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Abstract
Short overview for the computation vibration spectroscopy methodology has been done. The main

features of the used methods to compute parameters for complete vibration spectra, including inelastic
neutron spectroscopy, infrared and Raman, has been described, too. Matrix method to solve inverted vibra-
tion problem, its limitation and modifications are discussed. All these algorithms are implemented into
software called ''COSPECO''.

Introduction

The object of the computation chemistry is the
evaluation of computer models of the system under
study. From our point of view the model of the simu-
lated system should describe all available experimen-
tal properties. The creation of the computer model
consists of three main stages: model building, model
computing and model verification. Some aspects of
the first stage – model building – was described pre-
viously [1]. The second aspects – model computing
– is well described in the literature [2] and is based
on the known methods like molecular mechanics,
molecular dynamics, ab initio and semiempirical
quantum chemistry methods. But the third aspect –
model verification – is still not very defined and de-
scribed. In this paper we would like to show some
methods for model verification, which we have used
a lot of time with success during investigation of com-
plicated problems of industrial important production.

To have correct interpretation of the vibration
spectra of different silica and silica-based glasses we
have developed the program complex for quantum
chemical calculation and vibration spectra verifica-
tion glass and small particle models. We have used
vibration spectra (inelastic neutron scattering – INS,
infrared – IR and Raman) for model verification be-
cause standard structure methods like X-ray and neu-

tron diffraction does not work for completely amor-
phous solids.

The main part of the quantum chemical calcula-
tions is finished with the determination of space and
electronic structure, the heat of formation (or totals
energy for ab initio methods) and other integral char-
acteristics for the system under study. But for the
analysis of complicated systems and their details like
amorphous objects and their surface, for the model
building and verification it is necessary to use more
structure-selective properties. We suppose that the
vibration spectrum (inelastic neutron scattering (INS),
infrared (IR) and Raman spectra) or the combination
of the different vibration spectra is the best comput-
able characteristic for the system under study. This
thesis is based on the next well-known premises – it
is possible to record the vibrational spectra for any
compound in any aggregate states (gas, liquid and
solid), there is direct method to compute vibration
spectra using quantum chemistry (force field matrix
is the matrix of the second derivatives of the total
energy respect the atomic displacement), vibration
bands position and their intensity and shape are ex-
tremely sensitive to the space and electronic struc-
tures, the vibration spectrum is fingerprint for the
substance.

In our opinion, now the computation chemistry
investigation for the system under study should be
deeper and consists in the building and verification
of the computer model, which can describe all avail-
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able experimental data and must predict unknown
properties. Basing on these premises we have devel-
oped and used the methodology and its software re-
alization for the computation chemistry investigation
for the complicated systems. Below we would like to
describe the main points of this methodology and their
mathematical representation, which were used for the
software developing. The quantum chemistry meth-
odology is described well enough, so here we fix our
attention on the computational vibration spectroscopy
part and our realization – COSPECO software.

The initial data for the normal coordinate analy-
sis are space structure for the system under study and
its force field. The first data set - space structure – is
available from any quantum chemistry or molecular
mechanics/molecular dynamics calculations and
mainly in the Cartesian coordinate system and we
will not discuss the methods to solve this problem.
They are described in the literature very well. We fix
our attention on the second problem – how to get the
force field as a matrix of the second derivatives of
the total energy respect the atomic displacement.

Methodology

General remarks

Our computation tool for the molecule and clus-
ter simulation and verification consists of two main
and independent parts: quantum chemistry software
named ''QuChem'' and vibration spectroscopy soft-
ware named ''COSPECO''. Below we would like to
describe the main features and basic methods of this
software.

Due to big size of molecules and clusters under
study we have used semiempirical quantum chemi-
cal method PM3 (NDDO approximation and Dewar
realization MNDO [3] and AM1 [4] and PM3 Stewart
parameterization [5]). For PC computation we have
used our new version of software ''QuChem'', based
on published methods [6-9].

The basic methods of semiempirical quantum
chemistry methods, their abilities and limitations, are
well discussed in literature [10-12], so we shall de-
scribe only the main features of our program.

