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Abstract 

Machine-learning solutions to classification, clustering, and matching problems critically depend on the 

adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that 

an appropriate metric can be learnt from data, resulting in a superior performance as compared with the 

traditional metrics. This has recently stimulated a considerable interest in the topic of metric learning, 

especially using the kernel functions, which map the input data to feature spaces with enhanced class 

separability, and implicitly define a new metric in the original feature space. The formulation of the problem 

of metric learning depends on the supervisory information available for the task. In this work, we focus on 

semi-supervised kernel-based distance metric learning, where the training dataset is unlabelled, with the 

exception of a small subset of pairs of points labelled as belonging to the same class (cluster) or different 

classes (clusters). The proposed method involves creating a pool of kernel functions. The corresponding 

kernel matrices are first clustered to remove redundancy in the representation. A composite kernel constructed 

from the kernel clustering result is then expanded into an orthogonal set of base functions. The mixing 

parameters of this expansion are then optimised using point similarity and dissimilarity information conveyed 

by the labels. The proposed method is evaluated on the synthetic and real datasets. The results obtained show 

the merit of using similarity and dissimilarity information jointly as compared to using just the similarity 

information, and the superiority of the proposed method over all the recently introduced metric learning 

approaches. 

 

Keywords: Distance Metric Learning, Semi-supervised Clustering, Composite Kernels, Pairwise Similarity 

and Dissimilarity Constraints, Optimization Problem. 

1. Introduction 

Distance metrics play a key role in many 

supervised and unsupervised learning algorithms. 

The k-nearest neighbour classifier and the k-means 

clustering algorithm are examples of such 

supervised and unsupervised algorithms. Selecting 

an appropriate metric for these algorithms is an 

important issue. A promising alternative approach 

is to learn the optimal distance metric from a 

collection of training data. Distance metric 

learning has recently received considerable 

attention [1, 2]. The advocated algorithms in the 

literature can be divided into three main 

categories: supervised, unsupervised, and semi-

supervised algorithms. A training dataset with 

explicit class labels or some other supervisory 

information is required for supervised metric 

learning [3-7]. Although unsupervised learning 

such as clustering is known to be highly influenced 

by the choice of the distance metric, the lack of 

supervisory information makes the problem of 

choosing a suitable metric very challenging. In 

unsupervised distance metric learning, the main 

idea is to learn a metric that preserves the 

geometric relationships between most of the 

observed samples [8]. There is a deep connection 

between unsupervised distance metric learning 

methods and unsupervised dimensionality 

reduction approaches. The main advantage of 

these algorithms is that they do not require 
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laborious labelling of the training data to provide 

supervisory information, although their 

performance is usually lower. These issues have 

recently motivated the development of a 

compound solution known as semi-supervised 

learning. In semi-supervised approaches, a large 

quantity of unlabelled data and a limited amount of 

labelled data or some other supervisory knowledge 

are used to learn a distance metric. One kind of 

supervisory information for metric learning is 

expressed in the form of pairwise similarity and/or 

dissimilarity relationships [9]. The use of these 

constraints for distance metric learning, and 

especially semi-supervised distance metric 

learning, has lately become very popular [10-12]. 

Compared to the explicitly labelled data, pairwise 

constraints are weaker but more natural than the 

clustering concepts. Xing et al. [13] have proposed 

an iterative approach to learn a Mahalanobis 

metric using pairwise constraints for the clustering 

task. Bar-Hillel et al. [14] have proposed a non-

iterative algorithm using only pairwise similarity 

constraints called relevant component analysis 

(RCA). The RCA algorithm has been extended to a 

generalized form that makes use of both the 

pairwise similarity and the dissimilarity constraints 

in [15]. In the above-mentioned methods, the 

distance metric learning procedure can be 

summarized as a process of mapping the 

associated data to a new feature space using a 

linear learned transformation and then applying the 

Euclidean distance in the resultant feature space. 

However, a linear transformation may not 

necessarily be a desirable transformation for a 

given problem or a complicated structure of the 

training data. In these cases, the kernelized version 

of the metric learning algorithms can be seen as 

offering a more general alternative [16, 18]. 

A kernel function can be considered as a function 

that implicitly transfers two data points to a new 

feature space using a non-linear mapping function. 

It measures their associated similarity by 

computing the inner product of the projected 

samples. An important issue in kernel-based 

approaches is how to find an appropriate kernel 

and/or how to set the kernel parameter(s). The type 

of kernel function and the value(s) of kernel 

parameter(s) play a key role in these algorithms. A 

typical solution to this problem is to apply cross-

validation in order to select the best kernel 

function among a set of candidates. However, this 

procedure is time-consuming. Moreover, there is 

no guarantee that the best possible solution will be 

found. The other solution to this problem is to use 

an appropriate combination of different kernel 

functions. Within this framework, several different 

algorithms have been proposed for computing 

composite kernels [19, 20]. It has been shown that 

the performance of some pattern recognition 

algorithms such as Support Vector Machine 

(SVM) classifier and kernel-based feature 

extraction approaches can be improved by 

applying composite kernel techniques. 

Kernelized versions of metric learning algorithms 

have already been proposed in [16-18]. However, 

the methods are not sufficiently flexible because 

they are based on a fixed kernel function without 

any generalisation property. In other works, a 

distance metric learning framework is used for 

determining the elements of the kernel matrix [21, 

22]. However, a common problem of these 

methods is that a large number of variables are 

required to be learned. In fact, as the size of a 

kernel matrix is proportional to the number of 

training samples, the number of unknowns is 

usually very large. Soleymani et al. have proposed 

an iterative kernel-based metric learning algorithm 

that reduces the number of variables to the number 

of the related constraints [23].  

