

analyzed via recurrence plots. 

 

2.1. The power spectral density 

Regarding the behavior of wind speed and wind 

power in figures 1 and 2, what is important for us, 



 

 

 
Figure 1. (a) The experimental wind speed time series, and (b) wind power time series. 

Figure 2. Bifurcation diagram of wind speed versus 

windpower. 

is the answer to this question: “what is the nature 

of such complex behavior of wind, deterministic 

chaos or stochastic nature?” To answer this 

question, first of all, we analyze the power 

spectral density (PSD) of the data as shown in 

figure 3. The power spectral density (PSD) of 

wind speed and power provides information on 

the character of fluctuations in the time series 

data. The (PSD) describes how the power of a 

time series is distributed with frequency. The 

graph has been derived based on periodogram 

PSD estimation method. As expected, in figures 3 

(a) and (b), there are no regular sharp peaks which 

is the representative of aperiodic nature of wind 

speed and wind power time series. Lack of 

periodic components in these time series implies 

low predictability of these time series as it would 

be examined in the next sections. To analyze the 

results of figure 3 more closely, one should note 

that existence of the higher harmonics in the 

spectra indicates that the processes underlying the 

time series are not linear processes, but there is 

some kind of nonlinearity [21, 24]. As another 

point, consider the frequency content of the plots. 

A broadband dense spectrum which also preserves 

these properties in small frequency ranges is often 

considered as hallmark of chaos. Spectrum of a 

chaotic system is not solely comprised of discrete 

frequencies, but has a continuous broadband 

nature [25]. In case of our data, such a broadband 

spectrum preserving its properties in small 

frequency ranges is not observed (See Figures 3 

(c) and (d)). These observations imply the 

stochastic nature of wind speed and wind power. 

However, since such a type of broadband 

spectrum may be due to either chaotic or 

stochastic nature of a time series, some stronger 

tests should be carried out to distinguish strictly 

between these two types of dynamics. 

 

2.2. The histogram analysis 

Histogram is a graphical representation that shows 

the distribution of data. It consists of tabular 

frequencies shown with discrete intervals by 

adjacent rectangles. The total area of the 

histogram is equal to the number of data. Next, 

the experimental probability density function 

(PDF) of a data can be derived when the y-axis 

values of the histogram (or number of data in each 

histogram bin) is normalized by the total number 

of data. The experimental PDF graphs of the wind 

speed and wind power data have been illustrated 

in figure 4. In order to investigate the nature of the 

wind speed and wind power dynamics, it has been 

tried to fit a proper random distribution to the 

experimental PDF via the statistics toolbox of 

MATLAB [23]. Also, it is observed that the 

Weibull distribution described by (1) is well fitted 

to the histogram of the data. That is: 

   1
( , )

b
x

a
b

b x
a a

f x a b e
 

  (1) 

where, f (.) is the Weibull PDF and a, b are its 

corresponding parameters. Trying to fit the 

Weibull PDF to the wind speed and wind power 

time series', the following parameter are found: 

For wind speed: a1= 5.1040, b1=1.7057; for wind 

power a2=48.9156, b2=1.1341.The well matching 

of the found PDF's with the experimental PDF of 

the wind speed and wind power time series may 

be seen in figures 4(a) and (b), respectively. 
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Figure 3. Power spectral density for (a) The wind speed, (b) The wind power, (c) and (d) Figs. 3(a) and 3(b) zoomed out. 

Figure 4. Experimental PDF graphs of (a) wind speed, (b) wind power in comparison with the fitted Weibull distributions. 

This observation is another hallmark of stochastic 

behavior of the wind speed and wind power time 

series. 
 

2.3. Embedding delay determination 

The first step in analyzing a time series is to 

reconstruct its embedded phase space via methods 

of delays [22]. In this method, vectors in a new 

space, the embedding space, are formed from time 

delayed values of the scalar measurements [22]. 

