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This paper presents a cloud masking, cloud classification and optical depth retrieval

algorithm and its application to the Advanced Himawari Imager (AHI) on the Himawari-8/9

satellites using visible, near infrared and thermal infrared bands. A time-series-based

approach was developed for cloud masking which was visually assessed and

quantitatively validated over 1 year of daytime data for both land and ocean against

the level 2 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 1 km cloud layer

product (version 4.10). An overall hit rate (the proportion of pixels identified by both

sensors as either clear or cloudy) of 87% was found. However, analysis revealed that,

when partially cloudy conditions were experienced, the small footprint of the CALIOP

sensor (70 meters beam size sampling every 330 meters along the ground track) had

a major impact on the hit rate. When partially cloudy pixels are excluded a hit rate of

∼98% was found, even for thin clouds with optical depth less than 0.25. A two-way

confidence index for the cloud mask was developed which could be used to reclassify

the pixels depending on applications, either biasing toward clearness or cloudiness. On

the basis of the cloud masking, classification and optical depth retrieval was performed

based on radiative transfer modeling. Small modeling error was found, and inspection of

typical cloud classification examples showed that the results were consistent with cloud

texture and cloud top temperatures. While difficult to validate retrieved cloud properties

directly, an indirect quantitative validation was performed by comparing surface-level

solar flux computed from the retrieved cloud properties with in-situ measurements at

11 sites across Australia for up to 3 years. Excellent agreement between calculated and

measured solar flux was found, with a mean monthly bias of 2.96 W/m2 and RMSE of

8.91W/m2, and the correlation coefficient exceeding 0.98 at all sites. Further assessment

was conducted by comparing seasonal and annual cloud fraction with that of ISCCP

(International Satellite Cloud Climatology Project) over Australia and surrounding region.

It showed high degree of resemblance between the two datasets in their total cloud

fraction. The geographical distribution of cloud classes also showed broad resemblance,
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though detailed differences exist, especially for high clouds, which is probably due

to the use of different cloud classification systems in the two datasets. The products

generated from this study are being used in several applications including ocean color

remote sensing, solar energy, vegetation monitoring and detection of smoke for the

study of their health impacts, and aerosol and land surface bidirectional reflectance

distribution function (BRDF) retrieval. The method developed herein can be applied to

other geostationary sensors.

Keywords: cloudmask, cloud detection, cloud classification, cloud retrieval, cloud cover, cloud fraction, Himawari,

AHI

INTRODUCTION

Identifying pixels in remote sensing imagery that contain clouds,

so-called cloud masking, is critically important for optical
remote sensing and essential to subsequent accurate image

analysis/image modeling (Saunders, 1986; Stowe et al., 1999;
Frey et al., 2008). For example, 22 downstream Environmental
Data Records based on Visible Infrared Imaging Radiometer
Suite (VIIRS) depend upon the VIIRS Cloud Masking (VCM)
product (Kopp et al., 2014). Regardless of how sophisticated

the new remote sensors and their applications are increasingly
becoming, cloud masking is usually one of the first processing
steps undertaken (Ackerman et al., 1998; Huang et al., 2010).

Algorithms for cloud masking have been predominantly

based on spectral characteristics of clouds compared to that
of the land and ocean surfaces, over the visible to thermal
infrared spectral range (Ackerman et al., 1998; Stowe et al., 1999;

Hutchison et al., 2005; Frey et al., 2008; Imai and Yoshida,
2016). This is probably driven by the advantage of simplicity
in the implementation of such approaches, while overcoming
the challenge of relatively longer revisit time of some of the
traditional remote sensors. Nevertheless, both clouds and the
surfaces vary greatly in their spectral characteristics, temporally
and geographically, making it a great challenge to identify
a single set of criteria that is suitable across all geographic
regions and seasons (Irish, 2000). For pixels with thin or partial
clouds, the change of signal due to such clouds is often smaller
than the temporal change of the underlying surfaces, resulting
in large uncertainties in cloud detection and other products
(Sun et al., 2014).

Given the importance of cloud masking it remains a very
active research subject, and alternatives to the above spectral-
thresholding-only approach for cloud masking continue to be
developed. Four recent examples are: (i) Lyapustin et al. (2008)
based their approach on the high spatial correlation between
consecutive cloud-free surfaces of the same area; (ii) Zou and Da
(2014) presented a method with dynamic thresholds determined
by statistical relationship between nearby region and the target
pixel; (iii) Koner et al. (2016) presented a cloud detection
algorithm combining traditional static spectral-thresholding-
only criteria and radiative transfer modeling to improve sea
surface temperature retrieval; and (iv) Qin et al. (2015) and
Gomez-Chova et al. (2017) both developed time-series-based
approaches based on the contrasting temporal scale of variation

exhibited by a clear surface compared to that introduced by the
onset of clouds.

In addition to cloud masking, cloud classification and
optical depth are also important variables. Clouds are a
critical factor influencing Earth’s climate (Stephens, 2005).
Observations of clouds, particularly remotely sensed, plays
a pivotal role in climate studies and climate modeling
(Yang et al., 2013). Retrieving cloud properties is also of
great importance for solar energy forecasting, ecological and
agricultural impacts such as primary production, crop yield
modeling and forecasting (McVicar and Jupp, 1999), and
in evaluation of numeric weather models (Huang et al.,
2018). A large amount of research have been conducted to
retrieve cloud properties from a range of remote sensing data
(Stubenrauch et al., 2013), for examples, from passive optical
sensors (Baum and Platnick, 2006), hyperspectral atmosphere
sounders (Stubenrauch et al., 2010), space based backscattering
Lidar sensors (Chepfer et al., 2010), space based radars (Sassen
and Wang, 2008; Austin et al., 2009). A number of multi-
sensor projects have been initiated to build cloud climatology
such as International Satellite Cloud Climatology Project–ISCCP
(Rossow and Schiffer, 1999); Satellite Application Facility on
Climate Monitoring–CM SAF (Schulz et al., 2009); Pathfinder
Atmospheres-Extended–PATMOS-X (Heidinger et al., 2014);
and Climate Change Initiative (Cloud)–Cloud_cci (Stengel et al.,
2017). Due to the vast number of products available, assessments
through cross comparison are essential, for example, Global
Energy and Water Exchanges–GEWEX (Stubenrauch et al.,
2013). The new generation of geostationary satellites (Bessho
et al., 2016) around the globe provide a new opportunity to
generate potentially higher quality cloud property data with
higher spatiotemporal resolution, for example, Himawari-8
(Iwabuchi et al., 2018), FY-2 (Wang et al., 2018), GOES-R
(Walther et al., 2011). Nevertheless, despite the vast amount
of work being conducted, retrieving cloud properties remians
very challenging withmany potential uncertainties (Stephens and
Kummerow, 2007). Major efforts are still required, especially to
improve the quality of cloud products. This work presents such
an effort.

Compared to low-earth orbiting sensors, geostationary
sensors such as AHI are more suitable for time-series-
based approaches for cloud masking and cloud classification.
Geostationary sensors acquire images with fixed pixel geometries
(so pixel center, pixel shape and view angles are temporally
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consistent) and with short revisit intervals (ranging from 10-
min to hourly) allowing for the creation of high resolution time-
series with minimum spatial variation. Based on the time-series
approach outlined in Qin et al. (2015), the objective of this
present work is to develop an algorithm for cloud masking, and
on this basis to classify detected clouds and retrieve their optical
depth using a radiative transfer approach.

