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Abstract 

Opponent modeling is a key challenge in the Real-Time Strategy (RTS) games since the environment in 

these games is adversarial and the player is not able to predict the future actions of his/her opponent. 

Moreover, the environment is partially observable due to the fog of war. In this paper, we propose an 

opponent model that is robust to the existing observation noise due to the fog of war. In order to cope with 

the existing uncertainty in these games, we design a Bayesian network whose parameters are learned from an 

unlabeled game-log dataset so it does not require a human expert‟s knowledge. We evaluate our model on 

StarCraft, which is considered as a unified test-bed in this domain. The model is compared with that 

proposed by Synnaeve and Bessiere. The experimental results on the recorded games of human players show 

that the proposed model is capable of predicting the opponent‟s future decisions more effectively. Using this 

model, it is possible to create an adaptive game intelligence algorithm applicable to RTS games, where the 

concept of build order (the order of building construction) exists. 

 

Keywords: Bayesian Network, Opponent Modeling, Real-Time Strategy Games, StarCraft. 

1. Introduction 

In the recent years, the game industry has 

improved the graphics of the games in order to 

make them more entertaining for human players. 

However, they have often neglected the use of 

new and efficient artificial intelligence (AI) 

techniques to create computer-controlled agents in 

the game. Instead, they have used the older and 

much simpler approaches such as the rule-based 

algorithms and finite state machines [1]. Using 

such non-adaptive techniques results in 

predictable behaviors that a human player can 

easily distinguish and exploit. Thus the game 

would not be challenging anymore and the AI 

opponents are not amusing enough to play against. 

In commercial games, the AI players often cheat 

to make the game more challenging. For example, 

in StarCraft, the AI player can see the entire map 

but the human player can see only the area close 

to his/her unit [1, 2]. 

However, researchers have applied opponent 

modeling to create human-like AI players and 

more challenging games. Opponent modeling is 

one of the main challenges in the real-time 

strategy (RTS) games [2-4]. The opponent model 

is an abstract representation of an opponent. In 

RTS games, a large number of available actions 

and a partially observable environment make 

searching for the optimal solution computationally 

costly. Hence, the opponent models facilitate 

finding the optimal solution in these games by 

reducing the search space size through changing 

the likelihood of certain solutions [5]. In order to 

construct a practical model, the player has to have 

some information about his/her opponent gathered 

from either the current play or the previous ones. 

RTS games are one of the most popular types of 

video games that constitute a good test-bed for AI 

algorithms. The RTS games are simulations of 

real wars in which all players can perform actions 

simultaneously. Each player controls a team of 

workers, buildings, and military units in a specific 

map, and s/he should gather different resources to 

build units and buildings. Some units are workers 

whose task is resource gathering, while the others 
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are the military ones that defend or attack. A 

player cannot see the entire map. Each unit has a 

limited sight range in which s/he can observe 

his/her opponent units and buildings. Hence, the 

players have incomplete information about their 

opponents. This is called the fog of war. In 

addition, the size of the state space and the 

number of available actions in each state are very 

large. Particularly, the attributes such as 

uncertainty (due to the fog of war and unknown 

intention of the opponent) and very large state 

space present challenges to the opponent 

modeling problem [2, 6]. 

Due to this high complexity, the standard planning 

and decision-making algorithms used for solving 

classic board game problems, like game tree 

search, are not directly applicable to RTS games 

without defining some levels of abstraction [2]. 

Common abstraction levels are the „strategy‟, 

„tactics‟, and „reactive control‟.  

In this paper, we present an algorithm that models 

the strategy of the opponent in RTS games, and 

particularly in StarCraft: Brood War. We present 

an opponent modeling approach for RTS games 

based on the Bayesian networks, which addresses 

the uncertainty existing in these games. The 

parameters of the proposed Bayesian network are 

learned from the recorded game logs.  

The order of building construction is a strong 

indicator of the player‟s strategy [7] and can help 

to determine the strategy of the player [2]. In 

addition, to develop a good opponent model, some 

information about the order of building 

construction of the opponent is required [8]. 

Hence, we consider a variation of this order as the 

opponent model. In other words, we describe an 

opponent by his/her building construction order. 

The proposed method is an unsupervised 

technique that can predict the opponent buildings 

before they are constructed. The building 

construction order of an opponent can be used to 

predict his/her strategy [7, 9, 10]. The rest of this 

paper is organized as what follows. Section 2 

reviews the existing studies in opponent 

modeling. We introduce the StarCraft game as our 

test-bed and propose our model in Section 3. The 

experiments performed on recorded games of 

human players to evaluate the proposed model are 

described in Section 4. Finally, the conclusions 

and future work are presented in Section 5.  

 

2. Opponent modeling 

This section surveys various opponent modeling 

approaches proposed so far. There exist six groups 

of opponent modeling techniques, as follow [11]. 