To date, the problem of metric learning using 

composite kernel functions has not been studied 

very extensively. In [24] and [25], the idea of 

weighted summation of different kernels has been 

considered within the framework of supervised 

distance metric learning. In [24], the authors have 

propose a method that learns a set of Mahalanobis 

metrics, one for each feature space induced by the 

respective kernels. The kernel weights and the 

Mahalanobis metrics are learned using an iterative 

optimization procedure that is computationally 

complex. In [25], assuming a linear combination 

of a set of kernels, several distance metric learning 

objectives have been defined in order to learn the 

kernel weights. In our previous work [26], we used 

composite kernels in semi-supervised metric 

learning, given a set of pairwise similarity 

constraints and a limited number of kernels. 

As a main contribution, in this paper, we show 

how to construct a composite kernel matrix for a 

set of similarity and dissimilarity constraints.  For 

this purpose, first an initial composite kernel 

matrix is produced by combining a set of kernel 

matrices. The eigen-decomposition of the matrix is 

then performed. The resulting eigen-vectors are 

linearly combined with weights obtained using a 

semi-supervised distance metric learning 

objective. Effectively, we rescale the axes of the 

new feature space (eigen-vectors) induced by the 

composite kernel so that the pairwise similarity 

and dissimilarity constraints are satisfied. We 

finally use the learned kernel matrix in a kernel-

based k-means clustering algorithm. 
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The rest of the paper is organized as what follows 

In Section 2, the related works are briefly 

reviewed. In Section 3, our proposed method of 

composite kernel-based metric learning, which 

uses both pairwise similarity and dissimilarity 

constraints, is presented. In the method, a 

composite kernel is used as the base kernel, and a 

set of mixing variables are determined. These 

variables are computed by analytically solving an 

optimization problem. Our experimental studies 

are reported in Section 4, where the performance 

of the method is compared to some other states of 

the art approaches. Finally, Section 5 offers the 

concluding remarks. 

 

2. Related works and proposed method 

Recently, kernel-based semi-supervised metric 

learning has attracted the attention of many 

researchers [16, 18, 21, 22]. In [21], Chang and 

Yeung have proposed two kernel-based metric 

learning methods, which are called the kernel-A 

and kernel- methods. They use a set of similarity 

constraints to guide the learning process. These 

methods use a pre-specified kernel such as a 

specific RBF kernel to form the kernel matrix 

N NK . In the kernel-A method, the target kernel 

matrix is defined as TK AKA , where A is an 

N N  adaptation matrix. The elements of A  are 

determined using a criterion expressed in terms of 

pairwise similarity information penalized by a 

regularization term. They are calculated by 

applying an iterative algorithm. In the kernel- 

method, the kernel matrix K  is first decomposed 

into a set of base kernels by applying the eigen-

decomposition operation. The weighted sum of the 

base kernels is then used as the final kernel matrix, 

where the weights are determined analytically 

using a constraint imposed by identically labelled 

pairs. For handling large datasets, they extend the 

kernel- method to a scalable method by applying 

low-rank approximation to the kernel matrix [18]. 

The main limitation of the kernel- method and its 

extension is that the target kernel is computed 

using a linear combination of eigen-matrices, 

derived from an RBF kernel with a specific width. 

Thus the diversity of the basic kernel matrix is 

limited. Therefore, the performance of the method 

heavily depends on the adopted kernel function 

(i.e. RBF kernel) and its parameter. Moreover, 

only pairwise similarity constraints are considered 

in the learning process.  

In the kernel-A method and in [22], the learning 

process exploits similarity and/or dissimilarity 

measures. In these methods, an optimization 

procedure is used to determine the elements of the 

base kernel. The authors show that here the choice 

of the base kernel is not as critical as in the case of 

the kernel- method. However, the number of the 

variables that have to be adjusted is very large. 

The kernel-based metric learning method 

introduced in [23] reduces the adjustable variables 

to the number of constraints. However, the 

iterative algorithm used to determine the unknown 

parameters is time-consuming.  

As mentioned in our previous work [26], we used 

composite kernels in semi-supervised metric 

learning, given a set of pairwise similarity 
constraints. The composite kernel is constructed by 

combining a limited number of kernels through 

either averaging or augmenting the associated 

kernel matrices. A set of orthogonal matrices are 

then generated by eigen-decomposition of the 

resulting Gram matrix. The final kernel matrix is 

created by weighted averaging of the orthogonal 

matrices, while the weights are determined via a 

learning process. In fact, through the learning 

process, the axes of the new feature space (which 

is the result of the eigen-decomposition process) 

are rescaled so that the pairwise similarity 

constraints are satisfied. 

In this paper, we present a new metric learning 

algorithm using composite kernels to generalize 

the method proposed in [26]. We reformulate the 

optimization problem so that the effect of the 

supervisory information, which is expressed in the 

form of both the pairwise similarity and 

dissimilarity constraints, is taken into account. 

During optimization, a limited number of variables 

are learned such that the resulting distance 

between similar pairs from the pairwise similarity 

set becomes as low as possible while the distance 

between dissimilar pairs from the pairwise 

dissimilarity set becomes as large as possible. An 

important characteristic of the proposed method is 

that the optimization process does not require any 

iterative algorithm to find the solution.  

The proposed approach is inspired by the kernel- 

method introduced in [21], and the optimization 

algorithm has been proposed in [26]. However, in 

contrast to [21] and [26], in this work, we 

considered pairwise dissimilarity as well as 

similarity constraints in the optimization problem. 

Moreover, compared to [21], instead of a pre-

determined kernel, we made use of composite 

kernels to improve the flexibility of the method 

and to avoid the problem of choosing an 

inappropriate kernel function. Furthermore, 

throughout the eigen-decomposition operation, the 

number of optimization variables is reduced by 

keeping those that preserve a pre-specified level of 

total variation of the data. Also noting that the 
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matrix augmentation process generates a high 

dimensional kernel matrix when a large set of 

candidate kernel matrices is available, we avoided 

the computational complexity problem by 

grouping the base kernels using a kernel alignment 

measure. A representative kernel was then used for 

each group. In fact, in our previous work [26], we 

were not able to increase the number of base 

kernels within the framework of the matrix 

augmentation method. This problem was here 

removed by the proposed grouping process. In the 

next section, the proposed method is detailed. 

