

Journal of AI and Data Mining

Vol 7, No 1, 2019, 149-159 DOI: 10.22044/JADM.2018.6932.1815

 Robust Opponent Modeling in Real-Time Strategy Games using Bayesian

Networks

A. Torkaman and R. Safabakhsh

*

Department of Computer Engineering & IT, Amirkabir University of Technology, Tehran, Iran.

Received 03 April 2018; Revised 12 May 2018; Accepted 03 July 2018

*Corresponding author: safa@aut.ac.ir(R. Safabakhsh).

Abstract

Opponent modeling is a key challenge in the Real-Time Strategy (RTS) games since the environment in

these games is adversarial and the player is not able to predict the future actions of his/her opponent.

Moreover, the environment is partially observable due to the fog of war. In this paper, we propose an

opponent model that is robust to the existing observation noise due to the fog of war. In order to cope with

the existing uncertainty in these games, we design a Bayesian network whose parameters are learned from an

unlabeled game-log dataset so it does not require a human expert‟s knowledge. We evaluate our model on

StarCraft, which is considered as a unified test-bed in this domain. The model is compared with that

proposed by Synnaeve and Bessiere. The experimental results on the recorded games of human players show

that the proposed model is capable of predicting the opponent‟s future decisions more effectively. Using this

model, it is possible to create an adaptive game intelligence algorithm applicable to RTS games, where the

concept of build order (the order of building construction) exists.

Keywords: Bayesian Network, Opponent Modeling, Real-Time Strategy Games, StarCraft.

1. Introduction

In the recent years, the game industry has

improved the graphics of the games in order to

make them more entertaining for human players.

However, they have often neglected the use of

new and efficient artificial intelligence (AI)

techniques to create computer-controlled agents in

the game. Instead, they have used the older and

much simpler approaches such as the rule-based

algorithms and finite state machines [1]. Using

such non-adaptive techniques results in

predictable behaviors that a human player can

easily distinguish and exploit. Thus the game

would not be challenging anymore and the AI

opponents are not amusing enough to play against.

In commercial games, the AI players often cheat

to make the game more challenging. For example,

in StarCraft, the AI player can see the entire map

but the human player can see only the area close

to his/her unit [1, 2].

However, researchers have applied opponent

modeling to create human-like AI players and

more challenging games. Opponent modeling is

one of the main challenges in the real-time

strategy (RTS) games [2-4]. The opponent model

is an abstract representation of an opponent. In

RTS games, a large number of available actions

and a partially observable environment make

searching for the optimal solution computationally

costly. Hence, the opponent models facilitate

finding the optimal solution in these games by

reducing the search space size through changing

the likelihood of certain solutions [5]. In order to

construct a practical model, the player has to have

some information about his/her opponent gathered

from either the current play or the previous ones.

RTS games are one of the most popular types of

video games that constitute a good test-bed for AI

algorithms. The RTS games are simulations of

real wars in which all players can perform actions

simultaneously. Each player controls a team of

workers, buildings, and military units in a specific

map, and s/he should gather different resources to

build units and buildings. Some units are workers

whose task is resource gathering, while the others

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201275552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.22044/jadm.2018.5742.1696

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

150

are the military ones that defend or attack. A

player cannot see the entire map. Each unit has a

limited sight range in which s/he can observe

his/her opponent units and buildings. Hence, the

players have incomplete information about their

opponents. This is called the fog of war. In

addition, the size of the state space and the

number of available actions in each state are very

large. Particularly, the attributes such as

uncertainty (due to the fog of war and unknown

intention of the opponent) and very large state

space present challenges to the opponent

modeling problem [2, 6].

Due to this high complexity, the standard planning

and decision-making algorithms used for solving

classic board game problems, like game tree

search, are not directly applicable to RTS games

without defining some levels of abstraction [2].

Common abstraction levels are the „strategy‟,

„tactics‟, and „reactive control‟.

In this paper, we present an algorithm that models

the strategy of the opponent in RTS games, and

particularly in StarCraft: Brood War. We present

an opponent modeling approach for RTS games

based on the Bayesian networks, which addresses

the uncertainty existing in these games. The

parameters of the proposed Bayesian network are

learned from the recorded game logs.

The order of building construction is a strong

indicator of the player‟s strategy [7] and can help

to determine the strategy of the player [2]. In

addition, to develop a good opponent model, some

information about the order of building

construction of the opponent is required [8].

Hence, we consider a variation of this order as the

opponent model. In other words, we describe an

opponent by his/her building construction order.

The proposed method is an unsupervised

technique that can predict the opponent buildings

before they are constructed. The building

construction order of an opponent can be used to

predict his/her strategy [7, 9, 10]. The rest of this

paper is organized as what follows. Section 2

reviews the existing studies in opponent

modeling. We introduce the StarCraft game as our

test-bed and propose our model in Section 3. The

experiments performed on recorded games of

human players to evaluate the proposed model are

described in Section 4. Finally, the conclusions

and future work are presented in Section 5.

2. Opponent modeling

This section surveys various opponent modeling

approaches proposed so far. There exist six groups

of opponent modeling techniques, as follow [11].

1. Evaluation functions
In heuristic search, the opponent model focuses on

the player‟s preferences. The preferences are

determined using an evaluation function. An

evaluation function assigns a score, which is

determined based on the player preferences to

each state of the game. An opponent model can be

made up of this evaluation function. This method

has been used in computer chess [12]. An expert

human player builds a dataset of the possible

chess board states and their preferable actions. In

order to maximize the evaluation function, its

weights are updated by a linear discriminant

method [12].