Vibration problem as a small deviation of atoms
respect equilibrium position is defined for the sta-
tionary point with positively defined Hessian matrix.
It means the before force field calculation the sys-
tem should be optimized with high accuracy. Most
useful optimization methods require for fast and ac-

curate minimization the first derivatives of the total
energy respect atomic deviation in the used coordi-
nation system. For chemist this coordination system
is internal coordinates i.e. bond length, bond angles
and dihedral angles. Direct analytical calculation of
total energy gradient respect atomic shift ∂E/∂x in
quantum chemistry methods is performed in the
cartesian coordinates while space structure optimi-
zation is performed in internal coordinates and re-
quires total energy gradient respect internal coordi-
nate ∂E/∂q, so we transform cartesian gradient to in-
ternal gradient [6]:

|∂E/∂q| = |∂E/∂x|×|∂x/∂q|
This way to transform Cartesian gradient to in-

ternal coordinate system gives the ability for mecha-
nochemical calculation [13].

Cartesian force field evaluation as an atomic
mass-weighted energy second derivative with
respect to atomic shift square matrix

After complete optimization of system under
study, when the Cartesian (and internal) gradient will
be close to zero, it is possible to start force field calcu-
lation. It is very important to begin the force field
calculation at the stationary point, where the gradi-
ent is zero G(x) = δE/δx = 0. It means that geometry
optimization must be used for the experimental de-
fined space structure of the system under study be-
cause the minimum of energy from experimental in-
vestigation and quantum chemistry may not be the
same exactly, sometime with noticeable difference.
The calculation of the second derivatives matrix F =
||δ 2E/δx2|| of the energy with respect to atomic shift
is achieved by the finite difference method using
Cartesian gradient for the finite difference method.
But this method requires a lot of computing time to
reach an acceptable accuracy. Therefore, in future,
we would like to add analytical method for the evalu-
ation of this Cartesian force constant matrix.

In general, this finite difference method is very
simple. Starting from the equilibrium (stationary)
point, where G(x) ~= 0, (G(x) = δE/δx) is cartesian
gradient vector with length 3×n, (n – number of the
real atoms), we shift every atom along axis X, Y, Z by
a fixed step (step = 0.003 Å) in two opposite direc-
tions and compute G1=G(x+step) and G2=G(x-step).
After that, the column (or row, because the force con-
stant matrix is symmetrical) of the force constant
matrix can be evaluated as:

(1)
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|F| = (G1 – G2)/(step+step)
From these equations it is clearly seen that the

accuracy of the space structure optimization should
be better than step magnitude. Only in this case, one
can guarantee that during force field computation the
system under study will be close to local minimum.

|∂2E/∂x2| ≈ (G1 – G2)/(step + step)
Total dimension of force matrix is 3×N, where N

is total number of atom in the system under study.
Force constant matrix F is symmetrical, but numeri-
cal methods with limited accuracy (computer word
length) lead to some small deviation between ele-
ments fij and fji. After complete column (or row) force
matrix computation, we perform matrix balancing ad-
justment as f'ij = 0.5×( fij + fji). Force matrix F is then
mass-weighted by multiplication of all elements fij

by the 1/mi
1/2×mj

1/2. Using matrix notation, it is possi-
ble to define this operation as Fmw=|mij|1/2×Fij×|mij|1/2.
This mass-weighted matrix is dynamic matrix in the
Cartesian coordinate system. Diagonalization of this
matrix produces eigenvalues and corresponding
eigenvectors. These data are kept inside the program
and used for IR and Raman spectra calculation by
the ''QuChem'' program. After calculation, this mass-
weighted force constant matrix Fmw records on with
corresponding space structure (Cartesian geometry)
into files for utilization by the ''COSPECO'' program.

This matrix contains some systematical deviation
due to neglecting of Eckart conditions, too. As result
of limit of double precision numerical word during
computation and other relative reasons the first six
(or five for linear systems) smallest of eigenvalues
of this symmetrical matrix, which represent true ro-
tation and translation, are not exactly zero, but have
some deviation from these values. This is typical
phenomenon for numerical methods and these val-
ues can be neglected, if their values are not more
then 10-20 cm-1, but if one or more of these values
exceed 10-20 cm-1 it is necessary to verify results.
Sometimes this phenomenon is result of low accu-
racy of structure optimization, and sometimes it is
result of neglecting of Eckart conditions, when heavy
atoms are placed far from the center of mass. But if
the negative frequency is too large by absolute value,
this situation indicates that current structure is not in
the minimum of energy, but in the saddle point.

