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The notion of dysconnectivity in schizophrenia has been put forward for many years
and results in substantial attempts to explore altered functional connectivity (FC) within
different networks with inconsistent results. Clinical, demographical, and methodological
heterogeneity may contribute to the inconsistency. Forty-four patients with first-episode,
drug-naive schizophrenia, 42 unaffected siblings of schizophrenia patients and 44
healthy controls took part in this study. Global-brain FC (GFC) was employed to analyze
the imaging data. Compared with healthy controls, patients with schizophrenia and
unaffected siblings shared enhanced GFC in the left superior frontal gyrus (SFG). In
addition, patients had increased GFC mainly in the thalamo-cortical network, including
the bilateral thalamus, bilateral posterior cingulate cortex (PCC)/precuneus, left superior
medial prefrontal cortex (MPFC), right angular gyrus, and right SFG/middle frontal gyrus
and decreased GFC in the left ITG/cerebellum Crus I. No other altered GFC values
were observed in the siblings group relative to the control group. Further ROC analysis
showed that increased GFC in the left SFG could separate the patients or the siblings
from the controls with acceptable sensitivities. Our findings suggest that increased GFC
in the left SFG may serve as a potential endophenotype for schizophrenia.

Keywords: schizophrenia, global-brain functional connectivity, functional magnetic resonance imaging,
endophenotype, network

INTRODUCTION

Characterized by disturbances of perception (Yoon et al., 2008), cognition (Barch and Csernansky,
2007), emotion (Holt et al., 2011), and thought (Corlett et al., 2007), schizophrenia is a devastating
and complex mental disorder, affecting adults as well as adolescence with highly heterogeneous
and multifaceted clinical syndromes instead of a single disease entity (Yu et al., 2017). The
diagnosis of schizophrenia is largely dependent on the psychiatrists’ evaluation and experience
based on the comprehensive history records and laboratory examinations (Chin et al., 2018). In
recent decades, great efforts have been made to identify reliable and objective biomarkers, such as
electrophysiological (Turetsky et al., 2008; Smith et al., 2010; Edgar et al., 2012), neuropsychological
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(Smith et al., 2010; Edgar et al., 2012; Schulze-Rauschenbach
et al., 2015), and neuroimaging indices (Edgar et al., 2012; Turner
et al., 2012; Moran et al., 2013).

It has been postulated that schizophrenia is a
neurodevelopmental disorder with abnormal neural connectivity
of discrete brain networks and genetic and environmental
factors may contribute to such dysconnectivity (Maynard et al.,
2001; Karlsgodt et al., 2008). To date, substantial neuroimaging
studies reveal structural and functional aberrations in many
brain areas in schizophrenia or high risk populations, or both of
them, including the prefrontal, cingulate, temporal, cerebellar,
hippocampal, and thalamic regions (Rubinov and Bullmore,
2013; Thermenos et al., 2013; Bois et al., 2015; Chung and
Cannon, 2015) within various brain networks such as the
default-mode network (DMN) (Bluhm et al., 2007; Zhou et al.,
2007; Ongur et al., 2010), cerebellar-cerebral networks (Konarski
et al., 2005; Phillips et al., 2015), and thalamo-cortical networks
(Andreasen et al., 1996; Jones, 1997; Swerdlow, 2010). Unaffected
siblings of patients with schizophrenia, a subgroup of high risk
subjects with approximately 50% of genetic burden (Pergola
et al., 2017), have about a 10-fold increased risk to develop
schizophrenia than general population (Chang et al., 2002).
Unaffected siblings are free from confounding variables caused
by environmental or disease-associated factors, and thus having
an advantage to assess brain function with limited confounding
factors. For example, disturbed resting-state FC has been
observed in the first-degree relatives (Jang et al., 2011), which
was predominantly altered in schizophrenia (Lynall et al., 2010;
Skudlarski et al., 2010). Therefore, similar brain abnormalities
shared by patients with schizophrenia and unaffected siblings
can be regarded as potential endophenotypes for schizophrenia.
Endophenotypes are some heritable and characteristic changes
certainly present in patients but are possible to appear in
unaffected relatives. They segregate with the disease within
families and can be biochemical, neuroanatomical, cognitive,
endocrine, or neurophysiological parameters (Gottesman and
Gould, 2003; Bertolino and Blasi, 2009).