For implementing this method, two important 

parameters should be determined firstly: the 

embedding delay and embedding dimension. In 

order to find out the embedding delay, two 

methods may be employed. In the first approach, 

the first zero cross or first cutoff (corresponding to 

95%confidence level) of the autocorrelation 

function (ACF) is the embedding delay [26]. In 

the second approach, the first minimum of the 

average mutual information (MI) is the 

embedding delay [26]. In this paper, both 

approaches have been employed to the data and 

the results are illustrated in figure 5. For these 

time series, the first approach is inconclusive 

because the first zero cross of ACF plot doesn’t 

reveal an integer embedding delay as shown in 

figures 5 (a) and (c).  According to figure 5(b), the 

first minimum is occurred at 6, so the embedding 

delay for the wind speed is 𝜏 = 8 hours and from 

figure 5(d), the first minimum is occurred at 8, so 

for the wind power, the embedding delay is 𝜏 =
 12 hours. These embedded delays will be used in 

recurrence plots and recurrence quantification 

analysis. 
 

2.4. Embedding dimension determination 

As mentioned before, embedding dimension 

determination is the other parameter to be 

determined for phase space reconstruction. The 

dimension, where a time delay reconstruction of 

the system phase space provides a necessary 

number of coordinates to unfold the dynamics 

from overlaps on itself caused by projection, is 

called the embedding dimension [27].A common 

method to determine the minimal sufficient 

embedding dimension m is the false nearest 

neighbor (FNN) method proposed by Kennel et al. 

[27].
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Figure 5. (a) and (b) Wind speed autocorrelation and average mutual information, (c) and (d) Wind power autocorrelation 

and average mutual information. 

 

Figure 6. The fraction of false nearest neighbors versus 

the embedding dimension for (a) Wind speed, (b) Wind 

power time series. 

The detailed description of this algorithm is at 

[17]. Figure 6 shows the fraction of false nearest 

neighbors for the considered wind speed and wind 

power time series. As we see in figure 6, the 

fraction falls down to zero at m = 6 for wind speed 

and m = 4 for wind power. Therefore, the 

embedding dimension is 6 and 4 for the wind 

speed and wind power time series, respectively. 

 

2.5. The phase space reconstruction and test of 

Surrogates  

Mapping time series data into a phase space 

allows one to view the temporal series in a spatial 

manner. The distinguishing feature of chaotic 

processes is their sensitive dependence on initial 

conditions and highly irregular behavior that 

makes prediction difficult except in short term. 

This feature is the so-called “strange attractors” 

associated with chaotic processes which often 

have a complex, fractal structure [27]. Based on 

these properties, one of the most interesting 

procedures for checking the presence of chaos is 

based on the ability of recovering the strange 

attractor of a system in the phase space and 

especially observation of the so-called butterfly 

effect [27].The three-dimensional phase spaces of 

the wind speed data (WS) with a delay time of 𝜏 =
 8 hours, and that of wind power (WP) with a 

delay time of 𝜏 = 12 have been shown in figures 

7(a) and (b), respectively. As seen, the strange 

attractor and the butterfly effect are not observed 

in the reconstructed phase space. Instead, a 

random like trajectory is demonstrated in the 

graphs. To develop a better appreciation whether 

the data set is chaotic or stochastic, one can 

comparatively assess the phase space maps of the 
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original data with their corresponding surrogated 

data sets. Surrogate data sets have Fourier 

decompositions with the same amplitude of the 

original data set but with random phase 

components. The method of surrogate data serves 

as a null hypothesis whose objective is to examine 

the hypothesis that the original data have come 

from a random process [8, 28-30]. The method 

may be used as a reference for visual comparison 

between the original and random data sets’ phase 

space. These two phase spaces would not look 

like if the data is a randomly spreading out cloud 

[8]. The phase space map of the surrogated wind 

speed and wind power data are shown in figure 8. 

As it is observed, the surrogated phase space maps 

do not looks like the original ones. Besides, not 

strange attractor or butterfly effect is observed in 

figures 8 (a) and (b). This observation emphasizes 

the stochastic nature of our data once again. 

 
Figure 7.The phase space plot of (a) the wind speed time series ( 8τ   ), (b) the wind power time series ( 12τ  ). 

 
Figure 8. (a) The phase space plot of the surrogated the wind speed ( 10τ   ); and (b) that of the wind power ( 12τ  ). 

2.6. The slopes of local integral sums 
One of the fascinating features of chaotic systems 

is the fractal dimension of the attractor. 