2. Classification and clustering methods

In classification methods, an expert human player

determines the class of the opponents. Then each

opponent‟s play style is labeled based on its

attributes.

One example of this approach is given in the

Webber and Mateas‟s method [13]. They use a

large dataset of StarCraft game logs (game

replays) to train different classifiers like the

nearest neighbor and C4.5 decision tree to predict

the strategy of the opponent. Other examples of

the classification approaches are neural networks

(Soccer game) [14], hierarchical classifier (Spring

game) [15], instance-based learning (Poker game)

[16].

The clustering methods recognize a set of possible

categories of opponents using the recorded game

information without the human‟s expert

knowledge, for example, a quality threshold

clustering method [17] and the K-means

clustering method [18].

3. Rule-based models

These models are based upon some production

rules, mapping conditions into actions. Dynamic

scripting is one of these methods, which is used in

commercial computer games [19].

4. Finite state machines

The finite state machine model is a collection of

the states of the game. When a condition is

satisfied, the state of the machine will change and

a transition will occur. These models are a

variation of the rule-based models. Machado et al.

have used the finite state machine in First Person

Shooter games [20].

5. Probabilistic models

Probabilistic models can deal with uncertainty;

therefore, they are efficient tools for the games

with incomplete information.

A Bayesian model is proposed to predict both the

opponent build tree (state of the buildings

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

151

constructed by the player; we will define build

tree in detail in Section 3.2) and the opponent

opening strategy in StarCraft [7, 9, 21]. Another

example of the probabilistic approaches is the

hidden Markov model [22].

6. Case-based models

In these methods, a database of the game states

and their corresponding actions is made using

game logs. This database is called a case base.

During the game, the most similar case to the

current game state is chosen and its related action

is performed by the player. Farouk et al. [23] have

proposed a generic opponent modeling based on

case-based reasoning (CBR) for the Spring game.

3. Proposed model

As mentioned in Section 1, we selected

StarCraft:Brood War as our test-bed. Hence,

before addressing the proposed opponent model,

we introduce this game and discuss why we

choose it as a test-bed.

3.1. StarCraft

StarCraft is a canonical RTS game released by

Blizzard Entertainment in March 1998. Its first

extension, StarCraft:Brood War, was released in

November 1998. There exist three fictitious races,

namely Terran (T), Protoss (P), and Zerg (Z), each

of which has different kinds of units and

buildings. In this work, we consider only one

versus one (duel) mode of this game. As a result,

there exist six different match-ups (race

combination) as follow: PvP (Protoss vs. Protoss),

PvT (Protoss vs. Terran or Terran vs. Protoss),

PvZ, ZvZ, ZvT, and TvT. The order of players is

not considered; thus in this paper, Protoss vs.

Terran and Terran vs. Protoss are the same.

Each player has a team of units and buildings.

Some units are workers and some are military

ones. The buildings have different features, and

produce different kinds of units. For example,

Nexus building (the base building for Protoss

race) produces Probes, the worker unit and

Gateway produces Zealot, Dragoon, High

Templar, and Dark Templar, the military units.

At the beginning of a game, a player has one

building as the resource gathering center and

some worker units. In order to build more units,

buildings and army workers gather two different

kinds of resources, namely minerals and Vespene

gas. The player needs minerals to construct

everything but gas is only used for the advanced

buildings and units. Each player can construct

his/her units and buildings in a pre-defined

sequence, which is called the technology tree.

This sequence unlocks new units, buildings, and

research upgrades. Research upgrades improve the

functionality of the player units. At the beginning

of the game, a player chooses his/her build order,

in which s/he would construct his/her buildings.

The build order defines the player strategy [2].

We choose StarCraft:Brood War as a test-bed for

our algorithm for the following reasons:

 It is a standard test-bed that has been recently

used by many researchers [8, 9, 13, 21, 24-26].

 A Free and open source C++ interface, Brood

War Application Programming Interface

(BWAPI)
1
, was released in 2009, which allows

injecting the AI codes into the StarCraft:Brood

War. Using this interface, the programmers can

read all the relevant information of the game

states and create a new AI player.

 This game provides a mechanism to record the

game logs that are referred to as the game

replays. The game engine can recreate the

gameplay using them deterministically. There

exist some websites, for instance, TeamLiquid
2
,

GosuGamers
3
, and ICCup

4
, which store large

repositories of replays from professional

gamers. Replay files are stored in a proprietary

binary format, which is not well-documented.

Thus in order to parse them, some free pieces of

software are developed, for instance,

LordMartin Replay Browser
5
, BWChart

6
, and

bwrepdump
7
. These extensive replay

repositories and the developed free pieces of

software provide a great deal of domain

knowledge from which the AI techniques can

learn the opponent model and strategy.

3.2. Opponent model using Bayesian networks

Several aspects of the opponent can be modeled in

RTS games. In this work, we focused on the

recognition of the opponent‟s build order. The

player observes some constructed buildings of the

opponent (due to the fog of war, all buildings are

not observable). Using the proposed method, the

player can recognize the build order of his/her

opponent and then predict his/her future buildings.