IR-intensity calculation. Quantum chemical part

After Cartesian force field is computed it is pos-
sible to start infrared and Raman intensity calcula-

tions. To compute these intensities it is necessary to
have the derivatives of the dipole moment and of the
polarizability with respect to atom shift. To prevent
accuracy lost during numerical differentiation due to
dipole moment and polarizability lesser sensitivity
to small atomic deviation we have used quite differ-
ent step = 0.1 Å for these kinds of calculation, com-
pare to the step = 0.003 Å for the force field calcula-
tion. Dipole moments are computed by standard
method even for charged system. It is known that for
charged system dipole moment contains the addi-
tional value, which depends on the position of the
system relative to the origin of coordinates. But due
to numerical differentiation of the computed dipole
moment this additional value for charged systems is
compensated by the same with negative sign. There-
fore, this method can be applied for dipole moment
derivatives and infrared intensity calculation for
charged systems:

|∂µ /∂x| ≈ (µ1 - µ2)/(step+step)
where µ1 and µ2 are system dipole moments at the
different atom shifting and step is finite difference
step. Dipole moment contains three components,
therefore dipole moment derivatives array contains
3×3N values.

Raman spectra intensity calculation. Quantum
chemical part

Reliable theoretical prediction of the magnitude
of microscopic linearities and nonlinearities are be-
lieved to be useful for the technologists. It is well
known that the polarization P induced in the atom or
molecule by an external field E can be expressed as:

P = α ×E + β×E×E + γ×E×E×E + …
where the vector quantities P and E are related by
the tensor quantities α, β and γ, which are often re-
ferred as polarizability, hyperpolarizability and sec-
ond hyperpolarizability, respectively.

For quantum chemical calculation of molecular
optical properties and nonlinearities, two conceptu-
ally different methods, named, the sum-over-states
(SOS) method and the derivative method, are gener-
ally used [14-16]. In the SOS method, or the excited-
state perturbation expansion, the perturbation expan-
sion over molecular states is applied to account for
the effects of an externally applied electromagnetic
field on the motions of electron associated with the
system under study. To compute the interaction with
external electric field with acceptable accuracy, it is

(1)

(2)

(3)

(4)
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necessary to use at least all one and two times ex-
cited states over all atoms of the system under study.
But semiempirical methods (MNDO, AM1 and PM3)
are parameterized for the ground state only. There-
fore, the deviation of the results for excited states
may be very large and unacceptable. The limitation
of SOS comes from the arbitrary truncation of the
summation for the sake of computational efficiency
where only contribution from a limited number of
excited states are included. In practice, the summa-
tion over only low-lying excited states often is uti-
lized [17,18]. The accuracy of this SOS method, how-
ever, is severely limited by the approximations used
for the excited electronic states [19].

The derivative method, such as finite field method
and the analytical method, is less restricted in com-
parison with the SOS method. This method is based
on expansion of energy or dipole moment as a func-
tion of applied field in the power series form [15]:

U(E) = U0  – Σµi
0Ei  – 1/2!ΣαijEi×Ej  –

– 1/3!ΣβijkEi×Ej×Ek  – 1/4!ΣγijklEi×Ej×Ek×El

µi(E) = µi
0 + ΣαijEj + ΣβijkEj×Ek +

+ ΣγijklEj×Ek×El

where U0 is the energy of the system under study in
the absence of the field and µ0 is the permanent di-
pole moment. The coefficient α corresponds to the
polarizability of the molecule and is estimated by
computing the second derivative of the energy or the
first derivative of the dipole moment with respect to
the electrical field of the incident light. The first
hyperpolarizability, β, and second hyperpolarizabi-
lity, γ, are also given by the third derivative of the
energy (or the second derivative of the dipole mo-
ment) and the fourth derivative of the energy (or the
third derivative of the dipole moment) with respect
to the applied external electric field. The various de-
rivatives are then calculated either numerically as the
finite-field method or analytically as in the analyti-
cal method. But there are no published and well-de-
scribed methods for the analytical evaluation of these
derivatives. However, they are included into com-
mercial software (GAUSSIAN98), but without de-
tailed explanations. Therefore, we should use finite-
field method.

