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Electroencephalography (EEG) measures the brain’s electrophysiological spatio-
temporal activities with high temporal resolution. Multichannel and broadband analysis
of EEG signals is referred to as EEG microstates (EEG-ms) and can characterize such
dynamic neuronal activity. EEG-ms have gained much attention due to the increasing
evidence of their association with mental activities and large-scale brain networks
identified by functional magnetic resonance imaging (fMRI). Spatially independent
EEG-ms are quasi-stationary topographies (e.g., stable, lasting a few dozen milliseconds)
typically classified into four canonical classes (microstates A through D). They can
be identified by clustering EEG signals around EEG global field power (GFP) maxima
points. We examined the EEG-ms properties and the dynamics of cohorts of mood
and anxiety (MA) disorders subjects (n = 61) and healthy controls (HCs; n = 52). In
both groups, we found four distinct classes of EEG-ms (A through D), which did not
differ among cohorts. This suggests a lack of significant structural cortical abnormalities
among cohorts, which would otherwise affect the EEG-ms topographies. However, both
cohorts’ brain network dynamics significantly varied, as reflected in EEG-ms properties.
Compared to HC, the MA cohort features a lower transition probability between EEG-ms
B and D and higher transition probability from A to D and from B to C, with a trend
towards significance in the average duration of microstate C. Furthermore, we harnessed
a recently introduced theoretical approach to analyze the temporal dependencies in
EEG-ms. The results revealed that the transition matrices of MA group exhibit higher
symmetrical and stationarity properties as compared to HC ones. In addition, we found
an elevation in the temporal dependencies among microstates, especially in microstate B
for the MA group. The determined alteration in EEG-ms temporal dependencies among
the cohorts suggests that brain abnormalities in mood and anxiety disorders reflect
aberrant neural dynamics and a temporal dwelling among ceratin brain states (i.e., mood
and anxiety disorders subjects have a less dynamicity in switching between different
brain states).
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INTRODUCTION

Electroencephalography (EEG) has been used for studying
and phenotyping various types of neuropsychiatric and
neurodegenerative disorders (Niedermeyer and Da Silva, 2005;
Allen and Reznik, 2015; Horvath et al., 2018). Recent efforts
aim to discover and provide a cost-effective, reliable markers
for aberrant brain activity patterns relevant to major psychiatric
disorders. Distinct topographic representation of the EEG,
lasting a few dozens of a millisecond, coined an EEG-microstates
(EEG-ms), provides an opportunity and a novel tool to discover
unique markers of different brain disorders (Khanna et al., 2015).
EEG-ms was first introduced by Lehmann et al. (1987), where it
was revealed that EEG could be segmented in a few quasi-stable
states (microstates). The segmentation of EEG signals is carried
out at extrema points of the EEG global field power (GFP), which
can maintain a high signal-to-noise ratio and provide a reliable
source for identifying the microstates. Two seminal reviews of
EEG-ms were presented in Khanna et al., 2015 and Michel and
Koenig (2018).

The functional interpretation of EEG-ms could be explained
as coordinated and synchronized neuronal current activity
of many neurons that happens to be activated together as
demonstrated in previous studies (Khanna et al., 2015; Michel
and Koenig, 2018). Thus, a change in the topographies of
microstates may be attributed to a change in the orientation or
distribution of the current dipoles (Vaughan, 1980; Lehmann
et al., 1987). The alteration in the properties of EEG-ms
presumably reflects a disruption in the underlying brain
networking processes and information flow. Furthermore,
spatially independent EEG-ms (Lehmann et al., 1987), and
especially temporally independent EEG-ms (Yuan et al., 2012,
2016), were revealed to be correlated with resting state networks
(RSNs), measured by functional magnetic resonance imaging
(fMRI; Britz et al., 2010; Musso et al., 2010; Yuan et al.,
2012). Additionally, other studies reported that EEG-ms are
associated with particular mental processes (Brandeis and
Lehmann, 1989; Brandeis et al., 1995; Koenig and Lehmann,
1996; Pizzagalli et al., 2000; Michel et al., 2001; Britz and
Michel, 2010; Britz et al., 2010, 2014; Michel and Koenig, 2018).
The source localization of EEG-ms was investigated in Custo
et al. (2017), where authors identified seven microstates (A
through G) and localized the source of these microstates. Their
results suggest a common activation among those microstates
in the brain’s main hubs (like the precuneus, anterior and
posterior cingulate cortices, insula, superior frontal cortex, and
other brain regions). Therefore, the EEG-ms can characterize
network alteration or disruption in brain functionality due
to disorders and offer potential biomarkers. Evidence of the
relation between mental processes and EEG-ms has led to
several works to study EEG-ms properties in neuropsychiatric
disorders. Early works of spatially independent EEG-ms focused
on schizophrenia and showedmoderate to substantial differences
in EEG-ms properties between subjects with schizophrenia
and healthy groups (Strik et al., 1995; Lehmann et al., 2005;
Nishida et al., 2013; Andreou et al., 2014; Tomescu et al.,
2014). Other works have also revealed an alteration in EEG-ms

