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Abstract

State estimation is the foundation of any control and decision-making in power networks. The first
requirement of a secure network is a precise and safe state estimator in order to make decisions based on an
accurate knowledge of the network status. This paper introduces a new estimator that is capable of detecting
bad data using few calculations without the need for repetitions and estimation residual calculations. The
estimator is equipped with a filter formed in different times according to the Principal Component Analysis
(PCA) of the measurement data. In addition, the proposed estimator employs the dynamic relationships of
the system and the prediction property of the Extended Kalman Filter (EKF) in order to estimate fast and
precise network states. Therefore, it makes the real-time monitoring of the power network possible. The
proposed dynamic model also enables the estimator to estimate online the states of a large-scale system. The
results obtained for the state estimation of the proposed algorithm for an IEEE 9 bus system shows that even
in the presence of bad data, the estimator provides a valid and precise estimation of the system states, and
tracks the network with an appropriate speed.
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1. Introduction

Although several decades have passed since the number of binary variables, resulting in a higher
emergence of state estimation in power grids, the computational burden. Regarding the estimation
dangerous consequences resulting from the accuracy, the numerical simulations show that the
control and decision-making based on inaccurate least measurements rejected (LMR) and the
information of grid have caused the accuracy, quadratic-linear (QL) techniques provide an
reliability, and robustness of the estimation estimation accuracy level that is similar to that
method to be among the fundamental challenges obtained using the WLS method [1].

of the energy management system (EMS). Measurements providing the input data of the
The popular state estimation techniques in power estimator may contain bad data due to the
systems are static, and are mostly based on the communication errors, systematic errors, incorrect
weighted least squares (WLS) method. From the wiring or infrequency of instrument calibration
computational viewpoint, the gquadratic-constant [2]. These estimators usually detect and identify
(QC) and least absolute values (LAV) techniques bad data in the measurement data set by repeating
are faster than the conventional WLS estimator if a cycle of estimation of detection-elimination. It is
they are implemented as the mathematical rather time-consuming for large scale systems. On
programming problems. These techniques can the other hand, the static state estimators are used
save up to 75% of the CPU time (compared with to derive the control and monitoring functions that
the WLS method). However, the mathematical are associated with a power system operating
programming formulation of some estimators under normal, slowly varying conditions, i.e. the
(such as the least median of squares (LMS) and slow changes in the state of the system or large
least trimmed of squares (LTS) approaches) changes on the long time scale but not with abrupt

involves the non-convexities and a significant large changes on a very short time scale [3].
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Bad-data identification in a power system state
estimation plays an important role towards
obtaining an unbiased state estimate. So far, many
methods have been suggested to detect and
eliminate bad data from a measurement dataset as
the input of the state estimator.

A unified method for optimization of placement
measuring devices used for a power system online
monitoring by means of state estimation has been
proposed in [4]. The proposed method can be
suitable for the mixed measure system preserving
state estimation observability and bad-data
processing capability by employing numerical
algorithms for observability checking, critical
measurements, and critical couple identification.
The node injection radix measurements and
measurement categories were defined, and each
measurement classification was determined by
analysis of the column vectors of the coefficient
matrix.

The member numbers of each measurement class
can reveal the bad-data processing capability.
Also the type number of measurements can be
used for the observability analyzing [4].

In [5], a type of mismatch parameter such as the
measurement residual has been introduced in the
name of parity mismatches. The parity
mismatches are employed for identification of
gross errors in a given measurement set. The
physical appeal of the parity mismatches enables
one to adopt normalization, which improves the
detectability of bad data in short lines.

Network changes or a temporary malfunction of
the data acquisition system reduce data
redundancy for state estimation. Redundancy of
the measurement incorrectness can be specified by
means of the presence of critical measurements
and sets. In a majority of data validation
techniques, the processing gross error is not
possible in critical measurements and sets. In [6-
8], several algorithms have been presented for
detecting, identifying, and removing bad data in
critical measurements. The basic idea in [7]
converts the critical measurements to redundant
measurements by placing PMUs for detecting bad
data in them. Also in [8], Gou and Kavasseri have
extended the idea to the critical pair, which is
known to be undetectable if bad data appears in
critical pairs.