The polarizability, α, first hyperpolarizability, β,
and second hyperpolarizability, γ, may be, in prin-
ciple, obtained by computing the gradient of µ(E)
with respect to E in the limit of zero field, as allowed
by the Hellman-Feynman theorem (as far as we need

only polarizability for Raman intensity, we will de-
scribe in detail only polarizability α calculations):

αij = δµi /δEj|E=0

βijk = (1/2)δ 2µi /δEj δEk|E=0

γijkl = (1/3!)δ 3µi /δEj δEk δEl |E=0

In practice, this is done numerically by computing:

αi1 = [µi(E,0,0) – µi(−E,0,0)]/2||E||

αi2 = [µi(0, E,0) – µi(0,−E,0)]/2||E||
αi3 = [µi(0,0, E) – µi(0,0,− E)]/2||E||

Since µ is the vector with length 3 each previous
formula computes one row (or column) of tensor 3×3
α. Therefore, for the polarizability αij = ∂2E/(∂εi∂εj ),
the derivative:
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In this equation εi and εj are electric field pertur-
bations in i, (i = x, y, z) and j, j = (x,y,z) directions, Rk

is a nuclear coordinate in k, k = (x,y,z) directions,
and E is the total energy of the system under study.

βiii = [µi(2E,0,0 + µi(−2E,0,0) – 2 µi(0,0,0)]/8E2

γiiii = {µi(3E,0,0) – µi(–3E,0,0) – 3[µi(E,0,0) –
– µi(–E,0,0)]}/48E3

in particular, the following five terms:

βzxx=[µx(2E,0,0)+µx(–2E,0,0) – 2µx(0,0,0)]/8E2

βzyy=[µy(0,2E,0)+µy(0,–2E,0)–2µy(0,0,0)]/8E2

γxxyy = {µy(E,E,0) – µy(E,–E,0) + µy(–E,E,0) –
–µy(–E,–E,0) – 2[µy(0,E,0) – µy(0,–E,0)]}/12E3

γzzyy = {µy(0,E,E) – µy(0,E,–E) + µy(0,E,–E) –
–µy(0,–E,–E)–2[µy(0,–E,0)–µy(0,–E,0)]}/12E3

γzzxx = {µx(E,0,E) – µx(–E,0,E) + µx(E,0,–E) –
–µx(–E,0,–E) – 2[µx(E,0,0) – µx(–E,0,0)]}/12E3

where indexes show the direction of the applied ex-
ternal electric fields.

All these formulas give us the ability to check the
accuracy of the polarizability calculation and correct-
ness of the external electric field quantum chemical
subroutine. One can compute the dipole moment ana-
lytically (as it was implemented into quantum chemi-
cal software) and by the external electric field influ-
ence:

(5)

 (6)
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Using these relations one can show that the sec-
ond term in equation 5 (with complete neglecting of
the following members of the series – linear approxi-
mation) dipole moment may be obtained as the first
derivatives of the total energy respects to external
field:

i
i E

EUU )(0
0 −=µ

In out numerical tests the magnitude of the exter-
nal electric field (0.002 atomic units – a.u.) gives the
good numerical accuracy and is far from the signifi-
cant nonlinear effects – the difference between ana-
lytically calculated dipole moment and numerically
calculated values is not more then 2.5% for the tested
simple molecules. It means that the quantum chemi-
cal subroutine for external field calculation works
correctly and produces reasonable results.

We have used this finite-field approximation to
compute polarizability and derivatives of polarizabil-
ity for Raman intensity calculations. Polarizability
tensor 3×3 α is computed by the finite-field method
at the stationary point:

αi1 = [µi(E,0,0) – µi(–E,0,0)]/2||E||

αi2 = [µi(0, E,0) – µi(0,–E,0)]/2||E||
αi3 = [µi(0,0, E) – µi(0,0,– E)]/2||E||

Since the dipole moment µ is a vector with length
3 and it contains three components, application of
the external electric field along every axe in direct
and inverse directions gives two corresponding di-
pole moments µi(E,0,0) and µi(−E,0,0) correspond-
ingly. Using formulas 8a-8c one can calculate the
row or the column of the polarizability tensor. As far
as of this tensor is symmetric it is possible to keep
only six independent values.

Using this technique for the one atom displacing
during dipole moment derivative calculation one can
compute derivative of polarizability respect atom
displacement. It means that one can perform evalua-
tion of the dipole moment derivative without exter-
nal electric field and, after that, include external elec-
tric field and evaluate dipole moment derivatives re-
spect to atomic shift and external electric field. The
array of the polarizability derivatives with dimen-
sion 6×3N is stored for the Raman spectra calcula-
tion. Therefore, the dipole moment derivatives and

polarizability derivatives subroutine can be combined
together into one subroutine to save the computing
time.