for other diseases, like dementia produced by Alzheimer’s
(Dierks et al., 1997; Strik et al., 1997; Stevens and Kircher,
1998). Some neuropsychiatric illnesses were also shown to
affect certain microstates, including depression (Strik et al.,
1995), panic disorder (Kikuchi et al., 2011), narcolepsy (Drissi
et al., 2016), multiple sclerosis (Gschwind et al., 2016) and
Tourette syndrome (Stevens et al., 1996). In this study, we
specifically focused on mood and anxiety disorders, because
emotion regulation alterations have been consistently described
for these disorders (Campbell-Sills et al., 2006; Aldao and Nolen-
Hoeksema, 2010). Major depressive and anxiety disorders share
highly overlapping symptoms, altered brain networks and brain
region activities [e.g., default mode, executive, salience networks,
and prefrontal cortex, cingulate cortex, hippocampus, and
amygdala (Ressler andMayberg, 2007)]. Therefore, detecting and
characterizing the dynamics of brain neuronal activity through
transient spatial/temporal EEG-ms patterns may provide novel
information and improve our understanding of the mechanisms
of irregularities in cognitive and emotion processing among
psychiatric disorders.

The typical spatially independent EEG-ms analysis is
conducted by locating the peaks of the GFP and then clustering
EEG points around these peaks. For running such an analysis,
the desired number of microstates (clusters) needs to be
specified before running the clustering algorithm. A majority
of EEG-ms studies have used the four canonical microstates
to study group difference (Michel and Koenig, 2018); however,
other studies have identified additional microstates besides
the four canonical ones (Yuan et al., 2012; Custo et al.,
2017). Although using a predefined number of clusters is
arguable, it is preferable to compare among different groups.
We follow the literature by defining the number of desired
microstates (k = 4) for both groups (Michel and Koenig,
2018). Several characteristics for EEG-ms can be extracted,
such as the average duration, the frequency of occurrence,
and transition probabilities. Each property can be interpreted
based on the underlying neural activities. For instance, the
average EEG-ms duration, which represents the temporal
stability of each microstate, while the frequency of EEG-ms
occurrence may represent the tendency of microstates to
be active. The transition probabilities extract the asymptotic
behavior of transitions between microstates (i.e., the likelihood
of switching between different microstates). To further examine
the dynamics in the EEG-ms sequence, we adopted a new
set of features introduced in von Wegner et al. (2017). The
work provides an information-theoretical analysis to investigate
the dynamics of EEG-ms and to assess temporal dependencies
between microstates.

The present study aimed to further explore the possible
association among the EEG-ms dynamic patterns and mood and
anxiety disorders. The objective of this study was to describe
abnormalities of the EEG-ms in mood and anxiety disorders,
primarily focusing on both general EEG-ms properties and
temporal associations within EEG-ms occurrence sequence and
temporal dynamics. As the EEG-ms relates to intrinsic brain
functional networks that are active at rest, we hypothesized that
there should be significant differences in EEG-ms dynamics
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between the mood and anxiety group and the healthy control
(HC) group.