As mentioned in Section 1, the order in which the

opponent constructs his/her buildings can be used

to determine his/her strategy [7, 8]; therefore, we

consider this order as the opponent model.

1 https://github.com/bwapi/bwapi
2 http://www.teamliquid.net/replay/index.php
3 http://www.gosugamers.net/starcraft/replays-archive
4 http://iccup.com/en/starcraft/replays.html
5 http://lmrb.net/
6 http://bwchart.teamliquid.net/us/bwlib.php
7 https://github.com/SnippyHolloW/bwrepdump

http://wiki.teamliquid.net/starcraft/Dragoon
http://wiki.teamliquid.net/starcraft/High_Templar
http://wiki.teamliquid.net/starcraft/High_Templar
http://wiki.teamliquid.net/starcraft/Dark_Templar

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

152

Practically, we use a variation of technology tree,

which is called the build tree. The build tree

notation was first defined by Synnaeve and

Bessiere [21]. The build tree is a strong indicator

of the player‟s strategy [7]. It is the “buildings”

part of the technology tree with duplications of

some important buildings; hence, it does not

contain any researches or upgrades. StarCraft has

16 built-in buildings for the Protoss race such as

Nexus, Pylon, Gateway, Assimilator, Forge,

Shield Battery, Cybernetics Core, and Photon

Cannon
8
. These buildings have different features

and produce different units. In order to define the

build tree, we use all these 16 buildings. In

addition, duplications of some important

buildings, namely Nexus, Pylon, and Gateway are

inserted into the build tree. These duplications are

the second construction of important buildings.

For instance, Nexus2 is the second Nexus, which

means that the player aims to expand his/her

territory. Additionally, this building increases the

resource gathering power of the player. Pylon

provides for a player extra Psi, the gameplay

counter-limiting the number of Protoss units.

Hence, extra Pylon shows more production

capacity of the player, which is noteworthy. The

second Gateway increases units producing the

power of the player. Considering these three

duplications of buildings, we use 19 buildings to

show build trees for the Protoss race.

According to the build tree definition, {Pylon,

Gateway} and {Pylon, Pylon2, Gateway} are two

different build trees but have the same technology

tree.

We use a Bayesian network to construct the model

of an opponent. Bayesian networks provide a

powerful tool for solving decision-making

problems under uncertainty. Thus they are able to

handle the RTS game uncertainties. All

information about the map and the opponent is not

available for the player due to the fog of war and

the opponents‟ intention, thus s/he cannot infer the

state directly from the observation. In other

words, the computation of (|)P State Observation is

not straightforward but (|)P Observation State can

be learned from the game logs, where there is no

fog of war. Using the Bayes rule, the player can

infer

(|)

{ (|)} / ()

P State Observation

P Observation State P Observation

 (1)

8 For a complete list, see:
http://wiki.teamliquid.net/starcraft/Buildings

Bayesian networks are graphical models that

indicate probabilistic relations among some

variables. They have two main components: the

structure and the conditional probability

distributions. The structure, a directed acyclic

graph, determines the variable conditional

dependencies. Random variables are represented

with the graph nodes, and their conditional

dependencies are represented with the paths

through the edges. The conditional probability

distribution for each node in the graph specifies its

probability conditioned on its parents‟ values.

Figure 1 shows our proposed Bayesian network.

In the following sub-sections, we define the

variables and conditional probability distributions

of the Bayesian network.

3.3. Variables

The variables are defined as what follow.

BuildTree: It is a set of buildings each player

constructs in each game.

1 2 1 2
BuildTree {{b },{b },{b ,b },…}

(2)

ib s are different buildings of the given race.

1 2 1 2
AllBTs {{b },{b },{b ,b },…} shows all the

possible build trees of the given race in each

match-up.

For example, for the Protoss race, it is: {{Nexus},

{Nexus, Pylon},{Nexus, Pylon, Gateway},…}}.

According to the technology tree and game rules,

there exist 500 to 1600 possible values for the

build tree depending on the race (without

considering duplicate buildings) [21]. All of these

build trees are not used in a competitive match.

Hence, we consider only the build trees that are

seen in the training dataset. We will discuss the

training dataset in Section 4.1. In this work, we

model the opponents of Protoss race playing

against all the other races. In other words, we

consider the PvP, PvZ, and PvT match-ups. For

each match-up, we extract all the possible build

trees (AllBTs) for Protoss race according to the

training dataset. There exist about 330 different

build trees for Protoss in PvP match-up, about 430

in PvT and about 420 in PvZ match-up.

Figure 1. Bayesian network for Build tree prediction.

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

153

We carry out a 10-fold cross-validation test. In

each round of the cross-validation test, AllBTs is

constructed according to the training partition of

the dataset so it is independent from each test

case, and does not change during each round of

the test. Thus it is fixed for all the test cases. As a

result, we can consider this value as a pre-defined

value in the test phase. We will discuss the 10-

fold cross-validation test in Section 4.2.

Obs: It is a binary sequence of building

observations during gameplay. Thus it changes

during gameplay.
1i = …N Obs is 1 if the player has

observed the i
th
 building of the opponent.

According to the comment on the BuildTree
variable, the Obs variable shows the sequence of

buildings that are observed during each test case.

{0,1} checks the compatibility of build tree

value and observations.

EndTime and Q3Time: They are the times of

gameplay. Time is expressed in game frames.