However, results from resting-state functional magnetic
resonance imaging (fMRI) of abnormal intrinsic neural activity
and/or functional connectivity (FC) across brain areas within
those networks were inconsistent: increased FC (Zhou et al.,
2007), decreased FC (Bluhm et al., 2007), or both (Ongur et al.,
2010). One possible factor accounting for the mixed findings
is that the majority of neuroimaging studies adopted either
seed-based region-of-interest (ROI) analysis or independent
component analysis (ICA), both of which are, to some extent,
dependent on prior assumptions rather than employing a whole-
brain examination (McKeown et al., 2003; Mannell et al.,
2010; Joel et al., 2011). Therefore, it is possible to miss the
most significantly altered regions which may indicate the core
pathophysiology of schizophrenia.

Another reason may be that heterogeneous samples with
different illness duration and medication history have biased
the findings. Results from some longitudinal MRI studies in
patients with chronic schizophrenia have showed accelerated
gray matter loss over time and such progressive structural
alterations were more remarkable at the initial stage of illness

(Yoshida et al., 2009; Chiapponi et al., 2013;Schnack et al., 2016).
As for resting-state fMRI studies, researchers have revealed
reduced FC within the executive control network (ECN), DMN
and dorsal attention network (DAN) in medicated patients
(Woodward et al., 2011), whereas no changes were found within
the ECN network in first-episode, drug-naive patients with
schizophrenia (Lui et al., 2009). Therefore, it is essential to recruit
first-episode, drug-naive patients with schizophrenia to explore
the intact connectivity of these networks.

In the present study, we aimed to explore global-brain
FC (GFC) differences by comparing a group of first-episode,
drug-naive patients with schizophrenia and unaffected siblings
with healthy controls employing the voxel-wise model-free
GFC method, which had been described in details in our
previous study (Cui et al., 2018). Apart from the seed-based
ROI method and ICA method, GFC is another method of
functional connectome which consists of FC of anatomically
different brain areas (Craddock et al., 2013). Unlike the ROI
and ICA methods, GFC is not biased by a priori specification
of brain areas like ROI and spares from controversial views
on the number of components in the ICA method (Kelly
et al., 2012). Thus, the GFC method was preferable in our
study. Based on the dysconnectivity hypothesis of schizophrenia
and aforementioned studies, we hypothesized that patients
with schizophrenia would reveal abnormal GFC in brain
regions pertain to certain networks especially the DMN
and thalamo-cortical circuit. Another hypothesis was that
disrupted GFC could serve as an endophenotype shared by
patients with schizophrenia and unaffected siblings. In addition,
receiver operating characteristic (ROC) curve was conducted
to differentiate the patients and unaffected siblings from
the controls. Finally, we also examined correlations between
disrupted GFC and clinical variables such as illness duration
and symptom severity assessed by Positive and Negative
Syndrome Scale (PANSS).

MATERIALS AND METHODS

Participants
Forty-six patients with first-episode, drug-naive patients
with schizophrenia, 46 non-affected siblings of patients with
schizophrenia and 46 healthy controls took part in this study.
All subjects were right handed, and aged from 18 to 37 years
with more than 6 years of formal education. Handedness was
determined by the Annett Hand Preference Questionnaire
(Dragovic and Hammond, 2007). The study was in accordance
with the Helsinki Declaration and approved by the local ethics
committees of the Second Affiliated Hospital of Guangxi
Medical University. All participants signed their written
informed consent.

The included patients and siblings were recruited from
the Mental Health Center, the Second Affiliated Hospital
of Guangxi Medical University in China, and the controls
were recruited from the local community. The diagnosis of
schizophrenia was made by two research psychiatrists (W.G.
and Z.Z.) according to the Structured Clinical Interview of the
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Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-
IV) criteria, patient edition, whereas non-patient version was
used for unaffected siblings and healthy controls to rule out any
psychiatric conditions. No antipsychotic medications or other
psychotropic agents were treated to the patients, and PANSS
total scores referring symptom severity of them was more than
70 at baseline. All participants did a series of routine physical
examinations including systems review and laboratory tests to
exclude any significant medical conditions and shared the same
exclusion criteria: neurological disorders or history of brain
injury, history of nicotine dependence, alcohol or other substance
dependence, or any contraindications to MRI scan. In addition,
potential controls who had a first-degree relative diagnosed with
psychiatric disorders were also excluded.