The algorithm will be presented first, followed by a
quantitative validation of cloud masking against the CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization) cloud
masking product. Cloud classification and optical depth retrieval
will firstly be assessed qualitatively by examining examples of
cloud type, cloud texture and cloud top temperature. Then, an
indirect quantitative assessment is provided by comparing in-
situmeasurements of surface-level solar flux with that calculated
using the retrieved cloud parameters. Further, regional cloud
fraction is spatially and temporally compared with the ISCCP
climatology products. Lastly, we present our conclusion.

DATA

The AHI sensor on the geostationary Himawari-8/9 satellites is
located at 140.7◦E acquiring images of the East Asia and Oceania
region every 10min in 16 bands from 0.47µm to 13.3µm. Details
of the sensor can be found at http://www.data.jma.go.jp/mscweb/
en/himawari89/space_segment/spsg_ahi.html. The bands used
in this research are 0.47 µm (band 1), 0.51 µm (band 2), 0.64
µm (band 3), 0.86 µm band 4), 1.61 µm (band 5), 2.26 µm (band
6), and 11.24 µm (band 14). While the original spatial resolution
varies from 0.5 to 2 km, herein a spatial resolution of 2 km is used
and bands with higher resolutions are averaged to 2 km. As this
work is for daytime imagery only, data with solar zenith angle
exceeding 75.0◦ are not used.

To validate the AHI cloudmasking, we used the CALIOP 1 km
cloud layer version 4.10 dataset (Winker, 2016). The collected
data period is from 6th Jul 2015 to 30th Jun 2016. The circular
laser beam of the instrument has a ground diameter of 70m and
takes measurements every 330m along the ground track (Winker
et al., 2009). This is an important point to note as it has major
impact when CALIOP data is matched with AHI.

To validate retrieved cloud class and optical depth, surface-
level solar flux measured at 11 sites across the continent (BoM,
2018) were collected. Among the 11 sites, 8 have a matching
period of 36 months from July 2015 to June 2018 and the other
three site commence measurement in Jan 2017 and so have a
matching period of 18 months. In addition, ISCCP cloud fraction
climatology data (Rossow and Schiffer, 1999) from January 2010
to June 2015 (NOAA, 2018) were collected.

METHOD

To overcome the limitations of the global spectral-thresholding
criteria, the method developed here takes advantage of the fact
that the temporal variations of most land or water surface
properties (reflectance and temperature) are much slower—days
to years—compared to the onset and removal of clouds which

occur on a scale of minutes to hours. For the land surface, the
onset of fire and flooding can potentially cause spectral changes
with similarly rapid temporal scales to cloud dynamics yet the
recovery of these disturbances is much slower than the spectral
“recovery” when a pixel is no longer cloudy. Acknowledging these
exceptions, and being aware that each typically covers only parts
of the landscape during limited time periods, the temporal scale
difference provides the basis for reliably detecting, through time-
series analysis, the presence of clouds at any given time and
location. Figure 1 shows the methodological work-flow and is
discussed in detail below, in three subsections: (i) cloud masking;
(ii) masking confidence, and (iii) cloud classification and optical
depth retrieval.

Cloud Masking
The first step of the algorithm (Figure 1) is to sort the Himawari
bands into time series with fixed acquisition time from multiple
dates. For example, the daily images acquired at 02:00 UTC
were collected into one time series per pixel. This choice
for the time series, instead of all consecutive 10-min images
throughout the day, is based on the following considerations:
(i) it is rare for surface pixels to experience, over consecutive
days but at fixed times, substantial changes compared to that
induced by overlaying clouds; and (ii) a daily time series of all
consecutive observations will include daily cycles of reflectance
and temperature due to daily sun elevation and modulations
by surface properties such as thermal inertia and soil moisture.

FIGURE 1 | Work-flow for cloud masking based on time-series (TS) analyses,

and cloud classification and optical depth (OD) retrieval using radiative transfer

modeling.
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These daily cycles would have to be modeled to an accuracy
level higher than the minimum of distinguishable signals caused
by overlaying cloud layers. This is very challenging, and any
modeling error will have a direct impact on the sensitivity of
cloud detection, as discussed below. Another factor that affects
the apparent surface reflectance is the solar position. Its change,
however, is very slow as the time series is built at fixed daily
acquisition time. All such slow variations, including other natural
variations such as that caused by plant phenology, form a
slow changing baseline reflectance against which rapid changes
due to the onset of clouds are detected. Therefore, such slow
variations would not affect the ability of the algorithm on cloud
detection. The length of time series is also not critical, the only
consideration is: “are there sufficient number of clear days from
which the baseline reflectance can be extracted?” Details on
baseline reflectance and cloud detection are discussed below.

The presence of clouds in a pixel generally increases its top
of atmosphere (TOA) reflectance, especially in the visible bands,
but decreases its apparent temperature due to the higher altitude
of clouds. Both factors can be used for cloud detection. Here
a cloud index, denoted Ic, was defined to combine the two
factors to maximize the difference between cloudy and clear
(cloud-free) pixels:

Ic =
Tmax − T

Tscl
Rb (1)

where T (in K) is the brightness temperature of band 14 (11.24
µm), and Rb is the reflectance of either band 2 (0.51 µm) or
band 6 (2.3µm) depending on the surface type (discussed below).
Tmax = 373.15 K and Tscl = 100 K have been chosen to balance
the relative sensitivity of temperature and reflectance. This cloud
index is modified from Qin et al. (2015) where T appeared in
the denominator as Ic = Rb/(T − Tmin). The advantage of
this modification is that the sensitivity of Ic to change of T,
∂Ic/∂T = −Rb/Tscl, does not depend on the absolute value of
temperature (T) and therefore is equally sensitive over latitudes
with different surface and cloud top temperatures. While this
index is only tested in this study over the Australia region, the
chosen Tmax is large enough to cover any part of the world and
therefore Equation (1) should be applicable worldwide.

The choice of the spectral band for Rb in Equation (1) depends
on the surface type in the pixel. For the Australian continent
the majority of surfaces (semi-desert, rangeland, agriculture, and
forest) have low blue/green band reflectance, providing a striking
contrast to clouds which always have high reflectance in these
bands. Such surfaces are referred to as “type-1 surfaces” herein.
For type-1 surfaces, AHI band 2 (0.51 µm) was the reflectance
component in the cloud index. Due to Rayleigh scattering, band
1 (0.47 µm) often has a higher TOA reflectance during clear
conditions, and so is less sensitive compared to band 2, especially
when the sun is low and/or for areas with a large viewing zenith
angles near the edge of the imaged disk. Water bodies—both
in-land and oceans—also have low surface reflectance in the
blue/green bands, and so were treated the same as type-1. In
addition to type-1, there is a very small fraction of the Australian
continent that has high reflectance in the blue/green bands, such

as salt lakes and snow regions. For these surfaces, hereafter
denoted “type-2,” band 6 (2.3µm) was the reflectance component
in the cloud index because it is normally relatively lower than
clouds. Examples of typical surface and cloud reflectance spectra
are presented in section Qualitative Assessment.