1.  Evaluation functions 
In heuristic search, the opponent model focuses on 

the player‟s preferences. The preferences are 

determined using an evaluation function. An 

evaluation function assigns a score, which is 

determined based on the player preferences to 

each state of the game. An opponent model can be 

made up of this evaluation function. This method 

has been used in computer chess [12]. An expert 

human player builds a dataset of the possible 

chess board states and their preferable actions. In 

order to maximize the evaluation function, its 

weights are updated by a linear discriminant 

method [12].  

2.  Classification and clustering methods 

In classification methods, an expert human player 

determines the class of the opponents. Then each 

opponent‟s play style is labeled based on its 

attributes.  

One example of this approach is given in the 

Webber and Mateas‟s method [13]. They use a 

large dataset of StarCraft game logs (game 

replays) to train different classifiers like the 

nearest neighbor and C4.5 decision tree to predict 

the strategy of the opponent. Other examples of 

the classification approaches are neural networks 

(Soccer game) [14], hierarchical classifier (Spring 

game) [15], instance-based learning (Poker game) 

[16]. 

The clustering methods recognize a set of possible 

categories of opponents using the recorded game 

information without the human‟s expert 

knowledge, for example, a quality threshold 

clustering method [17] and the K-means 

clustering method [18].  

3.  Rule-based models 

These models are based upon some production 

rules, mapping conditions into actions. Dynamic 

scripting is one of these methods, which is used in 

commercial computer games [19].  

4.  Finite state machines 

The finite state machine model is a collection of 

the states of the game. When a condition is 

satisfied, the state of the machine will change and 

a transition will occur. These models are a 

variation of the rule-based models. Machado et al. 

have used the finite state machine in First Person 

Shooter games [20]. 

5. Probabilistic models 

Probabilistic models can deal with uncertainty; 

therefore, they are efficient tools for the games 

with incomplete information.  

A Bayesian model is proposed to predict both the 

opponent build tree (state of the buildings 
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constructed by the player; we will define build 

tree in detail in Section 3.2) and the opponent 

opening strategy in StarCraft [7, 9, 21]. Another 

example of the probabilistic approaches is the 

hidden Markov model [22].  

6. Case-based models 

In these methods, a database of the game states 

and their corresponding actions is made using 

game logs. This database is called a case base. 

During the game, the most similar case to the 

current game state is chosen and its related action 

is performed by the player. Farouk et al. [23] have 

proposed a generic opponent modeling based on 

case-based reasoning (CBR) for the Spring game. 

 

3. Proposed model 

As mentioned in Section 1, we selected 

StarCraft:Brood War as our test-bed. Hence, 

before addressing the proposed opponent model, 

we introduce this game and discuss why we 

choose it as a test-bed. 

 

3.1. StarCraft 

StarCraft is a canonical RTS game released by 

Blizzard Entertainment in March 1998. Its first 

extension, StarCraft:Brood War, was released in 

November 1998. There exist three fictitious races, 

namely Terran (T), Protoss (P), and Zerg (Z), each 

of which has different kinds of units and 

buildings. In this work, we consider only one 

versus one (duel) mode of this game. As a result, 

there exist six different match-ups (race 

combination) as follow: PvP (Protoss vs. Protoss), 

PvT (Protoss vs. Terran or Terran vs. Protoss), 

PvZ, ZvZ, ZvT, and TvT. The order of players is 

not considered; thus in this paper, Protoss vs. 

Terran and Terran vs. Protoss are the same.  

Each player has a team of units and buildings. 

Some units are workers and some are military 

ones. The buildings have different features, and 

produce different kinds of units. For example, 

Nexus building (the base building for Protoss 

race) produces Probes, the worker unit and 

Gateway produces Zealot, Dragoon, High 

Templar, and Dark Templar, the military units.  

At the beginning of a game, a player has one 

building as the resource gathering center and 

some worker units. In order to build more units, 

buildings and army workers gather two different 

kinds of resources, namely minerals and Vespene 

gas. The player needs minerals to construct 

everything but gas is only used for the advanced 

buildings and units. Each player can construct 

his/her units and buildings in a pre-defined 

sequence, which is called the technology tree. 

This sequence unlocks new units, buildings, and 

research upgrades. Research upgrades improve the 

functionality of the player units. At the beginning 

of the game, a player chooses his/her build order, 

in which s/he would construct his/her buildings. 

The build order defines the player strategy [2].  

We choose StarCraft:Brood War as a test-bed for 

our algorithm for the following reasons: 

 It is a standard test-bed that has been recently 

used by many researchers [8, 9, 13, 21, 24-26]. 

 A Free and open source C++ interface, Brood 

War Application Programming Interface 

(BWAPI)
1
, was released in 2009, which allows 

injecting the AI codes into the StarCraft:Brood 

War. Using this interface, the programmers can 

read all the relevant information of the game 

states and create a new AI player.  

