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Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the
brain without evident clinical symptoms. Once in the central nervous system (CNS), the
virus can either reside in a quiescent latent state in this tissue, or eventually actively
lead to severe acute necrotizing encephalitis, which is characterized by exacerbated
neuroinflammation and prolonged neuroimmune activation producing a life-threatening
disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus
replication, neurological sequelae are common and the virus will nevertheless remain
for life in the neural tissue. Importantly, there is accumulating evidence that suggests
that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals
could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we
review and discuss acute and chronic infection of particular brain regions by HSV-1 and
how this may affect neuron and cognitive functions in the host. We review potential
cellular and molecular mechanisms leading to neurodegeneration, such as protein
aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among
others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation
and its potential relationship with neurodegenerative diseases.

Keywords: herpes simplex virus, neurodegeneration, neurological disease, apoptosis, autophagy, mitochondrial
damage, oxidative stress, neuroinflammation

INTRODUCTION

Herpes simplex virus type-1 (HSV-1) is an enveloped double-stranded DNA virus belonging
to the Herpesviridae family, that has a genome of approximately 152 kbp encoding more
than 80 different open reading frames (ORFs; Boehmer and Nimonkar, 2003). Importantly,
HSV-1 is a neurotropic pathogen with a wide spectrum of clinical disorders ranging from
harmless skin manifestations, such as oral and facial lesions to severe infection of the central
nervous system (CNS). HSV-1 is the most common cause of sporadic encephalitis in adults, as
well as the leading cause of infectious blindness in developed countries due to herpetic keratitis
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(Whitley and Roizman, 2001; Lairson et al., 2003). The virus
is usually acquired during childhood and produces lifelong
infections due to its ability to infect and remain latent in neurons
(Kramer et al., 2003). Worldwide, nearly 60% of the population
has antibodies against this virus, however only 20%–40% of
those that are infected develop symptoms (Looker et al.,
2015). Nevertheless, HSV-1-infected asymptomatic individuals
are significant reservoirs for this virus and contribute to its
transmission through shedding (Miller and Danaher, 2008;
Ramchandani et al., 2016).

Regardless if the individual is symptomatic or asymptomatic
after infection with HSV-1, the lifelong presence of this virus
in the organism may produce in some hosts alterations in
cellular processes that are required for normal neuronal cell
function, which could eventually lead to pathology in the brain
in a fraction of seropositive persons (Zambrano et al., 2008;
Martin et al., 2014b). This notion is supported by the fact
that some studies have reported the presence of HSV-1 DNA
in up to 65%–75% of the brains of seropositive individuals,
without clinical signs of active infection or neurological illnesses
(Baringer and Pisani, 1994; Mori, 2010). The fact that HSV-1
is not invisible to the immune system and that immune
cells are commonly found adjacent to infected cells, suggests
scenarios in which immune cells infiltrating the CNS may
somewhat contribute to chronic inflammatory processes that
can be detrimental to the function of this tissue (White
et al., 2012; Van Velzen et al., 2013; Ma et al., 2014). On
the other hand, because the immune system of an individual
tends to decay upon aging, opportunities arise for HSV-1
to reactivate in the organism and spread to tissues such
as the brain. These observations have led to the notion
that infection with HSV-1 may promote, or contribute to
neurodegenerative disorders in humans (Dobson et al., 2003;
Otth et al., 2009; Martin et al., 2011; Buscarinu et al., 2017).
This idea is further reinforced by studies that suggest that other
herpesviruses, such as the Epstein Barr virus (EBV) and human
herpesvirus-6 (HHV-6), may be related with multiple sclerosis
(MS) and Alzheimer’s disease (AD), giving herpesviruses
increased attention in the last decades on their potential roles
in neurological diseases (Casiraghi et al., 2012, 2015; Leibovitch
et al., 2018). However, given that HSV-1 is highly prevalent
in the human population and that neurodegenerative disorders
are somewhat present at low frequencies in the population,
a direct causal link between this virus and such type of
diseases has been difficult to establish (Harris and Harris, 2015;
Hogestyn et al., 2018). Nevertheless, with the advent of novel
experimental techniques, high-throughput methodologies and
deep sequencing approaches, host factors that could contribute to
a potential relationship between HSV-1 and neurodegenerative
disease could eventually be identified in the near future. This
review focuses on HSV-1 infection of neurons and the brain
and discusses virus modulation of cellular processes, as well
as inflammation in this tissue that may favor the development
of neurodegeneration in the host. Notably, HSV-1 has been
associated with several neurodegenerative disorders, such as
MS and AD. Here, we review this relationship and discuss
recent epidemiological and pathophysiological aspects of HSV-1

and neurodegeneration (Dobson et al., 2003; Otth et al., 2009;
Martin et al., 2011; Smyk et al., 2014; Buscarinu et al., 2017;
Hogestyn et al., 2018).

HSV-1 REPLICATION AND INFECTION OF
THE NERVOUS SYSTEM

HSV-1 Replication in Epithelial Cells and
Neurons
HSV-1 can alternate between a lytic infection phase that produces
infectious virions, or a latent state characterized by undetectable
levels of viral particles in the individual (Whitley and Roizman,
2001). Indeed, after initial infection of the epithelium in the
exposed area, the virus gains access to the termini of sensory
neurons that innervate the skin and reaches the cell body of
these cells by retrograde transport through axons (Antinone
and Smith, 2010). During facial infections that affect the
mouth, face or eyes, viral progeny from HSV-1 replication
in the epithelium will reach the cell bodies of sensory and
autonomic nerve terminals of neurons in trigeminal ganglia
(TG). While virus present in the site of infection will be
cleared throughout the infection process, virus within neurons
will enter a latency phase in which viral DNA remains as an
episome in the nucleus of neurons with reduced-to-none virus
protein expression (Nicoll et al., 2012). Remarkably, latency
is characterized by the transcription of only one viral RNA
transcript from the viral genome, which is non-coding and
is termed the latency-associated transcript (LAT; Nicoll et al.,
2016). Importantly, in latently-infected cells LAT is processed
into miRNAs that silence the expression of viral genes that
are required for productive virus replication (Umbach et al.,
2008). Nevertheless, sporadic expression of lytic viral genes
in the TG during latency in the form of mRNA has been
reported by several groups (Feldman et al., 2002; Margolis et al.,
2007; Ma et al., 2014), which was followed in some cases by
protein synthesis suggesting that latency is likely a more dynamic
process than previously thought (Du et al., 2011; Kim et al.,
2012). Interestingly, LAT has been reported to be involved in
neuron survival, as it displays anti-apoptotic properties, which
is further discussed below (Perng et al., 2000; Henderson et al.,
2002; Shen et al., 2009). Importantly, during the latent state
epigenetic markers associated to the active transcription of viral
genes have been identified in the LAT promoter in neurons
(i.e., particular acetylation patterns at histone H3; Kubat et al.,
2004). In contrast, the promoters of lytic viral genes were found
to display methylations associated to heterochromatin (Cliffe
et al., 2009; Cliffe and Wilson, 2017).

Noteworthy, HSV-1 latency has been observed to be
concentrated at specific sites in the CNS in studies consisting
of a mouse model of herpes simplex encephalitis (HSE).
Mice that survived an acute phase of infection showed LAT
mainly concentrated within the lateral ventricles and the
hippocampus (ependymal zone), as well as the brainstem
30- and 60-days post-infection (Menendez et al., 2016).
Moreover, the ependymal region in the brain evidenced
HSV-1 lytic gene transcripts being expressed at these
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time-points post-infection, in contrast to the brainstem and
TG, in which the expression of lytic genes was decreased
(Menendez et al., 2016). Interestingly, this study proposes
the hypothesis that a specific tropism of HSV-1 to the
ependymal zone may be linked to chronic inflammatory
responses in the brain and that this zone may have particular
conditions that provide an environment that enhances viral
persistence, potentially leading to neurodegeneration (Webb
et al., 1989; Conrady et al., 2013). A more recent study
showed that the ependymal zone harbors neural progenitor
cells that are vulnerable to acute HSV-1 infection and viral
lytic-associated proteins were detected in these cells during
latency (Chucair-Elliot et al., 2014).

Importantly, the host immune response against the virus has
been reported to be involved in the maintenance of a latent
state by HSV-1 in neurons. Indeed, HSV-1-infected neurons
have been shown to be surrounded by T cells in the TG,
presumably limiting viral reactivation which would otherwise
lead to lytic replication of the virus, thus hampering the
generation of infectious virions from these cells (Liu et al., 1996;
Verjans et al., 2007). HSV-1 specific CD8+ in contact with TG
neurons were shown to block viral reactivation through the
release of granzymes that degrade viral proteins (Khanna et al.,
2003; Van Velzen et al., 2013). In contrast, viral persistence
in the ependymal zone of the brain was related to T cells
expressing exhaustion markers [LAG-3, TIM-3, programmed
death-1 (PD1), CD160 and KLRG-1]. Furthermore, isolated
T cells were unable to control HSV-1 infection ex vivo and
secreted less interferon (IFN)-γ in comparison to T cells isolated
from TG (Wherry and Kurachi, 2015; Menendez et al., 2016).