For the majority of the Australian continent the surface
type classification remains invariant over months to years, but
temporal changes do occur in areas such as salt lakes or areas
subject to intermittent flooding or snow. To deal with the
different, and in some parts, changing surface types, the surface
type needs to be determined at given location and times. This is
accomplished using an initial time-series filtering on temperature
only, which removes likely cloudy time points, followed by a
classification on cleared data points to determine the surface
type at any time. Compared to reflectance, surface temperature
experiences more rapid but smaller fluctuations, especially over
land, and so it is less sensitive on its own for detection of weaker
(thin or partial) clouds. On the other hand, surface temperature
rarely undergoes dramatic changes over a short time (days)
even when the surface is changing from one type to another.
Temperature therefore is a noisy but reliable predictor for surface
type classification.

Filtering, for both cloud index and temperature-only time
series, was implemented iteratively, where each iteration was
conducted using the Lee (1986) algorithm. Figure 2 illustrates
this process for a case of the cloud index, where in the first
iteration all data points are fed to the Lee filter, and the filtering
output is shown as a red line. Points that are above the red
line plus a small margin, shown as red circles, are masked as
cloudy and are subsequently removed from further iterations.
This is repeated until no more data points can be removed. The
small margin mentioned above, denoted as 1Ic,min, is the only
threshold value used in this algorithm, which will be discussed in
more details later in the context of confidence level calculation.
For the case shown in Figure 2, which is a relatively simple case
and used here for clarity, only three iterations were required.
For temperature filtering, the only difference is that data points
that are lower than the Lee filtering output minus a margin are
masked as cloudy and removed from further iterations.

After removing likely cloudy time points based on the initial
filtering of the temperature time series, pixels (at cloud-free
time points) are classified as type-2 if either of the following
two criteria is satisfied: (i) R2 > 1.5R6 and R2 > 0.25; or
(ii) R2 > 0.35. All remaining pixels are type-1. For pixels
where surface type does change, the surface type at cloudy time
points is assigned using nearest cloud-free points. This simple
classification of surface type was designed for the Australian
continent and its surrounding waters, where the continent
experiences minimal land-use change (Donohue et al., 2009). For
other parts of the world modification may be required. However,
the time-series-based cloud detection approach presented here is
robust and tolerable to some misclassification of the surface type.

Cloud Masking Confidence
After removing all the cloudy time points, the cloud index, Ic, is
interpolated to all cloudy time points to form a baseline cloud
index, denoted as Ic,base, and the difference between Ic and the
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FIGURE 2 | Iterative filtering process for cloud masking. In this case three

iterations were required to remove all the cloudy points. The lines are the

output of Lee filtering after each iteration, and the circles indicate the points

being removed at each iteration. Shown here is the case of cloud index filtering

for a 3-month period and 02:00 UTC. On the figure “Iter.” denotes Iteration.

baseline is denoted as 1Ic = Ic − Ic,base. As discussed above, if a
time point has a Ic greater than Ic,base by a margin of 1Ic,min, i.e.,
1Ic ≥ 1Ic,min, the time point is classified as cloudy. Otherwise
the point is classified as clear. The line defined by Ic,base +1Ic,min

therefore is a line that separates cloudy time points from clear
points. The higher the Ic of a point is above the separation line
the more likely the point is cloudy. Similarly, the lower the Ic is
below the separation line the more likely the point is clear. The
position of Ic relative to the separation line, therefore, can be used
to define a two-way confidence level as discussed below.

Firstly a relative cloud index, ic, is defined as the relative
difference between Ic and the separation line as:

ic =

{

1Ic−1Ic,min

1Ic,min
cloudy : 1Ic ≥ 1Ic,min

1Ic,min−1Ic
1Ic,min

clear : 1Ic < 1Ic,min
(2)

Secondly, the relative cloud index, ic, is logarithmically
transformed to calculate the confidence level, c, for all (cloudy
and clear) time points as:

c = min(
⌊

cf
⌋

,C), cf =
log (σ ic + 1)

log (σ I + 1)
(C + 1) (3)

where
⌊

cf
⌋

is the floor function that returns the integer part of cf ,

andmin
(

x, y
)

clips the confidence level to the maximum value C.
We used 1Ic,min = 0.015, C = 15, σ = 1 and I = 3 for cloudy
cases or I = 2 for clear cases. The confidence level, therefore, is
from 0 to 15.

When ic = 0, i.e., the cloud index is exactly on the separation
line, the confidence level will be zero. Through the logarithm
function, confidence levels are allocated nonlinearly to different
range of ic favoring the lower range of ic, and the allocation
is controlled by σ in Equation (3). Increasing σ will distribute
more confidence levels to the lower range of ic, and vice versa.
Figure 3 shows the confidence function as function of ic. For
cloudy cases, exactly half of the available confidence levels (0–
15) are allocated to ic in the range ic < 1.0, and the other half

FIGURE 3 | Confidence, c, as function of relative cloud index, ic, for

parameters of present work (C = 15, σ = 1 and I = 3 for cloudy cases or

I = 2 for clear cases). Note that for the clear case (in blue) the negative of

confidence and relative cloud index are plotted to show the two-way nature of

the confidence level. The shaded areas illustrate re-classification using a

confidence threshold, cmin = −3 in this plot, which reclassifies some

originally clear pixels as cloudy resulting in the reclassified clear pixels with

higher clearness confidence.

are allocated to ic ≥ 1.0 until the confidence level reaches the
maximum at ic = I = 3 when the confidence level is clipped to
the maximum. By allocating more confidence levels to the lower
range of ic, better granulation is provided in the post-processing
reclassification (discussed below) without excessively increasing
the amount of storage required.

The two-way confidence level allows for post-processing
reclassification, as illustrated in Figure 3, using a confidence
threshold, cmin, shown as the red line. In the figure the shaded
blue and green areas indicate the reclassification results, and for
the purpose of illustration the negatives of ic and c are shown for
the case of clear pixels. In the case of Figure 3, by moving cmin

below zero some of the originally clear pixels are reclassified as
cloudy leaving the remaining clear pixels with a higher overall
clearness confidence but at the expense of the overall cloudiness
confidence. The opposite effect can be achieved by moving cmin

above zero.

Cloud Classification and Optical Depth
Retrieval
A cloud classification and optical depth retrieval algorithm
has been developed, based on radiative transfer modeling and
utilizes the cloud masking results described previously. The
cloud masking process detects clouds and also aerosols when
the aerosol layer is substantial (with optical depth greater than
0.5) and becomes opaque such as in smoke plumes or dust
storms. Hereafter, the term “clouds” also refers to opaque levels
of aerosol layers.

Similar to the cloud index baseline discussed above, a TOA
reflectance baseline and a TOA temperature baseline can also be
generated. As any substantial aerosol layers are also detected and
masked in the above detection process, the remaining baselines
may only contain background aerosols which, for Australian, is
stable with low optical depth in the range of 0.02–0.05 (Mitchell
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et al., 2017). By assuming a constant background aerosol optical
depth, the type and optical depth of “clouds” can be determined
by radiative transfer modeling in the following two steps.