Each second in StarCraft is divided into 24

frames. Then the current time of the game is the

number of the game frame that is passed up to

now. EndTime is the time when the build tree‟s

last building is constructed, and Q3Time is the

third quartile (Q3) of all buildings‟ construction

time in a build tree. The justification for choosing

the third quartile among others is given in Section

4.3.

The joint distribution of the above variables is

specified as follow:

1

1 1

, 3

() | ,

| 3 |

:N

:N :N

P(BuildTree,Obs , EndTime,Q Time)=

P(BuildTree)P Obs P(Obs BuildTree)

P(EndTime BuildTree)P(Q Time BuildTree)

(3)

3.4. Conditional probability distributions

The conditional probability distributions of this

Bayesian network and their learning methods are

defined as follow:

()P BuildTree shows the prior distribution of the

build trees. BuildTree is a discrete variable; thus to

estimate its prior distribution, we calculate the

occurrence frequency of each build tree in replay

dataset. To learn P(BuildTree) (the prior

distribution of BuildTree), we gather all the

possible build trees occurring in the replay

database per 3 match-ups (PvP, PvT, and PvZ).

Since there is no fog of war in the training mode,

we can learn P(BuildTree) by computing the

frequency of its possible values.

1():NP Obs : For simplicity, we assume that it has a

uniform distribution.

1:(| ,)NP Obs BuildTree is a Dirac delta function. It

checks whether or not it is feasible to observe the

set of specific buildings according to the given

build tree. If the corresponding set of observed

buildings in 1:Nobs

is the subset of the build tree,

1:(1| ,)NP obs buildTree is equal to one;

otherwise, it is equal to zero.

(|)P EndTime BuildTree is the distribution of the

time when the build tree is in a particular state. In

other words, it is the distribution of the time when

the build tree‟s last building is constructed. We

assume that it is a Gaussian distribution whose

parameters (and
2) will be learned from the

replay dataset. In other words, a Gaussian

distribution is fitted on the last building‟s

construction time.

(3 |)P Q Time BuildTree is the Gaussian distribution

of the third quartile (Q3) of all buildings‟

construction time in a build tree. The computation

of its parameters is the same as that of

(|)P EndTime BuildTree . We choose the third

quartile among other quartiles to increase the

accuracy of the proposed model. We perform two

experiments to determine how many points in

time and where are needed to achieve the best

accuracy. Details of the related experiments are

shown in Section 4.3.

Investigating the replay dataset revealed that the

variables (3 |)P Q Time BuildTree and

(|)P EndTime BuildTree have a bimodal

distribution for some (not all) values of the build

tree variable. Thus determining the accurate

distribution for this variable is not

straightforward. We will try to estimate the

distribution of these two variables by a precise

distribution in our future work.

Our proposed model is somewhat similar to that

of Synnaeve and Bessiere [21]. They have used

the Bayesian inference to recognize the build tree

of the opponent as well. This section shows the

difference between our approach and the

Synnaeve and Bessiere‟s approach [21] in how the

parameters of the Bayesian network are learned.

Their method suffers from two weaknesses, which

we address as follow:

 They assume that the prior distribution of

BuildTree is uniform. This is an unrealistic

simplification. Additionally, some useful

information would be lost by assuming uniform

distribution. The more a build tree is repeated in

the training dataset, the more probable it is to be

seen in the test phase. Therefore, we calculate

the prior distribution of the BuildTree variable

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

154

by counting the occurrence of its values in the

replay data.

 In order to recognize the build tree given some

observations, Synnaeve and Bessiere [21] check

which build trees are the superset of the

observations. Then they choose the one with the

greatest PDF (Probability Density Function)

value over the last building‟s construction time.

In other words, they use only one point in time

to recognize the actual build tree. Consequently,

a change in construction time may lead to

thewrong prediction of the build tree given the

observations.

For further clarification, consider the following

example: Let {Nexus (0), Pylon (1225), Gateway

(1917), Gateway2 (2561), Pylon2 (3087), Nexus2

(6799)} be the player observation. The numbers in

parenthesis show the construction time in frame

resolution. The Synnaeve and Bessiere‟s approach

recognizes the following build tree given this

observation: {Core, Gateway, Gateway2, Nexus,

Nexus2, Pylon, Pylon2}. This build tree is

predicted incorrectly (the Core building is

additional) due to the construction time of

Nexus2. There exists a large delay between

Nexus2 and its previously constructed building,

which makes the algorithm to assume incorrectly

another building was constructed in-between. Our

model recognizes the following build tree, which

is correct: {Gateway, Gateway2, Nexus, Nexus2,

Pylon, Pylon2}. The prediction of our model is

correct because our model uses two points in time

to recognize the actual build tree, the construction

time of Pylon2 and Nexus2 in this example. The

construction time of Pylon2 acts as a guide point

that enables the model to avoid mistakes. Thus the

comparison of different build trees must be done

at more than one point in time so as to make a

better prediction. However, experiments show that

when the fog of war (simulated by additional

noise) exists, using more than two points in time

would decrease the prediction accuracy (Section

4.3). Hence, we compare build trees in exactly

two points in time including the last buildings‟

construction time and the third quartile of all

buildings‟ construction time.

