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Abstract 

Sparse coding is an unsupervised method that learns a set of over-complete bases to represent the data such 

as image and video. Sparse coding has had an increasing attraction for image classification applications in 

the recent years.   However in the cases where there are some similar images from different classes, such as 

face recognition applications, different images may be classified into the same class, and hence the 

classification performance may be decreased. In this paper, we propose an Affine Graph Regularized Sparse 

Coding approach for the face recognition problem. Experiments performed on several well-known face 

datasets show that the proposed method can significantly improve the face classification accuracy. In 

addition, some experiments are performed to illustrate the robustness of the proposed method to noise. The 

results obtained show the superiority of the proposed method in comparison to some other methods in face 

classification.   
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1. Introduction 

Face recognition is a significant task in image 

processing and computer vision studies. It is a 

challenging problem due to two reasons. Firstly, 

the face images of individual persons are mostly 

like each other and secondly, the face images are 

captured under challenging conditions like 

different poses, different conditions, and different 

illuminations [1].  

Many methods have been introduced for face 

recognition in the recent years [2-5]. One of the 

appropriate methods used in this field is the sparse 

coding-based approach [6]. Sparse coding can 

represent images using a few active coefficients 

[7]. Accordingly, the interpretation and 

application of the sparse representations are easy, 

and simplify many image processing operations 

such as image classifications [8].  

One of the most important targets in sparse coding 

applications is preserving the quality of sparse 

representation. In order to achieve this target, 

many works have been done to modify the 

sparsity constraint. In [9], the authors have added 

a nonnegative constraint to the objective function 

of the basis sparse coding method for improving 

the sparse coding method. In [3], the authors have 

analyzed the working mechanism for sparse 

representation-based classification, and have 

indicated that the collaborative representation 

sparsity makes this method powerful for face 

classification.  

In [10], the authors have proposed a face 

recognition method based on the discriminative 

locality preserving vectors. In [11], the authors 

have improved the sparse coding method by 

adding a Laplacian term. In [12], the authors have 

proposed a sparse and dense hybrid representation 

(SDR) framework to alleviate the problems of 

sparse representation-based classification (SRC).  

When the images are similar, the dictionary 

learned from the images cannot effectively encode 

the manifold structure of the images, and the 

similar images from different classes may be 

classified in the same class accordingly. Many 

research work have been done on dictionary 

learning. In [13], the authors have used the Fisher 

discrimination dictionary learning for sparse 

representation. In [14], the authors obtained a 

robust and reliable dictionary to improve the 
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performance of dictionary learning algorithms for 

face recognition. At first, the virtual face images 

are produced, and then an elaborate objective 

function is designed, and based on this objective 

function, they obtain an efficient algorithm to 

generate a robust dictionary. 

Similar images lie on a manifold structure, and the 

images from different classes lie on different 

manifold structures [15]. It has been shown that if 

the geometrical structure is used and the local 

invariance is considered, the learning performance 

can be significantly improved. Recently, many 

literatures have focused on manifold learning 

problems, which represent the samples from 

different manifold structures. To preserve the 

geometrical information of the data, the authors in 

[16] have proposed to extract a good feature 

representation through which the manifold 

structure of data is spotted. The other methods 

such as graph regularization [11] and using 

weighted ℓ2-norm constraint are also introduced 

for improving the sparse representation. In [17], 

the authors have proposed a graph-based 

algorithm, called Graph regularized Sparse 

Coding (GraphSC), to give sparse representations 

that well-consider the local manifold structure of 

the data. Using Graph Laplacian as a smooth 

operator, the sparse representations obtained vary 

smoothly along the geodesics of the data 

manifold.  

For solving the sparse coding problems, the 

authors in [15] have proposed a feature sign 

search method. This method reduces the non-

differentiable problem to an unconstrained 

quadratic programming (QP). This problem can 

be solved rapidly by the optimization process. Our 

work also uses the feature sign search method to 

solve the proposed AGRSC optimization problem. 

For adapting the dictionary to achieve sparse 

representation, the authors in [18] have proposed a 

K-SVD method to learn the dictionary using 

orthogonal matching pursuit or basis pursuit.  

Regarding the recent improvements in sparse 

coding and manifold learning, the two main 

problems of face recognition can still be 

investigated. We propose an Affine Graph 

Regularized Sparse Coding (AGRSC) algorithm 

to construct robust sparse representations for 

classifying similar images accurately. 

Specifically, the objective function of sparse 

coding has incorporated the Affinity term to make 

similar faces far from each other. Moreover, to 

improve the objective function with more 

discriminating power in data representation, we 

also incorporated the graph Laplacian term of 

coefficients in our objective function. This term 

can consider the geometrical structure of the data 

space by taking into account the local manifold 

structure of the data [17]. The experimental results 

verify the effectiveness of our AGRSC approach. 