1) Using the assumed background aerosol optical depth, which is
zero in current implementation for simplicity considered the
very low level of background aerosols, the spectral reflectance
at the surface can be determined from the baseline TOA
reflectance using an inverse radiative transfer. As we are
dealing with “clouds” (meaning clouds and opaque aerosols
as defined previously) with substantial optical depth, the
surface contribution to TOA reflectance decreases rapidly
with increasing optical depth, and bi-directional reflectance
distribution function (BRDF) of the surface becomes a less
critical factor. For simplicity the Lambertian approximation
was assumed and the TOA reflectance is related to surface
albedo, ρ, as (Liou, 1980; Qin et al., 2015):

Rtoa(τ ,µ0,µv,φ) = Ra(τ ,µ0,µv,φ)+
ρTs(µ0)Ta(µv)

1− ρr
(4)

where Ra represents the reflection by the atmosphere, and
the second term represents the interactions between the
atmosphere and the surface. Ts and Ta are transmittance
functions accounting the attenuation due to the atmosphere,
r represents the global reflection by atmosphere at the surface,
τ is the total optical depth (at 0.55 µm) of the atmosphere
including the absorption and scattering of molecules and
“clouds,” and µ0, µv and φ are, respectively, cosine of solar
zenith angle, cosine of view zenith angle, and relative azimuth
angle between the sun and the satellite. The time series of
surface albedo, derived from the baseline TOA reflectance
using Equation (4), is referred to as the baseline surface albedo.

2) With the baseline surface albedo now available, the TOA
reflectance can be computed using Equation (4) given
the aerosol/cloud optical parameters. The per-pixel type of
“clouds” and optical depth were determined by testing a set
of predefined “cloud” models (i.e., predefined single scattering
albedo, phase function and extinction coefficient spectral
profile) and by minimizing the following error function:

ferr =
(f

(1)
err + wf

(2)
err )

(1+ w)
,w = 0.1∗R (5)

f (1)err =
1

5

5
∑

b=1

∣

∣Rb − Rmb (τ )
∣

∣ (6)

f (2)err =
1

10

4
∑

b1=1

5
∑

b2=b1+1

∣

∣

∣

∣

∣

Rb1
Rb2

−
Rm
b1

(τ )

Rm
b2

(τ )

∣

∣

∣

∣

∣

(7)

where Rb is the TOA reflectance of band b, Rm
b
(τ ) is the

reflectance of band b at optical depth τ computed using

Equation (4), R is the mean TOA reflectance. The first part of
the error function, denoted by the superscript (1) in Equation
(5) and defined in Equation (6), is themean absolute difference
of modeled and measured TOA reflectance, and the second
part of the error function, denoted by the superscript (2)

in Equation (5) and defined in Equation (7), represents the
spectral resemblance between model and data. In this work,
AHI bands 1–5 were used. While band 6 (2.26µm) is involved
in cloud detection, we found that the model predicted
AHI band 6 cloud top reflectance is usually lower than
measurements, especially for the water clouds (cumulus and
stratus), and therefore band 6 is not used in the classification.
The reason of the poor model performance at band 6 is to
be investigated.

Lookup tables (LUT) were employed for operational radiative
transfer calculations. Ra, Ts, Ta, and r in Equation (4) were
pre-computed and stored in LUT’s for a sufficiently wide range
of solar and view angles and optical depth from 0 to 100, for
each of the aerosol and cloud types (see Table 1 and further
discussion shortly). The Vector Green’s function and Discrete-
Ordinate-Method (VGDOM) radiative transfer code (Qin and
Box, 2005, 2006) was used to solve the plane parallel radiative
transfer equation. This code contains an implementation of
the Discrete-Ordinate-Method with delta-M scaling (Nakajima
and Tanaka, 1986) to handle large cloud particles causing very
strong forward scattering. Because of the delta-M scaling the
maximum number of streams is limited to 64, otherwise the exact
number depends on the number of terms required to expand the
phase function.

The cloud optical models used herein were the OPAC (Optical
Properties of Aerosols and Clouds) models (Hess et al., 1998),
while the aerosol models are from (Qin and Mitchell, 2009).
For all clouds and aerosols, a single layer is assumed currently,
with the optical depth vertical profile assumed to follow the
exponential rule, i.e., the optical depth τ (h) = τ0(h0)exp[−(h −

h0)/H], whereH is the scaling height and τ0 is the optical depth at
the base of the layer, h0. The cloud and aerosol models, their base
altitude and scaling height used in this work are listed in Table 1.

TABLE 1 | Optical models used in “cloud” classification.

ID Name Base

altitude

(km)

Scaling height

(km)

CLOUDS

Cir-1 Cirrus 20◦ 5.0 1.0

Cir-2 Cirrus 50◦ 5.0 1.0

Cir-3 Cirrus 50◦ with small

particles

5.0 1.0

Cum-1 Cumulus continental

clean

2.0 4.0

Cum-2 Cumulus continental

polluted

2.0 4.0

Cum-3 Cumulus maritime 2.0 4.0

Fog Fog 0.0 1.0

Str-1 Stratus continental 2.0 1.0

Str-2 Stratus maritime 2.0 1.0

AEROSOLS

Smoke Smoke aerosol (fresh

and aged combined)

0.0 3.0

Dust Dust 0.0 2.0

Abs Absorptive 0.0 3.0

Frontiers in Environmental Science | www.frontiersin.org 6 February 2019 | Volume 7 | Article 20

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Qin et al. Cloud Retrieval for Himawari-8

For simplicity, the US-1962 standard atmospheremodel was used
to describe the molecular atmosphere. The optical depth due to
molecular atmosphere is extracted from the 6S code (Vermote
et al., 1997) in this work, but it can also readily be evaluated using,
for example, MODTRAN (Berk et al., 2014).

As the Australian continent is relatively flat, surface elevation
is assumed to be constant at mean sea surface level in the current
implementation, but refinement may be required in future work.
Subpixel cloud fraction is not considered, therefore the retrieved
“cloud” type and optical depth represent a radiative mean of the
whole pixel. Due to the assumed constant background aerosols,
the baseline surface albedomay be affected. However, because the
background aerosol loading is small (Mitchell et al., 2017), the
effect on optical depth retrieval will also be small–on the same
level as the background AOD, i.e., 0.02 to 0.05.

RESULTS AND DISCUSSION

Cloud Masking Validation
Figure 4 presents a typical example of cloud masking and
the associated confidence calculation. The upper row shows
significant amount of clouds across the continent. For areas
with continuous clouds, clouds are masked with high confidence.
The confidence however decreases as expected toward the edges
of clouds or in partly-cloud pixels (i.e., mixed pixels where
cloud does not cover the entire pixel), when clouds become less
distinguishable from clear surface. The lower row in Figure 4

shows a small region of the continent, indicated by the black
rectangle in the upper row, showing broken clouds scattered
through the area. These broken clouds are masked correctly
although their confidence varies.