Considering that there is not enough time for
repeating and returning operations to detect bad
data in the online monitoring, the pre-filter
methods have been presented. Singh et al. have
proposed a method for pre-filtering of state
estimation based on wavelet analysis to detect bad
data. Wavelet transform can be used to extract
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frequency information in the time domain by
decomposing the signal with short scale of
window for high frequency band, while with long
window scale for low frequency band using the
scale and shift technique, an important feature is
used to identify the feature of a bad data and the
reconstructed high frequency component to
identify the abruptness in the measurement [9].

The application of Least Winsorized Square for
tracking State Estimation (TSE) has been
discussed in [2]. In the proposed estimator
detection, identification of the anomalies such as
the presence of bad data and sudden change in the
load has been carried out. The asymmetry test, i.e.
the skewness measure has been used in the
reference. In this study, the problem of state
estimation by the algorithm of JADE-adaptive
differential evolution was used as an optimization
tool to solve the power system state estimation. A
method called Adaptive Partitioning State
Estimation (APSE) has been employed in [10] for
detection of the attack of bad-data injection. The
essence of this method is based on two main
ideas, as follow: 1) In order to improve the
sensitivity of bad-data detection, the large power
system is divided into several sub-systems. 2) The
detection results are used to perform updating and
repartitioning the sub-system in order to locate the
bad data. In this method, the power system is
mapped into a weighted undirected graph. In each
sub-system, the Chi-squares test is used to detect
the bad data. Detection and identification of the
bad data are important not only in the
conventional measured data but also in phasor
measurements because these errors have a great
impact on the estimated states in the power
systems [11]. A detection method based on
tracking the dynamics of measurement variations
has been proposed in [12] to detect the attack of
false-data injection. This method uses a measure
called Kullback-Leibler Distance (KLD) to
compute the distance between the two probability
distributions obtained from variations in the
measurement. When the falsified data is injected
into the network, the probability distributions
associated with the measurement variations take
the deviation from the historical data, and
therefore, lead to a greater KLD. The false-data
detection issue has been considered as a matrix
separation problem in [13]. In this study, a false-
data detection algorithm was developed based on
the separation of nominal power grid states and
anomalies  considering the inherent low
dimensionality of temporal measurements of
power system states and sparsity of the falsified
data injection attacks. Finally, the problem was
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solved using the nuclear norm minimization and
low rank matrix factorization. Also the Artificial
Neural Network (ANN) learning process was used
for pre-filtering the input data of the state
estimators [14, 15]. In [15], a constructive ANN
based on the Group Method of Data Handling
(GMDH) has been designed by defining the
normalized innovation factors. The learned ANN
can be used as a pre-filter to perform a pattern
analysis in order to identify both the topological
and analogical errors. The need for the widespread
information of possible network status and the
time-consuming ANN learning process prevent
the application of these methods to the real time
state estimation.

Almost all approaches need a careful knowledge
of the grid topology, i.e. Jacobian matrix for
performing the bad-data detection (BDD) system.
The BDD system is used to ensure the integrity of
state estimation to filter the faulty measurements
introduced by device malfunctions or malicious
attacks. By contrast, Yu and Chin, in [16], have
studied the general problem of blind false data
injection attacks using the PCA approximation
method without knowledge of the Jacobian matrix
and the assumption regarding the distribution of
state variables. This method is not capable of
distinguishing right data with large deviation due
to drastic changes in the network and the gross
errors. However, it is appropriate to estimate the
static mode, which is not applicable to the real
time state estimation.

Nowadays, most supervisory control and data
acquisition (SCADA) systems provide
information on system trends. Recording
functions allow operators to collect analogue
values over selected time periods and to plot these
values versus time as video displays in order to
study the process trends. This has given a good
insight into the modelling step.