This paper is continued as follows: In section 2, 

the sparse coding and graph regularized sparse 

coding are described. In section 3 the proposed 

method is introduced. The experimental setup and 

results are indicated in section 4 and 

consequently, conclusions are drawn in section 5. 

 

2. Preliminaries 

This section introduces sparse coding and affine 

graph regularized sparse coding which are 

employed in this paper.  

 

2.1. Sparse coding  

Assume a data matrix Y = [𝑦1, . . . , 𝑦 𝑛] ∈
𝑅𝑚×𝑛where n is the number of samples in the m-

dimensional feature space. Let Ф = [𝜑1, . . . , 𝜑𝑘] 

∈ 𝑅𝑚×𝑘 be the dictionary matrix where each 

column 𝜑𝑖 represents a basis vector in the 

dictionary, and X = [𝑥1, . . . , 𝑥 𝑛] ∈ 𝑅𝑘×𝑛 be the 

coding matrix where each column 𝒙𝒊 is a sparse 

representation for a data point 𝒚𝒊.  Assuming the 

reconstruction error for a data point follows a 

zero-mean Gaussian distribution with isotropic 

covariance, while taking a Laplace prior to the 

coding coefficients and a uniform prior to the 

basis vectors, the maximum posterior estimate of 

Ф and X given Y is reduced to: 

22

,X 1

min . , 1,2,...,

n

i jF
i

Y X x st c i k 
 

      

  (1) 

 

In the above equation 𝛼 is a parameter for 

regularizing the level of sparsity of the codes 

obtained and the approximation of initial data. 

The objective function in (1) is not convex in Ф 

and X, and therefore, solving the above equation is 

not easy in this case. However, it is convex in 

either Ф or X. Therefore, solving this problem is 

done by alternatively optimizing Ф while fixing X 

and vice versa. As a result, the above-mentioned 

problem can be split into two reduced least 

squares problems: an ℓ1-regularized and an ℓ2-

constrained, both of which can be solved 

efficiently by the existing optimization software 

[15]. 

 

2.2. Graph regularized sparse coding  

In [17], the authors have proposed a method 

called the Graph Regularized Sparse Coding 

(GraphSC) method, which considers the manifold 

assumption to make the basis vectors with respect 

to the intrinsic geometric structure underlying the 
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input data. This method assumes that if two data 

points 𝑦𝑖  and 𝑦𝑗 are close in the intrinsic 

geometry of data distribution, then their codes 𝜑𝑖 

and 𝜑𝑗 are also close. Consider a set of n-

dimensional data points
1
,...,

n
y y ;,GraphSC 

constructs a p-nearest neighbor graph G with n 

vertices each representing a data point. Let W be 

the weight matrix of G, if 𝑦𝑖 is among the p-

nearest neighbor of 𝑦𝑗, 
,
1

i j
W ; otherwise, 

,
0

i j
W . 

1
( ,..., )

n
D diag d d , 

1

n

i ij
j

d W  and 

graph Laplacian L D W . A reasonable 

criterion for preserving the geometric structure in 

graph G is to minimize: 

 

 
2

,
, 1

1
( )

2

n
T

i j i j
i j

x x W Tr XLX . (2) 

By replacing the result into (1), GraphSC [1] is 

obtained: 

2
min ( ) .
, 1

2
. , 1,2,...,

T
n

Y X Tr XLX x
F iX i

st c i k
i

 (3) 

In (3), 𝛾 is a parameter for regularizing the weight 

between sparsity of the codes obtained and 

preserving the geometrical structure. 

 

3. Proposed method 

In this section, we present the AGRSC algorithm 

for robust face recognition, which extends 

GraphSC by taking into account the affinity 

constraints on the samples. In the proposed 

method, at first, the Histogram of Gaussian 

(HOG) descriptor is extracted from face images. 

This descriptor is used in computer vision and 

image processing for the purpose of object 

detection. The technique counts the occurrences 

of gradient orientation in localized portions of an 

image.  Due to the high dimensions of the 

descriptors, Principle Component Analysis (PCA) 

is applied to reduce dimensions of the descriptors. 

Then the sparse codes are extracted with the 

proposed method and at last these codes are 

classified with the Support Vector Machine 

(SVM) classifier.  In figure 1, one can see the 

steps involved in the proposed method. 