 This game provides a mechanism to record the 

game logs that are referred to as the game 

replays. The game engine can recreate the 

gameplay using them deterministically. There 

exist some websites, for instance, TeamLiquid
2
, 

GosuGamers
3
, and ICCup

4
, which store large 

repositories of replays from professional 

gamers. Replay files are stored in a proprietary 

binary format, which is not well-documented. 

Thus in order to parse them, some free pieces of 

software are developed, for instance, 

LordMartin Replay Browser
5
, BWChart

6
, and 

bwrepdump
7
. These extensive replay 

repositories and the developed free pieces of 

software provide a great deal of domain 

knowledge from which the AI techniques can 

learn the opponent model and strategy.  

 

3.2. Opponent model using Bayesian networks 

Several aspects of the opponent can be modeled in 

RTS games. In this work, we focused on the 

recognition of the opponent‟s build order. The 

player observes some constructed buildings of the 

opponent (due to the fog of war, all buildings are 

not observable). Using the proposed method, the 

player can recognize the build order of his/her 

opponent and then predict his/her future buildings.  

As mentioned in Section 1, the order in which the 

opponent constructs his/her buildings can be used 

to determine his/her strategy [7, 8]; therefore, we 

consider this order as the opponent model. 

                                                      

1 https://github.com/bwapi/bwapi 
2 http://www.teamliquid.net/replay/index.php 
3 http://www.gosugamers.net/starcraft/replays-archive 
4 http://iccup.com/en/starcraft/replays.html 
5 http://lmrb.net/ 
6 http://bwchart.teamliquid.net/us/bwlib.php 
7 https://github.com/SnippyHolloW/bwrepdump 

http://wiki.teamliquid.net/starcraft/Dragoon
http://wiki.teamliquid.net/starcraft/High_Templar
http://wiki.teamliquid.net/starcraft/High_Templar
http://wiki.teamliquid.net/starcraft/Dark_Templar
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Practically, we use a variation of technology tree, 

which is called the build tree. The build tree 

notation was first defined by Synnaeve and 

Bessiere [21]. The build tree is a strong indicator 

of the player‟s strategy [7]. It is the “buildings” 

part of the technology tree with duplications of 

some important buildings; hence, it does not 

contain any researches or upgrades. StarCraft has 

16 built-in buildings for the Protoss race such as 

Nexus, Pylon, Gateway, Assimilator, Forge, 

Shield Battery, Cybernetics Core, and Photon 

Cannon
8
. These buildings have different features 

and produce different units. In order to define the 

build tree, we use all these 16 buildings. In 

addition, duplications of some important 

buildings, namely Nexus, Pylon, and Gateway are 

inserted into the build tree. These duplications are 

the second construction of important buildings. 

For instance, Nexus2 is the second Nexus, which 

means that the player aims to expand his/her 

territory. Additionally, this building increases the 

resource gathering power of the player. Pylon 

provides for a player extra Psi, the gameplay 

counter-limiting the number of Protoss units. 

Hence, extra Pylon shows more production 

capacity of the player, which is noteworthy. The 

second Gateway increases units producing the 

power of the player. Considering these three 

duplications of buildings, we use 19 buildings to 

show build trees for the Protoss race. 

According to the build tree definition, {Pylon, 

Gateway} and {Pylon, Pylon2, Gateway} are two 

different build trees but have the same technology 

tree.  

We use a Bayesian network to construct the model 

of an opponent. Bayesian networks provide a 

powerful tool for solving decision-making 

problems under uncertainty. Thus they are able to 

handle the RTS game uncertainties. All 

information about the map and the opponent is not 

available for the player due to the fog of war and 

the opponents‟ intention, thus s/he cannot infer the 

state directly from the observation. In other 

words, the computation of ( | )P State Observation  is 

not straightforward but ( | )P Observation State  can 

be learned from the game logs, where there is no 

fog of war. Using the Bayes rule, the player can 

infer  

( | )

{ ( | )} / ( )

P State Observation

P Observation State P Observation


 (1) 

                                                      

8 For a complete list, see: 
http://wiki.teamliquid.net/starcraft/Buildings 

Bayesian networks are graphical models that 

indicate probabilistic relations among some 

variables. They have two main components: the 

structure and the conditional probability 

distributions. The structure, a directed acyclic 

graph, determines the variable conditional 

dependencies. Random variables are represented 

with the graph nodes, and their conditional 

dependencies are represented with the paths 

through the edges. The conditional probability 

distribution for each node in the graph specifies its 

probability conditioned on its parents‟ values. 

Figure 1 shows our proposed Bayesian network. 

In the following sub-sections, we define the 

variables and conditional probability distributions 

of the Bayesian network.  

 
 

3.3. Variables 

The variables are defined as what follow. 

BuildTree: It is a set of buildings each player 

constructs in each game.  

1 2 1 2
BuildTree {{b },{b },{b ,b },…} 

 
(2) 

ib s are different buildings of the given race. 