Because the immune system plays an important role in
controlling HSV-1 reactivation from the brain, episodes of
immune-depression such as concomitant infections or stimuli,
such as fever episodes may reactivate HSV-1 from neurons
and allow the virus to enter a lytic replication cycle (Sawtell
and Thompson, 2016). During the lytic phase of HSV-1, either
in neurons or epithelial cells the virus expresses its genes
in a cascade-dependent manner, with three major waves of
transcription: first, the expression of immediate early genes (IE or
alpha genes), followed by the expression of early genes (E or beta
genes) and lastly, late genes (L or gamma genes). Furthermore,
the latter are sometimes sub-divided into late-early and late
genes (or gamma-1 and gamma-2 genes, respectively; Honess
and Roizman, 1974). For IE mRNAs, a viral transactivator called
VP16 plays an important role in promoting their transcription
by binding to cellular factors namely the octamer-binding
protein 1 (Oct1) in epithelial cells and the host cell factor-1
(HCF-1), both in epithelial and neuron cells (Herrera and
Triezenberg, 2004; Suazo et al., 2015). Some IE viral genes
play key roles in the subversion of the host cellular antiviral
response. As IE proteins are expressed, some of them will
act as transcription factors for E viral genes, promoting their
transcription into mRNAs that play roles in viral processes,
such as DNA replication (Suazo et al., 2015). Finally, late
gene expression occurs thanks to the transactivation properties
of viral beta genes (Honess and Roizman, 1975). These later
genes encode, among others, for structural components of the

virion, such as capsid, tegument, and viral surface proteins
(Honess and Roizman, 1974; Herrera and Triezenberg, 2004).
Once viral proteins that compose the virion are produced, these
viral elements will travel within neurons from the cell body
to axonal terminals in an anterograde manner. Interestingly,
two models have emerged for this process in neurons and are
termed ‘‘married’’ and ‘‘separate’’ because of the mechanism
of action. While in the married model HSV-1 particles travel
with viral glycoproteins as a whole virion through the axons
together, in the separate model HSV particles are transported
in axons separated from the viral envelope and glycoproteins
(Wisner et al., 2011). Nevertheless, in both cases new infectious
viral particles will be released at the original site of infection,
which will promote the infection of new epithelial cells within
the surroundings and likely disseminate virus onto adjacent,
non-infected neurons (Halford et al., 1996). This process will
promote the maintenance of a continuous pool of HSV-1-
infected neurons in the individual.

HSV-1 Infection of the Central Nervous
System
Herpetic simplex encephalitis (HSE) is produced by the active
replication of HSV-1 in neuronal cells in the brain (Gnann
and Whitley, 2017). Importantly, acute HSE induced by HSV-1
produces neuronal cell death by necrosis or apoptosis and
usually relates to the temporal and frontal lobes of the brain,
as well as the insular cortex of the cerebral hemispheres
(Bradshaw and Venkatesan, 2016). Death of neurons, astrocytes
and oligodendrocytes occurs within 7 days post-infection and
histopathological examination shows areas of mononuclear
inflammation in a mouse model of HSE (Armien et al.,
2010). Therefore, both cytolytic viral replication and immune
factors will be involved in the disease. Noteworthy, despite
HSE treatment with acyclovir a high percentage of survivors
will display numerous sequelae associated to neurological
involvement, such as epilepsy, amnesia or cognitive and
behavioral alterations (Misra et al., 2008; Riancho et al., 2013). It
has been hypothesized that immune-mediated mechanisms may
be key players in HSE relapses that induce neurologic damage
(Valencia et al., 2004; Prüss, 2017).

While nearly 30% of HSE cases are related to primary HSV-1
infection (commonly observed in children and adolescents),
70% of cases of HSE are attributed to a previous HSV-1
infection and viral reactivation (mostly observed in adults;
Steiner and Benninger, 2013). Regarding how HSV-1 reaches
the CNS to develop HSE, several routes and mechanisms
have been proposed both, as a consequence of primary
infection or due to viral reactivations (Figure 1; Bradshaw and
Venkatesan, 2016). For primary infections, both the olfactory
and hematogenous routes have been proposed (Burgos et al.,
2005; Jennische et al., 2015). Indeed, for neonatal HSV-1
infections the olfactory route is frequently deemed responsible
and widely described as the result of close contact between
the newborn olfactory tissue and HSV-1 virions present in
the birth canal of the mother at the time of birth (Burgos
et al., 2006). Consistent with this notion, animal models
have shown spread of HSV-1 from the nasal cavity to the
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FIGURE 1 | Central nervous system (CNS) infection with herpes simplex virus type 1 (HSV-1). (A) HSV-1 CNS infection through the olfactory route: HSV-1 can infect
the termini of olfactory neurons enervating the nasal epithelium and access the CNS by retrograde axonal transport through neurons until reaching the olfactory bulb
in the brain. (B) HSV-1 can also infect the CNS because of HSV-1 peripheral reactivation. HSV-1 can reactivate from neurons in the trigeminal ganglia (TG) and reach
either the skin or CNS through anterograde transport. (C) HSV-1 can also reach different regions of the CNS because of HSV-1 reactivation within the brain.
Reactivation of latent virus within the CNS has been reported to reach the cerebellum, olfactory bulb, frontal cortex, or hippocampus. (D) Finally, HSV-1 can infect the
CNS through a hematogenous route. HSV-1 can infect the CNS of fetuses because of HSV-1 infection in the mother, through the bloodstream by accessing the
placenta. Once the fetus is infected, HSV-1 accesses the brain and has been reported to infect the hippocampus. Neural stem cells (NSCs) in the subventricular
zone of the lateral ventricle and subgranular zone of the hippocampus have been shown to be infected by HSV-1, affecting the maturation and proliferation, as well
as differentiation of these cells.

CNS after infection of the olfactory epithelium, which is
connected with the olfactory bulb and consequently the limbic
system, resulting in focal encephalitis in the brain (Figure 1A;

Twomey et al., 1979; Dinn, 1980). However, another study
in mice suggests that vertical transmission is predominantly
hematogenous (Figure 1D; Burgos et al., 2006). This study
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showed that offspring born to HSV-1-infected mothers harbored
HSV-1 proteins and DNA, mainly in the hippocampus in the
CNS. Moreover, the placenta also showed high number of viral
genomes, indicating that HSV-1 can reach the brain of fetuses
by this route through the maternal bloodstream. Finally, the
authors reported that the administration of acyclovir in HSV-1-
infected mothers reduced vertical transmission of this virus
(Burgos et al., 2006).

Another route by which HSV-1 may gain access to the brain
is through peripheral viral reactivations followed by subsequent
anterograde axonal transport (Figure 1B; Kramer and Enquist,
2013). A study with patients with HSE simultaneously compared
HSV-1 isolates from the mouth and brain of infected individuals
and showed that five out of eight isolate pairs were identical,
as determined by restriction endonuclease analyses indicating
that HSV-1 infection in a latent state in the TG acquired in a
previous orolabial infection may reactivate from this site and
reach neurons in the CNS (Whitley et al., 1982).

Finally, reactivation of latent virus from the CNS may also
seed infection to other sites within the brain (Figure 1C; Stroop,
1986). Post-mortem studies have reported the presence of HSV-1
genomes in brain tissues of individuals without any known
neurologic disease, suggesting the possibility that HSV-1 could
establish latency in the CNS (Olsson et al., 2016). Although
sensory ganglia are understood to be the primary source of virus
establishing latency, recent studies using a modified ex vivo tissue
explant reactivation assay have found that 80% of brainstem
explants display viral reactivation following latent infection with
KOS or McKrae HSV-1 viruses, indicating that the CNS can also
be an effective source of infectious HSV-1 from which the virus
reactivates (Chen et al., 2006). Moreover, hyperthermia-induced
viral reactivation in vivo has also been evidenced in the brainstem
before its detection in the TG, with the virus reactivating in this
study more frequently from the brainstem than the TG (Yao
et al., 2014). Latent viral genomes were also detected in the
cerebellum, olfactory bulbs, frontal cortex, and hippocampus of
these mice (Yao et al., 2014). According to this information, it
is possible that latent HSV-1 in the brain may be a source of
productive reactivations in this tissue, which could cause HSE in
some susceptible individuals.

PROPOSED FACTORS FOR AN
ASSOCIATION BETWEEN HSV-1
INFECTION AND NEURODEGENERATION

HSV-1 Modulates Apoptosis-Related
Pathways
Apoptosis is a cellular death program activated in response
to external or internal cellular stimuli that lead to controlled
autodestruction of the cell (Webb et al., 1997). Somemacroscopic
key features of this process are nuclear fragmentation, chromatin
condensation and the presence of apoptotic bodies in the cell
cytoplasm (Assunção Guimarães and Linden, 2004). Overall,
apoptosis can be triggered by extrinsic or intrinsic signaling
pathways and executed by a family of cysteine proteases known
as caspases (Thornberry and Lazebnik, 1998).

The extrinsic pathway is known to respond to external
stimuli and is triggered by the binding of ligands to membrane
death receptors, mainly belonging to the tumor necrosis factor
receptor (TNFR) superfamily that overall lead to the activation
of caspases-8 or -3 (Bodmer et al., 2002; Lavrik et al., 2005;
Pennarun et al., 2010). This results in either cell death or
the stimulation of the mitogen-activated protein kinase/c-Jun
N-terminal kinase (MAPK/JNK) pathway that can alternatively
lead to cell survival, proliferation or ultimately induce apoptosis
by enhancing the activity of pro-apoptotic signaling molecules
in response to prolonged cellular damage (Lu and Xu, 2006;
Declercq et al., 2009). Importantly, nuclear factor-κB (NF-κB) is
also activated by the death-inducing signaling complex (DISC)
and can trigger apoptosis or the expression of anti-apoptotic
genes that are members of the cellular FLICE-inhibitory protein
(cFLIP) family, BCL-2 family or cIAP family (Saleem et al., 2013).
Interestingly, caspase activation by the extrinsic pathway has
been reported to be able to stimulate the intrinsic pathway of
apoptosis, due to the cleavage of the pro-apoptotic protein Bid
into a truncated form termed tBid (Schulze-osthoff et al., 1998).