 

HOG

Descriptor 

Extraction

HOG Sparse 

codes

Dictionary learning

SVM Classifier 

TrainingClassification

Face Class

Dimension Reduction using PCA

Testing image Training image

Test Phase

Train Phase

The Sparse codes are 

extracted with the 

proposed method
Dictionary learning 

 7.jpg
 7.jpg 7.jpg

 

Figure 1. Diagram of proposed method for face recognition.
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In the next section, before the AGRSC 

descriptions, we give some explanations for the 

HOG feature extraction. 

 

3.2. Feature extraction 

As mentioned earlier, the HOG feature is 

extracted for the sparse coding step. The HOG 

[19] characterizes the local object appearance and 

shape of faces by the local intensity gradients or 

edge direction distribution. 

Assume that P is a facial image and P(x,y) is the 

intensity  of  pixel  at the (x,y) coordinate. 

The process of HOG extraction is shown in figure 

2. At first, the HOG descriptor of the facial image 

is divided into some blocks and each block is 

subdivided into smaller squares called cells. 

 
Figure 2. Extraction procedure of HOG feature 

 The histogram for each cell is computed using 

(4). 
9

1

( , )

( , ) ( , )
( , )

0 ( , ) ,

k
k

k

k

C V x y

G x y x y in bin
V x y

x y not in bin

 
           

(4) 

where, G(x,y) and 𝜃(𝑥, 𝑦) are the amplitude and 

directions of gradients at each pixel, respectively, 

and calculated using (12), and the gradient  

direction in the interval [0, 𝜋] is divided into  9  

bins.  

2 2( , ) ( , ) ( , )
x y

G x y G x y G x y

 (5) 

1
( , )

( , ) tan ( ).
( , )
y

x

G x y
x y

G x y
 

 

where, ( , )
x
G x y  and ( , )

y
G x y  are the horizontal and 

vertical gradients respectively, computed using 

(6). 

( , ) ( 1, ) ( 1, )
x
G x y P x y P x y  

(6) 
( , ) ( , 1) ( , 1).
y
G x y P x y P x y  

After the histogram extraction for each block, the 

histograms are normalized as follows: 

2

1

,
( )

C
N

C e
 

(7) 

 

where, e is a small positive value in the case of an 

empty cell. At last, the histograms are combined 

to obtain the HOG feature representing the facial 

image. 

 

3.3. Sparse code extraction 

In linear sparse coding, a collection of k atoms 

𝜑1, 𝜑2, … , 𝜑𝑘 is given that forms the columns of 

the over-complete dictionary matrix Ф. For 

extracting the sparse codes from the descriptors, 

we should have dictionary atoms for sparse code 

extraction, and this, in turn, needs a dictionary 

learning step.  

The dictionary learning was done using the 

method proposed in [13]. We used a Fisher 

discrimination-based (FDDL) method. A 

structured dictionary 𝛷 = [𝜑1, 𝜑2, … , 𝜑𝑐]  is 

learned instead of learning a shared dictionary to 

all classes, where 𝜑𝑖 is the class-specified sub-

dictionary associated with class i, and c is the total 

number of classes. Assume that Y= [𝑦1, 𝑦2, … , 𝑦𝑐]  
is the set of training samples, where 𝑦𝑖 is the sub-

set of the training samples from class I, X=
[𝑥1, 𝑥2, … , 𝑥𝑐] represents the coding coefficient 

matrix of Y over 𝛷, and 𝑥𝑖 is the coding 

coefficients of 𝑦𝑖 over 𝛷. The learning process 

uses the Fisher discrimination criterion [13]. 

Based on this criterion, the dictionary atoms are 

imposed on the coding coefficients so that they 

have small within-class scatter but big between-

class scatter. This property could improve the 

facial image classification accuracy significantly. 

The sparse codes of a feature vector 𝑦 ∈ 𝑅𝑚; with 

a l0-minimization problem can be determined: 

0
min , . . ( ),

mW R

W s t x G W  (8) 

 

where, the function 𝐺Ф is defined as 𝐺Ф(𝑤) =
Ф𝑤. In the proposed AGRSC method, the main 

technical difficulty is the proper interpretation of 

the function 𝐺Ф(𝑤) in the manifold setting, where 

the atoms 𝜑1, 𝜑2, … , 𝜑𝑘  are points in M, and Ф  

denotes the set of atoms, and due to the non-

linearity property in this case, it is no longer 

possible to create a matrix with atoms. Moving to 

the more general manifold setting, we have 

forsaken the vector space structure in 𝑅𝑚.  

In the linear sparse coding, each point is 

considered as a vector whose definition requires a 

reference point. However, in the AGRSC setting, 

each point cannot be considered as a vector and 
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therefore, must be considered as a point. This 

particular viewpoint is the main source of 

differences between the linear and AGRSC sparse 

codings. 