Correlation dimension D2 [8] is a measure for 

fractal dimension, which is formulated bellow: 

 

 2
0

log ,
lim  

logr

d C m r
D

d r
  (2) 

where, 𝐶(𝑚, 𝑟) is defined by: 

 

    
1

,

  Θ r
N N

i j i

C m r

constant x i x j
  



   
 (3) 

where, 𝑥⃗(𝑖),𝑥⃗(𝑗) denote states embedded in 

reconstructed phase space with embedding 

dimension  𝑚 [31]. 

Θ(. ) is the Heaviside step function (which is 1 for 

a positive argument and 0 elsewhere) applied to 

count the number of pair of points within radius 

rand 𝜇 is the Theiler correction employed to 

exclude temporally correlated points [28]. 

Seeking for fractal attractors, the plots of local 

slopes of the logarithm of the correlation integrals 

with respect to the logarithm of r can be 

investigated. Evidence for a fractal attractor is 

given if the local slopes are constant for a large 

enough range of small radii but does not change 

for embedding dimension higher than a minimal 

value [20]. In the local slopes plot, if the system 

has the chaotic behavior, by increasing the 

embedding dimension, the curve will be saturated 

and the level at which most of the curves settle 

down defines the fractal dimension [22]. Figures 

9(a) and (b) show the local slopes of the 

correlation integral versus r for wind speed and 

wind power time series data, respectively. The 

embedding delay used for these plots is 𝜏 = 8 and 
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𝜏 = 12 for wind speed and wind power data, 

respectively. Embedding dimension varies from 1 

to 10 from bottom to top of the graphs. As seen in 

figure 9, there is no indication of a low-

dimensional fractal attractor in the graphs. This is 

another hallmark of stochastic behavior of the 

wind speed and wind power dynamics. 

Figure 9. Local slopes of the correlation integrals, for m = 

1,..., 10, for (a) Wind speed and (b) Wind power versus r. 

 
Figure 10. Results for the δ-ε method for (a) wind speed 

and (b) wind power. 

 

2.7. The 𝜹 − 𝜺 method 

The  𝛿 − 𝜀 method was first introduced in [32], 

where a detailed discussion of the method is 

given. According to this method, a deterministic 

dynamics embedded in a sufficiently high-

dimensional state space should induce a 

continuous mapping from past to present states 

and the size of the neighborhoods is increased to 

investigate the continuity. For deterministic 

processes,𝜀 is expected to decrease to zero for 

decreasing𝛿 for sufficiently high embedding 

dimensions [26], but for stochastic processes and 

processes which are covered by a significant 

amount of additive observational noise, a non-

zero intercept for 𝜀 is expected. Figures 10 (a) and 

(b) show the results of this method for the wind 

speed and the wind power time series. This 

method has been employed in the wind speed and 

power time series by 𝜏 = 8 and 𝜏 = 12 

respectively. The embedding dimensions vary 

from 1 to 10 from top to bottom of the graphs. As 

seen in figures 10 (a) and (b), for small 𝛿, 𝜀 does 

not tend to zero. These results emphasize the 

stochastic nature of the both wind speed and wind 

power dynamics. 

 

2.8. Recurrence Plots (RP) 

Since its introduction by Eckman and Ruelle the 

recurrence plot has emerged as a useful tool in the 

analysis of nonlinear, non-stationary time series 

and useful for finding hidden correlations in 

highly complicated data [19].With RP, one can 

graphically detect hidden patterns and structural 

changes in data or see similarities in patterns 

across the time series under study [12]. The RPs 

exhibits characteristic large scale and small scale 

patterns. Large scale patterns can be characterized 

as homogeneous, periodic, drift and disrupted, 

that obtain the global behavior of the system 

(noisy, periodic, auto-correlated, etc.) [19]. The 

RP is derived directly from the distance matrix 

𝐷 = 𝐷𝑖,𝑗, 𝑖, 𝑗 = 1, … , 𝑁 (𝑁 is the length of the data 

series or trajectory): 

,i j i jD x x   (4) 

By applying a threshold 𝜀: 

 , ,Θi j i jR D   (5) 

where,Θ is the Heaviside function. And, 

 
0    0

Θ x
1    0

if x

if x


 



                                  (6) 

And if 𝑥⃗𝑖 ≈ 𝑥⃗𝑗 then 𝑅𝑖,𝑗 = 1 if not, then 𝑅𝑖,𝑗 = 0. 