3.5. Inference

Once we have the joint distributions of the

variables, we can answer any query about the

value of a single variable by marginalizing over

the others. In order to determine the model of the

opponent, we should recognize his/her build tree

given the observations. In order to find the value

of BuildTree that maximizes the posterior

probability

1 1 3| 1, 3:N :NP(BuildTree Obs = obs , EndTime= t,Q Time= t) ,

we ask a Maximum A Posteriori (MAP) query as

follows:

1 1 3

1 1 3

arg max | 1, 3

arg max{

() | , |) | }

:N :N
BuildTree

BuildTree

:N :N

P(BuildTree Obs = obs , EndTime = t,Q Time = t)

P(BuildTree)

P obs P(obs BuildTree)P(t BuildTree P(t BuildTree)

(4)

When the opponent‟s build tree is recognized,

his/her strategy can be predicted using another

Bayesian network [7, 9, 10].

4. Experimental results

Due to the complexity of RTS games, designing a

game intelligence capable of playing the entire

game consists of very diverse sub-problems. This

diversity makes the comparison of different

studies very hard and scarce. To the best of our

knowledge, there is no numerical comparison

between various studies in the prediction of

building construction order, and this paper is the

first one that compares models to evaluate their

accuracy in build tree prediction based on the

quantitative measures.

In this section, we first describe the test dataset,

and then introduce the evaluation metrics. The

experimental results are next presented and

compared with those of Synnaeve and Bessiere

[21]. Finally, a discussion on how the time

parameter should be set is given in the last sub-

section.

4.1. Dataset

We use the replay dataset presented by Synnaeve

and Bessiere [27] for the dataset. This dataset

consists of 7649 recorded replays of professional

StarCraft human players downloaded from

TeamLiquid, GosuGamers, and ICCup. They

parse replay files using bwrepdump9 that outputs

three different file formats for each replay:

 Replay General Data (*.rgd) includes the

players‟ names, map‟s name, and all game

events including creation, discovery, attack, etc.

 Replay Location Data (*.rld) includes the

location of the units.

 Replay Order Data (*.rod) includes all orders

given to the units.

In this work, we use the .rgd files. The accuracy

of the proposed method is evaluated on three

different match-ups: Protoss vs. Protoss (PvP),

Protoss vs. Terran (PvT), and Protoss vs. Zerg

(PvZ). In other words, we model the opponents of

9
 https://github.com/SnippyHolloW/bwrepdump

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

155

Protoss race playing against all the other races.

This race selection is done to simplify the

implementation. We posit that if we can predict

build tree for a specific race, we can do it for

others as well. We use the .rgd files that contain

only two player names. Hence, 411 game replays

for PvP, 2098 for PvT, and 1788 for PvZ remain.

The PvP match-up is a mirror one so each replay

is used two times, one for each player perspective,

which means that there exist 822 records for PvP.

It is worthwhile to say that due to some problems

with the LordMartin Replay Browser, we use a

different replay dataset than that used by

Synnaeve and Bessiere [21]. They worked with a

dataset of 8806 replays of highly skilled human

players.

4.2. Results
In order to estimate the performance of the

proposed model, we carry out a 10-fold cross-

validation test. In each round of the cross-

validation test, the replay dataset is partitioned

into 10 complementary subsets. The opponent

model is learned from 9/10 of the dataset, and is

evaluated with the remaining 1/10.

We use the distance between the predicted build

tree and the actual one to measure the accuracy of

our model. This metric that is defined by

Synnaeve and Bessiere [21] is computed as:

= {

\ },

actual predicted actual predicted

actual predicted

actual predicted

d(BT ,BT)= card(BT BT)

card (BT BT)

(BT BT)

 (5)

The (.)card is the cardinality function of the set,

and “ \ ” is the set difference.

A distance of one means that there exists one less

or one more building in the predicted build tree,

and a distance of two means that one building is

replaced in the predicted build tree or two less or

two more buildings in the predicted build tree.

We evaluate our model using two different types

of experiments. First, the accuracy of the model is

measured at the current time of the game. In other

words, up to EndTime=t , the player observes the

constructed buildings of his/her opponent (actualBT

). Thus s/he can define 1i = …N Obs according to

his/her observations. The proposed model predicts

the most probable built tree (among others in the

AllBTs set) according to its parameters (predictedBT).

The prediction power of the model is measured by

actual predictedd(BT ,BT) . Let us define k as the number

of opponent‟s buildings that our model can predict

in advance. Hence, we call this experiment d for

0k .

Secondly, the accuracy of the model is measured

based on the prediction of future buildings. When

the opponent‟s build tree at the current time

(based on
1i = …N Obs variable) is recognized, we can

look ahead from now. We suppose that the

opponent will construct his/her next buildings

according to the recognized build tree. Hence, we

can predict his/her next decision about the

construction order. In order to evaluate the value

of prediction about the future, we compute how

many buildings (k) we can predict in advance at a

fixed distance (d). In other words, to predict

future buildings of the opponent, we ask MAP

query about the BuildTree variable at time t k :

1 1

3

arg max ()

1, 3

t k

:N :N
BuildTree

P(BuildTree |Obs = partial obs ,

EndTime = t k,Q Time = t k)

(6)

It is worthwhile to notice that the BuildTree

variable is a set so it has no order. When we say

that our model can predict k buildings in advance,

we mean the set of k buildings, not their order. In

order to predict exactly the next building, one can

set 1d and 1k . However, the purpose of this

experiment is to measure how big k is to gather

more information about what the opponent will be

doing.

