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Abstract 

Although several works have been conducted to improve the clustering efficiency, most of the state-of-art 

schemes suffer from the lack of robustness and stability. This paper aims to propose an efficient approach to 

elicit a prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data to 

convert a blind clustering problem into a semi-supervised one. In order to estimate the density distribution of 

data, the Weibull Mixture Model is utilized due to its high flexibility. Another contribution of this work is to 

propose a new hill and valley seeking algorithm to find the constraints for a semi-supervised algorithm. The 

proposed valley-seeking algorithm does not require any user-defined parameter. It is assumed that each 

dominant density peak stands on a cluster center; therefore, the neighbor samples of each center are 

considered as the must-link samples, while the near-centroid samples belonging to different clusters are 

considered as the cannot-link ones. The proposed approach is applied to a standard image dataset (designed 

for clustering evaluation) of Berkeley University along with some UCI datasets. The results achieved on both 

databases demonstrate the superiority of the proposed method compared to the conventional clustering ones. 

 

Keywords: Semi-supervised, Clustering, Valley-seeking Scheme, Weibull Mixture Model. 

1. Introduction 

Clustering techniques are used in a vast variety of 

data mining applications such as stream mining 

[15], image segmentation (clustering)[13], multi-

objective systems [21], and spam filtering [9]. The 

conventional strategies of cluster forming are 

hierarchical [11], flat [17], graph-based [8], and 

density-based [14]. Each category of the 

mentioned methods has its own drawbacks. For 

instance, incorporating the tree structure into the 

clustering has led to the development of 

hierarchical clustering algorithms such as divisive 

and agglomerative (e.g. single and complete 

linkage) [5, 22], whereas hierarchical algorithms 

are faced with some challenges such as selecting 

an effective termination criterion, lack of back-

tracking, and heavy computational burden. 

Despite the simplicity of the flat clustering 

methods such as K-means [10], they still suffer 

from the lack of learning stability due to high 

sensitivity of their performance to their initial 

cluster centers. Graph-based algorithms like 

shared nearest neighbor (SNN) [6] prune a 

considerable number of instances as noisy 

samples, and do not assign them to any cluster. 

Density-based clustering methods try to form 

clusters in the directions of dense regions [20]. 

Nevertheless, among the mentioned cluster 

forming algorithms, density-based methods have 

attracted much attention since they try to make a 

relation among the samples in the dense regions 

and then consider each set of connected samples 

as a cluster. Although each density-based 

algorithm has its own shortcomings, this approach 

is more consistent with the nature of data.  

In the case of having a prior knowledge about a 

part of our samples in terms of must-link and 

cannot-link connections, the problem of blind 

clustering is converted into semi-supervised 

clustering. Extracting such constraints require the 

confirmation of experts, which is an expensive 

and time-consuming process; consequently, it is a 

big deal to convert an unsupervised problem into a 
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semi-supervised one, and the conventional 

methods fail to make this conversion for a wide 

range of problems. The main contribution of this 

work is to elicit a prior knowledge from the nature 

of data and then convert a blind clustering 

problem into a semi-supervised one. 

1.1 Literature review 

To the best of the authors’ knowledge, there is no 

research work similar to the method proposed in 

this paper. Nevertheless, among different 

strategies of clustering (e.g. hierarchical, flat, 

graph-based, and density-based), it can be said 

that the family of density-based clustering 

algorithms has the highest degree of similarity to 

the proposed approach. Therefore, the density-

based clustering techniques are introduced here 

and their pros and cons are analyzed. 

Density-based Spatial Clustering of Applications 

with Noise (DBSCAN) [7] is the most famous 

algorithm among the density-based clustering 

methods. In fact, other density-based schemes are 

known as different derivations of DBSCAN. This 

method allows us to form clusters with arbitrary 

shapes in the directions of dense regions. The 

strongest property of DBSCAN is its low 

sensitivity to noisy and outlier samples. Also the 

complexity of this algorithm is quite low due to 

doing just one time scanning for each point; 

consequently, DBSCAN is suitable for handling 

large datasets (big data), and is vastly applied to 

the data mining applications. Nevertheless, the 

main flaw of DBSCAN is its high sensitivity of its 

user-defined parameters. Moreover, this method is 

not capable of detecting the gradient of density 

within a cluster. In order to overcome this 

deficiency, distributed DBSCAN (DDBSCAN) is 

proposed to detect clusters that are in hierarchy or 

clusters with different densities separately [1]. In 

contrast to DBSCAN, DDBSCAN still suffers 

from a high computational complexity and is 

sensitive to the user-defined parameters. 

