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Abstract 

Rice Hull Ash (RHA) was converted to amorphous silica gel using a modified version of published 
literature procedures. The gels were characterized by a comparison of their CPMAS [29] Si NMR and 
Scanning Electron Microscopy (SEM) images with commercial silica gels. The resulting gels were 
silanized with a 7.5:1 mixture of methyltrichlorosilane and chloropropyltrichlorosilane and then reacted 
with poly(allylamine) (PAA) to produce the silica polyamine composite (SPC) BP-1. The BP-1 was then 
further modified with pyridine-2-carboxaldehyde to form the copper selective SPC, CuSELECT. This 
procedure follows that used to produce the commercialized version of these composite materials from 
commercially available amorphous silica gels. The composites were characterized by solid state NMR 
techniques, elemental analysis, SEM, porosimetry, and metal ion capacity and selectivity. The overall 
goal of the project was to determine the feasibility of using RHA to make SPC. The observed strengths 
and weaknesses of this approach are discussed.  

 
 

 
Introduction 

 
Amorphous silica gels are most often 

manufactured commercially from sodium silicate 
solutions by precipitation with mineral acid. 
Sodium silicate is made in open hearth furnaces 
operating at temperatures in excess of 1300°C by 
the fusion of silicon dioxide with soda ash 
(equation 1).   

 
3SiO2 (sand) + Na2CO3  �  CO2# + Na2SiO3 + 
2H+(aq)  �  SiO2(gel) + 2Na+(aq) + H2O     (1) 

 
Although the basic methods of this process are 

outlined by Iler [1] the specifics of the modern 
commercial process remain the proprietary 
information of the manufacturers. Depending on the 
conditions of the precipitation and subsequent 
processing, silica gels with a range of porosities, 
surface areas and particle sizes can be produced. 

An  alternative  to  this  high  energy  process  is 
 
 
 

 
 

 
offered by the conversion of Rice Hull Ash (RHA) 
to silica gel. The ash is produced from the 
combustion of rice hulls obtained from rice grain 
processing for making heat and electricity at rice 
processing facilities. The ash consists mostly of 
silicates (~60-90%) and activated carbon. Because 
of the micro-structure of the silicates in the ash they 
can be dissolved in 1M NaOH at 100°C and then 
reprecipitated and dried to form amorphous silica 
gel [2-5].  Other low temperature processes for the 
dissolution of silica gel have also been reported but 
involve the use of organic reagents such as catechol 
or ethylene glycol [6-8]. Tetraalkyl ammonium 
hydroxides have also proven very useful for the 
dissolution of RHA and the resulting solutions 
provide an entry way into silsesquioxane-based 
nanomaterials [9]. The gels produced by these low 
temperature routes have proven to be useful for 
typical applications of silica gel particles such as 
drying agents and adsorbents [2-5]. Recently, it has 
been reported that the addition of tetraethoxysilane 
(TEOS) to the hydrosol formed after dissolution of 
RHA, but before gelation, provides a silica gel with 
greater mechanical stability and improved porosity 
by increasing crosslinking between oligomers of 
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silicic acid molecules, thus stabilizing the pores and 
decreasing the amount of cracking when the gel is 
dried [10]. These properties are critical to the 
synthesis of composite materials. In particular, we 
have been studying silica polyamine composites 
(SPC), inorganic-organic hybrid materials designed 
for selective ion capture for applications in the 
mining and environmental remediation industries 
[11-22]. This is a commercialized technology 
which would greatly benefit from a cheaper and 
more environmentally benign method of making 
silica gel [23-26].   

We report here our efforts to reproduce the SPC 
technology starting from RHA including a 
structural comparison of the materials made from 
RHA with the previously reported SPC materials, 
and testing of the final products for metal ion 
capture and selectivity. Although papers have been 
authored by researchers concerning the production 
of silica gel from RHA there has been little work 
done on the further conversion of  thes e silica  gels  

to composite materials [2-5, 10]. We have 
employed the method of Teng and Li for the 
conversion of RHA to silica because of the methods 
available in the literature their method seemed to 
provide a gel most adaptable to the SPC technology 
[10]. 