In order to simulate incomplete information due to

the fog of war, we add random noise to the Obs

variable from 0% to 80%. We randomly remove

some building observations. It means that we set

iObs to zero if the i
th
 building of the opponent is

chosen to remove due to adding noise. Hence, 0%

noise means that no building is removed and 80%

noise means that 8 buildings out of 10 are

removed.

In the first experiment, we compute the distance

between the conjectured build tree and the actual

tree up to the current game time. In other words,

we compute d for 0k and run this test at three

different times: 5th, 10th, and 15th minute of the

game to consider all the game phases (early, mid,

and late).

As mentioned in Section 3, the proposed approach

is similar to that of Synnaeve and Bessiere [21].

Hence, we compare the performance of our model

with theirs.

Figures 2 to 4 show the average values of d (k=0)

for the Synnaeve and Bessiere [21] model and

ours for the PvP, PvT, and PvZ match-ups,

respectively.

Figures 2 to 4 show the noise impact on the

distance to actual build tree in different game

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

156

phases. Our model results are shown in solid lines,

and the result of the Synnaeve and Bessiere model

are illustrated with dotted ones. The increases in

the distance to actual build tree are much slower

than the increase in the noise ratio for both

models.

As illustrated in figures 2 to 4, for all the three

different match-ups, our model‟s average distance

to actual build tree is lower than that of Synnaeve

and Bessiere. The distance is reduced because we

represent the build tree variable by a more

realistic distribution. In addition, we adjust the

time parameter to the exact one. As illustrated in

figures 2 to 4, for all the three different match-

ups, our model‟s average distance to actual build

tree is lower than that of Synnaeve and Bessiere.

The distance is reduced because we represent the

build tree variable by a more realistic distribution.

In addition, we adjust the time parameter to the

exact one.

In order to investigate the increase in the distance

around the 10
th
 minute, we plot the distance in the

interval 5
th
 to 15

th
 minutes for the PvP match-up

with 30% noise. As figure 5 shows, the trends are

similar for both models.

Our experiment shows that the first attack occurs

around the 7
th
 minute and the last attack occurring

before the 15
th
 minute happens about the 12

th

minute. When a player is attacked, s/he is forced

to take defensive strategies. Hence, to counter the

attacks, s/he may construct some buildings

differing from his/her original strategy.

In other words, his/her build tree will not follow

his/her original strategy. Thus prediction of the

correct build tree would become significantly

harder. Consequently, the distance to the actual

build tree prediction would increase in the interval

of 7
th
 to 12

th
 minute.

In the second experiment, we calculate the

number of buildings that our model can predict in

advance at a maximum distance of 1. We compute

k for 1d at the 15
th
 minute to consider the

longest build tree among all time intervals and

compare it with the k value proposed by

Synnaeve and Bessiere [21]. The comparison is

reported in figure 6.

Figure 2. Distance to the actual build tree (for),

PvP Match-ups (SB is Synnaeve-Bessiere [21]).

Figure 3. Distance to the actual build tree (for) ,

PvT Match-ups (SB is Synnaeve-Bessiere [21]).

Figure 4. Distance to the actual build tree (for) ,

PvZ Match-ups (SB is Synnaeve-Bessiere [21]).

Figure 5. Distance (for) in an interval between

5th up to 15th minute for PvP match-up with 30% noise

for out model and the model of Synnaeve-Bessiere[21].

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

157

As illustrated in figure 6, the noise has a very low

impact on the k value for the two models.

However, the curves in our method are smoother,

which means that the noise has a lower impact on

our model and it is robust to the noise because we

choose the correct set of time parameters. (We

explain the parameter selection in Section 4.3.)

It should be stressed that the space between

different match-up curves of our model is much

lower than that of [21]. This means that our model

is more general and has a similar result in the

various game plays. Moreover, despite the 80%

noise in observation, our model can predict about

3 buildings in advance, whereas the average

number of the buildings that the model of [21] can

predict ahead is about 1.5.

It is shown that 30% random noise is required for

the real setup/competitive games [21]. Thus

comparison of the two models in 30% random

noise could be considered as their proxy of

performance in real game setups.

Our build tree prediction technique could be

applied to all games with technology tree. Some

RTS games have the notion of technology tree.

Hence, our technique is applicable to all of them.

4.3. Parameter determination

In order to complete the model description, we

design two experiments to determine the time

parameter. As mentioned in Section 3, different

build trees should be compared in more than one

point in the construction time in order to increase

the accuracy of the model. In this section, we

perform two experiments to determine how many

points in time are required to achieve better

results, and to indicate the locations of these

points.

The candidate locations are four quartiles of all

buildings‟ construction times, namely Q1, Q2

(median), Q3, and Q4 (last building‟s construction

time). We run these two experiments on PvP

match-ups in three different game times: 5
th
, 10

th
,

and 15
th
 minutes. It is shown that 30% random

noise is required for the real setup/competitive

games [21]. Thus we add 30% noise to the

observation variable to simulate the fog of war for

real games. We select Q4 as a fixed point in time

and choose between the other three points.

In the first experiment, we determine how many

extra points are required. In order to evaluate the

performance, we compute d for 0k . The

results obtained are shown in table 1.

This table shows that adding more than one extra

point in time increases the distance to the actual

build tree. Thus we can conclude that only two

points in time are required to achieve the best

results.