Imaging Acquisition and Preprocessing
Scanning was performed on a Siemens 3.0 T scanner. Participants
with soft earplugs and foam, which could reduce scanner noise
and head movement, were informed to lay still and remain
awake with their eyes closed. After scanning, all subjects were
asked some questions to claim that they did not fall asleep
during the scanning. The images were acquired with a gradient-
echo echo-planar imaging (EPI) sequence using the following
parameters: repetition time/echo time (TR/TE) = 2000 ms/30 ms,
30 slices, 64 × 64 matrix, 90◦ flip angle, 24 cm field of view,
4 mm slice thickness, 0.4 mm slice gap, and 250 volumes
lasting for 500 s.

Software DPABI was used to preprocess the imaging data
(Yan et al., 2016). After slice timing and head motion correction,
participants with over 2 mm maximal translation and 2◦maximal
rotation were excluded. Several covariates, including Friston-24
head motion parameters acquired through rigid body correction
(de Kwaasteniet et al., 2013), signal from a ventricular region
of interest, and signal from a region centered in the white
matter, were removed. In addition, we applied mean frame-wise
displacement (FD) according to a formula described previously
(Liu et al., 2008; Power et al., 2012) to address the residual effects
of motion as a covariate in group analyses. The global signal was
not removed since it is still a controversial practice in the resting-
state fMRI field (Hahamy et al., 2014). Then, we normalized the
data to conventional EPI template in the Montreal Neurological
Institute (MNI) space at a 3 mm × 3 mm × 3 mm resolution.
Finally, the images were bandpass-filtered (0.01–0.08 Hz) and
linearly detrended following spatially smoothed with a 4 mm
full-width at half-maximum Gaussian kernel.

GFC Analysis
Voxel-wise GFC method, defined as FC between a selected voxel
and all other voxels in a given gray matter mask, was used to
create voxel-to-voxel maps by composing GFC values of all voxels
for each subject. SPM8 in Matlab (Liu et al., 2015) was used
to generate the gray matter mask by setting the threshold at
probability > 0.2. According to Yan and colleagues (Chao-Gan
and Yu-Feng, 2010), a threshold of 0.2 was used to create a gray
matter mask in this study, which indicated that voxels with the
probability > 0.2 would be classified as gray matter. The GFC was

computed as:
GFCa = 6n

b=1
r (Ta, Tb)

n− 1

Where, Pearson’s correlation coefficient (r) was calculated
at the given voxels a and b for Ts, a pair of time series,
followed by Fisher r-to-z transformation (Cui et al., 2018) and
the GFC of a voxel was the coefficient of this voxel with all other
voxels in the mask.

Statistical Analysis
When appropriate, demographical data including age, sex, and
years of education and clinical data were compared by using Chi-
square test and analysis of variance (ANOVA).

After performing analysis of covariance (ANCOVA), post hoc
t-tests were carried out to compare group differences among
patients with schizophrenia, unaffected siblings, and controls.
Age and the mean FD were applied as covariates in the ANCOVA
and post hoc t-tests. The results were corrected by the Gaussian
random field (GRF) theory at p < 0.05 (voxel significance:
p < 0.001, cluster significance: p < 0.05).

After identifying brain regions with abnormal GFC values
showing significant differences by group comparisons, the mean
GFC values were extracted from these regions for further ROC
curves analysis, which was used to examine whether these regions
could discriminate patients with schizophrenia or unaffected
siblings from healthy controls as reliable markers.

Linear correlation analyses were performed between abnormal
GFC and clinical variables in PANSS scores and illness duration
in the patient group (p < 0.05). The Bonferroni correction was
used to limit type I error.

RESULTS

Demographical and Clinical
Characteristics
Two patients, 4 siblings, and 2 healthy controls were excluded due
to excessive head motion. Therefore, the final analysis enrolled 44
patients, 42 non-affected siblings, and 44 healthy controls. The
three groups had no significant differences in age, sex, education
level, and FD values (see Table 1). The mean illness duration of
the patients was 22.34± 7.01 months, and the mean PANSS total
score was 90.70± 11.17.