The overall process for converting amorphous 
silica gel to an SPC is illustrated in Figure 1. First, 
the surface is silanized, using a mixture of 
methyltrichlorosilane and chloropropyl- trichloro-
silane in a 7.5:1 ratio which has been shown to give 
SPCs with the highest metal-loading capacity. The 
silanized surface is then reacted with poly (ally-
lamine) (PAA) to form the SPC referred to herein 
as BP-1 and finally a metal selective ligand is 
grafted to the polymer via a C-N or amide bond 
(Figure 2). For the purposes of this study we con-
verted BP-1 to the copper selective composite 
CuSelect and compare its properties with the 
previously reported versions of this material [25, 26]. 
 

 

 
Fig.1. Schematic diagram of the synthesis of the silica polyamine composites BP-1 and CuSelect. 
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Fig. 2. Ligand modifiers covalently bound to the silica polyamine composites 

 
 
Experimental Materials 
 

Rice hull ash was obtained from Riceland Inc, 
Stuttgart, Arkansas. Raw silica gel (25.4 nm 
average pore diameter, 150-250 and 350 -650 �m 
particle size, 450 m2/g surface area) was obtained 
from INEOS, UK or from Qing Dao Mei Gow, 
Qing Dao, China. Sulfuric acid and NaOH were 
obtained from EMD.  Reagent grade methanol was 
obtained in bulk from Fisher Scientific. 
Poly(allylamine) (15000 MW) was obtained from 
Summit Chemicals Inc., Summit, NJ. Chloropro-
pyltrichlorosilane and methyl-trichlorosilane were 
obtained from Aldrich Chemicals and used as 
received. Tetramethoxysilane was obtained from 
Gelest Inc. and used as received. Copper (II) 
solutions (50 mmol/L) were prepared by dissolving 
25 g of reagent grade CuSO4·5H2O in 2L of water, 
pH adjusted to pH 2 with 0.2 mol/dm3 H2SO4. 
Deionized water was used throughout. 

 
Methods 

 
Solid state [13] C and [29] Si CPMAS NMR 

data  were  obtained  on  a  Varian  NMR  systems  
 

NMR spectrometer at 125 MHz and 99.5 MHz 
respectively using ramped cross-polarization and 
SPINAL64 and TPPM decoupling techniques with 
sample spinning speeds of 10-15 kHz.   

Scanning electron microscopy data was obtained 
through the University of Montana Electron 
Microscope Facility with a Hitachi S-4700 cold 
field emission SEM. 

Atomic Absorption Spectroscopy (AAS) 
experiments were done using a S2 FAA 
spectrometer manufactured by SOLAAR, UK. The 
samples were diluted using 2% HNO3. An 
air/acetylene flame was used to analyze iron and 
copper. Inductively coupled plasma/atomic 
emission spectroscopy experiments (ICP-AES) 
were done using a Perkin-Elmer instrument using 
standards from Fisher Scientific Co. The dilutions 
were done in triplicate and standards were analyzed 
every ten samples for both methods.   

Elemental analyses were performed by Galbraith 
Laboratories, Knoxville TN. A calibrated 
ThermOrion model 250 portable pH meter was 
used for all pH measurements. Mercury 
porosimetry was performed using a Micromeritics 
Autopore 9500 available at Montana Tech 
University, Butte, MT. 
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Synthesis of Silica gel from Rice Hull ash 
 

Rice Hull Ash (33.3 g) was added to 1 L NaOH 
(1M) and held at reflux for 90 minutes with 
overhead stirring. The solution was filtered through 
Whatman #41 ashless filter paper and allowed to 
cool to room temperature. The carbon portion was 
discarded. The mineral content of the sodium 
silicate solution was determined to be 24.15 g/L 
sodium  and 11.12 g/L silicon by ICP-AES.A 100 
mL aliquot of the sodium silicate solution was 
titrated to pH 7 using 1 M H2SO4. The requisite 
amount of acid to titrate the remainder of the 
sodium silicate solution was determined and 
introduced using high speed magnetic stirring. A 
volume of tetraethoxysilane (TEOS) equivalent to 
1/30 the volume of the solution (sodium silicate and 
acid solutions combined) was added concurrently. 
Stirring was continued until the solution took on a 
bluish hue, indicating that gelation was about to 
occur. 