MATERIALS AND METHODS

Participants
Participants were selected from the first 500 subjects of the Tulsa
1000 (T-1000), a naturalistic study assessing and longitudinally
following 1,000 individuals, including healthy comparisons
and treatment-seeking individuals with mood disorders and/or
anxiety, substance use, and eating disorders (Victor et al.,
2018). For this work, the datasets are comprised of 52 HC
subjects (28 females) and 61 naive (un-medicated) subjects
(38 females) with mood and anxiety disorders. The T-1000 study
aims to determine how mood and anxiety disorders, substance
use, and eating behavior organize across different levels of
analysis with a focus on predictors of long-term prognosis,
symptom severity, and treatment outcome. The T-1000 study
is conducted at the Laureate Institute for Brain Research. The
human data used for the analysis were obtained as part of Tulsa
1000 naturalistic study in large, 1000 participants, psychiatric
population. All study procedures were carried out in accordance
with the principles expressed in the Declaration of Helsinki.
After receiving a complete explanation of the study procedures,
all participants provided written informed consent as approved
by the Western Institutional Review Board (WIRB) protocol
#20101611. Participants received financial compensation for
their participation. As described in detail in Victor et al.
(2018), the participants in this work were screened on the basis
of treatment-seeking history and dimensional psychopathology
scores: Patient Health Questionnaire-9 (PHQ-9) ≥10 and/or
Overall Anxiety Severity and Impairment Scale (OASIS)
≥8. Each participant underwent approximately 24 hours of
testing over the course of 1 year, including a standardized
diagnostic assessment, self-report questionnaires, behavioral
and physiological measurements indexing RDoC domains,
and blood/microbiome collection. A structural MRI, resting-
state fMRI, task-based fMRI during reward-related processing,
fear processing, cognitive control/inhibition, and interoceptive
processing were also collected with simultaneous EEG recording.
Please refer to Supplementary Table S1 for detailed information
about the demographics of the dataset. In this study, we used the
EEG data acquired during resting state fMRI and the self-report
questionnaire data.

EEG Data Acquisition
MRI imaging and simultaneous EEG-fMRI was conducted using
a General Electric Discovery MR750 whole-body 3 T MRI
scanner with a standard 8-channel, receive-only head coil array.
A single-shot gradient-recalled EPI sequence with Sensitivity
Encoding (SENSE) was employed for the fMRI acquisition.
EEG signals were recorded simultaneously with fMRI using
a 32-channel MR-compatible EEG system (Brain Products
GmbH) with measuring electrodes arranged according to the
international 10–20 system. ECG signal was recorded using an
electrode on the subject’s back. In order to synchronize the
EEG system clock with the 10 MHz MRI scanner clock, a Brain

Products’ SyncBox device was utilized. The EEG acquisition of
temporal resolution and measurement resolutions was 0.2 ms
(i.e., 16-bit 5 kS/s sampling) and 0.1µV, respectively. A hardware
filtering throughout the acquisition in a frequency band between
0.016 and 250 Hz was applied to EEG signals.

We included EEG data collected from 113 subjects during
resting EEG-fMRI run lasting 8 min. The participants were
instructed to relax and keep their eyes open and fixate their eyes
on a cross displayed on the fMRI stimulus projection screen. For
this work, we did not use and analyze fMRI data.

EEG Data Preprocessing
The following preprocessing steps were performed in
BrainVision Analyzer 2 software as described in Mayeli
et al. (2016). In short, MRI imaging artifacts were reduced
using the average artifact subtraction (AAS) method (Allen
et al., 2000) and EEG signals were down-sampled to 250 Hz.
Next, band-rejection filters (1 Hz bandwidth) were used to
remove fMRI slice selection fundamental frequency (19.5 Hz)
and its harmonics, mechanical vibration noise (26 Hz), and
AC power line noise (60 Hz). Then, we used a bandpass filter
from 0.1 to 80 Hz (48 dB/octave). Cardiobalistic artifacts
(BCG) also were removed using AAS (Allen et al., 1998). The
independent component analysis (ICA, Infomax algorithm; Bell
and Sejnowski, 1995) implemented in Analyzer 2 was applied
for EEG signals ICA decomposition. The topographic map,
power spectrum density, time course signal, energy value, and
kurtosis value were used for detecting and removing artifactual
ICs, including residual BCG and imaging, ocular and muscle
artifacts. Finally, the EEG signal was reconstructed using
back-projection (inverse ICA) after selecting ICs related to
neural activities.