This paper presents an algorithm by employing
the record of measurement data and PCA
technique that allows the state estimator to
identify bad data without repeating estimation
operations. As pointed out, the modern SCADA
system can record information obtained from the
network. With these information records, we can
calculate the principal components of the network
measurements in different time periods.
According to the proposed method, when the PCA
pre-filter is used by the estimator, it can detect the
outlier without too much time-consuming
computations and repetition process. Also it
becomes faster than the other bad-data detection
algorithms. On the other hand, the pre-filter is a
blocking outlier, so that it can prevent numerical
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instability in the estimation process due to
significant errors that is a key element in most
estimators. In addition, by employing the Kalman
filter in the proposed estimator, the bad effect of
noise (those having small amplitude errors)
disappears. In conclusion, the proposed estimator
has a fast calculation and an accuracy property as
well as having robust against various bad data.
Section 2 describes, in detail, calculation of the
principal data components based on information
records, and section 3 explains its application to
detect bad data. In order to describe the PCA pre-
filter operation in details, the simple example of
two-bus sub-system is presented in section 4. In
section 5, the critical measurements are identified
in order to prevent independent data in
information matrix, and by suggesting appropriate
places for PMUs, the critical measurements
transform into the redundant ones. A
comprehensive and appropriate pseudo-dynamic
model for a wide power system is derived in
section 6. Having a dynamic model of the network
and measurement of filtered information, a
dynamic estimator is introduced in section 7 using
Extended Kalman Filter. Finally, in section 8, the
proposed algorithm is implemented to assess the
IEEE 9-bus system.

2. Principal component analysis
Principal Component Analysis (PCA) was first
introduced by Pearson. It can be used to reduce

the data dimensions from R to R® with c<d,
data clustering and feature extraction [17-19]. The

principal components are orthogonal in R, and
make up the axes of this space. Data is expressed
in this method based on the similarities and
differences. Moreover, a pattern can be found in
data first, and based on this pattern, the
information can be compressed by reducing the

number of dimensions without losing the
necessary information.
PC,
"
> PC

Figure 1. The 2D distribution of values around their
principal components.

As shown in figure 1, for 2D data of principal
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components as PC; and PC, vectors, the majority
of the data is scattered around the PC; vector. PC;
is referred to as the first principal component (PC)
of data. In addition, by choosing a permitted
interval of principal components, the out-of-range
data can be deleted. This technique will be used in
the next sections in order to identify and delete the
outlier.

To find the principal components, the covariance
matrix of data variations around their means must
first be formed. Now eigenvectors of the
covariance  matrix  express the  principal
components, and the corresponding eigenvalues of
each vector determine the priority of that
component.

Consider matrix Ay, which is the matrix of data

variations with zero means. Each column is the
data related to a dimension (or a variable) [19-21]:

A A A m
azyl azvz . . . azym
Ay = 1)
|1 &2 A m |

Matrix Q, which is the covariance of matrix A,
can be calculated as follows:

Q=cov(A)

[cov(a,a,) cov(,,a,) cov(,,a,)
cov(a,a;) COV@,a,) cov(a,.a,)
= (2)
cov@,,a;) cov@,,a,) cov@y,ay)|

where:
T
aJ Z[a]_’J 3‘2’] . ak’J]
k
Z(aq,i _ai)(aq,j _aj)

cov(a;,a;) = o=t

k-1
Now, the principle components that are the same
eigenvectors of Q can be expressed as:

PC =eigenvecta(Q) =[PC, PC, ... PC..] (3)
in which, the order of vectors is determined by the
corresponding eigenvalues. This means that most
PCs are related to the largest eigenvalue.

To present data in the R® space whose axes are
orthogonal PC vectors, the unimportant principal
components should simply be deleted and the PC
matrix should be multiplied by the data matrix (
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A):

Aj projected to R® _ PCreduced =< A\j (4)

where PC™® js obtained by removing the
unimportant principal components from PC, and

A, PR R i the mapped data matrix into the
selected principal component space.

3. BDD process

Except in particular cases, changes in the values
of measurers are in a limited range, and there is
harmony among the values of various measurers.
In the proposed method, the pattern or principal
components are found based on the measurement
data obtained from several step times (whose
accuracy must be verified). Based on this pattern,
the current measurement values can be examined.
If a datum is not located within the permitted
range of principal components, it should be
treated as suspicious data.

Consider the matrix Data that includes k
previous steps of m measurement data:

= (t—k t—k t—k) ]

2 Ze Z4Y
Data= (5)

t—2 t-2 t-2

z( 2(P z7?

t-1 t-1 t-1

2 2l 2|

The principal components can be calculated as
follow:

AData=2,-7, 2,-Z, ... Zy-Zy,) (6)
Q =cov(AData) @)
PC =eignvector(Q) (8)
where:

Z,=[z™* .27 217", Z, =Mean(Z,)
z2'=[z2{-2, ... 2\ ,-Z,,2~Z.]