An quantitative validation using the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) instrument (Winker et al.,
2009) was conducted. As a dedicated sensor for cloud and aerosol
detection and profiling, and with its altitude resolving ability, this
instrument is particularly sensitive to the presence of “clouds”

without interference of the surface, and therefore provides a
reliable reference against which cloud masking products from
other sensors can be validated (Wang et al., 2016; Karlsson and
Hakansson, 2018). Figure 5 shows the hit rate, defined as the
proportion of pixels identified by both AHI and CALIOP as
either clear or “cloudy,” as a function of confidence threshold,
cmin(discussed above and in Figure 3). Shown also in Figure 5

are the miss rate and its components: AHI clear–CALIOP
cloudy (clear-cloudy), AHI cloudy–CALIOP clear (cloudy-clear).
Figure 5 shows that at cmin = −3 the clear-cloudy and cloudy-
clear rates reach an equality. This indicates that the current cloud
mask threshold, 1Ic,min in Eq (2), is too high that some cloudy
pixels are misclassified as clear. Such misclassifications can be
corrected by using the confidence threshold, cmin. At the neutral
point, cmin = −3, the overall hit rate reached its maximum of
0.872, while the overall miss rate reached its minimum of 0.128.
This suggests that this neutral point is also the optimum cmin

confidence threshold.
The hit rate of 87.2% is slightly better than (Stubenrauch et al.,

2017) where the cloud detection from Atmospheric Infrared
Sounder (AIRS), also an altitude resolving sensor, is compared
with CALIOP and hit rates of 85% over ocean and 82% over
land were reported. Wang et al. (2016) reported a hit rate of
77.8% for the MODIS MYD06 cloud product when validated
against the CloudSat-CALIOP combined retrieval. The hit rate of
87.2%, however, is much lower than we expected from the visual
assessments we performed. This discrepancy is caused by the
small footprint of the CALIOP sensor, which has a ground beam
size of 70 meters and takes measurements every 330m along
the ground track (Winker et al., 2009). Comparatively, the AHI
data used here has 2 km resolution and when the AHI pixel is
partially clouded, the CALIOP laser beammay or may not hit any
clouds within the matchup AHI pixel resulting in an uncertainty
which depends on the cloud fraction. If the CALIOP beam size
is zero and the CALIOP shots only once within the matchup
AHI pixels, the uncertainty would reach the maximum when

FIGURE 4 | Example of RGB composition, cloud mask and confidence for an AHI image acquired at 02:00 (UTC) on 2nd May 2016. The upper row shows

continuous clouds across the Australian continent, and the lower row shows the details for a small region marked in the upper row with black rectangles. The left

column shows the RGB image in which Red is AHI band 3 (0.64 µm); Green is band 2 (0.51 µm) and Blue is band 1 (0.47 µm). The central column shows the cloud

mask (binary with cloud colored dark green), and the right column illustrates the cloud confidence (0–15) score. All the cloud mask and cloud confidence images are

overlaid on the same RGB image as shown in the left column.
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FIGURE 5 | AHI-CALIOP cloud mask hit rate (in green) and miss rates (in red)

as functions of confidence threshold (cmin, see text). At the neutral point,

cmin = −3, the clear-cloudy and cloudy-clear rates reach equality while the

hit rate reaches its maximum and miss rate reaches its minimum. Data was

collected over both land and water for the region (110◦E, 155◦E, 10◦S, 45◦S)

from 6th Jul 2015 to 30th Jun 2016.

the cloud fraction is at 50%, when the pixel is most fractured
by area. However, because of CALIOP’s beam size and it takes
measurements ∼6 times within each matchup AHI pixel, the
actual cloud fraction at which the uncertainty maximizes will
be less than 50%. Noting that a matchup AHI pixel is reported
as cloudy by CALIOP if any one of the 6 shots hits—even just
partially—the cloudy area within the AHI pixel.

The effect of footprint difference is quantified using a regional
cloud fraction, the proportion of cloudy pixels within a window
of±30 CALIOP pixels (or±30 km), calculated from the CALIOP
data set. Using this regional cloud fraction as a proxy for AHI
pixel level cloud fraction, Figure 6 shows that, when the region
is either totally clear or overcast, the two instruments agree with
each other at a very high average ratio of ∼0.98. However, the
agreement dramatically deteriorates once the region becomes
partially cloudy, with the hit rate reaching the minimum at∼40%
cloud fraction. The inset table in Figure 6 further groups the
overcast pixels (i.e., ≥0.95 cloud fraction) by optical depth. It
shows that the hit rate remains high regardless of the optical
depth. This indicates that, once footprint difference is accounted
for, the hit rate is very high even in the case of thin clouds
with optical depth less than 0.25, which is about the lower limit
of detectable optical depth of 0.225 suggested by Karlsson and
Hakansson (2018) or 0.3 by Sun et al. (2014). We also note
that, among the ∼52 million matchup points, more than half
(56.2%) of them are in the total clear or overcast bins (i.e., < 5%
or > 95% cloud fraction), and the remainders spread quite
evenly into the other 18 bins (2.4% mean, 2.1% minimum and
3.5% maximum). Hutchison et al. (2014) validated the VIIRS
cloud mask (VCM) product against CALIOP and also showed
the impact of cloud fraction on hit rate. They showed when
only pixels with high confidence (an index converted from cloud
fraction) are included, a hit rate of ∼95% was reported, though
Hutchison et al. (2014) also excluded pixels with optical depth
less than 1.0.

FIGURE 6 | Hit and miss rates as functions of cloud fraction (see text),

showing that the hit rate is very high when the sky is either totally clear or

overcast but the hit rate decreases rapidly when the sky becomes fractured.

The inset table groups pixels with cloud fraction >0.95 by optical depth,

showing that when the factor of cloud fraction is excluded, the hit rate remains

close to unity even for thin clouds with optical depth less than 0.25. Data was

collected over both land and water for the region (110◦E, 155◦E, 10◦S, 45◦S)

from 6th Jul 2015 to 30th Jun 2016.

In addition to footprint, geolocation difference could also
impact the hit rate. This is examined in Figure 7 where the
CALIOP tracks were firstly displaced by up to an equivalent of
1.5 AHI pixels (3000m) in steps of 0.1 AHI pixels before they
are matched with AHI. Figure 7 shows that there is a geolocation
difference of about 1414m, but this difference does not impact
the hit rate substantially. When the region is totally clear or
totally overcast (i.e., not partially cloudy), small geolocation
differences does not cause much variation in the hit rate, but
when it is partially cloudy, the footprint factor discussed above
is so dominating that the geolocation difference becomes almost
irrelevant. The time difference between the two sensors, which is
less than 5min, is expected to have only minor effect on the hit
rate and therefore is not examined here.

Classification and Optical Depth Retrieval
In this section, a general discussion and qualitative assessment
of the classification will be provided first, followed by an indirect
quantitative validation against in-situmeasurements of solar flux.
Further, geographical distribution of cloud fraction is compared
with ISCCP climatology, and the geographical distributions of
optical depth are presented lastly in the section.

Qualitative Assessment
Examples of cloud classification and optical depth retrieval are
provided in Figure 8, for the Australia region. Figures 8a,b

show a low pressure system dominating the eastern half of the
continent, and a trough is located off the south coast. From the
clouds accompanying these systems, two sub-regions are selected
and their details are presented below.
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FIGURE 7 | AHI-CALIOP cloud mask hit rate as function of pixel and line

displacement (in AHI pixels, see text), indicating a geolocation differences

between AHI and CALIOP of−0.1 AHI pixels (∼200m) and 0.7 AHI lines

(∼1,400m), or a direct line difference of 1,414m. These are shown in red and

the third value in that array is the maximum cloud hit rate. Hit rate is calculated

for all conditions (total clear to overcast) over land and water for the region

(110◦E, 155◦E, 10◦S, 45◦S) from 6th Jul 2015 to 30th Jun 2016.