The program ''QuChem'' is finishing computation
on the dipole moment and polarizability derivatives
evaluation. At the end of the program working we
have space and electronic structure, heat of forma-
tion, dipole and quadrupole moments and potential
of ionization. Additional files contain force field in
the cartesian coordinate, cartesian coordinate of all
atoms, dipole moment derivatives and derivatives of
polarizability. All these data are enough for complete
normal coordinate analysis and intensity calculation
for inelastic neutron scattering spectra (INS), infra-
red spectra (IR) and Raman spectra.

Normal coordinate analysis in the internal de-
pended coordinate system

Since analysis of normal vibration in cartesian
coordinates is very complicated for systems, which
contain more then three atoms, we perform normal
coordinate analysis only in internal depended coor-
dinate system, i.e. in the bond length, bond angle,
linear parts, torsion and out-of-plane vibrations. All
these data represent complete vibration spectrum of
any system under study. Therefore, next step of the
computation is converting quantum chemical data
from Cartesian to depended coordinate system.

The first step of the normal coordinate analysis is
kinematics matrix G computation on the base of well-
known GF matrix method [20,21]. Since Cartesian
coordinates for all atoms are known, the main prob-
lem on this step is how to define the bonds between
atoms in the system under study. There are a lot of
methods, but we have used the simplest of them,
which is based on the method of the standard bond
length. If the distance between atoms is inside the
lowest and highest limits, the program indicates that
these two atoms are bonded by the chemical bond. If
the distance between atoms is below lowest limits,
the program indicates the problem with chemical
bond definition and requires additional control by
user. Additional control is based on the density ma-
trix of system under study and Wiberg indexes [see
definition and ref. in 22]. After complete bond defi-
nition the kinematics matrix G is computed by stan-
dard method [20,21] as like as matrix B for Carte-
sian to internal coordinate conversion. During this
computation the set of equivalent vibration coordi-
nates (with equivalent force constants) and set of

(7)

(8a)

(8b)

(8c)
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nonbonded vibration coordinates (with zero values
of force constants using approximation of valence-
force field [20,21]) are computed simultaneously.

The basic equation of the GF-matrix method is:

GFL=LΛ
where G – is kinematics matrix, F – is the force con-
stant matrix, L – is the form (relative amplitude) of
normal vibration and Λ – is the diagonal matrix of
the eigenvalues, which represent the vibrational fre-

quencies ii C Λν = . Coefficient C depends on the
unit system.

Since the matrix product GF is not the symmetri-
cal, the standard method to solve this equation 9
(evaluation of the L – the form of normal vibration
and eigenvalues Λ for the frequencies determination)
performs in two steps. The first step is diagonaliza-
tion of the symmetrical kinematics matrix G using
standard linear algebra methods and well-known soft-
ware. After diagonalization one can obtain the eigen-
vector matrix Lg and eigenvalue diagonal matrix Λg.
Next step is calculation of the intermediate matrix:

1/2
ggg

21
g FLLW ΛΛ

~
=

gL
~

 is the transposed eigenvector matrix Lg. Interme-

diate matrix W is symmetric and can be diagonalizat-
ed using standard linear algebra methods and well-
known software too. During diagonalization one can
obtain the eigenvalue diagonal matrix Λf and eigen-
vector matrix Lf. The form of normal vibration can
be obtained by the simple matrix multiplication:

f
1/2

g LLL Λ=
The matrix Lp, called impulse transform matrix

one can evaluates as Lp = LgΛ-1/2Lf. Totally the eigen-
value diagonal matrix Λf can be expressed as:

f
1/2
ggg

1/2
gff LFLLL ΛΛΛ

~~
=

Usually, there is the end of normal coordinate
analysis. Additionally, for the better normal vibra-
tion assignment, it is possible to use the potential
energy distribution (PED) Vk

ij for normal vibration
k. PED shows the contribution of the normal coordi-
nate deformation energy into the normal vibration k

Vk
ij = fij×lik×ljk

For every normal vibration k we have the square
matrix with size N, where N is the matrix dimension
or total number of the vibration coordinates. In order

to simplify this method and since the diagonal force
constants are much large than off-diagonal, the PED
matrix can be reduced to the vector:

Vk
ii = fij×l2

ik

The biggest elements of this vector shows the main
structure elements (vibration coordinates), which play
important role for this normal vibration k. These ele-
ments (or one element) is the assignment of this nor-
mal vibration k and usually is put to the assignment
table of the normal coordinate analysis.