To detect the bad data in the present measurement
data, it is enough that Z' is imaged on the

important PCs by (4). If the projection of Z' is
not in the secure area, the data is contaminated
with bad data. Note that the secure area can be
determined by the projection of several authentic
data measurement sets of previous step times.

It is possible in power systems for data to exceed
the permitted range because of the sudden and
large load changes or entering and exiting a large
power plant or a line, and thus it is important to
distinguish such changes from bad data. In view
of the PMU data as authentic data, the PCA pre-
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filter is able to distinguish them. By removing the
critical measurements, there is a correlation
between all measurement data, only when the
projected data go away from the principal
components that are is bad data and are
inconsistent with the other data.

4. Simple example of BDD process using PCA
pre-filter

In this section, to describe the comprehensively of
the PCA pre-filter operation, a simple example
was presented. Consider the two-bus sub-system
as a part of a power network, as shown in figure 2.

v, V,£20
r=02pu. I

Figure 2. Two-bus sub-system.

P=1pau.

cosp=1

The two voltmeters measuring and recording the
voltage magnitudes of bus 1 and bus 2 during the
various time steps are shown in figure 3.

As mentioned in the previous section, the
principal components of data and the eigenvalues
corresponding to them were calculated based on
the history of measurement data, as follow:

WA

0.109 0.089
Q =cov(AData) =103 x
0.089 0.073

0.773 -0.634
={0.634 0.7734
in which they have been sorted based on their
corresponding eigenvalues (4, =0.1819x107°

and 4, =0.0005x10°°).

As indicated in figure 4, the measurement data has
been distributed around PC,, which is an
important component and corresponds to the
largest eigenvalue. Assume that one bad data is
received from the V, measurement at the 201"
second (Figure 5).

As shown in figure 6, the penetrated outlier can be
detected by considering an authorized area or
distance from the principal components.

1.23~ -

1.01 1.02 1.03 1.04

1
VAl

Figure 4. Measurement data and PCs.

10 80 80

[V
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Figure 3. Received values of two measurements.
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Figure 5. Falsified received measurement data of bus 2 with outlier.
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Figure 6. Bad data and its distance from PCs.

5. PMUS placement to enable BDD

This section describes the placement of PMUs in
order to convert all the critical measurements into
redundant ones. The benefit of having this new
measurement configuration is that the system will
no longer be vulnerable to the loss of any of the
previous critical measurements, and now that they
are no longer critical, if they carry bad data, they
can be detected. The procedure can be formulated
as a two-step solution involving the following
stages:

1) Identification of critical measurements;

2) Finding the optimal set of PMU candidates that
can transform each critical measurement into a
redundant one.

The measurement set can be divided into two
groups: 1) critical measurements 2) non-critical or
redundant measurements. A measurement is
known as "a critical measurement™ if its removal
leads to an observable system to become
unobservable. The critical measurements can be
identified by either topological or numerical
methods [22].

Consider an observable network with n states and
m measurements. Select n measurements, so that
the network will be observable only with them. In
other words, their corresponding Jacobian matrix
must be full rank. This set of n measurements is
called the "essential measurements". Such a set is,
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in general, not unique, yet contains all the critical
measurements. Arrange the set measurement such
that the essential measurements are first in the
measurement vector. The linearized measurement
equations will be [23]:

H YA
2 2
where, H,, Z, and H,, Z, correspond to the

essential and non-essential  measurements,
respectively. By the Peters-Wilkinson [24]
factorization, (9) can be re-written as:

b

where, L, is an nxn lower triangular matrix,
M, isa (m—n)xn rectangular matrix, and U is

an nxn upper triangular matrix.
Substituting (10) into (9):

9)

(10)

Z,=L,.U.X (11)
Z,=M,.U.X (12)
and replacing U. X = L3* Z;:

Z,=T.Z, (13)

where, T=M, .L;".

Equation (13) shows the linear dependency among
the non-essential and essential measurements.

Hence, a Z, element will be critical if the

corresponding T column is null. To find the
optimal set of PMUs, first consider that one PMU
is available. Then look for a bus to install PMU
where no column of T is null. If this target is not
achievable with a PMU, add one to the number of
PMU. This process will continue until no column
of T is null. In fact, this scheme converts the
critical measurements into the redundant ones.