1 2 1 2
AllBTs {{b },{b },{b ,b },…}  shows all the 

possible build trees of the given race in each 

match-up. 

For example, for the Protoss race, it is: {{Nexus}, 

{Nexus, Pylon},{Nexus, Pylon, Gateway},…}}. 

According to the technology tree and game rules, 

there exist 500 to 1600 possible values for the 

build tree depending on the race (without 

considering duplicate buildings) [21]. All of these 

build trees are not used in a competitive match. 

Hence, we consider only the build trees that are 

seen in the training dataset. We will discuss the 

training dataset in Section 4.1. In this work, we 

model the opponents of Protoss race playing 

against all the other races. In other words, we 

consider the PvP, PvZ, and PvT match-ups. For 

each match-up, we extract all the possible build 

trees (AllBTs) for Protoss race according to the 

training dataset. There exist about 330 different 

build trees for Protoss in PvP match-up, about 430 

in PvT and about 420 in PvZ match-up.  

Figure 1.  Bayesian network for Build tree prediction. 



Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019. 
 

153 

 

We carry out a 10-fold cross-validation test. In 

each round of the cross-validation test, AllBTs is 

constructed according to the training partition of 

the dataset so it is independent from each test 

case, and does not change during each round of 

the test. Thus it is fixed for all the test cases. As a 

result, we can consider this value as a pre-defined 

value in the test phase. We will discuss the 10-

fold cross-validation test in Section 4.2.  

Obs: It is a binary sequence of building 

observations during gameplay. Thus it changes 

during gameplay. 
1i = …N Obs  is 1 if the player has 

observed the i
th
 building of the opponent. 

According to the comment on the BuildTree  
variable, the Obs  variable shows the sequence of 

buildings that are observed during each test case.  

{0,1}   checks the compatibility of build tree 

value and observations. 

EndTime and Q3Time: They are the times of 

gameplay. Time is expressed in game frames. 

Each second in StarCraft is divided into 24 

frames. Then the current time of the game is the 

number of the game frame that is passed up to 

now.  EndTime is the time when the build tree‟s 

last building is constructed, and Q3Time is the 

third quartile (Q3) of all buildings‟ construction 

time in a build tree. The justification for choosing 

the third quartile among others is given in Section 

4.3.  

The joint distribution of the above variables is 

specified as follow: 

 

1

1 1

, 3

( ) | ,

| 3 |

:N

:N :N

P(BuildTree,Obs , EndTime,Q Time)=

P(BuildTree)P Obs P( Obs BuildTree)

P(EndTime BuildTree)P(Q Time BuildTree)







 

(3) 

3.4. Conditional probability distributions 

The conditional probability distributions of this 

Bayesian network and their learning methods are 

defined as follow:  

( )P BuildTree  shows the prior distribution of the 

build trees. BuildTree  is a discrete variable; thus to 

estimate its prior distribution, we calculate the 

occurrence frequency of each build tree in replay 

dataset. To learn P(BuildTree) (the prior 

distribution of BuildTree), we gather all the 

possible build trees occurring in the replay 

database per 3 match-ups (PvP, PvT, and PvZ). 

Since there is no fog of war in the training mode, 

we can learn P(BuildTree) by computing the 

frequency of its possible values. 

1( ):NP Obs : For simplicity, we assume that it has a 

uniform distribution.  

1:( | , )NP Obs BuildTree  is a Dirac delta function. It 

checks whether or not it is feasible to observe the 

set of specific buildings according to the given 

build tree. If the corresponding set of observed 

buildings in 1:Nobs
 
is the subset of the build tree, 

1:( 1| , )NP obs buildTree   is equal to one; 

otherwise, it is equal to zero. 

( | )P EndTime BuildTree  is the distribution of the 

time when the build tree is in a particular state. In 

other words, it is the distribution of the time when 

the build tree‟s last building is constructed. We 

assume that it is a Gaussian distribution whose 

parameters (  and 
2 ) will be learned from the 

replay dataset. In other words, a Gaussian 

distribution is fitted on the last building‟s 

construction time.  

( 3 | )P Q Time BuildTree  is the Gaussian distribution 

of the third quartile (Q3) of all buildings‟ 

construction time in a build tree. The computation 

of its parameters is the same as that of

( | )P EndTime BuildTree . We choose the third 

quartile among other quartiles to increase the 

accuracy of the proposed model. We perform two 

experiments to determine how many points in 

time and where are needed to achieve the best 

accuracy. Details of the related experiments are 

shown in Section 4.3. 

Investigating the replay dataset revealed that the 

variables ( 3 | )P Q Time BuildTree and 

( | )P EndTime BuildTree  have a bimodal 

distribution for some (not all) values of the build 

tree variable. Thus determining the accurate 

distribution for this variable is not 

straightforward. We will try to estimate the 

distribution of these two variables by a precise 

distribution in our future work. 