As it was pointed above, the kinematics matrix G
can be easily computed by the standard methods us-
ing Cartesian coordinates of atoms [20]. The main
problem for the computation vibration spectroscopy
is the method for evaluation of the force constant
matrix F in the depended internal coordinate system.
Below we will describe the method for the transfor-
mation of force matrix from Cartesian coordinates
to depended internal vibration coordinate system. It
is necessary to point that internal vibration coordi-
nate system is depended, because only this kind of
coordinate system can represent complete symmetry
of vibration without linear combination of symme-
try coordinates. For systems, that contain more then
5-10 atoms, the redundant coordinate system leads
to the linear dependency of kinematics matrix G. It
means that during diagonalization of matrix G one
or more eigenvalues will be near zero, but not ex-
actly zero due to finite accuracy of the numerical
methods. In any case, this kinematics matrix G can
not be inverted directly by the ordinary methods of
linear algebra. Because of finite (small but nonzero
value) atomic shift the Eckart conditions is not satis-
fied completely and it is necessary to remove all ex-
ternal (rotations and translations) degree of freedoms
from the Cartesian force matrix Uc. We have used
projection matrix method [23], based on the transla-
tion and rotation invariance of matrix B. Projection
matrix P can be computed:

BBBBP 1 ×××= −)(
~~

where symbol ~ (tilde) indicate transposition. After
that the Cartesian force constant matrix Uc is pro-
jected on translation and rotation-free space:

~
PUPU ci ××=

BBBUBBBU 1
c

1
i ××××××= −− )()(

~~~

where Ui is translation and rotation-free cartesian
force constant matrix.

To transform Cartesian force field matrix Ui to

(9)

(10)

(11)

(12)

(12a)



Eurasian ChemTech Journal  6 (2004) 157-170

V. Khavryutchenko 163

the internal depended coordinate system force ma-
trix F we have used the following treatment. For
Cartesian coordinate one can write next expression:

DUD mw
~

=Λ
where Λ is diagonal matrix of the eigenvalues, D is
eigenvector matrix of mass-weighted cartesian force
matrix Ui. Umw = |m|1/2×Ui×|m|1/2 and |m| is diagonal
matrix with triple inverted atomic masses. For Car-
tesian coordinates the eigenvector matrix column is
Cartesian displacement of atoms for normal vibra-
tion. One can evaluate the same values – displace-
ment of atoms – using internal depended coordinates
[20,21]:

f
1/2

gg
1 LLBMD −−= Λ

~

Combining equations 13 and 14 one can write:

== DUDLFLLL mw
f

1/2
ggg

1/2
gf

~~~
ΛΛ

f
1/2

gg
1mw1

g
1/2

gf LLBMUBMLL −−−−= ΛΛ
~~~

Applying the method for the symmetrical matrix
of kinematics coefficient inverting 1

ggg GLL
1 −=

− ~
Λ ,

one can write the final matrix formula:

×= −−− mw111 BUBBBBMGF )(
~~

111 GBBMBBB −−−×
~~~

)(
where for inversion of kinematics matrix G we have
used pseudoinversion:

~

g
1

gg
1 LLG −− = Λ

λε
λελ

Λ
≥
≤

=
=

=−

0
/1

g
1

The described method gives us the ability to con-
vert Cartesian force constant matrix into depended
internal coordinate system and it is implemented into
''COSPECO'' software.

All these methods and algorithms are called as
''direct vibration problem'' solution. At the beginning
of the normal coordinate analysis we have the space
structure and force constant matrix and at the end of
the ''direct vibration problem'' solution we have got
the frequencies of normal vibrations and their assign-
ment using forms of normal vibrations and/or using
the PED assignment. Next steps of the computation
vibration spectroscopy investigation are the inverted
vibration problem, force constant scaling and vibra-
tion spectra intensity calculations.

Inverted vibration problem and methods for

force constant fitting

In general, the inverted vibration problem may
be described in two ways. First of all it is complete
determination of the force constant matrix using only
experimental spectra data and the second one is fit-
ting of the introduced force field using experimental
spectra data and other available data. Below we will
use the second definition of the inverted vibration
problem. Therefore, the inverted vibration problem
is force constant fitting, using experimental data of
frequencies for normal vibrations and other available
data. In contrast to the direct vibration problem, which
is uniquely defined and is well posed the inverted
vibration problem is an ill-conditioned problem from
the mathematical point of view. General description
of this ill-conditioned problem is the problem to fit
the symmetrical matrix with N×(N+1)/2 elements
using N or less elements. From the pure mathematics
point of view there is no solution for this problem
unless N = 1. But we need to do this and we need to
solve this problem. Below we will describe these
problems more deeply.