One assigns a “black” dot to the value one and a 

“white” dot to the value zero. The two-

dimensional graphical representation of Ri,jand 

then it is called RP [19].The visual inspection of 

RPs reveals (among other things) the following 

typical small scale structures: single dots, 

diagonal lines as well as vertical and horizontal 

lines [19, 33]; in addition, even bowed lines may 

occur [19]. Single, isolated recurrence points can 
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occur if states are rare, if they do not persist for 

any time, or if they fluctuate heavily [33]. A 

diagonal line occurs when the trajectory visits the 

same region of the phase space at different times 

[33]. RP gives the reader a first impression of the 

patterns of recurrences which will allow studying 

dynamical systems and their trajectories like 

periodic systems, stochastic random systems, and 

chaotic ones [19]. Long and non-interrupted 

diagonals are related to periodic motion and the 

period of oscillation is equal to the vertical 

distance between these lines. If the diagonals are 

shorter, it seems that the RP is related to the 

chaotic systems. The RP with so many single 

black points with erratic distribution is related to 

the uncorrelated stochastic signal. All together, we 

find that the shorter the diagonals are in the RP, 

the less predictability the system has [12]. 

 
Figure 11. (a) RP of wind speed time series, (b) RP of 

wind power time series. 

The RP of the wind speed and wind power time 

series has been shown in figures 11 (a) and (b), 

respectively. The figure has been generated via 

the CRP toolbox of MATLAB [34]. In order to 

plot the RP, the parameter m has been considered 

6, 4 for wind speed and wind power, respectively, 

and the parameter 𝜏 has been assumed 8 for wind 

speed and 12 for wind power. Besides, the 

Euclidean norm and the threshold of 1.5 have 

been assumed for plotting the recurrence plots. 

According to figure 11(a), very short diagonals in 

wind speed RP imply stochastic nature of wind 

speed. Moreover, the presence of distributed dark 

regions as well as white ribbons is indicative of 

seasonality and unstationarity in the hourly wind 

speed time series. Altogether, very short-term 

predictability is concluded from the RP of wind 

speed. According to figure 11(b), the same 

properties is observed in the RP of wind power 

unless the density of dark points is more in some 

regions with respect to that of the wind speed. Via 

the RP, the stochastic nature, seasonality and 

unstationarity is emphasized for wind power as 

well, but it seems due to its correlated dynamics, 

the predictability is enhanced here. 

 

2.9. Recurrence quantification analysis (RQA) 

In order to go beyond the visual impression 

yielded by RPs, several measures of complexity 

which quantify the small scale structures in RPs 

have been proposed known as recurrence 

quantification analysis (RQA) [19]. These 

measures are based on the recurrence point 

density and the diagonal and vertical line 

structures of the RP [12]. The simplest RP 

measure is the recurrence rate (RR) and it is 

defined as the percentage of dark pixels in 

recurrence plots by: 

   ,2
, 1

1
100

N

i j

i j

RR R
N

 


   (7) 

where, N is the length of the time series. The more 

periodic the dynamic is, the larger the recurrence 

rate will be [19]. The next measure is DET (% 

determinism) which is defined as the percentage 

of recurrence points that form diagonal structures 

(of at least length lmin) as: 

 

 
1

min

N

l l

N

l

lp l
DET

lp l









                                  (8) 

where, 𝑝(𝑙) = 𝑝(𝑙, 𝜀) is the histogram of diagonal 

lines of length l with the recurrence threshold of 

lmin. The threshold lmin excludes the diagonal lines 

which are formed by the tangential motion of the 

phase space trajectory. A diagonal line of length l 

means that a segment of the trajectory is rather 

close during l time segment of the trajectory at a 

different time. DET plots may be interpreted as a 

signature of determinism and so predictability in 
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the time series data. The average diagonal line 

length: 

 

 
min

min

N

l l

N

l l

lp l
L

p l









 

                                 (9) 

is the average time that two segments of the 

trajectory are close to each other, and can be 

interpreted as the mean prediction time [19]. 