3. Proposed metric learning method 

In this section, our formulation of the underlying 

optimization problem is presented. The proposed 

method falls within the framework of kernel-based 

distance metric learning using pairwise similarity 

and dissimilarity constraints. Since composite 

kernels are used as the kernel function, the adopted 

approaches for producing composite kernels are 

subsequently reviewed. We used the following 

notations in this section: A represents a matrix, a 

denotes a vector, aj denotes the j-th column of 

matrix A, and aij is its i-th element (i.e. .

( , )ija i j A .). 

 

3.1. Problem formulation 

Denote by  
1

N

i i
X


 x  a set of data points, where

r

i R xx , 1,...,i N , and N is the total number of 

samples. Also suppose that   is a feature space 

induced by a non-linear transformation

: rR H x . For a positive semi-definite kernel 

function k , a Mercer kernel is computed as the 

inner product of samples in H, and 

( , ) ( ), ( )k  x y x y . Also suppose that from the 

data points in X, we can construct two sets of 

training data S and D satisfying 

 ( , ) |  and  belong to the same classi j i jS  x x x x

and

 ( , ) |  and  belong to different classesi j i jD x x x x

As we focus on the semi-supervised setting of the 

distance metric learning problem, we assume that 

the size of the S and D datasets is very limited and 

a large number of unlabelled data points are 

available in X. Our goal is that by virtue of 

learning, distances between similar pairs are 

reduced, while distances between dissimilar pairs 

are increased. Accordingly, the objective function 

can be defined as:  

2

2
( , )

2

2
( , )

( ) ( )

  ( ) ( )

i j

i j

i j

S

i j

D

J  

  





 

 





x x

x x

x x

x x

 

(1) 

The above criterion function is, in fact, a weighted 

sum of squares of the Euclidean distances between 

the similar and dissimilar pairs of points measured 

in the feature space. This function should be 

minimized using the learned distance metric so 

that the pairs of the samples that belong to the 

same class will be as close as possible, and vice 

versa, for the dissimilar pairs. The role of 

parameter   is to balance the contributions of the 

similarity and dissimilarity pairs. In practice,   

can be estimated using the cross-validation 

procedure or it can simply be set to 
D

S
, where .  

denotes the cardinality of a set. Using the kernel 

representation for the Euclidean distances in (1), 

we can express J as: 

' '

( , )

' ' ' ' ' '

( , )

2

  2

i j

i j

ii jj ij

S

i i j j i j

D

J k k k

k k k





    

    





x x

x x

 

(2) 

where, abk 's are elements of the kernel or Gram 

matrix, i.e. ( , )abk a b K . Elements of K are 

actually the values of the kernel function 

corresponding to the respective pairs of data 

samples. This objective function is used in order 

to find the optimum kernel function, i.e. the 

optimum feature space  . Since the 

corresponding kernel matrix contains N2 elements, 

the number of variables that should be optimized 

is very large. To avoid this computational burden, 

we suppose that an initial Gram matrix is 

available a priori. This matrix is not necessarily 

the optimal one but it highly likely contains the 

relevant information. Then, new variables 

facilitating adaptation are introduced in the 

objective function to achieve a better 

performance. In particular, we assume that by 

decomposing the Gram matrix into orthogonal 

components, it is written as: 

1 1

N N
T

n n n n n

n n

 
 

  K u u U  
(3) 

where, n  are positive eigen-values of K  and 

1 2, , ,
N

u u u  are the corresponding normalized 

eigen-vectors. Now by remixing the bases with 

different weighting coefficients, 2

n , we have: 

2

1

N

n n

n




K U  
(4) 
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The remixing idea is based upon the well-known 

fact that while coefficients 
n  are ideal for good 

reconstruction of matrix K , they are not 

necessarily optimal for good discrimination. By 

replacing the eigen-values by a set of positive 

coefficients 2

1 , 2

2 ,…, and 2

N , we reformulate the 

distance metric learning problem as one 

determining the optimum value of 2

n ’s. Thus 

instead of matrix K , which is commonly used in 

kernel-based metric learning approaches, the 

matrix K  is used, and the learning process 

optimizes these mixing parameters ( 2

n ). 

The exponent of 2

n  emphasises that the 

coefficients are positive. It will also simplify the 

subsequent equations.  

An important issue in problem formulation is 

selecting the initial kernel matrix, K , so that (5) 

provides a scope for finding a good solution to our 

problem. The objective function described in (1) or 

(2) can then be used for learning the variables 2

n . 

Using this technique, the number of variables 

reduces from the order of 2N  to N . The number 

of variables can be reduced even more by 

preserving a specific level (for example, 99%) of 

the total variance of the data during the eigen-

decomposition operation. Hence, (4) can be re-

written as: 

2

1

P

n n

n




K U  
(5) 

where, P N is the number of the eigen-values 

n , 1,2,...,n P  capturing the specified amount of 

variance of the data in the original kernel space. 

By substituting the kernel function of (5) in (2), we 

have: 

' '

2

1 ( , )

2 ' ' ' ' ' '

1 ( , )

2

  2

i j

i j

P
ii jj ij

n n n n

n S

P
i i j j i j

n n n n

n D

J u u u

u u u



 

 

 

    

    

 

 

x x

x x

 

(6) 

Let ( 1, , )i i Ne  be the i-th column of an N N  

identity matrix. We can rewrite the objective 

function in (6) as: 

' '

2

1 ( , )

2 ' ' ' '

1 ( , )

2 2

1 1

( ) ( )

 ( ) ( )

  

i j

i j

P
i j T i j

n n

n S

P
i j T i j

n n

n D

P P

n n n n

n n

J

a b



 

  

 

 

 

  

  

 

 

 

 

x x

x x

e e U e e

e e U e e  

(7) 

where, 
( , )

( ) ( )
i j

i j T i j

n n

S

a


  
x x

e e U e e  and 

' '

' ' ' '

( , )

( ) ( )
i j

i j T i j

n n

D

b


  
x x

e e U e e . Now, if 
SA  and 

DB  matrices are defined as 

1 2( , ,..., )S Pdiag a a aA  and 
1 2( , ,..., )D Pdiag b b bB

, then (7) can be re-written as: 