On the other hand, the intrinsic apoptosis pathway mainly
consists on the stimulation of apoptosis by intracellular stimuli
that may occur by irreparable cellular damage or cells being
hijacked by pathogens (Lamkanfi and Dixit, 2010). This signaling
pathway leads to the permeabilization of the outer membrane
of mitochondria with the concomitant release of cytochrome c
to the cytoplasm (Kroemer et al., 2007). Cytochrome c in turn
binds to Apaf-1 and triggers the assembly of the apoptosome
(Yuan and Akey, 2013), which interacts with pro-caspase-9 to
produce its cleavage into caspase-9 that activates a caspase
cascade leading to apoptosis by caspases-3/7 (Friedman and
Nunnari, 2014). This pathway also involves a crosstalk between
the endoplasmic reticulum (ER) and mitochondria. Under ER
stress, an unfolded protein response (UPR) is activated, which
elicits a cascade of signaling events that induce apoptosis
(Shore et al., 2011). Indeed, ER stress induced by several
pathophysiological stimuli can lead to JNK activation through
Ca2+ release (Verma and Datta, 2012). JNK activation produces
further release of Ca2+, which generates an active redistribution
of the Bax/Bak pro-apoptotic proteins in the mitochondria
(Lei and Davis, 2003). In turn, Bax/Bak proteins allow the
release of the apoptotic proteins cytochrome c and AIF proteins
(Schulz et al., 1997). Alterations in membrane potential of
mitochondria, given by these processes have also been reported
to lead to the formation of a pore in this organelle with
the consequent activation of caspase- and -3, both activated
by cytochrome c release (Kroemer et al., 2007). Importantly,
JNK can also activate the pro-apoptotic protein Bim and
block anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xl, Mcl-1, A1;
Verma and Datta, 2012). Ultimately, the balance between pro-
and anti-apoptotic proteins will control the susceptibility of
a cell to undergo apoptosis. Importantly, neuronal survival
is continuously stimulated by trophic factors that function
through specific receptors that are regulated by MEK/ERK
and that lead to c-AMP response element binding protein
(CREB) activation, a key regulator of several cellular processes
(Wang et al., 2003). However, apoptosis can sometimes result
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by the interference of the strict regulation of these pathways
(MEK/ERK/CREB) when danger or damage stimuli are present
(Wang et al., 2003).

Noteworthy, although apoptosis is considered to be a result
of neurodegeneration, alterations in signaling pathways related
to apoptosis have been widely described to be implicated
in neurodegenerative diseases, such as AD (Obulesu and
Lakshmi, 2014), Parkinson’s disease (Lev et al., 2003), and
amyotrophic lateral sclerosis (Sathasivam et al., 2001). Hence,
HSV-1 modulation of neuronal apoptosis both, during acute and
latent infection could eventually relate to alterations of neuronal
processes that lead to neuron damage and brain disease (Guégan
and Przedborski, 2003; Hickey and Chesselet, 2003; Nguyen and
Blaho, 2007; Gelders et al., 2018).

During acute brain infection in HSE, HSV-1 is known
to induce apoptosis in neural cells that contribute to virus-
induced CNS pathogenesis (Debiasi et al., 2002). In most of the
brains with HSE analyzed, neurons showed an apoptotic state,
which was characterized by positive terminal deoxynucleotidyl
transferase-mediated dUTP nick-end labeling (TUNEL; Debiasi
et al., 2002). The mechanism by which HSV-1 induces apoptosis
in rat hippocampal neuron cultures has been shown to
be through the activation of JNK-related pathways (Perkins
et al., 2003). Indeed, hippocampal neurons displayed significant
DNA fragmentation (TUNEL+), and activated caspase-3 when
determined by immunohistochemistry (Perkins et al., 2003). A
role for JNK in the activation of apoptosis observed in these cells
was supported thanks to the use of the JNK inhibitor SP600125,
which was able to abolish apoptosis in neurons infected with
HSV-1 (Perkins et al., 2003). Importantly, similar results were
obtained with brain tissues obtained from patients with HSE
(Perkins et al., 2003). In addition, HSV-1 has been reported to
induce apoptosis in brainstems of mice infected with this virus,
in which significant TUNEL-staining was observed at day 6 post-
infection, although with low levels of detectable infectious virus,
suggesting death of cells that were bystander to those infected
with HSV-1 (Shaw et al., 2002). Furthermore, the viral protein
infection cell protein 0 (ICP0), which is an immediate HSV-1
early protein has been shown to act as an activator of apoptosis
during HSV-infection. Expression of ICP0 alone was shown to be
necessary and sufficient to trigger cell death-associated signaling
cascades inHEp2 (human, epithelial cervix) andVero cells (green
monkey, kidney epithelial), which was evidenced with a mutant
virus devoid of ICP0 unable to induce apoptosis in infected cells
(Sanfilippo and Blaho, 2006).

On the other hand, the frequent finding of HSV-1 DNA
in the brains of individuals that do not display neurological
diseases, suggests that CNS infection with this virus does
not necessarily translate into cell death (Jamieson et al.,
1991). Interestingly, because apoptosis is used by the host
as an antiviral defense strategy in order to eliminate virus,
HSV-1 encodes numerous viral determinants for evading it
(Figure 2A), which overall may favor virus persistence in the
host by remaining in a viable substrate as a long-term niche
for latency, which could produce chronic inflammation due
to recurrent asymptomatic reactivations (Perng et al., 2000).
Importantly, both protein and RNA-based viral-determinants

have been reported to have anti-apoptotic effects in HSV-1-
infected cells. For instance, the gene products of glycoproteins
J and D (gJ, gD) have been reported to modulate cellular
apoptosis during HSV-1 infection of the SK-N-SH human
neuron cell line (neuroblastoma), as mutant viruses lacking any
of the genes encoding for these proteins led to cell apoptosis
early after infection, which was abolished when gD and gJ
were complemented in trans (Zhou et al., 2000). Furthermore,
HSV-1 lacking the gJ gene Us5 was hampered at inhibiting
caspase-3/8 activation after Fas ligation or UV irradiation
(Jerome et al., 2001). Although the Us6 viral gene, which
encodes the gD has also been reported to block apoptosis in
these cells, the molecular mechanism involved in inhibiting
apoptosis by this viral glycoprotein has not been completely
elucidated, although an association with NF-κB activation
and increased expression of NF-κB-dependent anti-apoptotic
genes, such as c-IAP2, FLIP and survivin has been suggested
as a mode of action in U937 monocytoid cells (Medici
et al., 2003; Marino-Merlo et al., 2016). U937 cells infected
with wild-type or UV-inactivated HSV-1 displayed inhibition
of Fas-induced apoptosis, suggesting that a structural viral
component may be exerting this effect (Marino-Merlo et al.,
2016). Moreover, when U937 cells were co-cultured with
gD-expressing transfected cells, before anti-Fas addition a
significant inhibition of Fas-mediated apoptosis was observed,
which was abolished by transfection of a dominant negative
inhibitor of NF-κB activity (IκBα), thus supporting a key
anti-apoptotic role for gD (Medici et al., 2003). Furthermore,
more recently glycoprotein E (gE) has also been reported to
act as an inhibitor of apoptosis in epithelial cells, which was
achieved by triggering ERK1/2 activation and was associated with
the degradation of the pro-apoptotic protein Bim (Figure 2A;
Pontes et al., 2016).

Another HSV-1 protein involved in negatively modulating
apoptosis is ICP22 (Nguyen et al., 2005). A virus with
ICP22 deleted was shown to induce more apoptosis than the
wild-type virus (Nguyen and Blaho, 2007). ICP22-mediated
inhibition of apoptosis likely involves p53, a cellular transcription
factor that controls apoptosis by activating Bax or inhibiting
Bcl-2, and that has been shown to be antagonized by ICP22 which
promotes cell survival (Figure 2A; Pietsch et al., 2008;
Maruzuru et al., 2013).

Likewise, the viral ICP27, an IE protein has been reported
to block caspase 3-associated apoptosis, as evidenced with
a mutant of HSV-1 that has ICP27 deleted (Aubert and
Blaho, 1999). Inhibition of apoptosis by ICP27 was shown to
require an amino acid sequence close to the N-terminus of
the protein, which activates p38 and JNK signaling in CV-1
cells (Hargett et al., 2005). Additionally, in this same study a
mutant virus with other IE proteins deleted were assessed in
order to determine if ICP27 alone was sufficient to activate
p38 and JNK. The results of this study showed that viruses
lacking other IE viral proteins (ICP22 or ICP47) activated
p38 and JNK similar to the wild-type virus, suggesting that these
proteins are not necessary for p38 and JNK activation (Hargett
et al., 2005). Importantly, JNK activation is known to stimulate
NF-κB signaling that is associated with inhibition of apoptosis
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FIGURE 2 | HSV-1 modulates cellular processes. (A) HSV-1 modulates apoptosis-related pathways. The apoptosis extrinsic (upper section) and intrinsic (lower
section) pathways are modulated by HSV-1 proteins, such as the immediate early proteins infection cell protein 22 (ICP22), ICP27 and US3, late viral proteins
glycoprotein D (gD) and gJ, as well as the latency-associated transcript (LAT) transcript, which hamper events leading to apoptosis at different stages of signaling
cascades and at distinct time-points after infection. (B) HSV-1 modulates autophagy. Viral protein US11 interaction with PKR inhibits LC3-I conversion into LC3-II.
HSV-1 ICP34.5 inhibits autophagosome formation by blocking beclin-1 and subsequent LC3-I conversion into LC3-II, which is necessary for proper autophagosome
function. The viral protein ICP34.5 also inhibits TBK-1, which blocks autophagosome formation. (C) Mitochondria oxidative stress is also modulated by HSV-1
infection. Both, mitochondria and HSV-1 transport are mediated by retrograde and anterograde processes involving microtubules. Importantly, HSV-1 infection
blocks the transport of mitochondria and viral tegument proteins (UL41 and UL46) migrate with this organelle within infected neurons. Retrograde transport of the
HSV-1 capsid is accompanied by the viral tegument proteins UL36 and UL37. Anterograde transport of HSV-1 components to neuron termini can be mediated either
separately or in a conjoint manner, which are known as the “married” and the “separate” models. The viral protein UL12.5 produces mitochondria DNA degradation
and the viral protein US3 protein blocks the electron transport chain within this organelle. The boxes show the cellular processes or pathologies that occur in
Alzheimer’s disease (AD) (yellow boxes) or multiple sclerosis (MS; blue boxes) associated with apoptosis, autophagy and mitochondria oxidative stress. RRMS,
relapsing-remitting MS.