EEG Microstates Analysis
The typical spatially independent EEG-ms analysis is conducted
by calculating the peaks of the GFP after using average-
reference (Michel and Koenig, 2018). Then, EEG time points
corresponding to those peaks are fed into modified-clustering
algorithms. Two common clustering algorithms have been
widely used in the literature: modified-k-means (Pascual-
Marqui et al., 1995) and agglomerative hierarchical clustering
(AAHC; Murray et al., 2008). Both algorithms compute the
template EEG-ms in different ways, but they appear to produce
similar results (Murray et al., 2008). In this work, we utilized
the AAHC algorithm for segmenting the EEG points after
setting the number of desired microstates to k = 4. The
following steps were required before running AAHC algorithm:
first, the GFP for each subject was calculated from a band
passed filtered EEG data between 2 and 20 Hz (using FIR
with heuristically estimated transition band implemented with
pop_eegfiltnew from EEGLAB) as suggested in several EEG-ms
studies (Michel and Koenig, 2018). The peaks of GFP were
then identified after smoothing GFP with a Gaussian-weighted
moving average of 5-time points. Finally, to offer a higher level
of accuracy, we randomly selected up to n = 10,000 peaks
and extracted the corresponding EEG points for later analysis.
The selected EEG points were then submitted to the AAHC
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algorithm to identify the microstates with k = 4. Next, the
group means of EEG-ms from each group were computed by
sorting individual EEG-ms first and then finding the common
topographies across all subjects. After that, individual EEG
sets were fit-back using the group means topographies. Finally,
we extracted the following EEG-ms characteristics from each
subject: average lifespan, the frequency of occurrence, and
transition probabilities, in addition to the occurrence sequence
of each microstate. Also, we conducted a theoretical information
analysis described below to examine the temporal dynamics of
the EEG-ms.

Information Theoretical Analysis
Studying the dynamic behavior and the temporal dependencies
of EEG-ms sequence may carry useful information that embodies
differences in information flow among groups. To do so, we
adopted a new set of features introduced by von Wegner
et al. (2017). The approach relies on handling the spatially
independent EEG-ms as discreet stochastic processes and
examines the temporal dependencies in microstates sequence. To
elaborate on the set of utilized features, let’s assume a random
variable Xt that represents the state of microstate at time point t.
The Xt can take one of the possible labels Si ∈ (A, B, C, D),
such that P(Xt = Si) represents the distribution of the microstates
labels across the sequence of EEG-ms. The probability of
transition between two states is given as Tij = P(Xt+1 = Sj|Xt = Si)
and the transition matrix is denoted as T.

Herein, we assessed the low-order Markovianity of order
0, 1 and 2. That is, EEG-ms were tested to see whether
the transition of microstates relied on only the current state
[order 0; P(Xt+1) = P(Xt+1|Xt)], previous state [order 1;
P(Xt+1|Xt , Xt−1) = P(Xt+1|Xt)] or two previous states [order 2;
P(Xt+1)|Xt , X(t−1), X(t−2)) = P(X(t+1)|Xt , X(t−1))]. We also
tested whether the transition matrix T is stationary by first
dividing the data into B overlapping blocks of length L. Then,
the transition matrix for each block was assessed against the
overall transition matrix. Furthermore, the transition matrix was
also tested against the symmetry property i.e., P(X(t+1) = Sj
|Xt = Si) = P(X(t+1) = Si|Xt = Sj). Finally, the time-lagged
mutual information (autoinformation, AIF) was computed for
the global sequence of EEG-ms and for individual microstates.
AIF examines the amount of information that X(t+τ) has about
Xt with τ is the desired time lag. The higher the value of AIF, the
more shared information is carried by X(t+τ) about Xt .