( )T T T

S D s DJ     λ A λ λ B λ λ A B λ  (8) 
 

where 
1 2[ , ,..., ]P  λ . To prevent λ  from being 

a vector of zero values, we consider an extra 

constraint on λ  such that T c1 λ  for some 

constant value of 0c  . In order to preserve the 

total variance of the data, we set this value as: 

1

P

n

n

c 


 . The constraint optimization problem 

in (8) with this equality constraint can be solved 

using the method of Lagrange multipliers, leading 

to the following constraint objective function: 

( ) ( )T T

s DL c    λ A B λ 1 λ  (9) 
 

where,   is a Lagrange multiplier. The partial 

derivatives of the above expression are as: 

2( )

T

s D

L

L
c

 




  




 



A B λ 1
λ

1 λ

 

(10) 

 

The optimal vector of λ  is obtained by setting the 

partial derivatives to zero as: 
1

1

( )

( )T

s D

s D

c 












A B 1
λ

1 A B 1
 

(11) 

 

As mentioned earlier, we assume that the initial 

kernel matrix, K , is available at the beginning. 

The optimization process modifies the associated 

mapping process by replacing the eigen-values of 

the kernel with the values obtained via the learning 

process. It should be noted that the structure of the 

initial kernel matrix, K , is important, as it should 

contain the "optimal" kernel. It means that we 

cannot expect to achieve the best possible results if 

a totally inappropriate kernel function is adopted. 

Thus the most important issue now is how to 

choose the initial kernel function. The usual 

approaches such as the cross-validation procedure 

that try to find the best kernel are not useful for 

this purpose. Therefore, we focus on the composite 

kernels instead of choosing a specific kernel 

function. 

The general optimization goal in the proposed 

optimization process is somehow similar to that of 

the optimization method in [28], where the authors 

have proposed a semi-supervised metric learning 
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technique for learning a projection matrix that is 

used for the dimensionality reduction purpose. 

Both optimization processes try to minimize the 

average distance between similarity pairs and 

maximize the average distance between 

dissimilarity pairs. However, their final objective 

and the adopted methodologies are different. In 

our proposed method, within the clustering 

framework, the optimization process is performed 

in the kernel space considering a weighted sum of 

a set of kernel functions and the main purpose is to 

find the optimal weights, while in [28], the 

optimization process is done in the feature space, 

and the main purpose is to learn a projection 

matrix for the dimensionality reduction purpose. 

Moreover, in their learning process, all the data 

points including the unlabeled ones are used.  

However, we utilize only the similarity and/or 

dissimilarity pairs in order to learn the weights of 

the adopted kernels. 

 

3.2. Composite kernels 

Let  1 2, , , MK K K  be M different kernel 

matrices that map the data points to M Hilbert 

spaces as: 

( , )

     ( ), ( )

m m i j N N

m i m j
N N

k

 





   

 
 

K x x

x x
 

(12) 

where, m
r

m

   is the feature space 

corresponding to the m-th Hilbert space, and 
m

r  is 

the number of dimensions of 
m . These different 

kernels correspond to different feature spaces and 

they contain different sources of information. This 

suggests that complimentary information which 

leads to a better performance can be extracted by a 

suitable combination of the kernel functions. In 

what follows, we briefly review two popular 

combining methods, namely the unweighted sum 

[19] and matrix augmentation methods [25]. 

 

3.2.1 Unweighted sum method 

The unweighted sum of a set of base kernels is 

denoted by: 

1

M

un m

m

K K  
(13) 

Since the kernel matrices are positive semi-

definite, the summation of them is also a positive 

semi-definite matrix. Thus the new kernel satisfies 

the mercer’s condition, and it is a valid kernel. It 

can be shown that the new kernel corresponds to a 

new feature space that is obtained by unweighted 

concatenation of the base feature vectors, i.e.: 

1 2, , ,T T T

un

T

M     Φ  
(14) 

One of the advantages of this composite kernel is 

that there is no limit on the number of base 

kernels, and a large number of base kernels can be 

combined without increasing the computational 

complexity. Moreover, the reported results confirm 

the effectiveness of the method [19].  

 

3.2.2 Augmenting kernel matrices 

In [25], Yan et al. have proposed a novel method 

of creating composite kernels that involves 

augmenting kernel matrices. An augmented kernel 

matrix (AKM) is defined as: 

1

( )( )

aug

M M N M N 

 
 


 
  

K 0 0

K 0 0

0 0 K

 

(15) 

It can be shown that this kernel is also a valid 

Mercer’s kernel [25]. This formulation indicates 

that the discriminative importance of the data 

points in different feature spaces is preserved by 

augmenting the kernel matrices. One of the 

limitations of AKM is that by increasing the 

number of base kernels, a large amount of memory 

space is needed, resulting in a high computational 

complexity. This makes AKM inapplicable to large 

datasets, especially when the number of base 

kernels, M, is large. 

We deal with this problem by initial grouping of 

the base kernels according to their similarity. We 

use the Kernel Alignment (KA) method proposed 

in [27] as a measure of similarity between kernels 

in order to group them in an unsupervised manner. 

Considering two kernel matrices as 
kK  and 

lK , 

the Frobenius inner product between the matrices 

is defined as: 

, 1
, ( , ) ( , )

N

k l k i j l i jF i j
K K K x x K x x . The 

empirical alignment between these two kernel 

matrices can be measured by: 

,
KA( , )

, ,

k l F
k l

k k l lF F


K K

K K
K K K K

 
(16) 

We group the kernels in an agglomerative manner 

using the kernel alignment measure. For this 

purpose, first, we initialize all kernels as separate 

clusters and merge two most similar clusters at a 

time. Similarity between two clusters is defined as 

the largest distance between all possible pairs of 

cluster members. The merging process is then 

continued until G groups are obtained. After 

determining the members of each group, we find a 

representative kernel for each of them. In this 

study, the representative kernels are determined by 

unweighted summation of the kernels of each 

group. In fact, we use the beneficial effects of 

unweighted sum within each group and the 
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discriminative effect of the augmenting method 

over the representative kernels. The proposed 

algorithm is summarized in figure 1.  
 