Group Differences in the GFC Values
Compared with healthy controls, patients with schizophrenia and
unaffected siblings shared enhanced GFC in the left superior
frontal gyrus (SFG). In addition, as showed in Table 2 and
Figure 1, the patient group had increased GFC in other areas
such as the bilateral PCC/precuneus, and decreased GFC in the
left ITG/cerebellum Crus I relative to the control group. No other
altered GFC values were observed in the siblings group relative to
the control group (Table 2 and Figure 2).

Correlation Results
After the Bonferroni correction (p > 0.05/7 = 0.007 for
abnormal GFC values in the seven brain regions), no significant
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correlations were found between GFC values and clinical
variables in the patients.

ROC Results
Since the left SFG exhibited increased GFC in both the patients
and the siblings, it might be considered as a marker to separate
the patients or the siblings from the controls. To examine
this potential, ROC analysis was conducted. As shown in
Figure 3, to discriminate the patients or the siblings from
the controls, the areas under the curve of the left SFG were
0.829 or 0.748, respectively. Further diagnostic analysis showed
that the sensitivity and specificity to separate the patients or
siblings from the controls were 70.45 or 85.71%, and 90.91 or
56.82%, respectively.

DISCUSSION

In the present study, we first tested abnormalities of voxel-
wise brain-wide FC in first-episode, drug-naive patients with
schizophrenia and non-affected siblings using the GFC analysis.
The key finding was that the patients and the siblings shared
enhanced GFC in the left SFG relative to the controls. Further
ROC analysis showed that the GFC value in this area might
serve as a marker with a relatively high sensitivity to discriminate
the patients or the siblings from the controls. Compared to
healthy controls, patients with schizophrenia showed disturbed
GFC mainly in the thalamo-cortical network.

There are two important features of our study. First, we
explored FC abnormalities in patients with schizophrenia in
an unbiased way using the voxel-wise brain-wide method. To
date, not a unanimous pattern of brain functional anomalies

TABLE 1 | Baseline demographic and clinical characteristics of the
study participants.

Patients
(n = 44)

Siblings
(n = 42)

Controls
(n = 44)

p-value

Gender (male/
female)

28/16 28/14 23/21 0.35

Age (years) 23.45 ± 4.24 23.57 ± 3.62 23.55 ± 2.58 0.99

Education
(years)

11.11 ± 2.46 12.13 ± 2.24 11.30 ± 1.67 0.11

FD (mm) 0.03 ± 0.03 0.03 ± 0.01 0.03 ± 0.02 0.34

Illness duration
(months)

22.34 ± 7.01

PANSS

Positive
symptom score

22.48 ± 5.37

Negative
symptom score

22.50 ± 6.38

General
symptom score

45.73 ± 6.97

Total score 90.70 ± 11.17

FD, framewise displacement; PANSS, the Positive and Negative Syndrome Scale;
Values are expressed as mean ± SD.

pertaining to schizophrenia has converged among researchers,
though these studies have indicated importance of abnormalities
in certain brain circuits. The reason may be that many previous
studies in this field focused on some predefined brain areas
using approaches based on ROI (Guo et al., 2015a). It is
conceivable that different studies obtained different results by
selecting different ROIs. Additionally, it is possible that the most
important brain regions relating to the core pathological changes
in schizophrenia were never covered in some studies. On the
contrary, the GFC method used in our study investigated the FC
abnormalities in a voxel-wise brain-wide and more importantly,
an unbiased way.

The second important feature is the sample groups
recruited in this study. First-episode, drug-naive patients
with schizophrenia were recruited to explore the intact
connectivity of these networks in the present study. Except
patients with schizophrenia, unaffected siblings were also
enrolled in the study. Taking into account that schizophrenia
is a highly heritable and complex disorder, unaffected siblings
of schizophrenia patients who share remarkable genetic
backgrounds with the patients are at a high-risk state to
develop the disease (Jang et al., 2011). In order to have a
more comprehensive insight into the neural underpinnings
of schizophrenia, it is essential to investigate this group of
people without interference of clinical and treatment matters.