For sub-region R1, the RGB composite (Figure 8c) shows
that clouds in the region are convective with individual cells
clearly identifiable. This is confirmed by Figure 8d which shows
that most clouds in the region are classified as cumulative. The
size of cloud cells in the lower-left part is much larger with
some of the cells classified as stratiform clouds. An examination
of the time series showed that increasingly more of the large
cells were classified as stratiform clouds, suggesting that some
cells were probably experiencing transition from altocumulus to
stratocumulus. Figure 8e shows that the cloud top temperature
in the lower-left part is slightly lower, probably due to stronger
convection in the lower-left part leading to more diverse cloud
droplets. As a result some originally cumulative cells (with
narrower size spectrum) are classified as stratiform with wider
size spectrum (Hess et al., 1998). Due to the critical effects
of subtropical marine stratocumulus on Earth’s energy balance
(Wood, 2012; Yuter et al., 2018), satellite data, such as shown in
sub-region R1, will play an important role in the still intensive
researches in understanding their formation and dynamics.

Sub-region R2 is separated into two parts, defined by the
southern coastline (Figure 8f). The wispy cloud texture of the
upper-right part of Figure 8g clearly suggests that the cloud
should be cirrus, which is confirmed by classification (Figure 8h).
The cloud top temperature of these clouds are low at ∼240K
(Figure 8i), about 70K lower than the surface, meaning that the
clouds must be high clouds and supporting the classification. The
lower-left part of sub-region R2 consists mostly uniform clouds
as shown in Figure 8g, which were classified mostly as stratiform
and cumulative clouds Figure 8h. Compared to the surface, the
cloud top temperature is about 30K lower (Figure 8i), suggesting
the clouds should be middle to low clouds. This is consistent with
the classification.

In Figure 9 we examine detailed examples of cloud detection
and cloud classification over different surface types with different
cloud types. The four locations represent a range of surface types:

(i) forest; (ii) rangeland; (iii) snow; and (iv) ocean. Among the
locations, three (i.e., forest, rangeland and ocean) are of type-1
and one is of type-2 (i.e., snow; see sectionMethod for more type-
1/type-2 details). For each location, three time-points are selected
corresponding to the broad cloud types, cirrus (blue), cumulus
(green) and stratus (red). Figure 9 illustrates the method of cloud
detection, the sensitivity on detecting especially thin and partial
clouds. This is demonstrated by both cloud index time series (left
column) and the separation of TOA reflectance from clear day
reflectance (right column). Detecting clouds over type-2 surface
is more challenging than other surface types as shown in the
case of snow (third row). The TOA reflectance (circles) is hardly
distinguishable from the baseline clear day reflectance (squares)
in the first 4 bands. However, by combining temperature and
band 6 reflectance in the type-2 cloud index, clouds become
clearly distinguishable from the baseline. The third row also
shows a case when the surface changes its type, from type-2
(days < 20) to type-1 (days > 40), during snowmelt the band 2
reflectance dropped from ∼0.8 to ∼0.1. Figure 9 (right column)
shows that the radiative transfer model generally predict the TOA
reflectance very well with closely matching TOA reflectance,
regardless of the optical thickness and type of the clouds.

Further information on modeling error is provided in
Figure 10, which shows mean modeling error Figure 10a and
the maximum error at 95th percentile (derived as mean error
plus 2 standard deviation; Figure 10b). Figure 10b shows that
the maximum modeling error is mostly less than ∼0.06 over
the entire Australian region, indicating good agreement between
model and data (see Figure 9 right column). The ability to
model the cloud top spectral reflectance confirms that the OPAC
cloud models provided adequate description of the cloud optical
properties, and that the radiative transfer scheme used in this
work is suitable in terms of radiative consistency. However, high
maximummodeling error over the ephemeral salt lakes in central
Australia (the small red area in Figure 10b) is because parts of
these salt lakes can change their reflectance within a day, when
rainfall turned salt surfaces into specular reflectors, reflecting
the light away from the satellite and lowering the measured
reflectance instantly. Other changes also occur in these salt lakes
such as lateral inflowing standing water causing the salt crust
to dissolve or being covered by standing water which carries
high sediment loads, though these process take longer time scales
(Mernagh, 2013).

In addition to clouds, thick aerosol layers are also detected
and classified, as part of the “cloud” detection and classification.
Figure 11 shows an example of smoke plume detected in North
Territory, Australia. Fine particles such as those originating
from bush fires and hazard reduction burns have a range
of impacts on human health including premature mortalities
(Dennekamp et al., 2015; Haikerwal et al., 2015; O’Keeffe
et al., 2016; Horsley et al., 2018). Smoke plumes quantified
from this work could be useful in health impact analysis.
Savanna biomass burning, as shown in Figure 11, contributes
substantial amount of carbon emission (Hurst et al., 1994).
Globally landscape and biomass fires contributes 2–4 Pg C
year−1 CO2 emission (Bowman et al., 2009), or 20–40% the
amount of carbon as that emitted from fossil-fuel combustion
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FIGURE 8 | Example cloud classification and optical depth retrieval results, obtained at 00:00UTC on 31 Dec 2015. (a) Is RGB composite for the whole Australian

region with AHI band 3 (0.64 µm, red), band 2 (0.51 µm, green) and band 1 (0.47 µm, red). The two rectangles, labeled R1 and R2 respectively, mark two

sub-regions that are examined in detail below. (b) Shows the mean sea level pressure (MSLP) analysis at 00:00 UTC (source: Australia Bureau of Meteorology).

(c–f) Are, respectively, the RGB composite, cloud classification, cloud-top-temperature and optical depth for sub-region R1. (g–j) respectively provide the same

information as (c–f), except for sub-region R2.
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FIGURE 9 | Examples of cloud detection and cloud classification for various surface types (from top to bottom) and several cloud types. The left column shows results

of time-series analysis for the detection of clouds, illustrating the sensitivity of the analysis on detection of thin or partial clouds. Detected cloudy time points are

marked by red triangles along the x-axis. AHI TOA reflectance (b2 and b6) and temperature are shown along with cloud index. The right column shows cloud

classification by radiative transfer modeling of AHI TOA reflectance, on 3 days when different types of clouds (shown in three colors) are present. Blue denotes cirrus

clouds, green cumulus and red stratus clouds. The “Day” refers to the day since 1 September 2015. The squares are the baseline (clear day) TOA reflectance, circles

are TOA reflectance, and crosses are modeled TOA reflectance.

FIGURE 10 | Error characterization of the Australian region from 6 Jun 2015 to 30 Jun 2018 for daylight hours (i.e., 22UTC to 8UTC or 8–18 Australian east standard

time). Part (a) is the mean model error, defined by Equation (5), and (b) maximum error at the 95th percentile.

(Beringer et al., 2015). The method developed here therefore
provides a potential approach to account carbon emissions from
bush fires.

Validation by Surface-Level Solar Flux
While very challenging to quantitatively validate the cloud class
and optical depth directly, the downward flux at the surface can
be calculated, using the retrieved cloud properties, and compared
with in-situmeasurements. This provides an indirect quantitative

assessment of the quality of the retrieved cloud data. Three years
(06 July 2015 to 30 June 2018) of solar flux data measured every
1min at 11 sites across Australia (BoM, 2018) were collected and
averaged to 10min interval. Solar flux was also calculated using
the retrieved cloud parameters at the 11 sites, each represented by
the AHI pixel (2 km) nearest to the site. Both datasets were then
matched up in time andmatched records were averagedmonthly.
The bias and root mean square error (RMSE) of the calculated
solar flux are shown in the “Original” columns in Table 2.
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FIGURE 11 | Detected smoke over the northern Australian continent at (134◦E, 20◦S) at 02:00 UTC on 10th Nov 2015.