After gelation occurred the gel was aged in situ 
for 24 hours. Two liters of reagent grade methanol 
were then added to the beaker, and exchanged after 
12, 24, and 48 hours. After 72 hours the methanol 
was removed via aspiration and the gel broken, 
placed in a pyrex dish, and placed in an oven at 
80°C until dry (24-36 h). 

The dried gel was ground using a mortar and 
pestle and sieved to a particle size between 250 and 
495 �m. The resulting powder was washed to 
remove residual salts using 1 M HCl and then dried 
again. The final yield of silica gel was 14.1 g  

 
Conversion of silica gel made from RHA to 
CuSelect   
 

The silica gel made by the above procedure was 
converted to BP-1 using previously published 
procedures [12, 13, 16]. The synthesis of CuSelect 
reported as described herein has not been 
previously published. BP-1, 5g in 20 mL chilled 
methanol was combined with 3.0 g (2.8 mmole) 
pyridine-2-carboxaldehyde and 3.9g (1.9 mmole) 
sodium triacetoxyborohydride was added. The 
mixture was allowed to stir for one hour in an ice 
bath, then an additional 3.9g (1.9mmole) of sodium 
triacetoxyborohydride was added. The ice bath was 
allowed to come to room temperature and stirred 
overnight. The material was washed with water, 5% 
H2SO4, water and finally with methanol. After 
drying at 50°C 3.2g of CuSelect was obtained. 

Elemental analyses for the composite materials at 
each stage of the synthesis are given in Table 1. 

 
Table 1 

Elemental analyses for the silica gel from  
RHA and the SPC 

 
Material C H N Halogens 

Gel 0.53% 1.14% <0.50 % 0.02 % 

CP-gel 2.73% 1.00% <0.50 % 0.71% 

BP-1 9.82% 2.50% 2.56% 0.13% 

Cu-
Select 16.84% 3.03% 3.73% 0.10 % 

 
Measurement of the Copper batch Capacity for 
BP-1 
 

Copper batch capacity for BP-1 was determined 
using air/acetylene Atomic Absorption 
Spectroscopy (AAS). A 100 mg sample of BP-1was 
placed in a sample vial and 10 mL of 1.5 g/L 
CuSO4 (intrinsic pH ~3.5) was introduced. The 
system was allowed to come to equilibrium 
overnight on a shaker and the concentration of Cu2+ 
remaining in solution was measured. From this, the 
amount of copper adsorbed by the composite was 
determined to be 102.9 mg/gram of composite.   

 
Selectivity of Copper over Iron for the CuSelect 
made from RHA 

 
The selectivity of the CuSelect made from RHA 

for copper over iron was tested by generating a 
breakthrough curve using a 5 mL column packed 
with 3.00 g of CuSelect.  This was done by passing 
300 mL of a solution containing1000 ppm Cu(II) as 
CuSO4 and 2600 ppm in Fe(III) as Fe2 (SO4)3 at a 
pH =1.5. The solution was passed through the 
column at a rate of 0.5 column volumes per minute. 
Aliquots were collected every 10 mL and subjected 
to AAS after 1000:1 dilution. The results are shown 
in Figure 6 and are discussed below. Based on prior 
breakthroughs of this type errors are estimated to be 
±10% per graphed point.12, 26 

 
Attrition testing of the silica made from RHA and 
comparison with commercial silica gel 

 
The mechanical stability of the RHA silica (250-

495 micron particle size) was tested by placing 10 g 
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The selectivity of the RHA-CuSelect is clearly 
demonstrated by the breakthrough test illustrated in 
Figure 7. The more concentrated ferric ion reaches 
the feed concentration after 20 mL have been fed 
through the column. The feed concentration of the 
cupric ion is not attained until 130 mL have been 
passed through the column.  From the data on this 
graph we can estimate that the selectivity for cupric 
over ferric ion is approximately 11:1. This 
selectivity is not as high as that previously reported 
(>50:1) but the particle size used here was 250-495 
�m (commercial CuSelect now uses this particle 
size range in the manufacture of CuSelect) as 
opposed to the prior work which used 150-250 �m 
at same feed rate of 0.5 column volumes/min [40-
41]. The observed selectivity under the reported 
conditions is sufficient for this proof of concept 
study. 