RESULTS

First, we examined the EEG-ms topographies for MA and HC
groups. Figure 1 shows the four canonical EEG-ms classes for
both groups. We found similar EEG-ms topography templates
for both groups (i.e., microstates A through D) and similar to
those obtained by previous works (Michel and Koenig, 2018).
The performance of the EEG-ms segmentation algorithm is
reported in terms of the explained variance, which estimates the
portion of EEG point topography that can be explained by the
four microstates (Khanna et al., 2014). The explained variance in
our case was 82%± 0.02% for HC and 82%± 0.01% for MA.

FIGURE 1 | Electroencephalography-microstate (EEG-ms) topographies for
both groups [healthy control (HC) group top row, mood and anxiety disorders
(MA) group lower row]. The obtained EEG-ms topologies are similar to those
reported previously in the literature.

FIGURE 2 | The average duration for EEG-ms classes (A–D) for MA and HC
groups (p-value corrected for multiple comparisons using the Bonferroni
-Holm). The results revealed a trend towards significance for microstate C
with p = 0.092.

FIGURE 3 | The occurrence frequency of EEG-ms classes (A–D) for both
MA and HC groups. For each EEG-ms class, no statistically significant
differences among the two groups was found.

Second, the average duration and occurrence frequency were
investigated for both groups. Figure 2 shows the average duration
for each EEGmicrostate. The p-values for the t-test between each
microstate were 0.117, 0.042, 0.023 and 0.244 for microstate A, B,
C, and D, respectively. After correcting for multiple comparisons
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FIGURE 4 | Transition probabilities for MA and HC groups are shown in part
(A). The red and blue arrows (red represent an increase, while blue represent
a decrease for MA group as compared to HC one) in part (B) represent the
connections with the statistically significant difference between two groups
(p-values corrected for multiple comparisons using Bonferroni-Holm). The
level of significance was set to p < 0.05.

using Bonferroni-Holm, the adjusted p-values were 0.23, 0.126,
0.092, and 0.244 for A, B, C, and D, respectively. Similarly, the
occurrence of each microstate per second was computed for both
groups (Figure 3). The results did not reveal any significant
difference between the groups.

After that, the model of transition among microstates for
both groups was investigated and depicted in Figure 4A. The
transition probabilities appear to have a normal distribution
after checking and using Q-Q and density plots (Ghasemi
and Zahediasl, 2012). The statistical analysis of the transition
probabilities of groups unraveled a significant difference
(Bonferroni-Holm corrected, p < 0.05) between HC and MA in
four transitions (Tr): from microstate B to D: Tr (B→ D), D to
B: Tr (D→ B), A to D: Tr (A→D) and B to C: Tr (B→ C). The
statistical analysis for the significant connections was reported
in terms of the t-test, p-value (p) and Cohen’s d (d) effect size
as follows: for Tr (B → D): t(111) = 2.69, p = 0.045, d = 0.51;
Tr (D → B): t(111) = 3.87, p = 0.002, d = 0.73; Tr (B → C):
t(111) = −3.05, p = 0.03, d = −0.58; Tr (A→ D); t(111) = −2.88,
p = 0.045, d = −0.54. Figure 4B highlights the transition
probabilities that show a statistically significant difference
across groups and the direction of change. The associations
between these transition probabilities and the symptoms (PHQ-
9, RSS, STAI-Trait, STAI-State, PROMIS-Depress, and PROMIS-

TABLE 1 | Markovian property and symmetry assessment for both groups.

Order 0 Order 1 Order 2 Symmetry

Healthy control 0% 0% 0% 58%
Mood and anxiety 0% 0% 0% 65%

Anxiety scores) were investigated in Supplementary Table S3
(please refer to the Supplementary Material).