Ordering Points to Identify the Clustering 

Structure (OPTICS) is an efficient algorithm that 

can be considered as an extension of the DB-Scan 

method in which all instances are evaluated one 

by one, and the suitable radius along with the 

nearest core point of each instance is determined 

[2]. In this way, all user-defined parameters for 

each instance are adaptively determined, and 

finally, an extended DB-Scan is run over the 

processed data. Therefore, solving the problem of 

parameter dependency in DBSCAN is one of the 

advantages of the OPTICS algorithm. 

Nevertheless, OPTICS cannot guarantee to find 

the optimum radius for each point, and finds a 

suitable radius for all instances.  

Density-based clustering (DenClue) is another 

density-based clustering method, which first tries 

to find the whole distribution of data by finding 

the local distribution of samples using an 

influence function [12]. The estimated distribution 

of DenClue is better than that of DBSCAN in 

terms of quality since it locally estimates a certain 

kernel for each sub-space, while DBSCAN starts 

with a certain radius that definitely is not optimal 

for all regions. After computing the gradient of 

the estimated kernel density functions to find the 

density attractors, a hill-climbing algorithm tries 

to group the samples that are located in the 

vicinity of each density attractor. The bottleneck 

of this method appears when the dimension of 

data increases.  

The main contribution of this work is to extract a 

prior knowledge in terms of the must-link and 

cannot-link constraints by estimating the data 

distribution [24]. Here, Weibull Mixture Model 

(WMM) was chosen to estimate the data 

distribution due to its flexibility to model each 

arbitrary cluster with a low number of Weibull 

functions [19]. Next, the distribution is partitioned 

into primary clusters by proposing an efficient 

valley-seeking algorithm. Consequently, the 

constraints are extracted from the primary clusters 

by recognizing the must-link samples as the 

samples located around the distribution of each 

hill (center of each cluster) and the cannot-link 

samples as the must-link samples of different 

clusters. By this trick, the blind clustering 

problem is automatically converted into a semi-

supervised one. Finally, the most proper number 

of clusters is found according to the best 

Silhouette score. Although a few similar works 

have been carried out for clustering using WMM 

[16, 18], their valley-seeking algorithms require a 

few user-defined parameters that cannot be 

automatically found from the data, whereas in the 

proposed method, the suggested valley-seeking 

scheme does not require any parameter, and it is 

fully automated. 

The rest of this paper is structured as what 

follows. Section 2 explains the details of the 

compared clustering methods, and next, the 

proposed approach is presented. Section 3 

introduces the evaluation methods and expresses 

the datasets. In Section 4, the experimental results 

produced by each one of the methods are 

separately presented, and the benefits and 

shortcomings of each scheme are discussed. 

Finally, in Section 5, the paper is concluded and, 
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at the end, a new horizon to the future works is 

presented. 

 

2. Methods 

In this part, our objective is to introduce the 

implementation details of the following 

algorithms: K-Means, DB-SCAN, OPTICS, 

DenClue, Single-Linkage, Complete-Linkage, and 

SNN. As we see, in addition to the density-based 

clustering methods, flat, hierarchical, and graph-

based clustering methods are explained in this 

work. Next, the proposed method is expressed 

using WMM as the distribution estimator and a 

new valley-seeking algorithm to determine the 

clusters.  

 

2.1. K-Means 

K-means is the most famous and effective flat 

clustering scheme that has been utilized in many 

applications. This method is randomly initialized 

by a certain number of cluster centers (K) defined 

by the user. Then the samples are assigned to the 

nearest cluster center. At each step, each cluster 

center is updated according to the cluster samples, 

and the points are again assigned to the new 

centers. This process continues until changes of 

the clusters' centers do not exceed a pre-defined 

threshold in two successive iterations. 

 

2.2. DB-SCAN 

The procedure of DBSCAN clustering algorithm 

can be explained as what follows. At first, it 

randomly selects a point (p) and considers this 

point as the center of a circle with radius Eps. The 

algorithm checks whether at least the MinPts 

number of samples are located in that circle or 

not. If the answer is yes, this point is considered 

as a core point; in contrast, the neighbor samples 

are checked. Eps and MinPts are user-defined 

parameters but in most papers, the value for 

MinPts has been set to 4. The neighbors that are 

placed within the circle of each core point are 

called direct reachable, and those indirectly 

connected to this point are called indirect 

reachable. Next, the algorithm evaluates a new 

point of data if there is no density-connected point 

from previous core points and repeats the above 

steps until all points are processed. 