Algorithm 1. The proposed algorithm 

Input: Input data,  
1

N

i i
X x


  a set of similarity pairs S and a set 

of dissimilarity pairs D. 

Output: Clustering the input data. 

Step 1: Compute the basis kernels  
1

M

m m
K  . 

Step 2: Compute composite kernel using unweighted or augmenting 

method,  Com unK K  or  Com augK K . 

Step 3: Eigen-decomposition of composite kernels in previous the 

step, 
1 1

N N
T

Com n n n n n

n n

 
 

  K u u U . 

Step 4: Specify the eigen-values that preserve a specific level (for 

example, 99%) of the total variance of the data. 

Step 5: Replace the eigen-values in the previous step with new 

variables and remove the rest, 
2

1

P

Com n n

n




K U . 

Step 6: Compute the optimal coefficient vector as  
1

1

( )

( )

S D

T

S D

c 












A B 1
λ

1 A B 1
. 

Step 7: Compute new kernel matrix using the coefficients in the 

previous step, 
2

1

P

Com n n

n




K U . 

Step 8: Use ComK  in kernelized k-means algorithm to cluster data, 

and repeat the k-means algorithm until a stopping criterion is met. 

Figure 1. Proposed algorithm. 

 

To study the computational complexity of the 

above solution, we exploit the complexity of 

different parts of it. Without considering any 

structure for the kernel matrix K , the eigen-

decomposition of K  to express it in the form of 

(3) takes 3( )O N  time. The diagonal matrices 
SA

and 
DB  take ( )O P S  and ( )O P D  times, 

respectively. The optimal value for λ  can be 

computed according to (11) in ( )O P  time. Note 

that P N  and typically ,S D N , so the 

overall complexity of the proposed algorithm is 
3( )O N , which is dominated by the complexity of 

the eigen-decomposition step. The kernel 

alignment can also be computed in 2( )O N . The 

computational complexity of kernel-based 

algorithms is summarized in table 1. It can be seen 

that the computational complexity of all kernel-

based algorithms is approximately 3( )O N . 

Table 1. Computational complexity of the proposed 

algorithm. 

Kernel- Unweighted sum Augmenting 

3( )O N  3 2( )O N N  3 2( )O GN N  

4. Experimental results 

In this section, our experimental results on both 

the synthetic and real-world data are reported, and 

the performance of the proposed method for semi-

supervised metric clustering is evaluated. 

 

4.1. Experimental setup 

We compare our kernel-based metric learning 

method with some other benchmark approaches. 

The Euclidean distance without metric learning is 

used as the baseline in our comparative study. The 

RCA method proposed in [14] is one of the 

benchmark methods. The RCA algorithm assigns 

lower weights to the irrelevant directions in the 

input space by applying whitening transformation 

on the dataset. The Xing et al.’s method in [13] is 

the other adopted method. This method considers 

both the pairwise similarity and dissimilarity 

constraints in contrast to the RCA method that 

makes use of only the similarity constraint. As one 

of the recently proposed kernel-based methods, we 

also report the results using the Kernel- method 

[21]. This method uses the pairwise similarity 

constraint as well. Thus overall, we compare the 

performance of our kernel-based metric learning 

algorithm with the following algorithms (the short 

names inside the brackets will be used 

subsequently): 

1) k-means without metric learning 

(Euclidean); 

2) k-means with the RCA metric learning 

method (RCA) [14]; 

3) k-means with Xing et al.’s metric learning 

method (Xing’s) [13]; 

4) Kernelized k-means with the kernel 

obtained by the Kernel- method (Kernel-

) [21]; 

5) Kernelized k-means with the unweighted 

composite kernel obtained by the proposed 

method using only the similarity 

constraints (unweighted-S) [26]; 

6) Kernelized k-means with the unweighted 

composite kernel obtained by the proposed 

method using both the similarity and 

dissimilarity constraints (unweighted-SD); 

7) Kernelized k-means with the augmented 

composite kernel obtained by the proposed 

method using only the similarity 

constraints (augmented-S) [26]; 

8) Kernelized k-means with the augmented 

composite kernel obtained by the proposed 

method using both the similarity and 

dissimilarity constraints (augmented-SD); 
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We utilize the RBF kernels as the primary non-

linearity inducing function for all the kernel-based 

metric learning methods. The RBF kernel is given 

as: 
2

2
( , ) exp

2

i j

i jk


 
 
 
 

x x
x x  

(17) 

This kernel is widely used in kernel-based 

methods. An appropriate selection of the kernel 

parameter,  , is an important issue. The value for 

  should be selected to reflect the distribution of 

data points. The distribution is usually unknown, 

especially in the case of high dimensional data. 

Instead of choosing a specific value for  , we 

combine Gaussian kernels with different widths. 

The composite kernel encloses information for all 

the kernels. It is expected to automatically extract 

the most useful information via the learning 

process. 

 

In this study, the performance of the metric 

learning clustering algorithms is measured using 

the Rand Index (RI) value. RI is a measure of 

agreement between the clustering result and the 

ground truth. Let 
sn  be the number of pairs 

assigned to the same partitions by both the 

clustering and the ground truth annotation, and 
dn  

be the number of pairs assigned to different 

partitions by them. The RI is defined as 

2( ) / ( ( 1))s dRI n n N N   , i.e. it is the ratio of 

correctly assigned pairs to the total number of 

pairs. When there are more than two clusters, the 

standard Rand index, as defined above, will tend to 

assign data pairs to different clusters. We use the 

modified Rand index as in [13, 18, 21, 23]. In the 

modified Rand index, the equal chance of 

occurrence (0.5) is considered for both the 

similarity and dissimilarity pairs, and RI is defined 

as: 

ˆ ˆ0.5 ( )
ˆ( , )

ˆ ˆ( )

ˆ ˆ0.5 ( )
              

ˆ ˆ( )

i j i ji j

i ji j

i j i ji j

i ji j

c c c c
RI C C

c c

c c c c

c c

















   




   












 

(18) 

where, (.)  is an indicator function (i.e. 