Our proposed model is somewhat similar to that 

of Synnaeve and Bessiere [21]. They have used 

the Bayesian inference to recognize the build tree 

of the opponent as well. This section shows the 

difference between our approach and the 

Synnaeve and Bessiere‟s approach [21] in how the 

parameters of the Bayesian network are learned. 

Their method suffers from two weaknesses, which 

we address as follow: 

 They assume that the prior distribution of 

BuildTree is uniform. This is an unrealistic 

simplification. Additionally, some useful 

information would be lost by assuming uniform 

distribution. The more a build tree is repeated in 

the training dataset, the more probable it is to be 

seen in the test phase. Therefore, we calculate 

the prior distribution of the BuildTree variable 
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by counting the occurrence of its values in the 

replay data. 

 In order to recognize the build tree given some 

observations, Synnaeve and Bessiere [21] check 

which build trees are the superset of the 

observations. Then they choose the one with the 

greatest PDF (Probability Density Function) 

value over the last building‟s construction time. 

In other words, they use only one point in time 

to recognize the actual build tree. Consequently, 

a change in construction time may lead to 

thewrong prediction of the build tree given the 

observations.  

For further clarification, consider the following 

example: Let {Nexus (0), Pylon (1225), Gateway 

(1917), Gateway2 (2561), Pylon2 (3087), Nexus2 

(6799)} be the player observation. The numbers in 

parenthesis show the construction time in frame 

resolution. The Synnaeve and Bessiere‟s approach 

recognizes the following build tree given this 

observation: {Core, Gateway, Gateway2, Nexus, 

Nexus2, Pylon, Pylon2}. This build tree is 

predicted incorrectly (the Core building is 

additional) due to the construction time of 

Nexus2. There exists a large delay between 

Nexus2 and its previously constructed building, 

which makes the algorithm to assume incorrectly 

another building was constructed in-between. Our 

model recognizes the following build tree, which 

is correct: {Gateway, Gateway2, Nexus, Nexus2, 

Pylon, Pylon2}. The prediction of our model is 

correct because our model uses two points in time 

to recognize the actual build tree, the construction 

time of Pylon2 and Nexus2 in this example. The 

construction time of Pylon2 acts as a guide point 

that enables the model to avoid mistakes. Thus the 

comparison of different build trees must be done 

at more than one point in time so as to make a 

better prediction. However, experiments show that 

when the fog of war (simulated by additional 

noise) exists, using more than two points in time 

would decrease the prediction accuracy (Section 

4.3). Hence, we compare build trees in exactly 

two points in time including the last buildings‟ 

construction time and the third quartile of all 

buildings‟ construction time.  

 

3.5. Inference 

Once we have the joint distributions of the 

variables, we can answer any query about the 

value of a single variable by marginalizing over 

the others. In order to determine the model of the 

opponent, we should recognize his/her build tree 

given the observations. In order to find the value 

of BuildTree that maximizes the posterior 

probability

1 1 3| 1, 3:N :NP(BuildTree Obs = obs , EndTime= t,Q Time= t )  , 

we ask a Maximum A Posteriori (MAP) query as 

follows:  

 

1 1 3

1 1 3

arg max | 1, 3

arg max{

( ) | , | ) | }

:N :N
BuildTree

BuildTree

:N :N

P(BuildTree Obs = obs , EndTime = t,Q Time = t )

P(BuildTree)

P obs P( obs  BuildTree)P(t BuildTree P(t BuildTree)







 

 

(4) 

 

When the opponent‟s build tree is recognized, 

his/her strategy can be predicted using another 

Bayesian network [7, 9, 10]. 

 

4. Experimental results 

Due to the complexity of RTS games, designing a 

game intelligence capable of playing the entire 

game consists of very diverse sub-problems. This 

diversity makes the comparison of different 

studies very hard and scarce. To the best of our 

knowledge, there is no numerical comparison 

between various studies in the prediction of 

building construction order, and this paper is the 

first one that compares models to evaluate their 

accuracy in build tree prediction based on the 

quantitative measures.  

In this section, we first describe the test dataset, 

and then introduce the evaluation metrics. The 

experimental results are next presented and 

compared with those of Synnaeve and Bessiere 

[21]. Finally, a discussion on how the time 

parameter should be set is given in the last sub-

section.  
 

4.1. Dataset 

We use the replay dataset presented by Synnaeve 

and Bessiere [27] for the dataset. This dataset 

consists of 7649 recorded replays of professional 

StarCraft human players downloaded from 

TeamLiquid, GosuGamers, and ICCup. They 

parse replay files using bwrepdump9 that outputs 

three different file formats for each replay: 

 Replay General Data (*.rgd) includes the 

players‟ names, map‟s name, and all game 

events including creation, discovery, attack, etc.  

 Replay Location Data (*.rld) includes the 

location of the units. 