As it was pointed before, one can represent the
direct vibration problem solution as:

f
1/2
ggg

1/2
gff LFLLL ΛΛΛ

~~
=

Using this equation and matrixes Lf and Lg or-
thogonality one can write:

== −−
g

1/2
gfff

1/2
gg LLLLF

~~
ΛΛΛ

pfp
1

f

1

LLLL
~~

ΛΛ == −
−

All definitions for the used matrixes were done
before. This formula can be explained additionally
that the force field can be obtained by sequence of
multiplication:
- the first diagonalization eigenvector matrix Lg on

the pseudoinverted (see below) diagonal matrix
(represented as vector) 1/2

g
−Λ  of the first diago-

nalization eigenvalues;
- previous matrix on the second diagonalization

eigenvector matrix Lf ;
- previous matrix on the diagonal matrix (repre-

sented as vector) Λf ;
- previous matrix on the transposed the second di-

agonalization eigenvector matrix 
~

fL ;
- previous matrix on the pseudoinverted diagonal

matrix (represented as vector) 1/2
g
−Λ  of the first

diagonalization eigenvalues;

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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- previous matrix on the transposed the first diago-
nalization eigenvector matrix 

~

gL .
Pseudoinvertion of the diagonal matrix (repre-

sented as vector) Λg of the first diagonalization eigen-
values is performed using border value ε. For all ele-
ments of the vector λ(i)g≥ε we use λ-1/2(i)g = 1/λ1/2(i)g

and for small elements of the vector λ(i)g<ε we use
λ-1/2(i)g = 0. By numerical testing we have chosen
the value for ε = 0.001. The matrix Lp, called im-
pulse transform matrix (as it was shown before) and
which can transform frequencies as eigenvalues Λf,
can be obtained as square matrix. These presenta-
tions of the impulse transform matrix Lp simplify all
calculation. Therefore any force constant matrix ele-
ment fij can be obtained as scalar production of the
row i and j of the impulse transform matrix Lp with
corresponding eigenvalue as the weighting factor for
every production of the row elements i and j of the
impulse transform matrix. Since the force constant
matrix F is symmetric matrix it is possible to repre-
sent this matrix as a production of the two matrices:

We will use intensively this expression below.
This way if we use computed eigenvalues Λf for

the force constant matrix reestablishment, we will
obtain initial force constant matrix with accuracy of
the limit computer word length and other numerical
treatment. If we use experimental eigenvalues (com-
puted from the experimental frequencies), we will
obtain fitted force constant matrix. The main point
of this matrix method for inverted vibration problem
solution is that the direct vibration problem solution
give us the initial matrix of the form of normal vi-
brations and we replace computed eigenvalues Λf by
the experimental one and we are able to neglect by
the deviation of the form of normal vibrations. This
assumption is more correct if the difference between
calculated and experimental eigenvalues is smaller.
If we have the spectra for some isotopic substituted
molecules than we are able to obtain the force field
matrixes for all isotopic species, average the force
field and repeat this process up to the needed accu-
racy. This method is very fast and during this pro-
cess we are able to fit all force field matrix. This
method is indifferent to the linear dependencies be-
tween force constants. To increase the computation
accuracy it is possible to use the differential method
for inverted vibration problem solution. It is based
on the same equation (19) but we are changing the
experimental eigenvalues on the difference between

calculated eigenvalues and experimental one. After
application of this equation 19 we will have the incre-
ment for the force constant matrix. Practically this
method works well enough even for matrix size N =
1000 or more using single precision.

If our starting force field produces acceptable ac-
curacy for the direct vibration problem solution (for
harmonic approximation it is ~20 cm-1 for the region
1000 cm-1) we do not need to fit this force field. But,
if we need to fit the force field we should introduce
the model restriction on the force field, depending on
the system origin. We have used two type of restric-
tions: the force constants for the equivalent vibration
coordinates should be equivalent and, the second one,
for the system without conjugation the force constants,
which describe the interaction between nonbonded
vibration coordinates (vibration coordinates without
common atoms), should be zero. This restriction is
known as the valent force field model.