Another RQA measure considers the length Lmax 

of the longest diagonal line found in the RP [19]: 

  1
max lN

max i i
L l


                                (10) 

where, 𝑁𝑙 = ∑ 𝑝(𝑙)𝑙≥𝑙𝑚𝑖𝑛
 is the total number of 

diagonal lines. This measure is related to the 

exponential divergence of the phase space 

trajectory. The faster the trajectory segments 

diverge, the shorter are the diagonal lines and the 

lower is the measure Lmax. Lmax is also an estimator 

of lower limit of the sum of the positive Lyapunov 

exponents [24]. Positive Lyapunov exponents 

gauge the rate at which trajectories diverge, and 

are the hallmark for dynamic chaos. Altogether, 

the shorter is the Lmax, the less predictable is the 

signal. The Shannon entropy of the probability 

distribution of the diagonal line lengths p(l) is 

defined as: 

    ln
min

N

l l

ENTR p l p l


   
                     (11) 

ENTR reflects the complexity of the RP in respect 

of the diagonal lines, e.g. for uncorrelated noise 

the value of ENTR is rather small, indicating its 

low complexity [19]. 

The percentage of the recurrence points forming 

vertical structures is another RQA measure and is 

known as LAM (% Laminarity) and is defined as 

[19]: 

 

 
1

min

N

v v

N

v

vp v
LAM

vp v










 
                              (12) 

where, 𝑝(𝑣) = 𝑝(𝑣, 𝜀)  is the histogram of vertical 

lines of length v that exceeds a minimal length vmin 

and with recurrence threshold of 𝜀. Laminarity 

(LAM) represents the occurrence of laminar states 

in the system without describing the length of 

these laminar phases. LAM will decrease if the RP 

consists of more single recurrence points than 

vertical structures. The average length of vertical 

structures is called trapping time (TT), which 

estimates the mean time that the system will stay 

at a specific state or how long the state will be 

trapped [19]. It is given by: 

 

 
min

min

N

v v

N

v v

vp v
TT

p v









                                (13) 

Finally, the maximal length of the vertical lines in 

the RP: 

𝑣𝑚𝑎𝑥 =  max ({𝑣𝑙}𝑙=1
𝑁𝑣 )                                (14) 

can be regarded, analogously to the standard 

measure Vmax(Nv is the absolute number of vertical 

lines). In contrast to the RQA measures based on 

diagonal lines, these measures are able to find 

chaos-chaos transitions [19]. Hence, they allow 

for the investigation of intermittency, even for 

rather short and non-stationary data series. 

Furthermore, since for periodic dynamics the 

measures quantifying vertical structures are zero, 

chaos-order transitions can also be identified [19]. 

Furthermore, since for periodic dynamics the 

measures quantifying vertical structures are zero, 

chaos-order transitions can also be identified 

[19].The RQA measures of the wind speed and 

wind power time series with 𝑣𝑚𝑖𝑛 = 𝑙𝑚𝑖𝑛 = 6 and 

𝜀 = 1.5 have been brought in figures 12 and 13, 

respectively. According to figure 12(a), the RR 

plot shows that the wind speed data has weak 

periodical dynamic as we find out from RP. 

Predictability for wind speed time series is 

noticeably small regarding DET measure in figure 

12 (b), but figure 12(c) shows that the mean value 

of the L measure of this data is about 8 which is 

rather low. Thus, the mimic predictability of the 

wind speed time series can be concluded. As seen 

in figure 12(d), Lmax falls to the low value of 3 in 

some regular periods. This behavior in 

conjunction with those observed in figures 12(f) 

and (h) emphasizes the seasonality and 

unstationarity of the wind speed. Figure 12 

(e)shows the ENTR of wind speed. From this 

figure, noticeable ENTR is representative of 

highly complex dynamics of wind speed. 