 
Conclusions 
 

Starting from the available waste product RHA 
we have been able to demonstrate that the resulting 
silica gel can be used to produce a commercially 
utilized composite material, CuSelect. However, 
mechanical stability is not nearly that of the 
commercial product and the spectroscopic studies 
reported here suggest that there are significant 
differences in the surface features and behavior of 
the RHA derived materials.  Nonetheless this work 
represents a good start and has defined the 
problems associated with using RHA as a starting 
point for composite materials in general.  What lies 
ahead are detailed studies for improving 
mechanical strength by modifying the procedure for 
converting the RHA to silica used [10]. One 
possibility is the use tetramethoxysilane (TMOS) 
instead of TEOS as we have found that this 
crosslinking agent is more reactive [32]. It is 
anticipated that improving mechanical stability will 
narrow the gap in performance between the RHA 
derived and commercially produced SPC and 
perhaps elucidate some the unusual surface features 
reported here as measured by solid state CPMAS 
[29] Si  NMR. 

 
Acknowledgements  
 

We gratefully acknowledge the support of the 
National Science Foundation (CHE070938) and 
Purity Systems Inc for their cooperation in this 
project. We also acknowledge Professor Richard 

Laine, University of Michigan for a generous gift of 
RHA that he obtained from Riceland Inc. 

  
References 
 
1. R. K. Iler, “The Chemistry of Silica,” Wiley-

Interscience, New York, 1979. 
2. U. Kalapathy, A. Proctor, J. A; Shultz 

Bioresource Technology, 2000, 73, 257. 
3.  C. Real, M. Alcala, M. Criado, J. Amer. 

Ceramics Soc. 1996, 79, 2012. 
4. U. Kalapathy, A. Proctor, J. A; Shultz J. 

Chem. Technology and Biotechnology 2000, 
75, 464. 

5. M. Z. Asuncion, I. Hasagawa, J. W. Kamph, 
R. M. Laine J. Mater. Chem.2005, 15, 2114. 

6. A. Rosenheim, B. Raibmann, G. Schendel Z. 
Anorg Allg. Chem.1931, 196,160. 

7. V. V. Strelko Teor. Eksp. Chem. 1973, 10, 359 
(Engl. Trans. p227) 

8. R. M. Laine, K. Y. Blohowiak, T. R. 
Robinson, M. L. Hoppe, G. Nardi, J.Kamph, J. 
Uhm Nature 1991,353, 642. 

9. I Hasagawa, R. M. Laine, M. Z. Asuncion, N. 
Takamura U. S. Patent Appl. 2005/0142054 
A1 

10. T. Li, T. Wong Mat. Chem. Phys.2008, 112, 
388. 

11. M. Hughes, P. Miranda, D. Nielsen, E. 
Rosenberg, R. Gobetto, A. Viale, S. D. Burton 
in: R. Barbucci, F Ciardelli, G. Ruggeri, 
G.(Eds.) Recent Advances and Novel 
Approaches in Macromolecule-Metal 
Complexes, Wiley-VCH (Macromolecular 
Symposia 235), Weinheim, 2006, p 161. 

12. M. Hughes, D. Nielsen, E. Rosenberg, R. 
Gobetto, A. Viale, S. D. Burton, S. D Ind. Eng. 
and Chem. Res. 2006, 45, 6538. 