Also, we delved into the EEG-ms temporal dynamic within
EEG-ms sequences. For both groups, we assessed the symmetry
property of transition matrices and tested for Markovianity
of order 0, 1, and 2 properties (Table 1) as described in
the information theoretical analysis section. The t-test yielded
p-value which represents the null-hypothesis that subject’s
EEG-ms sequence exhibits a low-order Markovian property
(e.g., for an order of 0 the transition probability relied on
only the current state) or symmetrical transition matrix (e.g.,
the likelihood of switching from microstate X to Y is not
statistically different from the likelihood of switching from
Y to X). All tests were conducted at alpha = 0.01 and
p < 0.05. Table 1 reports the testing results as the ratio of
how many subjects showed statistically significant hypothesis
(e.g., the EEG-ms sequence exhibits a Markovian property
of order 0).

The reported transition probabilities in Figure 4 unveil the
overall transition probabilities estimated for the entire recording
of EEG (8 min). We further probed the stationary of the
transition matrices over a shorter period (i.e., whether the
transition matrices remain constant over a short duration).
Specifically, we computed the stationary of the transition
matrices at period lengths of 2–40 s and reported the ratio of
subjects who have statistically significant non-stationarymatrices
at each period (Figure 5).

Finally, we computed the AIF to examine the temporal
dependencies in EEG-ms. AIF estimates the amount of
information that the appearance of microstates carries given
previous information (previous microstates). In other words, it
evaluates the memory effect in microstates’ sequence over the
shorter duration; the higher the value, the more similar the
microstate sequence given the past. By comparing AIF among
groups, one can tell whether a certain group has a higher
tendency to evoke the same patterns of microstates sequences
over and over. Figure 6 shows AIF plot as a function of different
time-lags (τ ≤ 4000 ms) for both MA and HC groups. The
individual contribution to the overall AIF graph is presented in
Figure 7.

DISCUSSION

In this study, we derived and dissected the EEG-ms from
large cohorts of MA and HC individuals. We found the four
canonical EEG-ms classes (A through D), which confirms
a successful replication of previously reported topographies
(Michel and Koenig, 2018). Interestingly, we did not find
a specific dissimilarity in the topographies of EEG-ms
between HC and MA groups (Figure 1). That is, EEG-ms
topographies were stable and robust regardless of the presence
of mood and anxiety symptoms. Given that EEG-ms represent
spontaneous, synchronized in time, and large spatial-scale
cortical neuronal activities (Khanna et al., 2015; Michel and
Koenig, 2018), the lack of differences between participant cohorts
suggests that there are no major structural cortical changes
among groups (Drevets and Raichle, 1992; Mayberg, 2003;
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FIGURE 5 | The ratio of subjects with non-stationary transition matrices
(p < 0.05) of EEG-ms evaluated at different block lengths.

FIGURE 6 | The semi-log time-lagged mutual information plot for the MA
and HC groups at different time lags. The shaded area represents the 95%
confidence intervals for each group.

Waters and Mayberg, 2017). If EEG-ms topography exhibited
significant changes between HC and MA cohorts, then that
might indicate substantial structural changes and alterations
of the brain. The lack of topographical differences among
study cohorts supports the notion that mental disorders are
more manifested in disruption of brain network dynamics
rather than structural changes. Taken together, the similarity
in EEG-ms topographies between HC and MA cohorts may
suggest that the effect of the depression and anxiety is far more
pronounced at the level of dynamic functional connectivity of
the brain, rather than at the level of structural abnormalities of
the brain.

Next, we appraised EEG-ms average duration and occurrence
frequency in our cohorts, as these properties have been
used frequently in the literature to differentiate groups (Yuan
et al., 2018). Our spatially independent EEG-ms analysis
revealed a trend towards significant difference for an average
duration of microstate C (p < 0.092 corrected for multiple
comparisons using the Bonferroni-Holm method). The results