Mathematically, we can view an image as a point 

in a high dimensional vector space whose 

dimensionality is equal to the number of pixels in 

the image [20]. Therefore, the descriptors 

extracted from facial images are on a high 

dimension manifold. When two facial images are 

similar to each other, these manifolds are 

overlapped in some sections. In order to solve this 

problem, in this paper, a new method is proposed 

to modify the usual notion of sparsity by adding 

an affine constraint to reduce the feature vector 

dimension on a manifold. A vector 𝑦 is defined as 

an affine sparse vector if it can be written as 

follows [21]: 

1 1 1 1

1 2

...

... 1.
n n

n

y w w w

w w w
                           (9) 

According to the definition, if the vector is 

constructed with combination of the affine 

samples, it can be mapped on the space with the 

lower dimension. The extracted sparse code 

vectors are in the space with high dimension 

manifold. Representing these vectors in places 

where the manifolds have interferences is very 

challenging. However if the facial images in a 

data set are effectively parameterized by a small 

number of continuous variables, then they will lie 

on or near a low-dimensional manifold in this 

high-dimensional space [22]. For representing a 

vector, if the sample selections are done based on 

only the nearest neighbors and the sparsity term, 

some of the samples may be selected from the 

irrelevant manifold; however, if the selected 

samples have the affinity constraint in addition, 

since the samples can be considered on the 

manifold with locally low dimension, only the 

samples on the relevant manifold could be 

selected. For a better perception of the proposed 

method, see figure 3.  

Two overlapped manifolds are shown in the 

figure. Figure 3a indicates a representation of the 

samples a,b, and c regarding only the sparsity 

term, and figure 3b indicates the representation of 

the same points regarding the manifold constraints 

in addition to the sparsity constraint. The samples 

A and B in both figures 3a and 3b are represented 

by the atoms from the corresponding manifolds 

correctly. These two samples haven’t any conflict 

with the other manifold.   

Sample c is under different conditions. As 

indicated earlier, this sample is located on the 

green manifold. If you represent this sample with 

its adjacent atoms, and only consider the sparsity 

term, we should consider the other manifold 

samples for representation the same as figure 3.a. 

However, if we consider the GraphSc (Tr(XLXT)) 

and Affinity terms for its representation in 

addition, we will reach a better conclusion. As 

previously pointed out, the term Tr(XLXT) 

emphasizes on the problem that if the samples of a 

manifold are close to each other, their codes will 

be close to each other as well. Also the Affinity 

constraint forces a collection of the closest 

neighbors of the concerned dictionary atoms for 

representing every sample. Therefore, a collection 

of weights for every sample are chosen in a way 

that every point is represented by a linear 

combination of its neighbors. The former samples 

are located on a manifold with high dimensions 

and the objective of the Affinity term is to reduce 

its dimensions. The characteristic of this new term 

causes sample c to be represented with utilization 

of the concerned manifold data (Figure 3b).  

According to the above-mentioned descriptions, 

we can add an affinity term to (1): 

2
min ( )
, 1

T
n

Y X Tr XLX x
F iX i

 
  (10) 

1

. 1.
n

i
i

st x  

The constraint term ∑ 𝑥𝑖 
𝑛
𝑖=1 = 1 is added to the 

main criterion as a lagrangian coefficient, which 

leads to: 

2

1

2
min ( ) (1 ) ,
, 1

n
T

i
i

n
Y X Tr XLX x x

F iX i

 
(11) 

where, 𝛽 is a parameter for tuning the affinity 

constraint. To tune parameters 𝛼, 𝛽, and 𝛾, some 

experiments were done, which are described in the 

next section. 

 

3.4.  Solution of AGRSC 

We applied the feature-sign search algorithm [15] 

to solve the optimization problem (11). 

To solve non-differentiable problems in non-

smooth optimization methods, a necessary 

condition for a parameter vector to be a local 

minimum is that the zero-vector should be a 

member of the sub-differential set containing all 

the sub-gradients in the parameter vector [23]. 

Following [17, 23], the optimization of AGRSC 

was divided into two steps: 1) ℓ1-regularized least 

squares problem; the affine graph regularized 

sparse codes X were learned with dictionary Ф 

fixed, and 2) ℓ2-constrained least squares 

problem; the dictionary Ф was learned with affine 
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graph regularized sparse codes X fixed. The above 

two steps were repeated, respectively, until a stop 

criterion was indulged. 

 

  

a) Representation of samples a, b, and c without Affinity 

constraint. 
b) Representation of samples a, b, and c with Affinity 

constraint. 

Figure 3. Effectiveness of Affinity constraint in representation of samples from overlapped manifolds. 