( ) 1True   and ( ) 0False  ), îc  is the cluster to 

which ix  is assigned by the clustering algorithm, 

and ic  is the correct cluster assignment. The 

indicator   is used as "and" operator.  

 

Each dataset is normalized to zero mean and unit 

standard deviation before applying the clustering 

algorithm. As described in Section 3, the proposed 

metric learning approach uses the similarity and 

dissimilarity pairwise constraints in the learning 

process. This data plays an important role. 

Therefore, for each dataset, we randomly generate 

20 different similarity (S) and dissimilarity (D) 

sets. We also perform 20 runs of k-means with 

random initialization for each pairwise constraint 

(SD) set. Thus each clustering experiment is 

repeated for 400 times and the statistical 

characteristics of the results are reported.  

 

As mentioned in Section 3.2, the main aim in 

creating the augmented structure is to retain the 

discriminative importance of the data points in 

different feature spaces. After clustering the base 

kernels into G groups using kernel alignment as 

the similarity measure, we will have G 

representations of a data point at the same time. 

Thus we define the distance between two data 

points in the augmented feature space as the mean 

of the distances between these two points in the 

different feature spaces induced by the base 

kernels.  

 

In the kernel- method, the kernel parameter, , is 

set using the following equation [21]: 

2
2

, 1

( / ( 1)) ( ) ( )
N

i j

i j

N N   


   x x  
(19) 

where, similar to the associated reference, 5   is 

used. 
 

4.2. Experiments on Synthetic Dataset 
We first perform some experiments on a synthetic 

XOR dataset. Figure 2(a) shows a scatter plot of 

the dataset. Two different signs with different 

colours are used to show the data points with their 

labels. The solid green and pink lines are used to 

show, respectively, the adopted similarity (S) and 

dissimilarity (D) pairs. We randomly pick 10 

similarity pairs (i.e. |S| = 10) and 5 dissimilarity 

pairs (i.e. |D| = 5). Based on the experiments 

performed on the UCI datasets, which will be 

reported later, we set 2G  . The parameter i  

varies from 1 to 8, which is in steps of 0.7 to 

obtain 11 base kernels. 

 

The scatter plots of the data points projected into 

the new feature spaces induced by the different 

distance metric-based clustering approaches are 

shown in figure 2 (b-h). The RCA and Xing's 

method learn global Mahalanobis metric in the 

original input space. For the kernel-based 

methods, in order to represent the transformed 

data in the learned kernel space, we apply the 

kernelized PCA to the data points using the 
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learned kernel matrix. The resulting two-

dimensional (2-D) feature space is then displayed.  

 

Figure 2 (b) and (c) show the transformed data 

points using the RCA and Xing's methods, 

respectively. Note that the linear transformation 

using the RCA and Xing's methods cannot yield 

significant clustering results for non-linearly 

distributed data points such as the XOR data. As 

shown in figure 2(d), the non-linear kernel- 

method yields a good clustering result for this 

type of dataset but the main problem with this 

method is that it is very sensitive to the choice of 

the RBF kernel parameter,  . Slight changes can 

highly degrade the performance of the method. 

Moreover, although the data points of different 

classes are separated, the scattering of the data 

points in each class is quite high. Figures 2 (e) and 

(g) show the mapped data points using the 

proposed method with the unweighted averaging 

and augmenting strategies, respectively, in a 

scenario when just similarity constraints are 

available. Compared to the kernel- method, 

combining the base kernels, i.e. combining the 

information for different feature spaces induced 

by different kernels, reduces the scattering of the 

data points in each class. As shown in figures 2 (f) 

and (h), using additional information in the form 

of dissimilarity pairwise constraints, the 

performance of the proposed kernel-based method 

is meaningfully improved. It can be seen that by 

adding this information, more compacted and 

separated clusters are created. It has to be noted 

that in the eigen-decomposition step of the 

experiments, 99% of the variance of the overall 

kernel matrix, K , is preserved. As a result, the 

number of variables that have to be learned is 

significantly reduced (for instance, from N = 200 

to P = 7). 

 

Figure 3 contains schematic plots of the initial and 

learned kernel matrices computed over the XOR 

dataset using the kernel- and unweighted-SD 

methods. We arrange the data points according to 

their class label. The kernel matrix for these 

arranged data points is then computed. The top 

row of the figure shows the initial kernel that has 

been obtained from a single Gaussian kernel for 

the kernel- method and a combination of the 

base kernels for the unweighted-SD method.  

It can be seen that the initial kernel matrix of both 

methods consists of four parts, meaning that the 

samples are cast into four clusters, which is due to 

the geometrical distribution of the data. Although 

the data points in both initial kernels are 

incorrectly partitioned, the kernel values for each 

part of the data in the composite methods are 

much higher than those of the single kernel. The 

kernel matrices after the learning process are 

shown in the next row of the figure. The learning 

process leads to a better association of kernel 

values and data point labels (i.e. the matrix can be 

divided into two parts). Using the composite 

kernels, the kernel matrix is perfectly divided into 

two distinct parts that correspond to the ideal 

kernel for this dataset. 

 

 
Figure 3. Kernel matrices for XOR dataset before and 

after kernel-based metric learning algorithms. (1) initial 

kernel matrix used in metric learning, (2) learned kernel 

matrix in metric learning process. (a) kernel-, (b) 

unweighted-SD. 

 

The semi-supervised clustering results for the 

XOR dataset are displayed as the box-plots in 

figure 4. All the kernel-based methods achieve 

remarkably good semi-supervised clustering. The 

kernel-based methods always lead to perfect 

results ( 1RI  ), and the variance of the results is 

zero. 
 