Referring to figure 12(g), an almost flat TT plot 

locating at about 6, is representative of the 

predictability about 8×6=48 hours (𝜏 = 8) for 

wind speed.Investigation of figure 11 shows 

similar results for the RQA measures of the wind 

power time series. According to this figure, as RR, 

DET, L and Lmax have been increased, it is 

concluded that the wind power is more predictable 

than wind speed. However, a flat plot of Lmax as 

well as lower variations in LAM and vmax are 

representative of lower degrees of dynamic 

transitions or equivalently more stationarity in the 

wind speed dynamics. The plot of TT is less flat 

but its mean value is larger than that of wind 

speed (it is about 12).In this case, the mean 

prediction time is about 12×12=148 hours 

(𝜏 =12). 



 

 

Figure 12. RQA measures for wind speed (a) RR%, (b) DET%, (c) L, (d) Lmax, (e) ENTR, (f) LAM%, (g) TT, and (h) Vmax. 

 

3. Interaction analysis of wind speed and wind 

power 

3.1. The correlation analysis 

One of the most common tools for determination 

of effective inputs for a forecasting model is the 

correlation analysis between the underlying time 

series. The cross correlation between two time 

series 𝑋 = {𝑥𝑖 , 𝑖 = 1, … , 𝑁} and 𝑌 = {𝑦𝑖 , 𝑖 = 1, … , 𝑁}  

can be defined as: 

 

     
,

* * , 1,...,

X Y

n n m

C m

E x y E X E Y m N



 

 (15) 

where, in (15), 𝐸(. ) and * stand for mathematical 

expectation and complex conjugate, respectively. 

Indeed, the cross correlation is employed to 

examine the linear correlation of two time series. 

The more slower decays the correlation plot, the 

more linearly predictable is the Y in terms of X. 

Figure 13 shows the cross correlation of wind 

power versus the lagged wind speed time series. 

From this figure, one may conclude there exists an 

almost noticeable but decreasing correlation 

among the wind power time series and almost up 

to one weak lagged wind speed time series, which 

may be employed for forecasting this time series. 

 

3.2. The cross recurrence plots (CRP)  

As stated earlier, the correlation analysis is a 

linear tool which reflects the linear dependency of 

two time series. In the literature, there are some 

nonlinear tools which investigate the bi-variate 

dependencies of the time series as well. The CRP 

is a bi-variate extension of the RP and was 

introduced to analyze the dependencies between 

two different systems by comparing their states 

[19] which can be considered as a generalization 

of the linear cross-correlation function. Suppose 

we have two dynamical systems, each one is 

represented by the embedded state trajectories 𝑥⃗𝑖 

and 𝑦⃗𝑖 in am-dimensional phase space. Analogous 

to the RP (Equations (4) and (5)), the 

corresponding cross recurrence matrix is defined 

by [19]: 

 ,

,C Θ ,

1, ,  ,  1,

x y

i j i jR x y

i N j M

  

   

                        (16) 

where, N and M are the lengths of the trajectories 

of 𝑥⃗𝑖 and 𝑦⃗𝑖 which are not required to be identical. 

However, the both systems are required to be 

represented in the same m-dimensional phase 

space, because a CRP looks for those times when 

a state of the first system recurs to one of the other 

system [12]. The graphical representation of the 

matrix CR is called CRP. In this graph, long 

diagonals are representative of similarity or 

correlation of the two dynamics. A measure based 

on the lengths of such lines can be used to find 

nonlinear interrelations between two systems, 

which cannot be detected by the common cross-

correlation function. The more similar/correlated 

the two time series are the longer the diagonals 

and the higher density of dark dots around the 

main diagonal of the graph [12].Figure 15(a) 

shows the CRP of the wind speed and wind 

power. According to that figure, the diagonals are 

short and the density of the dark dots is low. 

Therefore, the correlation between two time series 

is weak as implied before. The transitions as well 

as white ribbons in this graph are representative of 

existence a non-stationary nonlinear correlation 

between these two dynamics. 
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Figure 13. RQA measures for wind power (a) RR%, (b) DET%, (c) L, (d) Lmax, (e) ENTR, (f) LAM%, (g) TT, and (h) Vmax. 

 
Figure 14. The cross correlation of wind speed and wind 

power time series. 

 

Therefore, it is concluded that in constructing a 

forecasting model for wind power prediction, the 

seasonality and unstationarity should be 

accounted for by adaptive tuning of the model or 

constructing seasonal models. 
 