 

2.3. OPTICS 

The OPTICs algorithm is known as an extension 

of the DBSCAN algorithm, which tries to 

automatically optimize its parameters [2]. The 

main components of this algorithm include the 

core distance and the reachable distance. OPTICS 

finds the neighbors of each sample with different 

radiuses and compares the number of neighbors 

for each radius to the MinPts parameter. Similar 

to DBSCAN, the samples that can construct a 

cluster regarding the MinPts parameter are 

selected as the core points.  

If the graph of radius/samples is drawn, the core 

point samples and their corresponding radius are 

determined [2]. Each core point with its connected 

neighbors regarding the adjusted reachable 

distance is considered as a cluster. In other words, 

OPTICS adaptively finds the radius for different 

regions, and each cluster is grown from the 

densest region of that cluster. This algorithm 

ensures us to find clusters with different densities. 

Moreover, OPTICS is sensitive to the density 

gradient within each cluster and divides the 

cluster into clusters with uniform density.  

 

2.4. DenClue 

Among the density-based clustering algorithms, 

DenClue is the most similar approach to the 

proposed method in this paper. DenClue has two 

important phases. In the first phase, the density 

function is estimated in terms of summation of 

influence functions. In the second one, each 

cluster is characterized as the samples located 

around a local maximum point of the overall 

probability density function. In the case of using 

the continuous influence function, the overall 

density function is continuous at each point, and 

the density attractors (clusters) can be derived by 

a hill-climbing method taking a gradient from the 

overall density function. The influence function, 

summation of influence functions to construct the 

density, and the gradient of the whole density 

function are presented in (1), (2) and (3), 

respectively.   
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where, d(x,xi) is the Euclidian distance between x 

and xi, δ is the variance of each Gaussian 

(influence) function, and N is the number of 

influence functions to construct the density. As far 

as the noisy and outlier points are located in low-

dense regions, these samples have a very low 

effect on the whole performance.  
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2.5. Shared Nearest Neighbor (SNN) 

Most challenges occur when the clustering 

methods are faced with groups of samples with 

different population, different densities, different 

shapes or dataset with noisy and outlier values. 

The SNN method tries to deal with all the 

mentioned problems. The algorithm first finds the 

nearest neighbors of each data point, and then 

redefines the similarity between two points using 

the number of nearest neighbor points that are 

common between the two points as the edge 

weight that connects these two points in the graph. 

Using this new definition of similarity, SNN 

prunes the noise and outlier samples because they 

do not connect to any point. In contrast, SNN 

identifies core points and then creates clusters 

around the cores. These clusters do not contain all 

points but finely represent different sets of 

connected points as clusters. 

 

2.6. Standard semi-supervised clustering 

In the case of having no prior knowledge, the 

clustering becomes an unsupervised process, 

while in some applications, there is little 

information available about a subset of samples. 

The problem of clustering a set of samples when 

prior knowledge (in terms of the must-link and 

cannot-link samples) is available about subsets of 

samples is called the semi-supervised clustering 

method. The must-link and cannot-link samples 

are normally determined by experts. Since the cost 

of labeling or finding the hidden constraints is 

very high, just the constraints among a small 

subset of samples are determined [24]. Recent 

studies have shown that when these limitations 

(must-link and cannot-link samples) are fed to the 

clustering process, the accuracy of clustering is 

significantly increased.  

 

2.7. Proposed algorithm 

In spite of using the summation of Gaussian 

functions to estimate the distribution of data (e.g. 

GMM), here, the Weibull functions are employed, 

which can incorporate a degree of skewness to the 

components. It is obvious that by incorporating 

the shape parameter to the Weibull functions, we 

can build a complex distribution with a lower 

number of Weibull functions compared to the 

Gaussian functions. In the following, first the 

Weibull function is introduced, and then the 

Weibull Mixture Model (WMM) is explained, and 

finally, the proposed algorithm is expressed.    

 

2.7.1. Weibull distribution 

Weibull distribution is one of the most flexible 

distributions in statistics, which can be adapted to 

the distribution of data with a few data points. 