(Figure 2A; Hargett et al., 2006). In contrast, ICP27 has also
been reported to prevent the phosphorylation and degradation
of IκBα, the endogenous inhibitor of NF-κB, which would then
block apoptosis (Kim et al., 2008).

On the other hand, miRNAs derived from the processing
of the LAT have also been reported to modulate apoptosis in
infected cells, notably in neurons where the virus establishes
latency and expresses this transcript during this phase. LAT
expressed in a plasmid was shown to inhibit caspase-8 and
caspase-9-induced apoptosis (Figure 2A; Henderson et al.,
2002), which lead to inhibition of CD8+ T cell-killing of

latently infected neurons, as LAT expression blocked granzyme
B-induced cleavage of caspase 3, thus protecting C1300 and
Neuro2A cells (Jiang et al., 2011). Moreover, two small RNAs
(sRNAS) encoded by LAT were recently shown to prevent
cold shock-induced apoptosis in mouse neuroblastoma cells
by a mechanism that remains to be determined (Shen et al.,
2009). Finally, HSV-1 LAT can also up-regulate the levels
of protein kinase B (AKT), a protein that promotes cell
survival by inactivating the pro-apoptotic proteins Bad, Bax
and caspase-9 (Cooray, 2004). Through AKT, LAT negatively
regulated caspase-3 activation and increases the ratio of Bcl-
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2/tBid in neurons enhancing cell survival (Figure 2A; Carpenter
et al., 2015). Thus, inhibition of apoptosis may play a key
role in neurodegeneration by HSV-1 favoring the establishment
of latency and persistence with later reactivations and spread
into the neuronal tissue, leading to neuron damage in a
long-term manner.

On the other hand, the AMPK/Sirt1 axis has been shown to
be modulated during HSV-1 neuronal infection and to interfere
with apoptosis signaling (Martin et al., 2014b). Two hours
post infection, p-AMPK levels were declined and Sirt1 protein
remained non-induced in contrast to p53 levels, which increased
demonstrating a pro-apoptotic state in neurons (Martin et al.,
2014b). However, 4–8 h post infection, HSV-1 positively
regulated AMPK/Sirt1 axis showing an increase in Sirt1 activity
and a reduction in the levels of acetylated p53 thus, promoting an
anti-apoptotic state (Martin et al., 2014b). These results suggest
that HSV-1 can modulate this pathway at different time-points
after infection by interfering with apoptotic signaling events
to favor its replication at early times in the replication cycle
and after supporting neuronal survival for its persistence in a
latent state.

Taken together, HSV-1 induces and inhibits apoptosis-
related pathways at multiple steps after neuron infection
(Aubert and Blaho, 2001). This modulation of apoptosis could
contribute to the capacity of this virus to manipulate neuronal
survival, as well as functions related either directly or indirectly
with neurodegenerative processes. Indeed, HSV-1 is able to
modulate several host processes and take advantage of numerous
signaling pathways in order to favor its persistence and
shedding throughout the CNS (Kramer et al., 2003; Villalba
et al., 2012; White et al., 2012). Deepening on the knowledge
of these processes could allow the identification of new
targets for pharmacological intervention of important signaling
pathways involved in neurodegeneration and the treatment of
neurodegenerative diseases (Leyton et al., 2015).

HSV-1 Disrupts Autophagy-Related
Processes
Macroautophagy (autophagy) is a process that involves the
development of autophagosomes, double membrane-bound
structures, that ultimately fuse with lysosomes to degrade
cytosolic contents (Awan and Deng, 2014). It is important to
point out that autophagy is involved in cellular homeostasis by
removing old or damaged organelles, provide nutrients to the
cell in starvation responses and also to eliminate aggregated
proteins caused by misfolding disorders, which can elicit cells
stress (Klionsky et al., 2007).

Importantly, autophagy dysfunction has been associated to
pathogenesis in various neurodegenerative disorders. The role of
autophagic pathways over the prevention of neurodegeneration
has been evidenced by generating selective neural animal models,
such as one in which cell-specific Atg5 deletion is controlled,
as Atg5 is essential for autophagosome formation and thus,
mice deficient for this protein develop progressive deficits in
motor function that are accompanied with the accumulation of
cytoplasmic inclusion bodies in neurons (Hara et al., 2006). The
Atg7 protein is also essential for autophagy and mice that are

knockout for this gene in the CNS show symptoms and signs
that are similar to those evidenced during neurodegenerative
disorders in humans, with significant neuronal loss in the
cerebral and cerebellar cortices (Komatsu et al., 2006). Additional
studies indicate that autophagy has an important role in the
survival of neurons, by preventing the accumulation of irregular
proteins and avoiding neurodegeneration (Hara et al., 2006;
Komatsu et al., 2006). In this context, autophagy has been
reported as a key regulator of neurogenesis by sustaining
new neuron pools from neural stem cells (NSCs). A recent
study reported high autophagy protein expression (AMBRA
1 and Beclin 1) in neural tissue enriched in NSCs, such
as the sub-ventricular zone of the lateral ventricle and the
subgranular zone of the dentate gyrus in the hippocampus
(Yazdankhah et al., 2014; Casares-Crespo et al., 2018). Moreover,
inhibition of FIP200, another autophagy-related protein, resulted
in a progressive loss of NSCs in vivo and a deficiency in
neuronal differentiation (Wang et al., 2013). Likewise, Beclin-1
heterozygosis in vivo resulted in cell proliferation andmaturation
disorders (Miller et al., 2014).

Importantly, autophagy acts as a defense mechanism against
several infections promoting lysosomal degradation of the
pathogen. During HSV-1 infections, shutting off cellular protein
synthesis is carried out as an antiviral defense mechanism,
which is achieved through the phosphorylation of the eukaryotic
initiation factor 2α (eIF2α) by the RNA-activated protein
kinase (PKR), therefore avoiding viral replication (Chang et al.,
2002; Tallóczy et al., 2002). Moreover, eIF2α phosphorylation
promotes the induction of autophagy, which is key for
controlling HSV-1 infection in neurons (O’Connell and Liang,
2016), in contrast to epithelial cells, where an IFN response
is sufficient to control the infection and autophagy is not
required (Yordy et al., 2012). However, while autophagy
protects the adult brain from viral encephalitis, contrasting
results have been reported in newborn mice, where autophagy
seems be harmful for the host and to promote neuronal
apoptosis. These results suggest an age-dependent role for
autophagy during brain infection (Wilcox et al., 2015). On
the other hand, autophagy can be modulated by viruses to
improve the production of viral particles during the lytic
phase, or increase their persistence during a latent phase
(O’Connell and Liang, 2016; Lussignol and Esclatine, 2017).
In agreement with this notion, key roles for autophagy during
viral latency and reactivation have been reported for infections
with gammaherpesviruses (Silva and Jung, 2013). It is known
that viral persistence of EBV can be stimulated by autophagy,
due to its involvement in the regulation of cell survival (Pujals
et al., 2015). In contrast, MHV68 reactivation was stimulated by
autophagy due to its regulation in systemic inflammation, while
HHV8 blocked autophagy during latency (Leidal et al., 2012;
Park et al., 2016), However, studies elucidating specific roles
for autophagy in the context of HSV-1 latency and reactivation
are lacking.