did not reveal any other significant difference for average
duration or occurrence frequency properties among groups.
Furthermore, we analyzed the transition probabilities among
different microstate classes for both groups. The analysis
showed significant differences in transition probabilities in 4 out
of 12 connections in the transition matrices across groups.
Specifically, the Tr (D → B) and Tr (B → D) showed
statistically significant differences between groups (p < 0.05,
Bonferroni-Holm corrected), where MA subjects have a lower
transition probabilities between Tr (B → D) and Tr (D → B)
as compared to HC subjects. That is, MA subjects tend to
have a lower switching frequency between microstate B and
D as compared to HC subjects. Also, the results revealed a
significant difference in transition probabilities for Tr (A→ D)
and Tr (B → C) in one direction (p < 0.05, Bonferroni-Holm
corrected), where MA subjects tend to have a higher transition
from A → D and B → C. Such disturbances in transition
between microstates have been reported for subjects with other
mental disorders like schizophrenia (Lehmann et al., 2005) and
frontotemporal dementia (Nishida et al., 2013) using traditional
EEG-ms analysis.

To understand the results, we refer to outstanding works
that investigated the association between EEG-ms and RSNs by
using simultaneous EEG-fMRI, where they suggested a strong
association between EEG-ms and RSNs (Britz et al., 2010; Musso
et al., 2010; Yuan et al., 2012, 2018). However, it is difficult
to compare those works with each other and with our studies,
since they applied different approaches to extract the EEG-ms.
Thus, we rely on Britz et al. (2010) for interpreting our results
since the authors utilized the conventional approach in extracting
EEG-ms as used in this work. Please refer to Supplementary
Table S2 for detailed information about the association between
each microstate and RSNs.

Based on Britz et al. (2010), microstate B was shown to be
associated with the visual network (VN), while microstate D
was related to dorsal attention network (DAN). The associated
networks with EEG microstates were similar to the RSNs found
in other works (Damoiseaux et al., 2006; Mantini et al., 2007).
DAN is often considered as an activity-modulating network
in the VN, especially the frontoparietal areas (Vossel et al.,
2014). The low transition probabilities between microstate B
and D in the MA group indicates less frequent transitions
between VN and DAN. The previous study showed amodulatory
role of DAN with VN (Vossel et al., 2014), and the impaired
modulatory role of DAN might cause less frequent transitions
among MA subjects. Several studies reported an alteration in
functional connectivity between the two networks for subjects
with post-traumatic stress disorder (PTSD; Yin et al., 2012;
Gong et al., 2014; Kennis et al., 2016; Zhang et al., 2016),
stress (Soares et al., 2013), anxiety (He et al., 2016) and social
anxiety disorder (Liao et al., 2010). Furthermore, DAN appears
to exhibit an alteration in the functional connectivity associated
with depression as reported in the meta-analyses (Wang et al.,
2012; Sundermann et al., 2014; Kaiser et al., 2015) and in a recent
study (Sambataro et al., 2017). Thus, lower transition probability
between B and D may indicate aberrant functionalities between
DAN and VN.
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FIGURE 7 | Time-lagged mutual information plots for each class of EEG microstate averaged across subjects of each group. The shaded area represents the 95%
confidence for each group.

In addition, MA subjects exhibit a higher TR (B → C) in
one direction. We also noted that MA subjects spend on average
more time in microstate C than HC ones (Figure 2). Microstate
C has been shown to be correlated with the brain regions
responsible for the self-referential mental activity (e.g., parts of
DMN). An increase in the self-referential processes in DMN
has been shown to be closely related to depression (Lemogne
et al., 2009; Sheline et al., 2009). Along with an increase in the
average duration of microstate C and the higher transition from
microstate B to C, the result may be explained by an increase in
the self-referential activity for MA subject with engaging VN in
recalling visual memories.

Similarly, MA subjects have a higher TR (A → D) in one
direction. Brain regions associated with microstate A have been
shown to be involved in the auditory-phonological system,
especially the bilateral superior temporal cortex. Such alteration
in this RSN has been reported in the meta-analyses for subjects
with depression (Wang et al., 2012; Sundermann et al., 2014;
Kaiser et al., 2015).