TABLE 2 | Bias and RMSE of the AHI-based monthly mean solar flux (Fc) when compared to surface-level solar flux measurements (Fm).

Site Name Site ID Latitude (◦N) Longitude (◦E) Elevation (m) N (mth) r Original Corrected

Bias RMSE Bias RMSE

Darwin DAR −12.42 130.89 25 35 0.982 34.95 36.39 8.42 13.16

Broome BRM −17.95 122.24 17 35 0.985 19.57 22.38 0.00 10.84

Townsville TVL −19.25 146.77 183 18 0.994 9.91 12.90 −2.89 8.75

Rockhampton RHM −23.38 150.48 11 36 0.993 7.21 11.28 −5.47 10.26

Alice Springs AS −23.80 133.89 545 36 0.993 −4.27 10.44 −0.05 9.53

Geraldton GRT −28.80 114.70 30 18 0.998 3.24 8.00 −1.78 7.53

Kalgoorlie KGL −30.78 121.45 365 17 0.998 −5.61 8.35 2.21 6.57

Adelaide ADL −34.95 138.52 7 36 0.999 −2.29 7.28 0.00 6.91

Wagga Wagga WW −35.16 147.46 183 36 0.999 −4.74 9.00 3.21 8.29

Melbourne MEL −37.67 144.83 115 36 0.999 −4.93 8.01 4.21 7.59

Cape Grim CG −40.68 144.69 70 35 0.999 −15.99 17.65 −4.30 8.61

Mean – – – – 31 0.994 10.25 13.79 2.96 8.91

Bias calculated as Fc − Fm. The “Original” columns are the direct calculations, and the “Corrected” columns are results after latitude-elevation corrections (see text and Figure 12). N is

the total number of data points (months) available at each site and r is the correlation coefficient. Also shown are the mean absolute bias and mean RMSE. Bias and RMSE are in W/m2.

Also shown in the table are the number of months of available
measured data at each site, and the correlation coefficient. As a
quality control we required the monthly data completeness to be
greater than 90% for that month to be used.

It was noticed that the original bias shows a strong correlation
with site latitude, as shown in Figure 12. While the cause of this
systematic bias is still being investigated, the strong correlation
provides the possibility to perform a correction to the calculated
solar flux. It is also noticeable that the bias also depends on
site elevation, which is expected (McVicar and Jupp, 1999) as
currently a fixed surface elevation of the mean sea surface level
is assumed, resulting in underestimation (negative bias) at high
elevation sites due to the artificially extended atmosphere path.
A regression of the original bias as function of latitude and
elevation was performed, which gives bias = 43.5 + 1.3lat −
0.031elev with a mean regression error of 2.96 W/m2. Using this
relationship, the calculated flux was corrected by subtracting the
above latitude-elevation related bias, and the new bias and RMSE
of the corrected flux are listed in the “Corrected” columns in
Table 2. Note that the correlation coefficient is not affected by this
latitude-elevation correction.

The new mean absolute bias and mean RMSE of the corrected
flux are respecitvely 2.96 and 8.94 W/m2. As a comparison, a
mean difference (same as bias) of 2.017 W/m2 and standard

FIGURE 12 | Dependence of the original flux bias on latitude and elevation,

providing a way to correct the calculated flux. The points are labeled with site

ID (Table 2) and the color of the circles indicates the elevation of the sites. The

black line is the least square linear regression of the original bias after elevation

correction (see text).

deviation (equivalent of RMSE) of 18.491 W/m2 were reported
by Zhang et al. (2004) for the solar flux data calculated using
the ISCCP cloud products (Rossow and Schiffer, 1999). The
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FIGURE 13 | Comparison of measured monthly mean solar flux with that calculated from the retrieved cloud properties, before applying the latitude-elevation

corrections (a) and after the corrections (b).

results from our study are at least comparable to that of the
ISCCP product, though we note that the ISCCP product is global.
Our site specific bias and RMSE ressults are also similar to
or better than the latitudinal zonal means reported by Zhang
et al. (2004). The calculated vs. measured monthly mean solar
flux at all sites are shown in Figure 13, for both before and
after the latitude-elevation-correction. Figure 13a shows that the
identified systematic bias exists across the whole flux range, i.e., in
both clear and cloudy conditions, which indicates that cloud class
and optical depth is not the source of the bias. Figure 13b shows
significant improvements over the flux range, and the accuaracy
of the monthly flux calculated from the derived cloud properties
is high. In this sense, this analysis shows that the quality of
current classification and optical depth retrieval should be at least
comparable to that of the ISCCP products.

Regional Cloud Frequencies and Comparison With

ISCCP
The geographic distribution of clouds is of great relevance to
many areas such as climate and solar energy industry. Figure 14
shows, for Australia and part of Southeast Asia, the frequency
of all clouds and the broad cloud types, seasonally and yearly.
The statistics were derived from about two years of data from
1 Jan 2016 to 30 Nov 2017 for the daylight hours from 22UTC
to 8UTC (8–18 Australian east standard time). Characteristically
cloud coverage over the continent is lower than the surrounding
ocean with the majority of the continent having an average cloud
frequency of about 30% annually. Among the three broad cloud
types (Table 1), cirriform clouds, the highest in altitude, have the
highest overall frequency over the tropics while the stratiform
clouds occurred most frequently to the south of the continent.

Cirrus clouds, of ice crystals and high in altitude, are of
particular interest to climate studies (Zhao et al., 2018). The
seasonal and geographical distribution of cirrus clouds for the
Australian region is shown in the second column in Figure 14.
It shows that cirrus clouds are predominantly located in the
tropics, which is consistent with previous studies. For example,
Stubenrauch et al. (2017), Liao et al. (1995), Massie et al.

(2002) and Wang et al. (1996) have all shown that high-
altitude clouds dominate over tropical area while low-altitude
clouds are relatively more enhanced over the mid-latitudes,
particularly over the oceans to the west and south of the
Australian continent. Sassen et al. (2009) showed the dominance
of cirrus clouds over the tropical belt, with a whole-year mean
frequency up to ∼60%, which is comparable to Figure 14.
Additional to the maximum frequency of tropical cirrus cloud,
a secondary and much smaller local maximum is also visible
over southern Australia around 45◦S, which is consistent with
Sassen et al. (2008) (Figure 2).

The cloud geographical distribution of Figure 14 was
compared with the ISCCP mean cloud fraction (Figure 15),
generated from the monthly climatology of ISCCP data (Rossow
and Schiffer, 1999) from January 2010 to June 2015. Here the
high clouds are cloud types 12–17 (cirrus, cirrostratus and
deep convection), middle clouds are types 06–11 (altocumulus,
altostratus and nimbostratus) and low clouds are types 00–
05 (cumulus, stratocumulus and stratus). We note that all the
above broad ISCCP cloud classes contain both ice and water
clouds, while in current study ice clouds and water clouds are
distinctively separated. Also, the ISCCP cloud amount represents
the mean spatial cloud cover fraction within each cell of 1◦ ×

1◦, while Figure 14 shows the temporal frequency at each pixel
(about 0.02◦ × 0.02◦).