The optimization problem in the first step can be 

solved by optimizing over each 𝑥𝑖 individually. 

Since (11) with l1-regularization is non-

differentiable when 𝑥𝑖 contains the value of 0, to 

solve this problem, the standard unconstrained 

optimization methods cannot be applied. Several 

approaches have been proposed to solve the 

problem of this form [11]. In what follows, we 

introduce an optimization method based upon 

coordinate descent to solve this problem [24]. It 

can easily be seen that (11) is convex, thus the 

global minimum can be achieved.  

We updated each vector individually by holding 

all the other vectors constant. In order to solve the 

problem by optimizing over each 𝑥𝑖, we should re 

write (11) in a vector form. The reconstruction 

error 
2

F
Y X  can be re written as: 

2

1

m

F
i

Y X

.

 
(12) 

The Laplacian regularizer ( )TTr XLX  can be 

rewritten as: 

,
, 1

( )
n

T T

i j i j
i j

Tr XLX Tr L x x

 

                 (13) 

, 1 , 1

.
n n

T T

ij i j ij i j
i j i j

L x x L x x  

 

Combining (11), (12), and (13), the problem can 

be written as: 

2

1 , 1
2

1 1

min

1 .

n n
T

i i ij i j
i i jF

n n

i i
i i

y x L x x

x x

               (14) 

 

When updating 𝑥𝑖, the other vectors 
j i j
x  are 

fixed. Thus we get the following optimization 

problem: 
2

2

( )

1 1

min ( ) min
1i

T T

i ii i i i i

k ni j
x

i i
j i

y X L x x x H

G x
x x

 
     (15) 

 

where 2
i ij j

j i

H L s  and ( )j

i
x  is the j-th 

coefficient of 
i
x .  

Following the feature-sign search algorithm 

proposed in [25]), (15) can be solved as follows. 

In order to solve the non-differentiable problem, 

we adopt a sub-gradient strategy, which uses sub-

gradients of ( )
i

G x  at non-differentiable points. 

Primarily we define: 
2

2

1

( )

1 .

T

i i i ii i j

n
T

i i i
i

p x y x L x x

x H x
                   (16) 

 

Then, 

( )

1

( ) ( ) .
k

j

i i i
j

G x p x x    (17) 
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Recall that a necessary condition for a parameter 

vector to be a local minimum in non-smooth 

optimizations, is that in the set containing all sub-

gradients at this parameter vector, the zero-vector 

is an element of the sub-differential [23]. We 

define ( )j

i i
x  as the sub-differentiable value of 

the jth coefficient of 
i
x . If ( ) 0,j

i
x  then the 

absolute value function ( )j

i
x  is differentiable, and 

therefore, ( )j

i i
x  is given by ( )( )j

i
sign x . If 

( ) 0j

i
x , then the subdifferentiable value ( )j

i i
x  

is set . Thus the optimality condition for 

achieving the optimal value for ( )
i

G x is: 

( ) ( ) ( )

( ) ( )

( ) ( ) 0

0

j j j

i i i i

j j

i ii

p x sign x if x

if xp x
 (18) 

 

Then we consider how to select the optimal sub-

gradient ( )j

i i
G x , when the optimality conditions 

are violated, i.e.; in the case that ( )

i

j

i
p x if  

( ) 0j

i
x . When ( ) 0j

i
x , we consider the first 

term in the previous expression ( ) ( )j

i i
p x . Suppose 

that ( ) ( )j

i i
p x ; this means that ( ) ( ) 0j

i i
G x , 

regardless of the sign of ( )j

i
x .  In this case, in order 

to decrease ( )
i

G x , we should decrease ( )j

i
x . Since 

( )j

i
x  starts at zero, the very first infinitesimal 

adjustment to ( )j

i
x  will make it negative. 

Therefore, we can let ( )( ) 1j

i
sign x . Similarly, if 

( ) ( )j

i i
p x , then we let ( )( ) 1j

i
sign x . To 

update 
i
x , suppose that we know the signs of  

𝑥𝑖
(𝑗)

′𝑠 at the optimal value; then we can remove 

the l1-norm on ( )j

i
x  by replacing each term ( )j

i
x

with either ( )j

i
x  (if  ( ) 0j

i
x ) or ( )j

i
x  (if  ( ) 0j

i
x ) 

or 0 (if  ( ) 0j

i
x ). Thus; (13) is converted to a 

standard unconstrained QP. In this case, the 

problem can be solved by a linear system. The 

algorithmic procedure of learning affine graph 

regularized sparse codes can be described as  

follows: 

 for each 𝑥𝑖, search for signs of 
( )( ); 1,...,j

i
sign x i k  

 solve the reduced QP problem to get 

the optimal *

i
x  that minimizes the 

objective function 

 return the optimal coefficients matrix 

* * * *

1 2
[ , ,..., ]

n
X x x x

 