Regarding lytic infection with HSV-1, this virus has evolved
mechanisms to inhibit autophagy through its neurovirulence
factor named infected cell protein 34.5 (ICP34.5, or gamma-
34.5), as well as viral protein US11 (Figure 2B; O’Connell
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and Liang, 2016). Interestingly, viral ICP34.5 can block
autophagy by several pathways, one of them is the inhibition
of BECN1-mediated autophagy. Previous reports using
co-immunoprecipitation assays showed that N-terminal
domain of ICP34.5 binds directly to Beclin-1 autophagy protein
and interferes with autophagosome biogenesis (Orvedahl
et al., 2007). On the other hand, the C-terminal domain
recruits the host phosphatase PP1α, which reverts eIF2α
phosphorylation mediated by PKR inhibiting autophagy (Wilcox
and Longnecker, 2016). More recently, another target for
ICP34.5 has been reported, namely tank binding kinase 1
(TBK1; Verpooten et al., 2009). Because TBK1 is an essential
autophagy-related protein which phosphorylate autophagy
receptors (i.e., autophagic adaptor optineurin) to regulate
the recruitment of cargo into autophagosomes (Weidberg
and Elazar, 2011), it is possible that ICP34.5 could also
indirectly inhibit autophagy by modulating TBK1 signaling.
However, further studies are needed to confirm this hypothesis.
Furthermore, US11 a tegument viral protein that is expressed
late in the replication cycle of HSV-1, has been reported
to interact directly with PKR and inhibit subsequent eIF2α
phosphorylation (Figure 2B; Lussignol et al., 2013). A study
using HeLa cells (human epithelial cervix) and fibroblast cells
showed that US11 can inhibit autophagy and autophagosome
formation. Moreover, the authors reported that earlier
expression of US11 in cells infected with a mutant virus
deleted in the ICP34.5 gene allowed the cells to inhibit
virus-induced autophagy (Lussignol et al., 2013). The role
of this protein in the context of neuronal infection remains to
be elucidated.

Notably, HSV-1 produces accumulation of intracellular
autophagosomes in human neuroblastoma cells and increases
amyloid beta (Aβ) accumulation in autophagy compartments in
these cells (Santana et al., 2012). Interestingly, these observations
suggest a role for HSV-1 in the development of AD. Moreover,
because autophagy is essential for neuron homeostasis, HSV-1
could contribute to CNS damage through the modulation of
autophagy as described below, enhancing neurodegeneration.

On the other hand, a decrease in autophagy has been reported
in several neurodegenerative disorders, which proposes that this
process is a factor that contributes to protein accumulation
and cellular toxicity due to problems in protein folding, as
in AD (Menzies et al., 2011). In addition, alterations in
the degradation of myelin debris could be affecting MS by
promoting its extracellular accumulation (Neumann et al., 2009;
Liang and Le, 2015). Also, dysfunctional autophagy could
play a role in HSV-1 persistence and reactivation in neurons,
similar to other herpesviruses (Silva and Jung, 2013). Hence,
further studies evaluating the role of autophagy under these
conditions are needed. Importantly, it has been proposed that
the up-regulation of autophagy could work as a therapeutic
target to treat these diseases (Thellung et al., 2018), and
autophagy stimulation has been shown to significantly suppress
HSV-1 infection in various cell types, as evidenced by assessing
HSV-1 genomes and virus titers that indicated that inducing
autophagy strongly suppresses HSV-1 infection (Yakoub and
Shukla, 2015).

HSV-1 Induces Mitochondrial Dysfunction
Mitochondria are essential organelles for energy production
and also play key roles in modulating cell fate (Friedman
and Nunnari, 2014). Numerous mitochondria proteins encode
for components related to the respiratory chain that give
rise to high amounts of energy in the cell, such as the
cytochrome c oxidase subunit 1 (CO1; Nicholls and Gustafsson,
2018). Yet, mitochondria function is also essential for neuronal
processes involving Ca2+ fluxes and homeostasis, which
play important roles on the stability of action potentials
in the plasmatic membrane of these organelles, promotion
of protein folding through chaperones and axonal transport
and synapse processes, among others (Knott et al., 2008).
Importantly, mitochondria occupy about 40% of the cytoplasmic
volume in neuronal cells (Fieni et al., 2012). Therefore,
mitochondria imbalance has been associated with multiple
neurodegenerative diseases, such as AD, Parkinson and MS,
among others (Area-gomez et al., 2018; Grünewald et al., 2018;
Kozin et al., 2018).

In AD, accumulation of Aβ-protein aggregates in the brain
resulted in mitochondria dysfunction, which was associated
with a decline in mitochondrial membrane potential and an
increase in the production of reactive oxygen species (ROS;
Oka et al., 2016; Rönnbäck et al., 2016). Also, in an animal
model of AD, intracellular accumulation of the tau protein was
shown to produce a decrease in mitophagy and subsequent
mitochondria dysfunction that affected synaptic communication
(Hu et al., 2016; Pérez et al., 2018). Additionally, deletion
of mitochondria DNA (mtDNA) and mtDNA rearrangements
were found in post-mortem human brain samples in AD
(Chen Y. et al., 2016).

On the other hand, mitochondria abnormalities have
been reported during the development and progression of
MS disease (Kalman et al., 2007; Mao and Reddy, 2010;
Patergnani et al., 2017), such as decreases in mtDNA copy
numbers in the brains of patients with MS (Blokhin et al.,
2008; Campbell et al., 2011). Also, anomalous mitochondria
proteins, as well increased amounts of free radicals and
oxidative damage were observed in MS (Mao and Reddy,
2010). In an experimental autoimmune encephalitis (EAE)
model, mitochondria dysfunction was induced by protein
inactivation of complexes of the respiratory chain (Qi et al.,
2006; Mahad et al., 2008). Interestingly, mitochondria content
within axons oscillated between myelinated, remyelinated and
demyelinated axons in post-mortem tissues from patients with
MS, with mitochondria content increased in remyelinated
axons (Zambonin et al., 2011). Also, the number of mobile
mitochondria did not differ between remyelinated and
myelinated axons, but their numbers were significantly less
in demyelinated axons (Zambonin et al., 2011). Importantly,
it has been reported that cell infection with HSV induces
mitochondrial dysfunction (Figure 2C; Ohta and Nishiyama,
2011; Martin et al., 2014b), such as morphological changes and
altered migration patterns in epithelial cells, where mitochondria
migrate toward the perinuclear region of cells to join UL41 and
UL46 tegument viral proteins, possibly to favor its replication
cycle (Murata et al., 2000).

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 February 2019 | Volume 13 | Article 46

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Duarte et al. HSV-1 Interrelationship With Neurodegeneration

HSV-1 has also been reported to alter mitochondria
respiration in infected neurons, as evidenced through a block in
the mitochondria electron-transport chain between complexes
II and III at 12 h post-infection. Importantly, this process was
mediated by the US3 viral protein (Derakhshan et al., 2006).
Furthermore, a decrease in ATP and lactate levels in infected
cells, as well as lower mitochondria membrane potential was
observed at a later time post-infection (24 hpi; Derakhshan
et al., 2006). Additional reports have suggested that this process
would be associated with an induction of the degradation of host
mtDNA after HSV-1 infection and that this process would be
mediated by the viral protein UL12.5 (Figure 2C; Saffran et al.,
2007; Corcoran et al., 2009).

Interestingly, although induction of mitochondria biogenesis
has been reported in HSV-1-infected neurons at 18 hpi, as
determined by an increase in molecular markers, such as PGC1α
and TFAM (Martin et al., 2014b), mitochondria function was
impaired upon HSV-1 infection in neuronal cells, in which the
motility and morphology of mitochondria were severely affected
through a mechanism that involved increased intracellular Ca2+

and reduced recruitment of kinesin-1, a protein necessary
for mitochondria transport along microtubules (Kramer and
Enquist, 2012). More recently, a genome-wide transcriptomic
study in post-mortem human HSE brain tissues showed a greater
reduction in mitochondria transcripts in HSE brain tissues than
control tissues (Wne,k et al., 2016). Similar results were evidenced
in in vitro cultures with astrocytes infected with HSV-1, in which
astrocytes displayed mitochondria damage with ultra-structural
changes and reduced CO1 transcripts (Wne,k et al., 2016). These
reports suggest that interference with mitochondria function
by HSV-1 could significantly contribute to the pathogenesis of
neurodegenerative disorders.

HSV-1 Induces Oxidative Stress
Multiple studies have reported that infection with HSV-1
increases the levels of ROS, a marker of oxidative damage in the
cell, in brains infected with this virus, which could contribute
to neurotoxicity associated with HSE (Kavouras et al., 2007;
Schachtele et al., 2010). A recent study reported that ROS
levels in microglia are increased after infection with HSV-1
and that this process is dependent on Toll-like receptor 2
(TLR2) and p38 MAP kinase, as well as ERK1/2 signaling
pathways (Schachtele et al., 2010). Furthermore, another study
assessing HSV-1-infected neural cells reported an increase in
ROS levels after infection with this virus (Kavouras et al., 2007).

Other markers related to oxidative stress are lipid
peroxidation products, such as 4-hydroxy-2-nonenal (HNE)
which is released at high levels early after the infection of
neurons with HSV-1. HNE is one of the main products produced
upon lipid peroxidation, which was also reported in HSV-1
latent infection (Valyi-Nagy et al., 2000; Kavouras et al., 2007).
Moreover, quantification of the levels of F4-neuroprostanes
(F4-NP) and F2-isoprostanes (F2-IP), which are products
derived from arachidonic acid (AA) and docosa-hexaenoic
acid (DHA), has been suggested to provide information on the
magnitude of oxidative damage occurring in the brain (Patel
et al., 2001). In this regard, murine brains undergoing HSV-1

encephalitis displayed chronic inflammation accompanied
by moderately-elevated levels of F2-IP, while F4-NP levels
remained normal (Milatovic et al., 2002). Furthermore, two
other markers associated with oxidative damage detected during
HSE in mice were inducible nitric oxide synthase (iNOS)
and the enzyme heme oxygenase-1 (HO-1; Marques et al.,
2008a). Indeed, HSV infection increased the expression of
these genes in the brain of mice 7 days post-infection, which
remained elevated for 21 days. Although early up-regulation
of these enzymes are involved in the host antiviral response,
an overproduction of nitric oxide could be detrimental to
the CNS and lead to brain damage (Barañano and Snyder,
2001). In addition, 3-nitrotyrosine, 8-hydroxydeoxyguanosine
(8-OH-dG) and 8-isoprostane levels were also found to be
elevated in the brain tissue of mice upon HSV-1 infection
and microglia presented increased levels of iNOS expression
(Marques et al., 2008a).