TABLE 2 | Baseline group comparison in levels of GFC across groups.

Cluster
location

Peak (MNI) Number of
voxels

T-value

x y z

Patients vs.
Controls

Left
ITG/cerebellum
Crus I

−45 −42 −24 55 −4.6571

Bilateral
thalamus

6 −12 15 50 4.2670

Right angular
gyrus

51 −57 33 139 4.6931

Bilateral
PCC/precuneus

3 −54 33 67 4.0364

Left superior
MPFC

−9 54 45 66 4.4945

Right superior
frontal
gyrus/middle
frontal gyrus

39 24 48 150 5.0740

Left superior
frontal gyrus

−9 27 60 113 5.1110

Siblings vs.
Controls

Left superior
frontal gyrus

−15 66 9 28 4.1515

GFC, global-brain functional connectivity; ITG, inferior temporal gyrus; MPFC,
medial prefrontal cortex; PCC, posterior cingulate cortex.
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FIGURE 1 | Abnormal GFC in patients with schizophrenia relative to healthy controls. GFC, global-brain functional connectivity.

In addition, with more efforts putting into the effective
treatment that could improve the clinical outcomes of patients
with schizophrenia considerably, earlier identification and
intervention are pushed to an urgent place (Chang et al.,
2016). Investigating the vulnerability state and initial period of
schizophrenia are help to address this issue.

The left SFG, involving in the impaired attention and cognitive
domains (Wolf et al., 2008) including perception, working
memory (Jenkins et al., 2018), and active imagery (Qiu et al.,
2018), is one of the most consistently explored regions that
may be a key hub in the pathophysiological processes of
schizophrenia. In present study, increased GFC of the left SFG
was found both in patients with schizophrenia and unaffected
siblings and further ROC analysis exhibited that the GFC
values of this region might be applied as a potential marker
to differentiate the patients as well as the siblings from the
controls with relatively high sensitivity. However, no correlations
were found between the GFC value in this area and symptom
severity or illness duration, which was somewhat out of our
expectations. We supposed that the enhanced FC might be a trait
alteration for schizophrenia independently of symptom severity
and illness duration. The relatively small sample size was also
a confounding factor. In addition, consistent with our results,

many previous resting-state fMRI studies recorded no correlation
between abnormal FC and clinical variables in patients with
schizophrenia (Guo et al., 2015a). Actually, some researchers have
reported a similar pattern of cognitive deficits between patients
with schizophrenia and the first-degree relatives, including
working memory, set shifting, and prepotent response (Johnstone
et al., 2002; Brewer et al., 2005; Snitz et al., 2006). Similarly,
a M100 magnetoencephalography study found greater left SFG
M100 activity in not only patients with schizophrenia but also
unaffected relatives (Chen et al., 2018). This shared auditory
encoding abnormality indicated a compensatory adjustment by
overactivating dorsal auditory pathway (Chen et al., 2013) and
could also be regarded as a potential endophenotype.

The thalamus, associated with many brain functions such as
cognitive and attention control (Carlesimo et al., 2011; Schmitt
et al., 2017), goal-directed mental operation (Doucet et al.,
2018), and experience and expression of emotion (Frodl et al.,
2002), is a complex structure. Several neurobiological studies
have postulated that the pathophysiology of schizophrenia
involves abnormal functional interactions between the cortex
and thalamus, the subcortical structure (Cheng et al., 2015).
Our result of increased GFC in bilateral thalamus was consistent
with previous studies, which found increased connectivity
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FIGURE 2 | Enhanced GFC in the left SFG in the siblings compared to the
controls. GFC, global-brain functional connectivity; SFG, superior frontal
gyrus.

between thalamus and motor and somatosensory cortical
areas (Woodward et al., 2012). Compensatory effort or
dedifferentiation is always considered as an explanation of
hyperconnectivity of brain regions (Cabeza et al., 2002; Grady
et al., 2005; Guo et al., 2013; Su et al., 2015), which may
be affected by inflammation process in the early state of
schizophrenia. In that state (Anticevic et al., 2015), astrocytes
could be activated by proinflammatory cytokines like interleukin-
6, and consequently the metabolism and blood flow increased