In the algorithm, we maintain an active set 
( ) ( )| 0, ( )j j

i i i
A j x p x  for potentially 

non-zero coefficients and their corresponding 

signs 
1
[ ,..., ]

k
, while updating each 

i
x . Then 

it systematically searches for the optimal active 

set and coefficient signs that minimize the 

objective function (9). In each activating step, the 

algorithm uses the zero-value whose violation of 

the optimality condition ( ) ( )j

i i
p x is the 

largest. 

The detailed algorithmic procedure of learning 

affine graph regularized sparse codes is stated in 

Algorithm 1. 

 
Algorithm1: Learning affine graph regularized sparse codes 

Input:  𝑌 = [𝑦1, … , 𝑦𝑛] , Ф, L, 𝛼, 𝛽, 𝛾. 

1-  1 ≤ 𝑖 ≤ 𝑛  

2- Initializing: 𝑥𝑖 = 0⃗⃗ , 𝜃 = 0⃗⃗ , 𝐴 =

∅, 𝜃𝑗𝜖{−1,0,1} =sign(𝑥𝑖
(𝑗)

). 

3- Activating:  j=argmax
𝑗

|∇𝑖
(𝑗)

𝑝(𝑥𝑖)| : 

𝑖𝑓    ∇𝑖
(𝑗)

𝑝(𝑥𝑖) > 𝛼,  𝜃𝑗 = −1 ,𝐴 = {𝑗} ∪ 𝐴 

𝑖𝑓    ∇𝑖
(𝑗)

𝑝(𝑥𝑖) < −𝛼,  𝜃𝑗 = 1 ,𝐴 = {𝑗} ∪ 𝐴 

4- Feature sign:  Ф̂  is submatrix of Ф contains only columns 

corresponding to A .  �̂�𝑖 , �̂�𝑖 are subvectors of  𝑥𝑖  , p. 

min 𝑢(�̂�𝑖) =‖𝑦𝑖 − Ф̂𝑥�̂�‖
2

+ 𝛾𝐿𝑖𝑖�̂�𝑖
𝑇�̂�𝑖 + �̂�𝑖

𝑇�̂�𝑖

+ 𝛽(1 − ∑�̂�𝑖  

𝑛

𝑖=1

)2 + 𝛼𝜃𝑇�̂�𝑖
𝑇 

Let (𝜕𝑢(�̂�𝑖) 𝜕�̂�𝑖⁄ ) = 0 

−2Ф̂𝑇(𝑦𝑖 − Ф̂�̂�𝑖) + 2𝛾 𝐿𝑖𝑖�̂�𝑖 + 2𝛾(∑𝐿𝑖𝑗�̂�𝑖

𝑗≠𝑖

)

+ 2𝛽(1 − 1𝑇�̂�𝑖)1 + 𝛼𝜃 = 0 

�̂�𝑖
𝑛𝑒𝑤 = (Ф̂𝑇Ф̂ + 𝛾 𝐿𝑖𝑖𝐼 + 𝛽11𝑇)

−1
(Ф̂𝑇𝑦𝑖 + 𝛽1

−
1

2
(𝛼𝜃 + �̂�𝑖)), 

 I is the identity matrix.  

5- The optimality conditions: 

Condition(1):  

If  ∇𝑖
(𝑗)

𝑝(𝑥𝑖) + 𝛼𝑠𝑖𝑔𝑛 (𝑥𝑖
(𝑗)

) = 0, ∀  𝑥𝑖
(𝑗)

≠ 0 

Go to condition(2). 
 Else go to step 4 

Condition(2):   

If |∇𝑖
(𝑗)

𝑝(𝑥𝑖)| ≤ 𝛼, ∀ 𝑥𝑖
(𝑗)

= 0 

Return 𝑥𝑖  . 

Else go to step 3 

6- End 

 

4. Experiments  

In this section, for evaluating the proposed 

AGRSC approach, some experiments for image 

classification were performed. Some experiments 

were done on five well-known datasets including 



Karami et al./ Journal of AI and Data Mining, Vol 5, No 2, 2017. 
 

 
230 

 

ORL, Extended Yale B, FERET, AR, and LFW. 

These datasets contain several face images from 

distinct persons and under different conditions 

such as times, lighting, facial expressions and 

occlusions. Also some experiments were done on 

some noisy images with different variances for 

evaluating the robustness of the proposed method 

to noise.   