This function is more flexible than the Gaussian 

function because its parameters allow the Weibull 

shape to become asymmetric. In other words, it 

has a shape parameter that regulates the skewness 

of the function toward the left or right direction. 

The Weibull distribution is defined as follows: 
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where,           are the scale, shape, and 

location parameters, respectively. For this 

distribution,             parameters should be 

positive. L is often assumed to be zero, and in this 

case, the three-parameter Weibull distribution 

becomes a two-variable function that is more 

common. In the case of L = 0 and 1    this 

distribution forms a shape similar to an 

exponential distribution. Similarly, when

3.25  , the distribution is almost as glaring as 

the normal distribution. 

 

2.7.2. Weibull mixture model (WMM) 

Murthy et al. [18] have introduced the 

multivariate Weibull mixture model, in which 

several Weibull functions are linearly summed by 

different weights in order to model each complex 

arbitrary distribution. The WMM model is 

composed as follows: 

1

m

i ij ij

j

y a y


  
(5) 

 

where,     is the j
th 

Weibull distribution with 

parameters α
  

,    , and     determining the 

weight of the j
th
 Weibull function in the mixture 

model. The multivariable p dimensional Weibull 

function is described in (6): 
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where, x0 = Max(x1, ..., xp) > 0. One of the 

methods used to find the final distribution, similar 

to determining the kernel density estimation, is to 

convolve each sample like Dirac delta function 

form to the multivariate Weibull distribution 

function of the observed data, which is explained 

as follows:  
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where, ps(x) is the Weibull distribution of a new 

example, R(s-1)(x) is the Weibull kernel for the 

observed data, and  ̂   ( ) is the approximate 
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kernel density estimation of the whole distribution 

at point x. 

 

2.7.3. Gap statistic 

In order to find the correct number of Weibull 

functions in WMM, the gap statistic method [19], 

as a well-known manner of estimating the number 

of clusters, is employed. Consider a d-dimensional 

dataset with   independent observations. Let 

d(x,y) be the Euclidean distance between two 

observations x and y. Assume that the data is 

categorized in k different clusters C1, ...,Ck, and nr 

= |Cr| is the number of data belonging to the 

cluster r. The average distance of samples within 

the r
th
 cluster is denoted as Dr, which is 

determined as follows: 

,

( , )

2
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and,    is the summation of the within class 

average distances of all k clusters:  

1

k

k r
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w D
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The main idea of the gap statistic method [19] is 

the standardization of graph log(wk) by comparing 

its expectation under a suitable null reference 

distribution of data. The optimal number of 

clusters is the k at which wk is the farthest point 

under this reference curve: 

 ( ) logn kGap K E w  (10) 
 

where, E(.) is the expectation of examples with 

size n from a reference distribution. The estimated 

value of k is the value that maximizes (10). 

 

2.7.4. Eliciting constraints from density 

function 

After training WMM with the right number of 

Weibull functions determined by gap statistics, 

the clusters should be extracted from the 

estimated distribution. Local maxima of the 

density function can be easily obtained by taking a 

gradient of that density. The points placed below 

each local hill are considered as the must-link 

points. Since these points are located on the 

densest region of the distribution, we can consider 

these neighbor points belonging to a cluster, and 

consider them as the must-link samples. 

One of the questions in the described algorithm is 

that how many samples around each density mean 

(below the density hill) should be selected as the 

must-link samples. In order to answer this 

question, some parameters are defined. Let n0 and 

N0 be the number of samples in the clusters with 

the lowest and highest population, respectively.  

Accordingly, the following relation describes the 

worst portion of populations among the clusters:  

0

0

n
I

N
  

(11) 

 

The number of selected samples as must-link 

samples around the center of each cluster is 

determined as follows: 

min
cn

k I
k

   
(12) 

 

where, nc is the total number of samples in the 

dataset and k is the number of clusters. 

 

2.7.5. Eliciting clusters from estimated density 

Similar to the most clustering algorithms, here, 

small-size clusters are eliminated, and their 

samples are assigned to the other clusters; 

therefore, to avoid the density peak of clusters 

being close together, the distance between two 

hills should exceed a threshold. In other words, 

within a large cluster, the distribution function 

might fluctuate; consequently, each local peak 

should not be considered as a center for a new 

cluster. Therefore, just those density hills can be 

considered as the center of clusters that have a 

significant distance to each other; in addition, 

each cluster center should be the maximum hill in 

its vicinity.  