6. Power system pseudo-dynamic model
The relations between active power injection (P,),
reactive power injection (Q; ), active power flow



Banejad et al./ Journal of Al and Data Mining, Vol 5, No 1, 2017.

in lines ( P;), and reactive powers flow in lines (
Q;;) can be stated as (14)-(17):

N
f, =M. Z]\/,.\(G” cosd; +B;sind;) - P =0 (14)
j=1

N
f, =[\/i|zy\/j\(c;ij sin 6, - B; c0s6;) - Q, =0 (15)
j=1

fu :‘Viz‘(gsi +0;) (16)
- iVj|(gij cosé; +b; sing;) - P, =0

fy = _‘Viz‘(bsi +by) (17)
_|Vi Vj|(gij sin 6; —b; cosg) —Q; =0

where:

G;+]Bjy is the ij™ element of the complex bus

admittance matrix,

g+ is the admittance of the series branch

connecting buses iand j,

and gy+jb; is the admittance of the shunt

branch connected at bus i .

V=[6,6,...6, V|V, ...\y|] and 6, =6,-6,.

Now, consider function F, as follows:

F(\71[Pi Q Pij Qij]T):[fl fu f||| f|v]T (18)

Regarding the definition for F, it can be written

as:

AF (\7,[P| Q Pij Qij ]T ): 0 (19)
Considering the modeling errors and uncertainties,
it can be written, practically, as:

AF(IRQ R QT )=e)
where, e(t) is a Guassian white noise with a zero
mean.

Regarding the fact that F is a function of V and
[RQ P Qij]T, (20) can be extended to the first

derivative with a good approximation by the
Taylor expansion, as follows:

F AV

oV

(20)

(21)
T [ARAQ AR AQT =e(t)

G[P, Qi Pij Qij]
oF
Let J, =—=, and based on (14)-(17):
oV
oF B
ARQ P QT

Therefore, we have:
Jy AV — I [AR AQ AR; AQ; 1" =e(t)

(22)

_IN><N

(23)
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Since in the state estimation of power systems
state variables are voltage magnitude and voltage
angle of bus, it can be written as:

XO=V®) =0, 6 ... 6y M| V| . M| (29)
Furthermore, considering power changes as
inputs:

U (1) =[AR AQ AR AQ;T" (25)
Equation (23) can be re-written as follows:

AX = 3P0 () + I, te(t) (26)
or in standard form:

X (t+1) = A(t) X (t) + B(t)U (t) +~w(t) (27)
where, A{t)=1,, and B@)=J"(t), and

w(t)=J,"e(t) is the noise process that is assumed
to be drawn from a zero mean normal distribution
with covariance Q (w(t) ~N(0,Q)).

Function F should be in a way that J,, or in

other words, Jacobian matrix of function F is full
rank and reversible. This condition can be
satisfied by  choosing  power injection
measurements and power flow measurements by
which the power system is observable.

Up to here, the system was modeled well. Now it
is time to write the output equations, or, in other
words, the relationship between the measurements
and the system state. Since the values obtained
from the network measurements (conventional
measurements and PMUs) are a function of
magnitude and angle of voltage in the network,
the measurement equations can be written as
follows:

Z(t) =h(X(t))+v(t)
where:

VA =[Zc ZP]T '
Zc = [Plnjection Priow anjection Qriow N'C]T |
Zo =[5 V], 00 1))

Z. is the value related to the conventional
measurements including the measurement of
active power injection from buses (Pjecion
),measurement of active power flow in lines (
Prow ),measurement of reactive power injection

from buses (Qjjection).Measurement of reactive

(28)

power flow in lines (Qg,,, ), and measurement of
bus voltage magnitude (V| ), respectively.

Z, is the value related to PMUs, which,

according to the first method presented in [25],
includes measurement of voltage angle of buses (

8, p ), measurement of voltage magnitude buses (
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V|,), current angle measurement of the lines

connected to the bus equipped with PMU (6, 5),
and measurement of the current magnitude of
lines connected to the bus (|11, ), respectively.

h(e) is a non-linear function representing the

relationship between the measurements and the
state variables.
v(t) is the measurement noise, which is assumed

to be zero mean Gaussian white noise with
covariance R (v(t) ~N(O,R)).