Notably, recent studies indicate that oxidative stress is
associated with neurodegenerative diseases, such as AD and
MS (Di Domenico et al., 2017; Umeno et al., 2017; Feitosa
et al., 2018). For instance, such studies show that AD patients
overall display increased ROS levels, while a reduced antioxidant
capacity (Gubandru et al., 2013; Yang et al., 2016; Wojsiat
et al., 2018). Importantly, ROS generation is associated with
Aβ-protein aggregates, which are known to promote synaptic
dysfunction (Ahmad et al., 2017; Hilt et al., 2018). Furthermore,
the host HO-1 enzyme was found to be elevated in microglia in
an AD model (Xing et al., 2014). Noteworthy, pharmacological
induction of HO-1 has been reported to elicit neuroprotective
effects against the neurotoxic Aβ-protein aggregates (Wang
et al., 2016) and hamper the replication of HSV in a human
neuronal cell line, although this was determined using HSV-2
(Ibáñez et al., 2017). Also, NO derived from the dimerization
of neuronal NOS (nNOS), a component that has been reported
to have neuroprotective effects, was found to be altered in
AD and likely contribute to the disease (Kwon et al., 2016).
Additionally, iNOS has been shown to be upregulated in AD,
resulting in NO production and an increase in 3-nitrotyrosine
levels, a process that has been found to be mediated by Aβ-
protein (Kummer et al., 2011; Di Domenico et al., 2012).
Moreover, lipid peroxidation is increased in AD, as high
levels of F-neuroprostanes, F-isoprostanes and 4-HNE were
detected in such patients, all products associated with Aβ-
peptide (Völkel et al., 2006; Reed et al., 2008; Montine et al.,
2011; Gwon et al., 2012; Miller et al., 2014). In MS elevated
levels of ROS production have also been reported, which
contribute to demyelination and axonal damage (Choi et al.,
2015). Interestingly, in this case HO-1 expression was found
to be downregulated in peripheral blood mononuclear cells
(PBMCs) of MS patients (Fagone et al., 2013) and lipid
peroxidation was associated with MS (Mattsson et al., 2007).
Noteworthy, high levels of F-NP and F2-IP, have also been
detected inMS patients (Mattsson et al., 2007; Miller et al., 2014).
However, the roles of oxidative stress in neurodegenerative
disorders remain controversial due to the fact that antioxidant
therapies have not been found to improve these disease
(Mazzanti and Di Giacomo, 2016).
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HSV-1 Alters the DNA Damage Response
The DNA damage response (DDR) is an essential pathway of the
cell that is responsible for maintaining genome stability (Hakem,
2008). When DNA lesions occur, such as double strand breaks
(DSBs) or single strand breaks (SSBs), this system produces a
cell-cycle arrest and activates DNA repair networks (Giglia-Mari
et al., 2011). Importantly, non-perfect repair of DSBs or SSBs,
such as non-homologous end joining (NHEJ) can produce DNA
mutations that may ultimately lead to cellular death by apoptosis,
although they may also contribute to cell survival (Hakem, 2008;
Giglia-Mari et al., 2011).

Importantly, impaired DNA repair has been widely
documented in several neurodegenerative disorders
(Madabhushi et al., 2014). For instance, NHEJ has been
reported to be deficient in AD neurons (Kanungo, 2016).
Additionally, transgenic mice used as a model of AD disease
were shown to have reduced BRCA1 levels, an important DNA
repair factor, which was accompanied by an increase in DSB
and synaptic impairments, among other symptoms associated to
AD (Suberbielle et al., 2015). Moreover, it has been suggested
that polymorphisms in nucleotide excision repair genes may be
associated with a risk of undergoing MS (Briggs et al., 2010), and
another study found a positive correlation between the levels of
phosphorylated γH2AX (a marker for DNA damage) with MS
severity (Grecchi et al., 2012).

Some viruses have been reported to modulate different DDR
pathways resulting in both, up- or down-regulation of several
factors related to this pathway that favor their replication
cycles (Turnell and Grand, 2012). In this regard, a study
reported that DDR is beneficial for HSV-1 viral replication
in non-differentiated cells, but was abolished in neuronal cells
(Lilley et al., 2005). However, contradictory results have been
recently reported, in which HSV-1 infection produced SSBs
and DSBs in rat embryo cortical neurons and reduced the
expression of Ku80, a component involved in NHEJ which is
involved in DSB repair (De Chiara et al., 2016). It is possible
that DDR dysfunction in neurons during HSV-1 infection may
contribute to latency, yet with no DNA lesions occurring during
the latent state.

CNS INFLAMMATION INDUCED BY HSV-1

Role of Toll-Like Receptors in Brain
Inflammation by HSV-1
TLRs are components of the immune system that contribute at
providing the host a first line of defense against viral infections
(Xagorari and Chlichlia, 2008). However, while several TLRs
have been associated with viral control and clearance, brain
inflammation may be triggered by the activation of TLRs in
response to HSV reactivations occurring in this tissue in a
subclinical form (Kurt-Jones et al., 2004). For instance, TLR-2
and TLR-4 activation were reported during HSV-1 infection
of astrocytes, with subsequent IFN type-I expression and
up-regulation of the pro-inflammatory cytokine IL-6, which was
dependent of viral replication (Villalba et al., 2012). Furthermore,
overregulated TLR2 and TLR4 responses in PBMCs has been
reported in AD patients (Zhang et al., 2012) and that continuous

TLR2 activation contributes to the neuroinflammation process
(McDonald et al., 2016). Also, Aβ-protein aggregates have
been reported to mimic damage-associated molecular patterns
(DAMPs), promoting the generation of a pro-inflammatory
environment in microglia cells through TLR4 activation (Walter
et al., 2007). Although this response is responsible for Aβ

clearance, a sustained pro-inflammatory environmental could be
detrimental for the host (Heneka et al., 2013; Chen L. et al., 2016;
Go et al., 2016). Additionally, TLR2 and TLR7 responses are
over-stimulated in PBMCs in MS patients when compared with
healthy controls (Hamid et al., 2016; Fujiwara et al., 2018).

On the other hand, although some TLRs have been shown
to have detrimental effects in brain inflammation, other
studies have reported that pattern recognition receptors, such
as TLR3 can have important functions in ameliorating the
progression of MS (Marta, 2009). In the EAE mouse model,
TLR3 and TLR9 responses were found to be downregulated
(Marta, 2009), and an activator of TLR3 rescued cellular
infiltration in neuronal tissue and reduced demyelination
(Evangelista et al., 2016; Dias et al., 2018). Interestingly, TLR3 has
gained special attention because of its role in the control of
HSV-1 infection of the CNS. TLR3 is located in intracellular
compartments and has the capacity to sense double-stranded
viral RNA (dsRNA), which activates type-I IFN signaling
pathways and the production of cytokines (Figure 3A; Okun
et al., 2011). TLR3 has been reported to act as a genetic
factor associated with HSE, both as a dominant and recessive
autosomal gene (Zhang et al., 2013). Importantly, its expression
has been found to be increased in the CNS of human brains
with HSE, as well as in those with neurodegenerative diseases
(Jackson et al., 2006). In contrast, deficiencies in TLR3 function
have been reported in children and young individuals that
develop HSE during childhood (Zhang et al., 2007; Guo et al.,
2011). Furthermore, an autosomal recessive deficiency in the
intracellular protein UNC-93B, as well as different heterozygous
mutations in TBK1, the TNFR-associated factor 3 (TRAF3), IFN
regulatory factor 3 (IRF3), TYK2, MAVS, TRIF and STAT have
been reported to act as factors involved in TLR3 signaling and the
activation of IFN responses, and are classified as genetic etiologic
mutations associated to HSE (Casrouge et al., 2006; Pérez de
Diego et al., 2010; Herman et al., 2012; Mørk et al., 2015).

In vitro studies with induced pluripotent stem cells (iPSC)-
derived cortical and trigeminal neurons that contain mutations
in TLR3 pathways, described that these cells are highly
susceptible to HSV-1, due to impaired TLR3-IFN immunity
(Zimmer et al., 2018). However, TG neurons that were
pre-stimulated with IFN-β developed an anti-HSV-1 state in
TLR3-deficient trigeminal neurons, an effect that was not
observed in cortical neurons, thus showing different roles for
TLR3 in the CNS and peripheral nervous system during infection
with HSV-1 (Lafaille et al., 2012). A recent study reported
that HSV-1-infected microglia conferred a STING-dependent
antiviral state to neurons and primed type-I IFN production in
astrocytes through a TLR3 pathway (Reinert et al., 2016). On the
other hand, a recent study reported that TLR3 is necessary for
inducing innate immune responses against HSV-1 in neurons
as well as astrocytes, but not in microglia (Sato et al., 2018).
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FIGURE 3 | HSV-1 induces inflammation in the brain. (A) During acute infection of the brain, HSV-1 leads to the infiltration of macrophages and neutrophils.
Moreover, HSV-1 infection induces the expression of pro-inflammatory molecules in this tissue, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6,
IL-8, macrophage inflammatory protein 1-α (MIP-1α), chemokine (C-C motif) ligand 5 (CCL5) and chemokine CXCL10 by microglial cells, as well as TNF-α production
by macrophages. Astrocytes in turn produce type-I interferon (IFN) mediated by TLR3 engagement in response to HSV-1. These soluble molecules will affect the
permeability properties of the blood brain barrier (BBB) and potentially exacerbate brain inflammation, potentially leading to neuron insult. (B) HSV-1 latent CNS
infection is characterized by the infiltration of CD8+ and CD4+ T cells. Importantly, these T cells are localized near latently infected neurons and are detected in a
3:1 ratio (CD8+ to CD4+ T cells). Moreover, CD8+ T cells can secrete IFN-γ. Prolonged microglial activation in the brain by HSV-1 infection produces increased
MHC-II expression in CD45intCD11b+ cells, which lasts up to 30 days post-infection. As a consequence of immune cell infiltration into the brain during both, acute
and persistent HSV-1 infection of the brain, cytokines such as TNF-α and IL-1β can affect the BBB, which can exacerbate brain inflammation. Importantly, synergistic
effects between TNF-α and IFN-γ can lead to increased nitric oxide-induced neurodegeneration and demyelination in the brain.