 
Figure 4. Clustering results of different algorithms for 

XOR dataset. Eight algorithms (numbered in Section 4.1) 

are as follow: (1) Euclidean, (2) RCA, (3) Xing’s, (4) 

kernel-, (5) unweighted-S, (6) unweighted-SD, (7) 

augmented-S, and (8) augmented-SD. 
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Figure 2. Comparison of different metric learning methods on XOR dataset. (a) Original dataset with two classes, and dataset 

after applying (b) RCA, (c) Xing’s, (d) kernel-, (e) unweighted-S, (f) unweighted-SD, (g) augmented-S, and (h) augmented-

SD. 

 

We also repeat the experiments for the XOR with 

overlapping clusters. Parameters are set similar to 

the previous experiment. Figure 5 shows new 

XOR data and the corresponding clustering results 

of different algorithms. It can be seen that the 

proposed methods outperform the others. Figure 6 

(b-h) shows the new XOR data points projected 

into the feature spaces induced by the different 

distance metric-based clustering approaches. 

 

 

Figure 5. Clustering results of different algorithms for XOR data with overlapping clusters. (a) original data, (b) eight 

algorithms (numbered in Section 4.1) are as follow: (1) Euclidean, (2) RCA, (3) Xing’s, (4) kernel-, (5) unweighted-S, (6) 

unweighted-SD, (7) augmented-S, and (8) augmented-SD. 
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Figure 6. Comparison of different metric learning methods on XOR dataset with overlapping clusters. (a) original dataset 

with two classes, and dataset after applying (b) RCA, (c) Xing’s, (d) kernel-, (e) unweighted-S, (f) unweighted-SD, (g) 

augmented-S, and (h) augmented-SD. 

 

4.3. Experiments on UCI Data 

We repeated our experiments on six real-world 

datasets from the University of California at 

Irvine (UCI) Machine Learning Repository. Some 

details about the main characteristics of these 

datasets and our experimental settings are shown 

in table 2. These details include the size of dataset 

(N), number of features ( xr ), number of clusters 

(C), and number of randomly selected similarity 

and dissimilarity pairs ( |S| and |D|). |S| was 

selected to be the same as that in [21] and [23].  

 

In the case of multiple kernel learning, Gaussian 

kernels with different parameter values, , were 

utilized. The number of Gaussian kernels (M) and 

the adopted range of this parameter ( i ) have also 

been reported in the table. For each dataset, the 

lower bound of variance value, , has been 

chosen by computing the variance of the 

associated data points in the original feature 

space. For each dataset, M Gaussian kernels are 

computed by extracting M parameter i  from the 

interval 
1

,2
2
 

 
 
 

. In the experiments, the 

number of Gaussian kernels has been chosen as 

11M   for all datasets. 

M is randomly selected. The datasets are 

normalized before applying the clustering 

algorithms. 

 

The performance of the proposed method may be 

affected by the value of a few parameters. The 

main parameters are the number of kernel groups, 

G, and number of the similarity/dissimilarity 

pairs. Some discussions about the parameter 

settings are in the following order: 

(i) G: As mentioned, the number of base 

kernels is reduced to G groups using a 

kernel alignment procedure. The grouping 

process reduces the computational 

complexity of the method, especially in 

the case of the kernel augmentation 

method. A number of experiments were 

performed using different values of G. 

Figure 7 contains samples of the results, 

where the average Rand Index is plotted 
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versus the number of groups, G, for 

different datasets using the unweighted-

SD method. These plots demonstrate that 

the performance of the proposed method 

is not highly affected by the number of 

the groups. Therefore, we set 2G   in the 

experiments. 

(ii) |S| and |D|: The plots in figure 8 show the 

relationship between the average Rand Index and 

the number of constraints. These are the results 

obtained using the unweighted-SD method on 

different datasets. As expected, the performance 

of the proposed method normally improves when 

the number of the constraints is increased. Since 

this study focuses on semi-supervised learning, a 

limited amount of supervisory information has to 

be provided. Hence, in the rest of the paper, we 

report the results obtained using the number of 

superiority constraints, as specified in table 2. 

 

Figure 9 contains the clustering results on the UCI 

datasets using different algorithms (numbered as 

discussed in Section 4.1). From these results, the 

findings of the paper can be summarized as 

follow: 

1) As expected, the kernel-based 

methods (4 to 8 in Section 4.1) outperform the 

simple Euclidean distance measure or the 

linear metric learning approaches. This is 

thanks to the benefits obtained by the non-

linear mapping induced by the kernel 

functions. 

2) It can be seen that the proposed 

kernel learning methods (5 to 8 in Section 4.1) 

generally lead to better results compared to the 

kernel- and the other approaches. The main 

exception is the Wine dataset. As mentioned 

earlier, in this study, a set of RBF kernels is 

considered as the primary kernels. Perhaps, 

there still is a need for including a greater 

variety of kernels as the base kernels in order 

to capture the inherent clustering 

characteristics of different datasets with better 

efficiency. This is a matter of interest in the 

future studies. Also in some cases, although 

the average Rand Index of the proposed 

methods is higher, a low confidence interval 

(i.e. high variance) has been observed. As 

mentioned earlier, for any sets of pairwise 

similarity/dissimilarity constraints, the k-

means clustering process is repeated for 20 

times. The high variance problem could be due 

to the problem of local optima in some runs of 

the algorithm. This problem can be reduced by 

automatically selecting the best clustering 

results using the relevant solutions such as 

using the silhouette measure [29]. 

3)  Among the advocated 

approaches (5 to 8 in Section 4.1), the kernel 

augmentation process usually leads to slightly 

better results. Also adding the dissimilarity 

pairs as a part of the supervisory information 

usually improves the clustering quality.

Table 2. Main characteristics of UCI datasets and associated experimental settings. 

 

 

 

 

 

 

 

4.4. Experiments on MNIST digits dataset 

To evaluate the performance of the proposed 

methods on real datasets, we also performed some 

experiments on the hand-written digits from the 

MNIST database1. This database contained 60000 

                                                      

1 http://yann.lecun.com/exdb/mnist/ 

hand-written numerical characters as the training 

set and another 10000 as the test set. All the 

relevant images were centred and normalized to 

28×28 gray level images. In our experiments, the 

clustering process was performed on three subsets 

of the numerical characters. 