In order to find the number of clusters, after 

calculating the approximate number of clusters (k) 

using the gap statistic, the real number of clusters 

is considered in the interval [k/2, 2k], similar to 

the Iso-Data clustering algorithm [3]. After 

determining the constraints (described in the 

former part), the semi-supervised clustering 

algorithm is executed, and the clustering index is 

determined to assess how well the clusters are 

formed. 

The Silhouette method is one of the famous 

clustering validation methods that evaluates a 

cluster according to the score of its samples [4]. In 

other words, it gives a score to each sample, 

which measures the belongingness of that sample 

to the located cluster compared to that of the other 

clusters.  

For each data sample i, let a(i) be its average 

dissimilarity to the other samples in that cluster 

and b(i) be the lowest average dissimilarity 

between this sample to the other clusters. The 

silhouette score of the i
th
 sample, denoted as s(i), 

is defined as follows:  
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From the above equation, it is clear that s(i) is 

limited in the interval of [-1,1]. As s(i) gets close 

to one, the proper silhouette score is achieved. For 

each cluster, the average of all silhouette scores of 

its samples measures the validity of that cluster. 

We used the summation of silhouette scores of all 

clusters as the goodness of the number of 

achieved clusters. The number of clusters that 

provides the highest silhouette score is determined 

as the best number of clusters. In order to clarify 

different stages of the proposed method, the 

following pseudo-code is presented in figure 1. 

 
Set the initial number of clusters to k/2 

For c = k/2:1:2k 

 Hills are obtained by taking a gradient from the 

estimated density.  

 These points are then sorted in an ascending order. 

 The first c numbers of them are selected. 

 Set the threshold distance as the average distances of 

hills. 

 The must-link samples are chosen as the set of kmin 

samples around each cluster center. 

 The semi-supervised clustering algorithm is executed, 

and the clustering index is determined. 

End 

The best number of clusters is the one that maximizes the average 

silhouette score. 

Figure 1. Pseudo-code of proposed algorithm. 

3. Datasets and evaluation methods  

In this section, at first, the datasets employed are 

described, and then the evaluation methods are 

introduced to assess the proposed method in 

comparison with the other implemented methods. 

In this work, both the labeled and unlabeled data 

are used to assess the clustering methods. 

One way to validate the clustering method is to 

execute it on a standard dataset, in which the 

clusters are known as a priori; therefore, we can 

measure the clustering error. Here, a standard 

image dataset prepared in Berkeley University is 

used to assess the methods.   

Here, some of the datasets in the UCI machine 

learning database are used to evaluate the 

compared methods. The selected datasets cover all 

the possible cases in terms of high and low input 

dimensions including noise and clean instances 

and different numbers of classes (here clusters). 

Important features associated with these datasets 

are shown in table 1. 

 
Table 1. Description of selected UCI datasets in terms of 

number of instances, dimensions, and classes. 

#clusters #dimensions #Instances Data sets 

3 4 150 Iris 

2 6 345 Bupa 

4 18 846 Vehicle 

2 9 286 
Breast-

cancer 

6 9 214 Glass 

 

4. Experimental results and discussion 

In this section, the results of applying the 

proposed methods (described in Section 2) to the 

data (described in Section 3) are presented. In 

order to show the suitability of WMM, the 

proposed method is executed over the data 

distribution estimated by both GMM and WMM. 

The results obtained are presented in two sub-

sections; Case#1 demonstrates the results on the 

selected UCI datasets and Case#2 exhibits the 

results on the image dataset. It must be noted that 

there are two approaches for evaluating a 

clustering method. The first approach uses a 

labeled data that is blindly (without label) applied 

to a clustering method such as that through the 

clustering learning. It means that learning of the 

clustering method is carried out without the use of 

data labels. In the second approach, the input data 

does not contain any label, and when the 

clustering algorithm groups the samples into 

clusters, the goodness of the algorithm is assessed 

using some criteria like mean square error, 

discriminability among the clusters via distance. 

In this work, the first approach is utilized, in 

which after blind clustering, we can precisely 

determine the purity of the clusters as the 

clustering accuracy.   

 

4.1. Case #1  

The results observed in table 2 illustrate the 

accuracy of the clustering methods on the five 

selected UCI datasets (described in Table 1). After 

applying the silhouette method to select the best 

number of clusters, the clustering accuracies for 

different schemes are demonstrated in table 2.  