 Replay Order Data (*.rod) includes all orders 

given to the units. 

In this work, we use the .rgd files. The accuracy 

of the proposed method is evaluated on three 

different match-ups: Protoss vs. Protoss (PvP), 

Protoss vs. Terran (PvT), and Protoss vs. Zerg 

(PvZ). In other words, we model the opponents of 

                                                      

9
 https://github.com/SnippyHolloW/bwrepdump 
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Protoss race playing against all the other races. 

This race selection is done to simplify the 

implementation. We posit that if we can predict 

build tree for a specific race, we can do it for 

others as well. We use the .rgd files that contain 

only two player names. Hence, 411 game replays 

for PvP, 2098 for PvT, and 1788 for PvZ remain. 

The PvP match-up is a mirror one so each replay 

is used two times, one for each player perspective, 

which means that there exist 822 records for PvP. 

It is worthwhile to say that due to some problems 

with the LordMartin Replay Browser, we use a 

different replay dataset than that used by 

Synnaeve and Bessiere [21]. They worked with a 

dataset of 8806 replays of highly skilled human 

players.  

 

4.2. Results 
In order to estimate the performance of the 

proposed model, we carry out a 10-fold cross-

validation test. In each round of the cross-

validation test, the replay dataset is partitioned 

into 10 complementary subsets. The opponent 

model is learned from 9/10 of the dataset, and is 

evaluated with the remaining 1/10.  

We use the distance between the predicted build 

tree and the actual one to measure the accuracy of 

our model. This metric that is defined by 

Synnaeve and Bessiere [21]  is computed as: 

 

= {

\ },

actual predicted actual predicted

actual predicted

actual predicted

d(BT ,BT  )= card(BT BT  )

card (BT BT )

(BT BT )







 (5) 

The (.)card  is the cardinality function of the set, 

and “ \ ” is the set difference.  

A distance of one means that there exists one less 

or one more building in the predicted build tree, 

and a distance of two means that one building is 

replaced in the predicted build tree or two less or 

two more buildings in the predicted build tree.  

We evaluate our model using two different types 

of experiments. First, the accuracy of the model is 

measured at the current time of the game. In other 

words, up to EndTime=t , the player observes the 

constructed buildings of his/her opponent ( actualBT

). Thus s/he can define 1i = …N Obs  according to 

his/her observations. The proposed model predicts 

the most probable built tree (among others in the 

AllBTs  set) according to its parameters ( predictedBT ). 

The prediction power of the model is measured by

actual predictedd(BT ,BT  ) . Let us define k  as the number 

of opponent‟s buildings that our model can predict 

in advance. Hence, we call this experiment d  for

0k  .  

Secondly, the accuracy of the model is measured 

based on the prediction of future buildings. When 

the opponent‟s build tree at the current time 

(based on 
1i = …N Obs variable) is recognized, we can 

look ahead from now. We suppose that the 

opponent will construct his/her next buildings 

according to the recognized build tree. Hence, we 

can predict his/her next decision about the 

construction order. In order to evaluate the value 

of prediction about the future, we compute how 

many buildings ( k ) we can predict in advance at a 

fixed distance ( d ). In other words, to predict 

future buildings of the opponent, we ask MAP 

query about the BuildTree  variable at time t k  : 

 

1 1

3

arg max ( )

1, 3

t k

:N :N
BuildTree

P(BuildTree |Obs = partial obs ,

EndTime = t k,Q Time = t k)



  

 

(6) 

It is worthwhile to notice that the BuildTree  

variable is a set so it has no order. When we say 

that our model can predict k  buildings in advance, 

we mean the set of k  buildings, not their order. In 

order to predict exactly the next building, one can 

set 1d   and 1k  . However, the purpose of this 

experiment is to measure how big k  is to gather 

more information about what the opponent will be 

doing.  

In order to simulate incomplete information due to 

the fog of war, we add random noise to the Obs  

variable from 0% to 80%. We randomly remove 

some building observations. It means that we set 

iObs  to zero if the i
th
 building of the opponent is 

chosen to remove due to adding noise. Hence, 0% 

noise means that no building is removed and 80% 

noise means that 8 buildings out of 10 are 

removed. 

In the first experiment, we compute the distance 

between the conjectured build tree and the actual 

tree up to the current game time. In other words, 

we compute d  for 0k   and run this test at three 

different times: 5th, 10th, and 15th minute of the 

game to consider all the game phases (early, mid, 

and late). 

As mentioned in Section 3, the proposed approach 

is similar to that of Synnaeve and Bessiere [21]. 

Hence, we compare the performance of our model 

with theirs. 

Figures 2 to 4 show the average values of d (k=0) 

for the Synnaeve and Bessiere [21] model and 

ours for the PvP, PvT, and PvZ match-ups, 

respectively. 