 

4.2. Data preparation 

ORL, Extended Yale B, FERET, AR, and LFW 

face databases are well-known datasets widely 

used in computer vision and pattern recognition 

research works. The experiments were done on 

these datasets. In continuation, we introduced 

these datasets. 

Extended YaleB database [27]. This database 

contains 16128 images of 28 human subjects 

under 9 poses and 64 illumination conditions. 

The images in the database were captured using a 

purpose-built illumination rig. This rig was fitted 

with 64 computer controlled strobes. The 64 

images of a subject in a particular pose were 

acquired at camera frame rate (30 frames/second) 

in about 2 seconds, so there was only a small 

change in head pose and facial expression for 

those 64 (+1 ambient) images. The image with 

ambient illumination was captured without a 

strobe going off. 

FERET database. The data is obtained from the 

UCI database [28]. It contains face images about 

72 persons, and every body has 6 variations in 

expression. 

AR database. This database consists of 126 

subjects of over 4000 frontal face images [29]. 

These images have different illumination 

variations, facial expression and occlusion.  

Following the standard evaluation procedure, we 

used a subset of the database consisting of 2600 

images from 50 male subjects and 50 female 

subjects. For each person, we randomly selected 

20 images for training and the other 6 for testing. 

LFW dataset. The LFW dataset [30] contains 

13233 images of 5749 individuals. The facial 

images in this dataset were taken in unconstrained 

environments. In figure 4, some examples of the 

datasets are shown. 

 

4.3. Experimental setup 

To evaluate the proposed AGRSC approach, the 

results of this method on five defined datasets 

were compared with some recent approaches; 

including   LRC [2], CRC [31], SRC [8], LLC [4], 

FDDL [13], LH-ESRC [19], SPN-DL [14], D-

KSVD [9], SVGDL [32], LC-KSVD [7], PDPL 

[33], and DNFC [34].   

Following [17], AGRSC was performed on HOG 

descriptors extracted from the facial images. 

Before sparse code extraction from face data 

using the proposed method, the data dimensions 

were reduced using principle component analysis 

by keeping 98% of the information in the largest 

Eigen vectors. After applying the proposed 

algorithm to the reduced data, the SVM classifier 

with 𝜒2 kernel was applied on the sparse codes. 

Under our experimental setup, we tuned the 

optimal parameters for the target classifier using 

the leave one subject out cross validation method. 

Therefore, we evaluated the proposed method on 

datasets by empirically searching the parameter 

space for the optimal parameter settings, and 

reported the best results. 

  
Figure 4. Some samples of datasets. From top to bottom: 

ORL, Extended YALE B, FERET, AR And LFW 

datasets. 

For the proposed AGRSC method, we set the 

trade-off parameters 𝛼, 𝛽 , 𝛾 through searching. 

The parameter values using the ORL face dataset 

is shown in figure 5. As it can be seen, the 

parameters 𝛼, 𝛽 , and 𝛾  were set to 30, 0.1 and 

0.6, respectively.  

At first, the value for the 𝛾 parameter was 

achieved for the best recognition rate, 

assuming 𝛼, 𝛽 = 1. As it can be seen in figure 5a, 

the highest recognition rate was achieved for 𝛾 =
0.6. In the next step, the value for 𝛼 was achieved, 

assuming 𝛾 = 0.6  and 𝛽 = 1 for the best 

recognition rate. As it can be seen in figure 5b, the 

best value for this parameter can be a number 

between 28 and 45. We set 𝛼 = 30, and using the 

same experiments, the best value for 𝛽 was 

achieved to be 0.1. 

As mentioned earlier, the dictionary learning 

process has been done using the method proposed 

in [13]. It should be noted that, the affinity 

constraint can be more successful when the 

sparsity is large enough because with the 

coefficients not enough sparsity, the coefficients 
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may be selected from the hyperplane with higher 

dimensions than data's original dimension. In this 

case, if the affinity constraint is added to the 

objective function, it can even worsen the 

performance with respect to the GraphSC method.  

  

4.4. Experimental results  

In order to evaluate the proposed method, it was 

performed on five well-known datasets.  

The classification accuracy of AGRSC on ORL 

dataset is illustrated in table 1 as a confusion 

matrix. As mentioned earlier, the ORL dataset 

contains 40 classes of faces. Due to the lack of 

space in the table, only 10 classes were depicted. 

Among the whole dataset, classes 4 and 6, classes 

8 and 10, classes 14 and 17, and classes 5 and 18 

are very similar to each other. Therefore, we used 

these classes in addition to classes 1 and 2 in the 

confusion matrix to show the superiority of the 

proposed method in classifying face datasets in 

table 1. The mean recognition rate was 92%. 