R= diag[O'l2 o5
standard deviation, and N,, is the total number of
measurements.

aﬁ,M], o, is the i"

7. Dynamic state estimation by EKF

As stated earlier, although many methods have
been presented for the dynamic state estimation,
the Kalman filter-based methods are more popular
because they are easier and more accurate to be
conducted. Furthermore, the results achieved from
such methods are more reliable. Many articles
have been presented so far on applying the
Kalman filter to the dynamic state estimation
since it was discussed first (1960). EKF is an
efficient recursive algorithm wused for state
estimation in  non-linear  systems.  The
mathematical nature of this algorithm is based on
minimizing the squared error covariance between
the real states and the estimated ones. The main
idea of this estimator is to use the estimation of
X vector as the nominal trajectory in the
linearized Kalman filter [26]. In other words,
while performing estimation operations, the X
set (vector of nominal trajectory) is assumed to be

equal to X in the linearized Kalman filter. It is
regarded as a smart bootstrap method of state
estimation. X is estimated using a nominal
trajectory, and the resulting value is used as the
nominal trajectory. Consider (27) and (28) as the
state equation and output equation of a system:
X(t+1)=A(t) X (t)+B(t)U (t) +w(t)

Z(t) =h(X(1)+Vv(t)

In order to perform EKF for the presented
model, the following steps should be implemented
up to the considered time (t,,, )-

1. The initialization for state vector X(t;),
estimation-error  covariance PF,, and
enough number of repetitions for each
time step (K. )-

2. k<0, )Zk<—)2(t).

(29)
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3. Compute the values for Jacobian matrix
h for the state vector values:

c, - h(xX®) ) (30)
X() [X(t)=X,
4. Update B_=J,* _values.
X(t) = Xy
5. Compute the Kalman gain value, as
follows [26]:
K, =PR.CJ (C P.Cl +R)" (31)

6. Predict the state vector value using the
following relation [26]:

R = AX, +B UM +K, 2O -h(X)] (32
7. Update the estimation-error covariance
matrix, as follows [26]:

Pea=A(l =K C )R A +Q (33)
8. If k+1<Kk,,, then k«<k+1, and go to
step 3.

9. )2(t+t5)<—)2k+1 and P, < P,,.

10. If t+t <t ., , then t<t+t5, and go to
step 2.

8. Simulation results

Consider the IEEE 9-bus system in figure 7.
According to the method presented in section 5,
the most suitable place for a PMU to detect bad
data is bus 8. Now consider that the network loads
changes randomly and that one of the
conventional measurers includes both the outlier
and the data with intense changes resulting from
load changes. Table 1 represents some of the
eigenvalues of the covariance matrix and the
corresponding eigenvector (principal components
of the measurement data). As the table shows,
from order 8 onwards, the eigenvalues are
insignificant. This indicates that the similarity
between the imaged measurement data on PC is
great, namely correlation between the data is high.
Figure 8 shows the received data from some of the
measurements.The received measurement data
contains both data with the intense variations due
to changes in load or generation and outlier. At
the 380™ second, the outlier penetrated by
measured data of the active power flow from bus
4 to bus 9. The results of state estimation for
voltage magnitude and angle of buses 4 and 9 are
presented in figures 9 and 10. These figures show
the estimation errors for both estimators, which
increase to keep out the Kalman filter trajectory
from the real trajectory of the system at the
intense change moments. These errors are damped
as soon as the coupling real system trajectory and
Kalman filter trajectory are performed.
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Figure 7. Single line diagram of IEEE-9 bus test system.

Table 1. PCs of under study system measurements.

Order 1 th 2 th 3 th 4 th 5 th 6 th 7 th Bth 9th 23th
sm 0.3993 0.0055 0.0029 0.0013 0.0002 0.0001 0.0001 0.0 0.0 0.0
58