Figures 14, 15 show that the two datasets resemble each other
to a high degree, in both geographical pattern and magnitude,
in the case of all-cloud-fraction (column 1 in both figures). For
high clouds (ISCCP), or cirrus in present study, both datasets
show high fractions in the tropics. They, however, differ from
each other in the middle latitude zone where a clear minimum
shown in present study is lacking in the ISCCP dataset. For
the middle and low clouds (ISCCP), or cumulus and stratus
(present study), the two datasets again highly resemble each
other in broad geographical pattern. While the overall pattern
and magnitude is very similar between the two datasets, it is
noticeable that the relative fraction between the high clouds and
low clouds is different. This is probably due to the difference
in cloud categorization, and the optical properties of the cloud
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FIGURE 14 | The left-most column (denoted column 1 here) shows cloud frequency for the all cloud types with columns 2–4 (from left to right) show the frequency of

the broad cloud types. The austral seasons are provided in rows 1–4 and the yearly mean is given in row 5. Data obtained for the period from 1 Jan 2016 to 30 Nov

2017 for daylight hours from 22UTC to 8UTC (8–18 Australian east standard time).
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FIGURE 15 | ISCCP climatology. The left-most column (denoted column 1 here) shows cloud frequency for the all cloud types with columns 2–4 (from left to right)

show the frequency of the broad cloud types. The austral seasons are provided in rows 1–4 and the yearly mean is given in row 5. Data obtained for the period from

Jan 2010 to Jun 2015 for daylight hours (00, 03, and 06 UTC).
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FIGURE 16 | The left-most column (denoted column 1 here) shows cloud optical depth for the all cloud types with columns 2–4 (from left to right) show the optical

depth of the broad cloud types. The austral seasons are provided in rows 1–4 and the yearly mean is given in row 5. Data obtained for the period from 1 Jan 2016 to

30 Nov 2017 for daylight hours from 22UTC to 8UTC (8–18 Australian east standard time).
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FIGURE 17 | Change of yearly mean cloud frequency with lower optical depth (OD) thresholds: the top row shows all data; the middle row only when OD > 0.25; and

the bottom row when OD > 1.0. Data obtained for the period from 1 Jan 2016 to 30 Nov 2017 for daylight hours from 22UTC to 8UTC (8–18 Australian east standard

time).

models may also differ from each other. For example, in present
study the cirrus clouds represent all ice clouds, while in ISCCP
the high clouds include both ice and water clouds.

In Figure 16 the seasonal and annual mean of cloud optical
depth are presented. The optical depth of cirrus clouds is
generally high which seems to contradict the usual understanding
of cirrus which are thin and semi-transparent clouds which
appears dark in satellite imagery. Indeed in the OPAC (Hess et al.,
1998) model, the scope of cirrus is much wider than the name
has suggested. It is used to represent all ice clouds including deep
convection ice clouds which are often very thick and appears
very bright. This is also shown in Figure 9 where it shows the
cirrus reflectance can be as high as over 0.9 in the visible and near
infrared bands. Another unexpected feature in Figure 16 is the
relatively high stratus optical depth (last column) over the Lake
Eyre Basin (located at southeast of central Australia), though the
cloud frequency of the same area is low as shown in Figure 14.
As the region is well known for being a major dust source
region (Mitchell et al., 2017), this high optical depth may be an
indication of misclassification by current algorithm. However,

the optical depth peaks during winter and minimizes during
summer is contradicting existing knowledge that the presence of
dusts peaks in summer and minimizes in winter. It is therefore
necessary to investigate further regarding the nature of the high
stratus optical depth over the region. Further information about
geographical distribution is presented in Figures 17, 18, where
three lower optical depth thresholds are used to select the data for
statistics. Again the high stratus optical depth over Lake Eyre is
probably themost unexpected feature that should be investigated.
We also note that the mean optical depth of stratus is generally
lower than other two types, especially over the tropical area,
despite its frequency is higher or comparable to the other two
broad types.

CONCLUSION

An algorithm for cloud masking, cloud classification and optical
depth retrieval has been developed and applied to Himwari-
8/AHI imagery. Cloud masking was performed using a time-
series analysis that is based on the observation that the temporal
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FIGURE 18 | Change of yearly mean cloud optical depth (OD) with lower OD thresholds: the top row shows all data; the middle row only when OD > 0.25; and the

bottom row when OD > 1.0. Data obtained for the period from 1 Jan 2016 to 30 Nov 2017 for daylight hours from 22UTC to 8UTC (8–18 Australian east standard

time).

variation of the surface (land and ocean) is much slower, on
the scale of days-to-years, compared to that of the onset of
clouds which change the TOA spectrum in the order of hours-
to-minutes. A two-way confidence index has been developed,
which measures either the cloudiness confidence, where the pixel
is flagged cloudy, or the clearness confidence, where the pixel is
flagged clear. By using this two-way confidence index it allows
post-processing reclassification of pixels, to bias toward clearness
or cloudiness depending on the application.

The cloud mask has been assessed using visual inspection
and quantitatively validated using the Lidar sensor CALIOP. A
direct comparison showed a hit rate—the proportion of pixels
identified by both sensors as either clear or cloudy—of 87%.
While geolocation differences (of about 1,400m) played a minor
role, this low hit rate is largely caused by the small footprint and
sparse sampling of the CALIOP sensor under subpixel partial
cloudy condition. Once cloud fraction was accounted for by only
examining totally clear or overcast pixels, a hit rate of ∼98%
has been achieved even when the cloud optical depth was as
low as 0.25.

Cloud classification and optical depth retrieval have been
conducted based on radiative transfer modeling. The modeling
error was found to be small. Qualitative analysis on classification
examples has shown good consistency cloud texture and cloud
top temperature. An indirect quantitative validation of retrieved
cloud properties has been conducted by comparing surface solar
flux calculated from the retrieved cloud properties with in-situ
measurements, which showed excellent agreement between the
two. The geographical cloud fraction generated from this study
has been compared with ISCCP climatology, and the all-cloud-
fraction showed agreement with that of ISCCP to a high degree,
though some differences do exists in terms of some cloud types.

Despite the excellent outcomes in cloud detection, and
very promising results in classification and optical depth
retrieval, potential improvements are still possible. Currently,
we concentrated on major factors affecting cloud detection and
property retrieval, while minor but nevertheless potential
issues were left for future work. Specifically, potential
improvements could be achieved by: (i) taking into consideration
of subpixel cloud fraction and cloud shadow which may lead to
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misclassification, particularly near cloud edges; (ii) incorporating
a more realistic surface elevation; (iii) using latitude dependent
atmosphere models to represent the molecular atmosphere for
different latitude zones; (iv) considering surface BRDF which
may have an effect on classification of thin clouds; (x) using
longer wavelength bands to provide definitive distinguishing
of aerosol from clouds, and (xi) handling of sun-glint over
tropical oceans.

The data set generated is being used in a number of
applications, including ocean color remote sensing, vegetation
monitoring, solar energy, smoke detection for the studying of
health impact, and aerosol and BRDF retrievals. For example,
surface solar flux data generated using the cloud data (cloud type
and optical depth) is being used in a new synergistic approach to
solar energy forecasting on the time scales from minutes to days
combining sky camera, satellite and numeric weather prediction
model outputs. The quantified smoke plumes are being used to
train a machine learning algorithm which can then be applied
to other sensors including high resolution sensors. Due to the
high temporal resolution of the AHI sensor (i.e., every 10min),
this cloud masking product provides the continuous cloud
distribution over the region which can be used, for example, to
flag cloud contamination in ground based measurements such as
aerosols from sun photometers, or in imagery of other sensors,
especially those with long revisit cycle where a time-series-based
approach may not be suitable.
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