When the other 30 classes were considered as 

well, the mean accuracy rate was raised up to 

97.2%. 

 

4.5. Robustness to noise 

For a better evaluation of the proposed method,  

we  aimed  to  test  the  robustness  of  our  

method  at  the  presence of noise. Some Gaussian 

noise added to the database images and the 

experiments for evaluation are repeated for noise 

variance levels as 10, 20, 30, 40, and 50.   

Figure 7 shows some test images under different 

levels of noise.  

 

 

 

a) Recognition rate variations for gamma changes by setting Alpha=Beta=1. 

 

b) Recognition rate variations for alpha changes by setting Gamma=0.6 and Beta=1. 

 

c) Recognition rate variations for Beta changes by setting Gamma=0.6 and Alpha=30. 

Figure 5. The parameters setting using ORL dataset.
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Table 1. The confusion matrix for the proposed method on the ORL data 

C18 C17 C14 C10 C8 C6 C5 C4 C2 C1  
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1 
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4 

2 

0 

0 
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  Figure 6. Recognition rate for proposed method in comparison with several other methods. 

      

Figure 7. One test image under different levels of Gaussian noise. From left to right original image, images cluttered with 

Gaussian noise with variances 10, 20, 30, 40, and 50, respectively. 

 

Table 2 shows the recognition rate of the proposed 

method under different noise levels for each 

database. It can be seen that the recognition rate of 

the proposed method for the ORL, Extended 

YALE B, FERET, AR, and LFW datasets are 

reduced only 3.8%, 3.24%, 3.53%, 4.02%, and 

4.3%, respectively. This means that the proposed 

method is stable with noise. 

 

5. Conclusion  

In this paper, a novel approach was proposed for 

robust face recognition. In the proposed method, 

after extracting the HOG descriptors from the 

original face images, the sparse codes were 

extracted from the descriptors. For this purpose, 

the well-defined graph regularized sparse coding 

method was improved by adding the affinity 

constraint. 

Using this term, until the sparsity was big enough, 

the manifold structure of features was better 

preserved. Finally, the codes obtained were 

classified with the SVM classifier. The results 

obtained indicated that the proposed AGRSC 

method in comparison with many other 

approaches had a better performance. The 

proposed method is efficient for face recognition 

for two reasons. Firstly, the dictionary atoms, 

because of the property of  the FDDL method, has 

0
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80
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Recognition Rate 
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enough discriminant, and secondly, the sparse 

codes extracted from the descriptors, because of 

the affinity characteristic, can more easily choose 

the correct class.  
 

Table 2. Recognition rate for noisy images. 

Database 

Noise 

Variance 

Recognition 

Rate 

ORL 

         10 

20 

30 

40 

50 

         96.8 

95.4 

94.1 

92.4 

90.3 

Extended 

Yale 

         10 

20 

30 

40 

50 

         94.7 

93.6 

92.1 

90.9 

88.5 

FERET 

         10 

20 

30 

40 

50 

         64.6 

63.5 

62.3 

60.1 

57.3 

AR 

         10 

20 

30 

40 

50 

         82.8 

81.3 

80.1 

78.5 

75.4 

LFW 

         10 

20 

30 

40 

50 

         71.9 

70.7 

68.1 

66.1 

63.2 
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 چکیده:

-گیررد  در سرالایی مانند تصویر و ویدئو بکار میهفوق کامل را برای بازنمایی داده هایای از پایهیک روش بدون مربی است که مجموعه کدگذاری تنک

ای به روش کدگذاری تنک در کاربردهای کلاسبندی تصویر شده است  در حالی که در مواردی مانند کلاسربندی هررره کره هنرد توجه ویژه های اخیر،

های مختلف وجود دارد، تصاویر مختلف ممکن است در یک کلاس کلاسبندی شوند و در نتیجه کرارایی کلاسربندی کراها یابرد  تصویر مشابه از کلاس

شران یک رویکرد کدگذاری تنک گراف منظم افین برای بازشناسی هرره ارائه شده است  آزمایشرا  روی هنردین دادگران مشررور هررره ن در این مقاله

جررت ارزیرابی قردر  روش پیشرنرادی در  تواند به خوبی دقت کلاسبندی هرره را بالا ببرد  همچنرین آزمایشراتی نیر که روش پیشنرادی میاند داده

 های دیگر در کلاسبندی هرره است  دهنده برتری روش پیشنرادی نسبت به برخی از روشد  نتایج به دست آمده نشانان  انجام شدهشرایط نوی ی نی

 .فلدی، بازشناسی هرره، تنظیم گرافکدگذاری تنک، یادگیری منی :کلمات کلیدی

 