13. M. Hughes, E. Rosenberg, Sep. Sci. and 
Tech.2007, 42, 261. 

14. T. J. Bandosz, M. Seredych, J Allen, J.; Wood, 
E. Rosenberg, Chem. of Materials 2007, 19, 
2500.  

15. Y. O. Wong, P. Miranda,, E. Rosenberg, J. 
Appl. Polymer Sci 2010, 115, 2855. 

16. M. A. Hughes, J. Wood, E. Rosenberg, Ind. 
and Eng. Chem. Res. 47 (2008) 6765. 

17. J. J. Allen, E. Rosenberg, M. R. Chierotti, R. 
Gobetto, R. Inorg. Chim. Acta 2010, 363, 617. 

18. V. Kailasam, E. Rosenberg, D.  Nielsen, Ind. 
& Eng. Chem. Res.2009, 48, 3991. 

19. D. Nielsen, J. Mckenzie, J.; Clancy, E.  
Rosenberg Chimica Oggi 2009, 26, 26 42. 

130 



 
Matt Berlin et.al. 

 

Eurasian ChemTech Journal  12 (2010)  123-131 
 

20. E. Rosenberg in: C. E. Carraher, C. U. 
Pittman, A. S. Abd-El-Aziz, M. Zeldin, J. E. 
Sheats (Eds) Macromolecules Containing 
Metal and Metal Like Elements, Volume 4, J. 
Wiley & Sons, New York, 2005, p 51. 

21.  C. Anderson, E. Rosenberg, C. K. Hart, L. 
Ratz, Y. Cao, in: C. Young (Ed.) Proceedings 
of the 5th International Symposium on 
Hydrometallurgy, 2003, Volume 1 Leaching 
and Purification, TMS, Warrendale, PA, p393. 

22. E. Rosenberg, R. C. Fischer, C. K. Hart in: M. 
E. Schlesinger (Ed.) 2003 EPD Proceedings - 
Mercury Management TMS, Warrendale, PA, 
2003, p 285.  

23. E. Rosenberg, D. Pang, U. S. Patent 1997, 
5,695,882. 

24. E. Rosenberg, D. Pang, U. S. Patent 1999, 
5,997,748. 

25. E. Rosenberg, R. C. Fisher U. S. Patent 2003. 
6,576,590. 

26. E. Rosenberg, R. C. Fisher U. S. Patent 2006 
7,008,601. 

27. U. Kalapathy, A. Proctor and J. Shultz 
Bioresource Technology 2002, 85, 285. 

28. S. R. Kamath and A. Proctor Cereal Chemistry 
1998 75, 484. 

29.  U. Kalapathy, A. Proctor and J. Shultz J. 
Chem. Technol Biotechnology 2000, 75, 64. 

30. N. A. Sanchez-Flores, G. Pacheco-Malagon, P. 
Perez-Romo, H. Armendariz, M. Guzman-
Castillo, J. M. Saniger, J. J. Fripiat J. Chem. 
Technol Biotechnology 2007, 82, 614. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

31. B. Arnall, Purity Systems Inc. Missoula, Mt 
and Ammtec Ltd, Balcutta Western Australia, 
personal communication. 

32. J. Allen, M. Berlin, M. Hughes, E. Johnston, 
V. Kailasam, E. Rosenberg, T. Sardot, J. 
Wood Mat. Chem. Phys. in press. 

33. L. T. Zhurlavlev Colloids Surf. A 2000, 173, 1. 
34. L. T. Zhurlavlev Langmuir 1987, 3, 316 
35. M. J. Wirth, H. O. Fatumbi Anal. Chem. 65 

(1993) 822. 
36. P. W. J. G.Wijnen, T. P. M. Beelen, R. A. van 

Santen, R.A.  Surfactant Science Series 131 
(2006) 597.  

37. M. D. Bruch, H. O. Fatunmbi, J. of Chromat. 
A 102 (2003) 61. 

38. F. del Monte, D. Levy, D. Optical Materials 13 
(1999) 17. 

39. T. Kobayashi, J. A. DiVerdi, G. E. Maciel,  J. 
of Phys. Chem. C 112 (2008) 4315. 

40. E. Rosenberg, R. J. Fischer, J. Deming, C. 
Hart, P. Miranda and B. Allen, in Symposium 
Proceedings of the International Conference 
on Materials and Advanced Technologies eds. 
T. White, D Sun, Mat. Res. Soc., Singapore, 
2001, Volume I, p173. 

41. J, Wood Master’s Thesis, University of 
Montana, 2007. 

 
 
 

Received 25 September 2009. 
 

131 