Additionally, we studied the association between the four
significant transition probabilities and other clinical assessments
(Supplementary Table S3). The results showed a relative
correlation between transition probabilities after combining
both groups, but not when considering groups independently.
However, the transition probabilities showed different patterns

based on the group. To further investigate the interaction
between groups and symptoms, we designed a generalized linear
model (GLM) to study the interaction between groups and
symptoms after controlling for age and gender (Supplementary
Table S4). The results suggest a significant interaction between
groups and symptoms in connections B → D and D → B for
PHQ, STAI (State), STAI (Trait) and PROMIS (Anxiety Total
Score). These results may imply that HC and MA groups behave
differently based on the symptoms, but the relation between
symptoms and transition probabilities within groups is more
complicated to be explained by one connection.

While the transition matrices unravel the overall behavior of
microstates, AIF charactersatics of EEG-ms may encompass an
insight into the dynamics of EEG-ms. To do so, we adopted the
approach introduced by von Wegner et al. (2017).

Our results were in line with their results that there is
a short-term memory effect in EEG-ms sequence as shown
in Table 1. For both groups, EEG-ms do not exhibit any
Markovian property of order 0, 1, or 2 [i.e., the appearance
of next microstate (in time) does not rely merely on the
current state, previous state or two previous microstates].
If microstate sequence exhibits any low Markovian order,
then one can conclude that microstates appearance relies on
the past (depending on the order) only. This demonstrates
that microstates embody the underlying neural activities and
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closely associated with brain activity (Van de Ville et al., 2010).
Furthermore, non-Markovian properties show that the sequence
has memory.

In addition, our analysis suggested a difference in the
information flow manifested in changes of the symmetry
and stationary of transition matrices (taken at different
periods), besides AIF contents between HC and MA groups.
Specifically, the MA group tends to have a higher ratio of
subjects with symmetrical (Table 1) and stationary transition
matrices (Figure 5) as compared to HC subjects. This may
be interpreted as less flexibility and dynamicity of brain
connectivity for MA subjects, where similar patterns of
brain activations may be evoked frequently (ruminative or
self-referential thoughts).

Likewise, the MA group has a relatively higher overall AIF
content as compared toHC one (Figure 6) driven bymicrostate B
(Figure 7). Hence, this might be explained as an increase in the
overall temporal dependency in MA subjects and more regular
appearance for microstate B (associated with VN).

Given these points, MA subjects exhibit a systematic
difference in the way of activating their brain regions reflected
by changes in transition probabilities, duration of microstate C
and temporal dependencies of microstates.

LIMITATION

The work has provided several aspects of analyzing MA as
compared to HC. We have shown a significant transition
probability difference between groups. However, the underlying
neurophysiological mechanism of transition probabilities of
microstates is still not clear. The provided interpretations
of EEG-ms dynamics properties and their associations with
brain networks relied on previous studies that found a
correlation between EEG-ms time series and different brain
regions to interpret the results. In addition, the study cohort
is very heterogeneous, thus understanding specific network
abnormalities as reflected by EEG-ms within the MA cohort
should warrant future studies with an even larger number
of subjects to better characterize individual differences and
subtypes of the mood and anxiety disorder cohort. Finally, the
AIF approach for analyzing the EEG-ms temporal dynamics
revealed a group difference among MA and HC cohorts,
but the results need further exploration to provide better
mechanistic interpretation.

CONCLUSION

This work delved into the spatially independent EEG-ms
in a large cohort of mood and anxiety disorders and HC
individuals.We replicated previously-reported studies and found
four EEG-ms classes (A through D), with no differences
among mood and anxiety disorders and healthy individuals,
suggesting a lack of significant structural cortical abnormalities
among the groups, which would otherwise affect the EEG-ms
topographies. We investigated several EEG-ms characteristics
between groups in terms of average duration, the frequency
of occurrence and the transition matrices. In addition, we

extracted various AIF properties between groups to evaluate
the temporal dependences of microstates between subjects.
The results revealed an alteration in EEG-ms transitions
probabilities among microstates; in B → D, D → B, A → D
and B → C transitions. In addition, testing the temporal
dependencies unveiled an alteration in information flow between
groups in different properties. Such properties can be used
as biomarkers for mood and anxiety disorders and bases for
future interventions.
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