Figures 2 to 4 show the noise impact on the 

distance to actual build tree in different game 
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phases. Our model results are shown in solid lines, 

and the result of the Synnaeve and Bessiere model 

are illustrated with dotted ones. The increases in 

the distance to actual build tree are much slower 

than the increase in the noise ratio for both 

models.  

 

 

 

 
 

As illustrated in figures 2 to 4, for all the three 

different match-ups, our model‟s average distance 

to actual build tree is lower than that of Synnaeve 

and Bessiere. The distance is reduced because we 

represent the build tree variable by a more 

realistic distribution. In addition, we adjust the 

time parameter to the exact one. As illustrated in 

figures 2 to 4, for all the three different match-

ups, our model‟s average distance to actual build 

tree is lower than that of Synnaeve and Bessiere. 

The distance is reduced because we represent the 

build tree variable by a more realistic distribution. 

In addition, we adjust the time parameter to the 

exact one. 

In order to investigate the increase in the distance 

around the 10
th
 minute, we plot the distance in the 

interval 5
th
 to 15

th
 minutes for the PvP match-up 

with 30% noise. As figure 5 shows, the trends are 

similar for both models.  

 

 
 

Our experiment shows that the first attack occurs 

around the 7
th
 minute and the last attack occurring 

before the 15
th
 minute happens about the 12

th
 

minute. When a player is attacked, s/he is forced 

to take defensive strategies. Hence, to counter the 

attacks, s/he may construct some buildings 

differing from his/her original strategy.  

In other words, his/her build tree will not follow 

his/her original strategy. Thus prediction of the 

correct build tree would become significantly 

harder. Consequently, the distance to the actual 

build tree prediction would increase in the interval 

of 7
th
 to 12

th
 minute. 

In the second experiment, we calculate the 

number of buildings that our model can predict in 

advance at a maximum distance of 1. We compute 

k  for 1d   at the 15
th
 minute to consider the 

longest build tree among all time intervals and 

compare it with the  k  value proposed by 

Synnaeve and Bessiere [21]. The comparison is 

reported in figure 6. 

 

Figure 2. Distance to the actual build tree (  for ), 

PvP Match-ups (SB is Synnaeve-Bessiere [21]). 

 

Figure 3. Distance to the actual build tree (  for ) , 

PvT Match-ups (SB is Synnaeve-Bessiere [21]).  

  

 

Figure 4. Distance to the actual build tree (  for ) , 

PvZ Match-ups (SB is Synnaeve-Bessiere [21]). 

 
Figure 5. Distance (  for ) in an interval between 

5th up to 15th minute for PvP match-up with 30% noise 

for out model and the model of Synnaeve-Bessiere[21].   
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As illustrated in figure 6, the noise has a very low 

impact on the k  value for the two models. 

However, the curves in our method are smoother, 

which means that the noise has a lower impact on 

our model and it is robust to the noise because we 

choose the correct set of time parameters. (We 

explain the parameter selection in Section 4.3.)  

 

 
 

It should be stressed that the space between 

different match-up curves of our model is much 

lower than that of [21]. This means that our model 

is more general and has a similar result in the 

various game plays. Moreover, despite the 80% 

noise in observation, our model can predict about 

3 buildings in advance, whereas the average 

number of the buildings that the model of [21] can 

predict ahead is about 1.5. 

It is shown that 30% random noise is required for 

the real setup/competitive games [21]. Thus 

comparison of the two models in 30% random 

noise could be considered as their proxy of 

performance in real game setups. 

Our build tree prediction technique could be 

applied to all games with technology tree. Some 

RTS games have the notion of technology tree. 

Hence, our technique is applicable to all of them. 

 

4.3. Parameter determination 

In order to complete the model description, we 

design two experiments to determine the time 

parameter. As mentioned in Section 3, different 

build trees should be compared in more than one 

point in the construction time in order  to increase 

the accuracy of the model. In this section, we 

perform two experiments to determine how many 

points in time are required to achieve better 

results, and to indicate the locations of these 

points. 

The candidate locations are four quartiles of all 

buildings‟ construction times, namely Q1, Q2 

(median), Q3, and Q4 (last building‟s construction 

time). We run these two experiments on PvP 

match-ups in three different game times: 5
th
, 10

th
, 

and 15
th
 minutes. It is shown that 30% random 

noise is required for the real setup/competitive 

games [21]. Thus we add 30% noise to the 

observation variable to simulate the fog of war for 

real games. We select Q4 as a fixed point in time 

and choose between the other three points.  

In the first experiment, we determine how many 

extra points are required. In order to evaluate the 

performance, we compute d  for 0k  . The 

results obtained are shown in table 1.  

 

 
This table shows that adding more than one extra 

point in time increases the distance to the actual 

build tree. Thus we can conclude that only two 

points in time are required to achieve the best 

results.  

In the second experiment, we identify the location 

of one extra point. In order to evaluate the 

performance, we compute d  for 0k  . The 

results obtained are shown in table 2.  