As we can see, the proposed method by GMM and 

WMM provides significantly a much higher 

clustering accuracy compared to the other state-

of-the-art clustering methods. By employing the 

same number of core functions (Gaussian and 

Weibull) to estimate the density of each dataset, 

the proposed method using WMM produces 
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slightly better results than those of GMM. This 

supremacy implies the significance of WMM 

compared to GMM.  

The number of employed core functions for each 

dataset is chosen through the cross-validation 

phase such that the selected number of core 

functions provides the highest value for the 

expectation maximization (EM). The selected 

number of core functions for the Iris, Bupa, 

Vehicle, Breast-Cancer, and Glass are 3, 2, 3, 2, 

and 5, respectively. One can say that the number 

of core functions by GMM and WMM is not 

necessarily equal; it is right but the selected 

number of core functions for GMM and WMM 

for each dataset is considered the minimum 

number core function selected by GMM and 

WMM. The reason of supremacy of WMM to 

GMM rises from the high capability of the 

Weibull function in moto estimate each arbitrary 

shape. Although when the number of Gaussian 

functions increases, they are able to model 

arbitrary shapes but in the case of a limited 

number of core functions, the Weibull function 

performs better than the Gaussian function.   
 

Table 2. Clustering accuracies (in %) of compared 

clustering methods on selected UCI datasets. 
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77.0 69.1 46.8 65.1 53.3 50.6 40.1 Bupa 

75.6 63.2 35.2 63.1 54.6 52.9 23.8 Vehicle 

79.5 70.1 50.9 68.8 66.2 65.5 62.4 Breast-

Cancer 

64.1 56.7 20.5 45.1 38.7 35.3 56.1 Glass 

 

The bar chart shown in figure 2 graphically shows 

the drastic superiority of the proposed method 

compared to the other implemented methods. In 

addition, the T-test is executed on several runs of 

the clustering algorithms, and the results of the 

proposed method are significantly (P < 0.05) 

superior to the counterparts.  

 

It should be mentioned that like the Gaussian 

distribution, the Weibull distribution is also able 

to fit on a symmetric shape; but when the data 

distribution is crooked to the left or right, the 

Weibull function can easily be adapted to this 

asymmetry, while one Gaussian cannot be lonely 

fitted on a skewed distribution with a high 

accuracy; therefore, several Gaussian functions 

need to be added for modeling such data 

distribution.  
 

 

Figure 2. Clustering accuracy of compared clustering 

methods on UCI datasets. 

 

Since the distribution of the input data is unknown 

in practice, using the Weibull functions enables us 

to deal better with the unknown data and finely 

arrange the samples in different clusters with 

arbitrary shapes. In addition, modeling each 

cluster with a very low number of Weibull 

functions provides good interpretability to 

describe the structure of data.   

 

4.2. Case #2 

In this part, the intensity values within each image 

are clustered (segmented) into uniform areas in 

which each area (cluster) contains the pixels with 

fairly similar intensity values. After applying each 

one of the clustering methods to the images, the 

segmented areas can be compared to the correct 

information in the dataset in order to determine 

the accuracy of each clustering method. The 

average clustering accuracies over the images for 

the mentioned clustering methods are represented 

in table 3. As we can see, the clustering accuracy 

of the proposed method is significantly higher 

than the other compared methods. 
  

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

kmeans

DBSCAN

OPTICs

DenClue

SNN

 Presented method

by GMM

Presented method

by WMM



Sedighi & Boostani/ Journal of AI and Data Mining, Vol 6, No 2, 2018. 
 

294 

 

Table 3. Clustering accuracies (in %) of compared 

clustering methods on image clustering dataset. 
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Image 

number 

88.3 66 70.3 72.3 42.1 40.3 38.5 #8068 

68.5 63 53.6 55.1 63.3 60.8 60.3 #3063 

47.4 30 25.6 28.7 23.7 20.2 19.6 #6064 

 

Figure 3 shows the segmented areas (clusters) for 

the image #8068 in the dataset by the 

implemented clustering methods. 

 

 
Figure 3. Segmentation results obtained from SNN (Left-

top), DBSCAN (Right-top), GMM (Left-down), and 

WMM (Right-down). 