Interestingly, this process was mediated by TLR3 recruitment
to the metabolic checkpoint kinase complex mTORC2, which
induces chemokine production and TLR3 trafficking to the cell
periphery thanks to the RAb7 GTPase, a protein involved in
intracellular traffic processes (Sato et al., 2018).

Taken together, TLR responses have both beneficial
and deleterious effects over HSV-1 infection and some
neurodegenerative disorders. On one hand, alterations in
TLR signaling pathways by HSV-1 infection may increase
neurodegeneration processes already present in some
neurodegenerative diseases. On the other hand, patients
with neurodegenerative disorders that have alterations in TLRs
responses might be unable to control viral infections and
thus, would be more susceptible to viral reactivations than
otherwise healthy individuals which could be associated with
relapses in MS or worsening prognosis in AD. Nevertheless,
these findings suggest that these pathologies could be treated
with TLR-modulating molecules. Interestingly, recent studies
have shown that the administration of TLR2, TLR4 and
TLR9 antagonists may have positive effects in AD and MS
(Gambuzza et al., 2014; Gooshe et al., 2014). Furthermore,
TLR3 agonists could also be used as approaches for dampening
the pathogenesis of patients suffering from such diseases (Boivin
et al., 2008; Gambuzza et al., 2015). Hence, adequate targeting
of TLR pathways could potentially reduce inflammatory
processes both, in the context of HSV-1 infection and
neurodegenerative disorders.

HSV-1 Produces Immune Cell-Mediated
Neuroinflammation
Importantly, HSV-1 can trigger proinflammatory responses by
several cell types that it infects in the CNS, both in vitro and
in vivo (Gnann andWhitley, 2017). Importantly, non-productive
HSV-1 infections can also lead to the expression of cytokines
and pro-inflammatory molecules, such as interleukin-1β (IL-
1β), TNF-α, IL-6, IL-8, macrophage inflammatory protein
1α (MIP-1α), chemokine (C-C motif) ligand 5 (CCL5) and
chemokine CXCL10 in humanmicroglial cells (Lokensgard et al.,
2001). Additionally, HSV-1 brain infections have been reported
to display neuroimmune responses which persist in the absence
of detectable virus replication (Conrady et al., 2010).

Early during HSE, the immune response in the brain is
dominated by the influx of macrophages and neutrophils, which
play critical roles in viral clearance (Figure 3A; Marques et al.,
2008b; Terry et al., 2012). Notably, infiltrating macrophage
populations have been shown to be the major source of TNF-α
and microglial cells express high levels of IL-1β (Figures 3A,B;
Fields et al., 2006). These two cytokines are involved in the
upregulation of endothelial cell adhesion molecules, which
likely affect the blood-brain barrier (BBB), which could
exacerbate brain inflammation (Weiser et al., 2007). In addition,
T lymphocytes have been reported to be a predominant leukocyte
cell type infiltrating the brain at 14 days post-infection and is
composed largely by CD8+ T cells that persist in this tissue up
to 30 days post-infection in mice without detectable infectious
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virus or virus replication products (Marques et al., 2008b; Terry
et al., 2012). Importantly, infiltrating CD8+ T cells express IFN-γ
which is known to synergize with TNF-α to increase NO-induced
neurodegeneration and demyelination in the brains of mice
(Blais and Rivest, 2004). Such infiltrating T cells likely recognize
the HSV-1 immunodominant epitope gB498–505, derived from
the viral glycoprotein B (gB; St Leger et al., 2011) and may
mediate the death of these cells during acute infection or
neuroinflammation during viral latency (Chevalier et al., 2011).
Interestingly, MHC-I expression in neurons has been reported to
play a positive role in the development of synaptic plasticity and
axonal regeneration (Cullheim and Thams, 2010), although other
studies suggest that constitutive expression of MHC-I in neurons
may be involved in neurodegenerative disorders by enhancing T
cell-mediated CNS degeneration (Cebrián et al., 2014).

On the other hand, persisting lymphocytic cell infiltrations
and elevated levels of cytokine transcripts (IFN-γ, TNF-α), as
well as chemokines (CXCL10, CCL5) have been reported in
human TG (Theil et al., 2003). In this regard, it has been
hypothesized that this process may be the consequence of
low-level expression of IE and E viral genes during latency
(Du et al., 2011). Concomitantly, HSV-1 reactivation from
its latent phase was demonstrated by the detection of viral
ICP4 protein in the TG and cerebral cortex of mice 60 days
post-infection, and was accompanied by the up-regulation of
markers of neuroinflammation, such as TLR4, IFN α/β, and
phosphorylated IRF3 (p-IRF3; Martin et al., 2014a). In line
with CNS inflammation, prolonged microglial activation has
also been reported in the brains of mice latently-infected with
HSV, as indicated by high MHC class-II expression levels in
CD45intCD11b+ cells up to 30 days post-infection (Figure 3B;
Marques et al., 2008b).

Notably, several studies indicate that cytokines and
chemokines could be involved in the pathology of multiple
diseases associated to neurodegeneration (Reale, 2015). In AD
high levels of pro-inflammatory cytokines, such as TNF-α,
IL 1β and IL-6 in cerebrospinal fluid and peripheral blood of
patients are expressed (Iarlori et al., 2005; Latta et al., 2015).
Cytokines have also been found to be expressed near amyloid
peptide deposits in post-mortem tissues (Gomez-Nicola and
Boche, 2015). Likewise, immune factors seem to play a key role
in MS, with IFN-γ and TNF-α secreted by brain-infiltrating
T cells associated to axonal injury and elevated levels of these
cytokines in peripheral blood samples of patients undergoing
symptomatic relapses (Muller et al., 2004; Dendrou et al., 2005;
Reale et al., 2012). Taken together, these findings suggest that
HSV-1-induced expression of inflammatory factors, together
with an immune-activated state in the brain could contribute
to the onset or exacerbation of neuron demyelination or
neurodegenerative diseases.

EVIDENCE REGARDING A ROLE OF HSV-1
IN NEURODEGENERATIVE DISEASES

Multiple Sclerosis
MS is an autoimmune inflammatory disorder of the brain
and spinal cord in which multifocal autoreactive lymphocytic

infiltration leads to damage of myelin and axons (Compston
and Coles, 2008). Such damage disrupts the ability of neurons
to transmit nerve impulses, resulting in a widespread of disease
manifestation and numerous symptoms including physical,
sensorial, cognitive, and sometimes psychiatric problems (Miller
et al., 2005). The last stage of the disease is associated with a
widespread degeneration of the white and gray matter, resulting
in brain atrophy (Dendrou et al., 2005). Although, the etiology
of MS is still unknown the development of the disease is
associated with an interplay between the immune system and
environmental factors, including viral infections in genetically
susceptible individuals (Beecham et al., 2013). Herpesviruses
have long been mentioned as potential candidate viruses that
could cause or enhance MS (Virtanen and Jacobson, 2012;
Leibovitch et al., 2018). Importantly, several clinical studies
have highlighted an association between HSV-1 and MS. The
discovery of HSV-1 genetic material in tissue samples, body
fluids or blood cells of patients with MS has given space for this
plausible hypothesis. HSV-1 was isolated from the cerebrospinal
fluid of a patient during a first episode of MS (Bergström et al.,
1989). Before that, HSV-1 had been isolated from the brain of
a patient with MS (Gudnadottir et al., 1964). More recently, a
case-control study evaluated the prevalence of HSV-1 in PBMCs
of patients with relapsing-remitting MS (RRMS) comparing it
with that of healthy controls. Noteworthy, HSV-DNA tested
positive in 45.1% of patients withMS and 3.4% of healthy subjects
(Najafi et al., 2016). Another study also indicated that HSV-1
reactivates in the peripheral blood of patients with MS during
clinical acute episodes and probably plays a role in triggering MS
relapses (Ferrante et al., 2000). Finally, an increased presence of
HSV-1 DNA has been reported in postmortem MS brain tissues,
as compared to a control group and HSV-DNA was found in
more active plaques than inactive plaques in brain tissue biopsies
(Sanders et al., 1996).