These subsets contained {0,1}, {1,5}, and {1,9} 

digits, respectively. We randomly picked 200 

Dataset N rx C |S| |D| i 

Soybean 47 35 4 10 5 [5-20] 

Heart 270 13 2 30 10 [5-20] 

Ionosphere 351 34 2 30 10 [5-20] 

Wine 178 13 3 20 10 [5-20] 

Sonar 208 60 2 30 10 [10-40] 

Iris 150 4 3 20 10 [3-12] 
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samples for each digit. Also 10 different 

constraint sets were randomly generated, where 

each set contained 20 similarity pairs (|S| = 20) 

and 5 dissimilarity pairs (|D| = 5). For each 

pairwise constraint set (S and D), 20 runs of the k-

means clustering algorithm were performed by 

different random initializations. 

 The number of groups was set to 2G  , and the 

kernel parameter 
i  varied from 10 to 60 in steps 

of 5. Thus overall, each clustering experiment was 

repeated for 200 times, and the mean and standard 

deviation of the Rand Index were calculated. 

Table 3 contains the results obtained using 

different approaches. It can be seen that the 

proposed optimization process leads to better 

results.

 

 
Figure 7. Clustering results of unweighted-SD method versus number of groups, G, for UCI datasets: (a) Soybean, (b) Heart, 

(c) Ionosphere, (d) Wine, (e) Sonar, and (f) Iris. 

 
Figure 8. Clustering results of unweighted-SD method versus number of constraints for UCI datasets: (a) Soybean, (b) Heart, 

(c) Ionosphere, (d) Wine, (e) Sonar, and (f) Iris. 
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Figure 9. Clustering results of different algorithms for UCI datasets. Algorithms (numbered in Section 4.1) are as follow: (1) 

Euclidean, (2) RCA, (3) Xing’s, (4) kernel-, (5) unweighted-S, (6) unweighted-SD, (7) augmented-S, and (8) augmented-SD. 

 

5. Conclusion 

In this paper, we proposed a new metric learning 

method that makes use of the concept of 

composite kernels. We formulated a semi-

supervised metric learning approach, which 

utilizes both the similarity and dissimilarity 

pairwise constraints. Within the framework of the 

proposed method, the merits of two groups of 

composite kernels, namely unweighted-average 

and augmented kernels, were investigated. The 

learning process concentrates on determining the 

weights of the eigen-matrices obtained by the 

eigen-decomposition of the associated composite 

kernel matrix. In the learning process, a set of 

similarity and/or dissimilarity constraints have to 

be jointly satisfied. Our experimental results on 

the synthetic and real world datasets confirm that 

overall, the proposed methods are superior to the 

existing approaches. The proposed methods are 

suitable for the case that all data points are 

available in advance. However, extending the 

proposed methods for dealing with stream data 

(on-line clustering) could be a matter of interest in 

the future studies. 
 

Table 3. Clustering results on three subsets of the MNIST dataset. 
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 چکیده:

کار گرفته شده است  کته در بهمعیار فاصله ها، به شدت وابسته به بندی، خوشه بندی و انطباق دادهدر مسائلی نظیر طبقه ماشین حل مبتنی بر یادگیری

 معیتار فاصتلههای آموزشتی، تتوان از روی نمونتهکته میاس   شده هنشان داد ،دهه گذشته در شد.گذشته این معیار عموما به صورت ابتکاری تعیین می

یتادگیری معیتار فاصتله  ،های اخیررو در سالشود. از این معمولدر مقایسه با معیارهای فاصله  مناسبی را آموزش داد که منجر به عملکرد بهتر الگوریتم

ایتن در  اصتله مبتنتی بتر کرنتل اشتاره نمتود.های یادگیری معیار فتوان به الگوریتمبه طور خاص می سیاری از محقیقن قرار گرفته اس  کهمورد توجه ب

در این فضای ویژگتی جدیتد، و سپس  جدیدی با ابعاد بالاتر نگاش  یافته ویژگی ها به طور غیر صریح به فضای، نمونهکرنلبا استفاده از تابع ها، الگوریتم

موجتود بترای  نظتارتی اطلاعات میزان به ،سازی برای یادگیری معیار فاصلهمسئله بهینهساختار . شودبرای کاربرد مورد نظر آموزش داده میمعیار فاصله 

ی آموزشی بتدون برسست  در آن، نمونه آموزش وابسته اس . در این پژوهش، تمرکز بر روی یادگیری معیار فاصله نیمه نظارتی مبتنی بر کرنل اس  که

دو کتلاس )یتا دو  تعلتق بتهمهای نمونته زوجهای متعلق به کلاس )یا خوشه( مشابه و یا نمونه زوجها که در قال  دادهمجموعه کوسکی از  هستند به جز

 بتا استتفاده بندی شتده وها گروهابتدا این کرنل پایه وجود دارد که عداد زیادی کرنلشود ت. در الگوریتم پیشنهادی، فرض میخوشه( متفاوت وجود دارند

های عمود بر هم محاسبه شده و پتارامتر ایهای از پسپس بسط ماتریس کرنل مرک  بر روی مجموعه شود.کرنل مرک  تشکیل می ،هااز نماینده این گروه

و واقعتی متورد  داده مصتنوعی مجموعته رویبر  ،شود. الگوریتم پیشنهادیهای مشابه و نامشابه بهینه میترکی  در این بسط با استفاده از مجموعه زوج

ستب  بهبتود عملکترد الگتوریتم در مقایسته بتا استتفاده از تنهتا  های مشابه و نامشابهکه استفاده همزمان از زوج دهدمیارزیابی قرار گرف . نتایج نشان 

 مورد بررسی اس . هایشود. همچنین نتایج به دس  آمده حاکی از برتری الگوریتم پیشنهادی در مقایسه با سایر الگوریتمهای مشابه میزوج

   .سازیهای مشابه و نامشابه، مسئله بهینهقیود زوجهای مرک ، بندی نیمه نظارتی، کرنلیادگیری معیار فاصله، خوشه :کلمات کلیدی

 