 

As it can be observed, the SNN algorithm could 

not correctly segment the border points of the 

clusters. The reason comes back to this fact that 

the boarder points are considered as noisy 

samples, and are not assigned to any cluster. 

Incidentally, the DBSCAN results are not 

interesting; this deficiency comes back to this 

reality that different image segments are not very 

uniform, and the gradient of pixel intensities 

within each cluster is noticeable. Since DBSCAN 

considers a certain radius for all of the space, it 

cannot finely segment the areas that are in 

hierarchy. The proposed method using GMM and 

WMM provides better performance than the 

others but the segmented areas by WMM are 

obviously more accurate than those of GMM. This 

superiority was statistically proved (P < 0.05). 

Nevertheless, the proposed method using WMM 

could not cluster the beak and shadow of the 

swan.  

As mentioned in sub-section 4.1., the number of 

employed core functions for each image is chosen 

through the cross-validation phase such that the 

selected number of core function resulted in a 

higher accuracy. The selected number core 

functions for images #8086, #3063, and #6064 

were selected to be 3, 5, and 4, respectively. 

 

4.3. Computational complexity 

Since the computational complexity of WMM and 

Gaussian mixture model (GMM) is similar, expect 

one more learning parameter that WMM has 

compared to GMM, here, the computational 

complexity of GMM was determined. The 

complexity of GMM is O(kn), where n is the size 

of the dataset and k is the number of mixtures 

[23]. 

 

5. Conclusion 

Clustering methods are encountered with some 

challenges such as validation of clusters, finding a 

proper number of clusters, measuring the accuracy 

of clusters (e.g. purity), limitation on the 

supremum and infimum number of samples within 

a cluster, and maximum variance of each cluster. 

In this work, we proposed a novel technique to 

automatically elicit the constraints from the 

estimated density of data in order to convert a 

blind clustering problem into the semi-supervised 

problem. Since performance of semi-supervised 

clustering techniques is higher than a blind one, 

the proposed scheme can drastically improve the 

clustering performance for real applications. The 

proposed technique is general and does not 

require any prior knowledge for its valley seeking 

part. The results achieved on two datasets 

demonstrated that the proposed model provided 

much higher results on two categories of datasets 

compared to the state-of-the-art methods in terms 

of clustering accuracy.    
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 چکيده:

های مختلفی توسط محققین به طرق مختلف مطرر  بندی در زمینهباشد. مسئله خوشهها میها به گروهبندی بدون نظارت از نمونهبندی یک دستهخوشه

هرای باشرد. هردا ایرن مقا رهت اسرتفاده از روشکراوی مریهای مهم و اساسری در داده شده و این مسئله بیانگر این است که خوشه بندی یکی از روش

هاست. این هردا از طریرا اسرتخراط اطت رات بندی آنبندی سنتی و افزایش دقت خوشههای خوشهبندی نیمه نظارت جهت بهبود کارایی روشخوشه

پرذیرد. های نیمه نظرارت تحقرا میان دانش او یه به روشبندی بدون نظارت و سپس ارائه این اطت ات به  نوهای آماری در خوشهها بوسیله روشداده

هرا دارد. بندی و نتایج دقیا و  لمری االرا از آنبندی نیمه نظارت در گروههای خوشهبررسی تحقیقات انجام شده نشان از قدرت و کاربرد فراوان روش

ی نیمه نظارت بعنوان روش مرورد اسرتفاده بره طرور دقیرا بررسری بندبندی متداول و روش تبدیا مسائا بدون نظارت به خوشههای خوشهبرخی روش

هرای موجرود در مجمو ره ی مصرنو ی و سرپس برر روی برخری از دادهت ابتدا بر روی مجمو ره دادهمقا ه در دو مرالهشده است. روش پیشنهادی این 

ای ااوی اطت اتی در مورد دقت و کارایی و مقایسره . نمودار میلهسازی و  ملکرد آن مورد بررسی قرار گرفته استپیاده UCIهای یادگیری ماشین داده

پیشنهادی این مقا ه مورد بحث و بررسی قرار گرفته که نشان دهنده این است که روش پیشرنهادی ایرن مقا ره در  گذشته و روش بندیهای خوشهروش

 ست.های متداول موجود از سر ت و دقت بهتری برخوردار امقایسه با سایر روش

  بندی مبتنی بر کرنا وایبا.بندی مبتنی بر کرنات خوشههای نیمه نظارتت خوشهبندیت روشخوشه :كلمات كليدی