In the second experiment, we identify the location

of one extra point. In order to evaluate the

performance, we compute d for 0k . The

results obtained are shown in table 2.

These results indicate that the third quartile is the

best choice, thus we compare different build trees

in Q3 and Q4 to achieve the best results.

5. Conclusion

In this paper, we proposed an opponent model

based on the Bayesian network for the StarCraft

game. The technology tree used by the opponent

defines his/her strategy. Thus we used a variation

of the technology tree, namely the build tree, as

his/her model. In order to construct this model, all

the possible build trees were gathered from game

logs and the frequency of its values was

computed. The most probable build tree, which is

the superset of the observed buildings, was chosen

based on these frequency values, the last

building‟s construction time, and the third quartile

Figure 6. Number of buildings that our model and the

model of Synnaeve and Bessiere (SB) [21] can predict

in advance at a maximum distance of 1 (for) for

different match-ups.

Table 1. Average value of () for different numbers

of points in time.

Time point

location

5th

minute

10th

minute

15th

minute

Average

Q3,Q4 1.007 1.377 1.074 1.153

Q2,Q3,Q4 1.146 1.349 1.152 1.216

Q1,Q2,Q3,Q4 1.384 1.554 1.384 1.441

Table 2. Average value of () for different locations of

extra point in time.

Time point

location

5th

minute

10th

minute

15th

minute

Average

Q1,Q4 1.400 1.596 1.391 1.462

Q2,Q4 1.127 1.298 1.105 1.177

Q3,Q4 1.007 1.377 1.074 1.153

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

158

of all buildings‟ construction times. The

opponent‟s build tree can be used to predict

his/her strategy [7, 9, 10]. The proposed method

of build tree prediction can be applied to all

games having a technology tree. It means that it is

applicable to RTS games where the concept of

"build order" exists. For example, the Command

& Conquer series and the Total Annihilation

games can be named. For all RTS games with a

technology tree, the structure of the Bayesian

network and its variables are the same. The

differences are about the existing types of

buildings in different games. Hence, for each

game, the variables of the Bayesian network

should be re-learned from the relevant data of the

game.

The number of time points in which different

build trees were compared is an important

parameter of the model. In order to determine this

number and the locations of time points, we

performed two experiments, which indicated that

a combination of Q3 and Q4 was the best choice.

We compared the proposed method with the

Synnaeve and Bessiere‟s [21] model. The

experimental results showed that even in the

presence of 80% random noise in building

observations, our model could predict 3 buildings

ahead.

As mentioned in Section 3.4, our future work will

be focused on fine-tuning the distribution of

P(EndTime|BuildTree) and P(Q3Time|BuildTree). We

will try to replace the estimation of these two

distributions by more precise ones.

References
[1] Robertson, G. & Watson, I. (2014). A review of

real-time strategy game AI. AI Magazine, vol. 35, no.

4, pp. 75-104.

[2] Ontanon, S., et al. (2013). A survey of real-time

strategy game AI research and competition in

StarCraft. IEEE Transactions on Computational

Intelligence and AI in Games, vol. 5, no. 4, pp. 293-

311.

[3] Buro, M. (2003). Real-time strategy games: a new

AI research challenge. Proc. 18th Int. Joint Conf.

Artificial Intelligence, Acapulco, Mexico, pp. 1534-

1535.

[4] Buro, M. & Furtak., T. (2004). RTS games and

real-time AI research. Proc. Behavior Representation in

Modeling and Simulation Conf. (BRIMS), Arlington,

Virginia, pp. 51-58.

[5] Borghetti, B. J. (2008). Opponent Modeling in

interesting adversarial environments, Ph.D.

dissertation, Department of Computer Science,

Minnesota University, Minneapolis.

[6] Bakkes, S. C. J., et al. (2009). Opponent modelling

for case-based adaptive game AI. Entertainment

Computing, vol. 1, no. 1, pp. 27-37.

[7] Synnaeve, G. (2012). Bayesian Programming and

Learning for Multi-Player Video Games, Ph.D.

dissertation, Department of Computer Science,

Grenoble University, Grenoble, France.

[8] Fjell, M. S. & Mllersen, S. V. (2012). Opponent

modeling and strategic reasoning in the real-time

strategy game StarCraft, M.S. thesis, Department of

Computer Science and Information Science,

Norwegian University of Science and Technology,

Trondheim, Norway.

[9] Synnaeve, G. & Bessiere, P. (2011). A Bayesian

model for opening prediction in RTS games with

application to StarCraft. IEEE Conf. on Computational

Intelligence and Games (CIG), Seoul, South Korea, pp.

281 - 288.

[10] Synnaeve, G. & Bessiere, P. (2016). Multi-scale

Bayesian modeling for RTS games: an application to

StarCraft AI. IEEE Transactions on Computational

Intelligence and AI in Games, vol. 8, no. 4, pp. 338-

350.

[11] van den Herik, H. J., et al. (2005). Opponent

modelling and commercial games. Proc. IEEE Sym. on

Computational Intelligence and Games (CIG),

Colchester, Essex, pp. 15-25.

[12] Anantharaman, T. (1997). Evaluation tuning for

computer chess: Linear discriminant methods.

International Computer Games Association, vol. 20,

no. 4, pp. 224-242.