-0.2926 -0.0013 0.3267 -0.2145 0.0490 -0.1870 -0.0326 -0.0477 0.1671 -0.2218
-0.3657 -0.0569 0.2010 -0.0663 0.0067 0.0776 -0.2093 0.0122 -0.0800 -0.0279
-0.0957 -0.0603 -0.1147 0.1216 -0.0445 0.1590 -0.0709 -0.0089 -0.0553 -0.0657
0.1870 0.3737 0.0798 0.4095 0.1431 0.1594 0.2882 0.1052 -0.1216 -0.1494
0.1942 0.2074 -0.3737 -0.4146 -0.3149 -0.1474 0.1067 0.0256 0.1336 -0.0310
0.3502 -0.4673 -0.1080 0.1377 0.1583 -0.1671 0.0238 -0.1552 0.1480 -0.1869
-0.1116 -0.3119 0.1219 -0.2324 0.0239 -0.2053 -0.1591 0.1516 -0.0959 0.0214
- 0.0786 0.0698 0.1977 0.1841 0.1648 -0.0296 0.1177 0.0932 -0.0326 0.1233
= -0.0957 -0.0603 -0.1147 0.1216 -0.0445 0.1590 -0.0709 -0.0089 -0.0553 0.7748
2 0.1797 0.2193 -0.2893 -0.1044 -0.1926 -0.0028 0.1340 0.0349 -0.0090 -0.0507
2 -0.1824 0.1669 -0.0942 -0.1721 -0.1878 0.0848 -0.0854 -0.0662 0.0033 -0.2274
Q 0.1768 -0.3062 -0.2016 -0.0208 -0.0249 -0.0403 -0.1044 0.0539 -0.1257 0.0885
3 0.1734 -0.1610 0.0936 0.1585 0.1832 -0.1268 0.1282 -0.2091 0.2737 -0.1011
S -0.1810 0.3106 0.2048 0.0179 0.0251 0.0183 0.1265 -0.1993 0.2631 0.0762
3 -0.3393 -0.0986 -0.2315 -0.0492 0.1403 -0.2157 0.4832 -0.2864 -0.4878 0.0208
- -0.2641 -0.0910 -0.0498 0.2181 -0.1855 -0.3914 0.3690 0.1732 -0.0337 -0.0182
0.1157 0.2816 0.1015 0.1550 -0.0993 -0.7238 -0.2415 -0.0460 0.0496 0.2060
0.1028 0.1457 -0.0190 -0.4781 0.6702 -0.0780 0.1808 0.2953 0.0729 0.1882
0.2164 -0.1531 0.4388 -0.2296 -0.3684 0.0792 0.3831 -0.2086 0.1290 0.2962
-0.1732 -0.1736 -0.0389 0.1397 -0.1777 0.0129 0.2156 0.6966 0.3363 -0.0064
0.1555 -0.1151 0.2771 -0.1758 -0.1343 0.1283 0.2509 0.0485 -0.2056 -0.1297
0.2791 0.0882 0.3051 -0.0303 -0.1238 -0.1073 -0.1522 0.3060 -0.5578 -0.0640
0 0 0 0 0 0 0 0 0 0

However, the dynamic estimator without pre-filter
can remove the effect of noise using the Kalman
filter, although estimation of all states is effected
by the outlier, and represents invalid estimation
results, as indicated in figure 9. As shown in
figure 10, the proposed estimator can trace the
network states fast and accurately. Also this
estimator can identify and eliminate the outlier by
analyzing the principal components of the
measurement data and evaluating the outlier
distances from PCs. This property leads to the
proposed estimator operations to be reliable and
safe even with various amplitude of variation data
and outlier. Also the simulation results indicate
that the proposed algorithm is able to distinguish
the outlier from the correct data with intense
changes in the network.

9. Conclusion
Estimation of the network state is the first and
most fundamental function in controlling and

operating the power system. However, an
inaccurate or delayed state estimation might lead
to heavy damages because of the EMS wrong
decision. Therefore, a method was presented in
this paper that is robust against bad data, precise,
fast, and simultaneous. In the proposed method,
the outlier is immediately deleted by the pre-filter
based on PCA of the measurement data.
Moreover, this pre-filter is able to distinguish the
outlier from non-normal data caused by sudden
and large changes in the network. The results of
the simulation show that by employing the
Kalman Filter, the estimator is also secure against
small amplitude errors. It should be noted that PC
determination of different regimes in the network
is performed once for several hours. Also it can be
found by a separate processor, so the calculation
burden on the estimator is dispelled. In addition,
the dynamic model for the proposed estimator
does not require dynamic parameters of load and
generator, and given a high estimation speed, this
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estimator is able to properly real-time track a large scale network state.
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Figure 8. Some understudied system measurement data: conventional measurements and PMU.
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Figure 10. Some state estimation results with pre-filter.
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Appendix oQ G s
Relation between elements of matrix J,, and C: 6’\/‘ =V; (G;; sin 6; — By cosd;) (43)
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lij _
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