3.3. Cross recurrence quantification analysis 

(CRQA) 

Similar to RQA measures, cross RQA measures 

(CRQA) are defined. For example, the RR of 

CRPs is known as CC2(𝜀) and is defined as [19]: 

   2 ,2
, 1

1
100

N

i j

i j

CC CR
N

 


               (17) 

Other CRQA measures are defined similar to 

RQA measures as in Section 2.9 (Equations (8) to 

(13)). Figure 16 shows the CRQA measures of 

wind speed and wind power. The results admit the 

last conclusions and yield very short term cross 

predictability of the wind power in terms of wind 

speed time series. 

 

3.4. The joint recurrence plot (JRP) 

In order to compare different systems’ dynamics, 

another extension of RP has been developed 

named joint recurrence plot (JRP). In this method, 

the recurrences of each time series to its 

trajectoryin its respective phase spaces is 

considered separately to find out times when both 

of them recur simultaneously, i.e. when a joint 

recurrence occurs. In this way, the individual 

phase spaces of both systems are preserved. This 

type of comparison, especially when we have two 

physically different systems, makes more sense. 

JRP of two time series 𝑥⃗𝑖 and 𝑦⃗𝑖 embedded in mx 

and my dimensional phase spaces is defined as 

[19]: 

   

,

,

  ,

,  1, ,  

x y

i j

x i j y i j

JR

x x y y

i j N

 



     

 

 
(18) 

where, 𝜀𝑥 and 𝜀𝑦 are the corresponding thresholds 

for time series 𝑥𝑖and 𝑦⃗𝑖. Figure 15(b) shows the 

JRP of the wind speed and wind power time 

series. As seen in this figure, the same pattern as 

Figure 15(a) is observed, but the longer diagonals 

are formed in the JRP plot.  

 

3.5. Joint recurrence quantification analysis 

(JRQA) 

Similar to RQA measures, joint RQA measures 

(JRQA) are defined and the RR of JRPs of n 

systems with thresholds (𝜀1, … , 𝜀𝑛) known as 

𝐽𝐶2(𝜀)is defined as [25]: 

     1

2 ,2
, 1 1

1
, , 

N n
x kn k

i j

i j k

JC R
N

  
 

      

(19) 

Other JRQA measures are defined similar to RQA 

measures as in Section 2.9 (Equations (8) to (13)). 

Figure 17shows the JRQA measures of wind 

speed and wind power time series. From this 

figure, it is observed that joint recurrence of the 
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two time series performs more degree of 

predictability with respect to that of CRP.As seen 

in this figure, the JRQA measures perform almost 

flat which is representative of stationarity in the 

recurrence of the two time series, which 

corresponds to similarity in recurrence dynamics 

of the two time series. That is, it is concluded that 

in constructing the prediction model for wind 

power, finding the recurrence dynamic model of 

the wind speed may be so effective. 

 
Figure 15. (a) CRP and (b) JRP of wind speed and wind 

power time series'. 

4.  Conclusion 

The characterization and predictability analysis of 

wind speed and wind power time series has been 

considered in this paper. The employed data was 

the experimental data from Spain’s wind farm on 

May 2005 [5]. The data analysis procedure 

includes histogram plots, power spectral density 

(PSD) analysis, the phase space reconstruction 

and test of surrogates, the slope of integral sum, 

the  𝛿 − 𝜀 method, recurrence plots (RPs) and 

recurrence quantification analysis. The analyses 

are representative of seasonal unstationary 

stochastic behavior and short term predictability 

of wind speed and power time series.In order to 

investigate the interactive behavior, the mentioned 

wind speed and wind power, the bi-variate linear 

and nonlinear analysis methods such as cross 

correlation analysis, cross recurrence plots, joint 

recurrence plots, CRQA as well as JRQA were 

performed as well. The analysis results show that 

a noticeable similarity exists in the recurrence 

dynamics of these two time series, which is 

almost stationary. Nevertheless, the correlation of 

these two time series is mimic, seasonal and 

unstationary. 

 
Figure 16. CRQA measures for wind speed and wind 

power time series (a) RR%, (b) DET%, (c) L, (d) Lmax. 

 
Figure 17. JRQA measures for wind speed and wind 

power time series (a) RR%, (b) DET%, (c) L, (d) Lmax. 
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