[13] Weber, B. G. & Mateas., M. (2009). A data

mining approach to strategy prediction. IEEE Conf. on

Computational Intelligence and Games (CIG), Milano,

Italy, pp. 140–147.

[14] Larik, A. & Haider, S. (2015). Opponent

classification in robot Soccer, In: Moonis, A., et al.

(Eds.), Current Approaches in Applied Artificial

Intelligence. Lecture Notes in Computer Science. vol.

9101. Springer International Publishing, Cham, pp.

478-487.

[15] Schadd, F., et al. (2007). Opponent modeling in

real-time strategy games. Proc. GAME-ON, Bologna,

Italy, pp. 61-68.

[16] Hamidzadeh, J. (2015). IRDDS: Instance

reduction based on Distance-based decision surface.

Journal of AI and Data Mining, vol. 3, no. 2, pp. 121-

130.

[17] Frandsen, F., et al. (2010). Predicting player

strategies in real time strategy games, M.S. thesis,

Department of Computer Science, Aalborg University,

Aalborg, Denmark.

[18] Palero, F., et al. (2015). Online gamers

classification using k-means, In: Camacho, D., et al.

(Eds.), Intelligent Distributed Computing VIII. Studies

Torkaman & Safabakhsh/ Journal of AI and Data Mining, Vol 7, No 1, 2019.

159

in Computational Intelligence. vol. 570. Springer

International Publishing, Cham, pp. 201-208.

[19] Spronck, P., et al. (2006). Adaptive game AI with

dynamic scripting Machine Learning, Special Issue on

Machine Learning in Games, vol. 63, no. 3, pp. 217–

248.

[20] Machado, M. C., et al. (2011). Player modeling:

Towards a common taxonomy. 16th Int. Conf. on

Computer Games (CGAMES) Louisville, KY, USA,

pp. 50-57.

[21] Synnaeve, G. & Bessiere., P. (2011). A Bayesian

model for plan recognition in RTS games applied to

StarCraft. Proc. 7th Artificial Intelligence and

Interactive Digital Entertainment Conf., Palo Alto CA,

USA, pp. 79–84.

[22] Dereszynski, E., et al. (2011). Learning

probabilistic behavior models in real-time strategy

games. Proc. 7th AAAI Conf. Artificial Intelligence

and Interactive Digital Entertainment, Stanford,

California, USA, pp. 20-25.

[23] Farouk, G. M., et al. (2013). Generic opponent

modelling approach for real time strategy games. 8th

Int. Conf. on Computer Engineering & Systems

(ICCES), Cairo, Egypt, pp. 21-27.

[24] Safadi, F., et al. (2015). Artificial intelligence in

video games: towards a unified framework.

International Journal of Computer Games Technology,

vol. 2015, pp. 1-30.

[25] Richoux, F., et al. (2016). GHOST: A

combinatorial optimization framework for rts-related

problems. IEEE Transactions on Computational

Intelligence and AI in Games, vol. 8, no. 4, pp. 377 -

388.

[26] Stanescu, M. & Certicky, M. (2016). Predicting

opponent's production in real-time strategy games with

answer set programming. IEEE Transactions on

Computational Intelligence and AI in Games, vol. 8,

no. 1, pp. 89-94.

[27] Synnaeve, G. & Bessiere, P. (2012). A dataset for

StarCraft AI & an example of armies clustering. AIIDE

Workshop on AI in Adversarial Real-time games, Palo

Alto, United States.

 کاوی نشریه هوش مصنوعی و داده

 درنگسازی حریف در بازی های استراتژیک بیروش مقاوم مدل

 *رضا صفابخش و آرزو ترکمن

 .تهران، ایران ،دانشگاه صنعتی امیرکبیر، اطلاعات فناوریدانشکده مهندسی کامپیوتر و

 30/30/8302 پذیرش؛ 08/30/8302 بازنگری؛ 30/30/8302 ارسال

 چکیده:

است و بازیکن قادر نیست اعمال بعددی خصمانهها است زیرا محیط این بازی (RTS) درنگهای استراتژیک بیهای بازیسازی حریف یکی از چالشمدل

 کده شودمی ارائه حریف مدل یک مقاله این در. نیست مشاهده قابل کاملاً جنگی مه دلیل به هابازی این محیط این، بر علاوهبینی نماید. حریفش را پیش

یدک شدهکه بیدزین حراحدی شدده اسدت کده ،هدا. به منظور مقابله با عددم قععیدت موجدود در ایدن بدازیاست مقاوم جنگی مه از حاصل نویز مقابل در

 روی بدر شدده ارائده روش .نددارد انسدانی داندش به نیازی بنابراین شودمی محاسهه بازی شده ضهط رویدادهای به مربوط داده پایگاه روی ازمتغیرهایش

 روش دهددمدی نشان آزمایشات نتایجعملکرد مدل ارائه شده با روش سیناوی و بزیر مقایسه شده است. .گرفت خواهد قرار ارزیابی مورد استارکرفت بازی

حراحدی کدرد کده تعهیقی . با استفاده از این مدل می توان یک الگوریتم هوش بازی نمایدمیبینی اعمال بعدی حریف را با دقت بیشتری پیش ارائه شده

 کارایی دارد.ها وجود دارد که مفهوم ترتیب ساخت در آن RTSهای در همه بازی

 .درنگ، استارکرفتهای استراتژیک بیسازی حریف، بازیشهکه بیزین، مدل :کلمات کلیدی