 

 
These results indicate that the third quartile is the 

best choice, thus we compare different build trees 

in Q3 and Q4 to achieve the best results.  

 

5. Conclusion 

In this paper, we proposed an opponent model 

based on the Bayesian network for the StarCraft 

game. The technology tree used by the opponent 

defines his/her strategy. Thus we used a variation 

of the technology tree, namely the build tree, as 

his/her model. In order to construct this model, all 

the possible build trees were gathered from game 

logs and the frequency of its values was 

computed. The most probable build tree, which is 

the superset of the observed buildings, was chosen 

based on these frequency values, the last 

building‟s construction time, and the third quartile 

Figure 6. Number of buildings that our model and the 

model of Synnaeve and Bessiere (SB) [21] can predict 

in advance at a maximum distance of 1 (  for ) for 

different match-ups.  

Table 1. Average value of  (  ) for different numbers 

of points in time. 

Time point 

location 

5th  

minute 

10th 

minute 

15th 

minute 

Average 

Q3,Q4 1.007 1.377 1.074 1.153 

Q2,Q3,Q4 1.146 1.349 1.152 1.216 

Q1,Q2,Q3,Q4 1.384 1.554 1.384 1.441 

 

Table 2. Average value of  (  ) for different locations of 

extra point in time. 

Time point 

location 

5th  

minute 

10th 

minute 

15th 

minute 

Average 

Q1,Q4 1.400 1.596 1.391 1.462 

Q2,Q4 1.127 1.298 1.105 1.177 

Q3,Q4 1.007 1.377 1.074 1.153 
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of all buildings‟ construction times. The 

opponent‟s build tree can be used to predict 

his/her strategy [7, 9, 10]. The proposed method 

of build tree prediction can be applied to all 

games having a technology tree. It means that it is 

applicable to RTS games where the concept of 

"build order" exists. For example, the Command 

& Conquer series and the Total Annihilation 

games can be named. For all RTS games with a 

technology tree, the structure of the Bayesian 

network and its variables are the same. The 

differences are about the existing types of 

buildings in different games. Hence, for each 

game, the variables of the Bayesian network 

should be re-learned from the relevant data of the 

game. 

The number of time points in which different 

build trees were compared is an important 

parameter of the model. In order to determine this 

number and the locations of time points, we 

performed two experiments, which indicated that 

a combination of Q3 and Q4 was the best choice.  

We compared the proposed method with the 

Synnaeve and Bessiere‟s [21] model. The 

experimental results showed that even in the 

presence of 80% random noise in building 

observations, our model could predict 3 buildings 

ahead. 

As mentioned in Section 3.4, our future work will 

be focused on fine-tuning the distribution of 

P(EndTime|BuildTree) and P(Q3Time|BuildTree). We 

will try to replace the estimation of these two 

distributions by more precise ones. 
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 کاوی نشریه هوش مصنوعی و داده

 

 

 

 درنگسازی حریف در بازی های استراتژیک بیروش مقاوم مدل

 

  *رضا صفابخش و آرزو ترکمن

 .تهران، ایران ،دانشگاه صنعتی امیرکبیر، اطلاعات فناوریدانشکده مهندسی کامپیوتر و 

 30/30/8302 پذیرش؛ 08/30/8302 بازنگری؛ 30/30/8302 ارسال

 چکیده:

است و بازیکن قادر نیست اعمال بعددی  خصمانهها است زیرا محیط این بازی (RTS) درنگهای استراتژیک بیهای بازیسازی حریف یکی از چالشمدل

 کده شودمی ارائه حریف مدل یک مقاله این در. نیست مشاهده قابل کاملاً جنگی مه دلیل به هابازی این محیط این، بر علاوهبینی نماید. حریفش را پیش

یدک شدهکه بیدزین حراحدی شدده اسدت کده  ،هدا. به منظور مقابله با عددم قععیدت موجدود در ایدن بدازیاست مقاوم جنگی مه از حاصل نویز مقابل در

 روی بدر شدده ارائده روش .نددارد انسدانی داندش به نیازی بنابراین شودمی محاسهه بازی شده ضهط رویدادهای به مربوط داده پایگاه روی ازمتغیرهایش 

 روش دهددمدی نشان آزمایشات نتایجعملکرد مدل ارائه شده با روش سیناوی و بزیر مقایسه شده است.  .گرفت خواهد قرار ارزیابی مورد استارکرفت بازی

حراحدی کدرد کده تعهیقی . با استفاده از این مدل می توان یک الگوریتم هوش بازی نمایدمیبینی اعمال بعدی حریف را با دقت بیشتری پیش ارائه شده

 کارایی دارد.ها وجود دارد که مفهوم ترتیب ساخت در آن RTSهای در همه بازی

 .درنگ، استارکرفتهای استراتژیک بیسازی حریف، بازیشهکه بیزین، مدل :کلمات کلیدی

 