On the other hand, HSV-1 seropositivity has been associated
with increased risk of suffering MS in individuals that do not
have the DRB1∗15 allele, or otherwise low-risk individuals that
have the DRB1∗15 allele (Waubant et al., 2011). These findings
support the possibility that HSV-1 may play a relevant role in
the development of MS in individuals with specific genotypes.
Likewise, mice infected with HSV-1 may or may not develop
demyelination depending on the mouse and virus strain assessed
(Kastrukoff et al., 2012). Studies using a recombinant HSV-1
expressing IL-2 reported the presence of auto-reactive T cells
in the brain and CNS demyelination, supporting the hypothesis
that both, virus and IL-2 play roles in the demyelination
process and that HSV-1 could be important at initiating the
destruction of myelin in the presence of elevated levels of IL-2
(Osorio et al., 2005; Zandian et al., 2011; Mott et al., 2013).
Gene and environment interactions could also influence the
outcome of HSV-1 infection. A recent study showed that the
HSV-1 host/pathogen interactome is highly concentrated in
susceptibility genes for neurological disorders, primarily for MS,
with enrichment values at 4-fold, suggesting that HSV-1 may
contribute to several diseases in a gene-dependent manner by
modulating essential pathways involved in the onset or severity
of this neurodegenerative disease (Carter, 2017).
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On the other hand, microorganisms may also contribute
to the pathogenesis of MS by inducing the activation and
clonal expansion of self-reactive lymphocytes through molecular
mimicry (Wucherpfennig and Strominger, 1995). Moreover, the
Hy.1B11 T cell receptor (TCR) originated from a patient with
MS showed cross-reactivity with a peptide derived from HSV-1
(UL15154–166), with a similar binding topology as the human
myelin basic protein peptide (Sethi et al., 2013).

Although, HSE has also been reported to be a trigger of
brain autoimmunity by detecting anti-N-methyl-D-aspartate
(anti-NMDAR) antibodies in some patients after HSE disease
(Armangue et al., 2014), the potential relationship between
HSV-1 and autoimmunity in MS patients has been largely
discussed and remains controversial, as some studies have shown
contradictory results (Koros et al., 2014; Sotelo et al., 2014).
Moreover, it is unknown whether HSV-1 brain infection could
either initiate, enhance the progression or be a consequence of
MS disease. In support with this latter statement, several studies
have reported reduced percentages of CD8+ T cells in peripheral
blood of MS patients, which could be associated with impaired
responses against viral infections (Thompson et al., 1986;
Pender et al., 2012). Additionally, a recent study showed that
EBV-specific CD8+ T cells in individuals suffering MS displayed
limited cytokine production, evidencing an exhaustion-like
phenotype (Pender et al., 2017). Moreover, others found that
CD8+ CD57+ T cells had increased expression of inhibitor PD-1
on the cell surface in patients with MS, as compared to healthy
individuals and was associated with a negative regulation of
cytotoxic responses against EBV (Cencioni et al., 2017). Hence,
it is possible that defective T cell control of HSV-1 infection in
MS and exhaustion of T cells in patients with MS may lead to
HSV-1 reactivation in these patients, although further studies are
needed to test this hypothesis.

Alzheimer’s Disease
AD is an inflammatory neurodegenerative disease characterized
by cognitive damage leading to dementia (Vinters, 2015). AD
develops with pathological features including the formation of
senile plaques and neurofibrillary tangles (NFTs; Vinters, 2015).
Senile plaques are formed by the accumulation of Aβ, mainly
Aβ1–42 and Aβ1–40, which are produced by the cleavage of the
neuronal Aβ precursor protein (AβPP) and is dependent on
β- and γ-secretases (Bitan et al., 2003). On the other hand,
NFTs are composed of hyperphosphorylated tau proteins (Yang
and Wang, 2018). Glycogen synthase kinase-3β (GSK3β) and
protein kinase A (PKA) have been shown to be involved
in the phosphorylation of tau proteins, which are in turn
important in microtubule assembly and the synaptic plasticity
and function of neurons (Kolarova et al., 2012). However, when
tau proteins are hyperphosphorylated, it has been suggested that
they may produce microtubule destabilization, synaptic injury
and neurodegeneration (Lerchundi et al., 2011). Although the
exact mechanism leading to this outcome is undetermined, gene
susceptibility and brain infection by several microorganisms
has been associated with the pathogenesis of AD, such as
for Chlamydophila pneumonie (Gérard et al., 2006), Borrelia
burgdorferi (Miklossy, 2011) and HSV-1 (Itzhaki, 2014, 2016),

among others (Lurain et al., 2013; Carbone et al., 2014), which
could be associated with their ability to cause chronic infections
in the host. For instance, HSV-1 DNA has been detected in
brain samples and found to co-localize with Aβ, being more
frequently detected in the brains of AD patients than healthy
controls (72% vs. 24%, respectively; Wozniak et al., 2009).
Furthermore, virus reactivation may play an important role
in the development of AD, as evidenced by the presence of
anti-HSV-1 IgM antibodies in most people suffering from AD
(Lövheim et al., 2014). Notably, the regions of the CNS damaged
during HSE are related to the limbic system, in turn associated
with memory and cognitive processes, which relates to AD with
similar patterns of plaque distribution, supporting an association
between HSV-1 brain infection and AD (Armien et al., 2010;
Piacentini et al., 2014). On the other hand, HSV-1 has been
found in the brains of individuals carrying the type 4 allele of
the apolipoprotein E gen, suggesting that this is a susceptibility
factor in AD (Lin et al., 1995). Noteworthy, patients with this
allele and HSV-1 infection in the brain display an increased
risk of suffering dementia, supporting a role for HSV-1 in AD
(Itzhaki et al., 1997).

Importantly, HSV-1 produces the accumulation of Aβ1–42 and
Aβ1–40, as well as AβPP reduction in human cultured neuronal
cells in vitro, which was related to the up-regulation of β- and
γ-secretase components in those cells (Wozniak et al., 2007).
Similar results have been shown in HSV-1-infected rat cortical
neurons (De Chiara et al., 2010). Interestingly, HSV-1 capsid
has been shown to interact with AβPP leading to abnormal
distribution of this protein in infected cells (Cheng et al., 2011).
This study showed co-localization of VP26-GFP-labeled viral
particles with AβPP in the cytoplasm of epithelial and neuronal
cells infected with HSV-1, which allowed faster transportation
of viral capsids along neurons (Cheng et al., 2011). Another
study demonstrated that gB of HSV-1 shares 67% homology
with the carboxyl terminal region of Aβ1–42, and that a synthetic
peptide of gB is able to self-assemble into β-sheets with similar
conformation to Aβ and produce accumulation of neurotoxic
Aβ fibrils (Cribbs et al., 2000). Additionally, HSV-1 has been
shown to produce calcium-dependent GSK3β activation, which
translated into hyper-phosphorylation of tau and AβPP proteins,
as well as the accumulation of Aβ with subsequent reductions in
the activity of CREB-producing neurodegeneration associated to
neuronal injury (Piacentini et al., 2015).

Recently, new evidence supporting an infection-related
hypothesis for AD has been reported. It has been suggested that
Aβ accumulation in the brain may be given by the fact that this
peptide acts as an antimicrobial peptide (AMP) related to innate
immunity (Fulop et al., 2018). Interestingly, Soscia et al., 2010
were the first to show an antibacterial and antifungal activity
for Aβ peptide against numerous pathogens using microdilution
susceptibility tests in vitro. Furthermore, they reported that brain
homogenates from AD patients had higher antimicrobial activity
than brains from non-AD individuals. Importantly, antiviral
activity for Aβ, particularly against the influenza virus has also
been reported (White et al., 2014), and that Aβ1–42 has greater
antiviral effect than Aβ1–40 is consistent with a previous report
that showed that Aβ42 had increased antibacterial effects as
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compared to Aβ1–40 (Soscia et al., 2010; White et al., 2014). More
recently, another study reported that Aβ can prevent infection
by HSV-1 in fibroblasts, epithelial and neuronal cells (Bourgade
et al., 2014), and a study using transgenic 5XFAD mice showed
that Aβ peptides can protect the host against brain infections with
Salmonella enterica serovar Typhimurium, HSV-1 and HHV-6
(Kumar et al., 2016; Eimer et al., 2018). Taken together, these
findings suggest that subclinical reactivation of HSV-1 in the
brain of patients with AD may promote increased deposition of
Aβ in this tissue, thus accelerating disease progression.

CONCLUDING REMARKS

The high prevalence of HSV-1 infection in humans from all over
the world and somewhat the low frequency of neurodegenerative
diseases in the population (which is nevertheless in steady
growth), have likely obscured a possible relationship between
infection with this virus and neurodegenerative pathologies.
However, the fact that HSV-1 can reach the brain by several
mechanisms and modulate numerous key cellular processes,
such as apoptosis, autophagy and cellular oxidation suggest
that neuron infection with this virus can lead to brain damage
because of direct damage to its cells. Furthermore, CNS damage
is likely favored by the inflammation of the brain and the
secretion of numerous immune-modulatory cytokines in this
tissue. Importantly, some studies provide compelling data that
suggest close ties between HSV-1 infection of the brain and
neurodegenerative diseases, which would not be surprising given

that other herpesviruses have recently been associated with
MS. These findings call for further studies that corroborate
this possible relationship and evaluate the interrelationship
between HSV-1 and neurodegeneration, assessing for example
how neurodegeneration affects viral reactivation in the brain and
the corresponding underlying molecular mechanisms. Animal
models that undergo HSV-1 infections that recapitulate the
manifestations of disease in humans, with somewhat similar
neurodegenerative disease aspects would be of great utility.
Interestingly, recent studies with tree shrews (Tupaia belangeri),
which are animals that share genomic and transcriptomic
similarities with humans indicate that they may be valuable
for such studies, as they have been reported to display HSV-1-
related diseased manifestations that are similar with those seen
in humans (i.e., latent infections and reactivations) and to suffer
neurodegenerative disorders that may model AD and multiple
sclerosis (Li et al., 2016; Xiao et al., 2017).
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