(Liberto et al., 2004). It is noteworthy that numerous thalamic
nuclei comprise the thalamus, and there are topographically
parallel pathways linking these anatomical segregated nuclei to
different cortical regions within the thalamo-cortical circuits
(Alexander et al., 1986; Haber, 2003; Woodward et al., 2012).
Pergola and colleagues found that gray matter volume of the
mediodorsal thalamic nucleus was associated with schizophrenia
but state-related, while the left anterior and midline thalamic
nuclei was the most important region associated with familial
risk (Pergola et al., 2017). Decreased connectivity between the
prefrontal cortex and dorsomedial/anterior thalamus was also
observed in previous studies (Woodward et al., 2012). It is still
unclear whether the increased GFC in the bilateral thalamus
documented by our study pertains to specific thalamic nuclei and
whether there are associations between functional and structural
imaging findings relating to thalamus. In addition, age is a vital
factor that should be considered from a neurodevelopmental
perspective. According to Fair and colleagues, there were
significant differences in the thalamo-cortical FC between
children, adolescents, and adults (Fair et al., 2010).

The DMN, including brain regions such as the posterior
cingulate cortex (PCC)/precuneus, medial prefrontal cortex
(MPFC), angular gyrus (Andrews-Hanna et al., 2014), and
parahippocampal gyrus (Raichle et al., 2001), is one of the most
consistently disturbed resting-state networks in patients with
schizophrenia. MPFC is involved in the regulation of emotional
behavior and self-referential processing in the DMN (Chen et al.,
2012; Yu et al., 2014) and the angular gyrus plays an important
role in the language process, spatial cognition, and memory
retrieval (Uddin et al., 2010). Therefore, disturbed DMN network
connectivity may be linked to part of poor performance seen
in patients with schizophrenia. Some researchers also found
unaffected siblings having altered regional activity in certain
brain areas of the DMN (Guo et al., 2014a,c). However, one
study showed no marked FC difference within the DMN between
patients with schizophrenia and controls (Wolf et al., 2011). The

FIGURE 3 | Receiver operating characteristic (ROC) curve of separating the patients and the siblings from the controls by using the GFC values in the left SFG. GFC,
global-brain functional connectivity; SFG, superior frontal gyrus.
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inconsistency may result from sample heterogeneity, sample
size, and analysis methods. For patients with schizophrenia,
illness duration and potential medication effects are also
confounding factors. Consistent with our results, the
ITG, important for emotional processing, social cognition
(Guo et al., 2014b), and facial perception (Schultz et al.,
2000), has been reported to have reduced FC in patients
with schizophrenia as compared with healthy controls
(Vercammen et al., 2010). Previous evidence also suggests
that the impairment of temporal lobe and constituent
parts in schizophrenia patients may be an important
element in the emergence of auditory hallucinations and
thought disorder (Seok et al., 2007). Intriguingly, one study
suggested that deficit schizophrenia, a subgroup of patients
with poorer treatment response and greater possibility to
become chronicity compared to non-deficit schizophrenia,
demonstrated structural and functional abnormalities in ITG
(Yu et al., 2017).

In addition to the relatively small sample size, there are some
limitations in this study. First, the scanning did not conduct
again in the patients group after treatment. A longitudinal
study is better to portray the continuous GFC alteration
of brain networks in vulnerable people and patients with
schizophrenia. Second, structural alterations, including gray
matter and white matter, were not examined in this study.
According to some researchers (Guo et al., 2012, 2015b), there
were structural alterations in the gray matter and white matter
in patients with schizophrenia. Hence, structural alterations
underlying GFC remain unclear. However, the neuroimaging
data of patients, siblings, and controls were preprocessed in
the same way in order to minimize the effects caused by
lack of structural examination in the present study. Finally,
the study was based on resting-state fMRI without tasks
involved. Therefore, it may restrict the generalizability of this
study and the interpretation of underlying pathophysiology
should be caution.

CONCLUSION

In summary, this study is the first to explore voxel-wise brain-
wide FC in first-episode drug-naive patients with schizophrenia
and unaffected siblings. Dysconnectivity of the thalamo-cortical
circuits may involve in the etiology of schizophrenia. Enhanced
GFC in left SFG may serve as a potential endophenotype
for schizophrenia.
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