Let us to look on this method and popular least
square method (LSQM) [24-26] for the inverted vi-
bration problem solution. LSQM uses the same pro-
cedure for the direct vibration problem solution and
it requires the starting force field, too. After that it is
necessary to choose the force constant for fitting. It
is very important that the total number of these fitted
force constants should not exceed the number of the
nonzero experimental frequencies. It means that the
total number of the fitted force constant, as usually,
is much less than total number of the force constants.
And there is no systematical method to define what
constants are necessary to fit and what constants fit-
ting may be neglected. After this step one can build
the system of the linear equations:

;LX
x
L

∆=∆
δ
δ

Where A
x
L

=
δ
δ

 − partial derivative of the eigen-

values on the fitted force constants:

X∆  - force constant increment (column);

L∆  - difference between calculated and experi-
mental eigenvalues (square of the frequencies).

Using classic LSQM one can obtain the best so-
lution (with minimal norm of the deviation between
calculated and experimental data) by solving of the
next equation:

LAXAA ∆=∆
~~

(20)))((
~~

g
1/2

gf
1/2
f

1/2
ff

1/2
gg LLLLVVF −−== ΛΛΛΛ

(21)LXA ∆=∆

(22)
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Obtained force field increment is introduced into
force field and this process is repeated again up to
the requested accuracy of up to the exhaust the num-
ber of iteration.

Sometimes this iteration process is not successful
due to bad conditionality of this linear equation sys-
tem and this system is ill-conditioned. The result of
this is abnormal result of the solution of this linear
equation system and/or high sensitivity to the com-
puter accuracy and floating point computer word
length. It means that the condition value σ > 1 for
the linear equation system (21) may be big enough.
Left multiplication of the equation 21 on the trans-
posed matrix Ã and conversion of it to equation 22
leads to the squaring of the condition number σ and
leads equation 22 to the highest instability to the ex-
perimental data error and algorithm round-off errors.
As an alternative to this more stable and sophisti-
cated methods are used [27,28].

The LSQM and the matrix method for the inverted
vibration problem solution are similar enough. The
elements of the matrix A (partial derivative of the
eigenvalues on the fitted force constants) aij are com-
puted as the production of the i-th and j-th compo-
nents of the matrix L – form of normal vibrations.
Using equation 21 and 22 one can write the equation
of fitted force constant matrix increment vs. differ-
ence between computed and experimental eigenval-
ues. Below Fe is the force constant matrix obtained
using equation 19 or 20 with experimental eigenval-
ues. F0 is the force constant matrix obtained using
equation 19 or 20 with computed eigenvalues or ini-
tial force constant matrix.

LFL oo

~
=Λ         1

o
1

popo LLLLF −−== ΛΛ
~~

LFL ee

~
=Λ        1

e
1

pepe LLLLF −−== ΛΛ
~~

=−=−=∆ poppepoe LLLLFFF
~~

ΛΛ

pppoep LLLL
~~

)( ΛΛΛ ∆=−=
11

pp LLLLF −− ∆=∆=∆
~~

ΛΛ
1
p

1
p LFLFLL −− ∆=∆=∆

~~
Λ

and [29] Λ∆=∆FR (23)
Last equation 23 may be presented as R=L ⊗ L =

Lp
−1 ⊗ Lp

−1 direct matrix production [29, p. 227-228].
The linear system 23 may be analyzed by standard
methods of the linear algebra. Matrix R contains the
squared of the number of the singularities in the ma-
trixes Lp and L or the number of linear dependencies

in the vibration system of coordinates. After that one
can solve this system using pseudoinversion of ma-
trix R:

=∆⊗=∆=∆ − LLLLRF pp
1 )(

LLL 11 ∆⊗= −− )(
Since the elements of matrix R are the produc-

tions of the rows of normal vibration forms matrix,
the system of the linear equation 21 is a part of the
equation 23 and can be obtained from the 24 by se-
lection of the fitted force constants or, in other words,
by introducing of restrictions. Therefore the differ-
ence between matrix methods for the inverted prob-
lem solution and LSQM is in the method of the in-
troducing of restrictions. Incorrect or inconsistent
method for the selection of force constant for fitting
leads to the degeneracy of the matrix A very often.
In these cases it is necessary to use singular decom-
position methods or other stable methods.

These data show that matrix methods and LSQM
with the same restriction on the force field lead to
the same result. Since the matrix method is more
stable and is able to work without force constant el-
ement selection we use this method and its modifi-
cation for the practical work and we have introduced
these matrices methods into our software.

General analysis of these equations leads to the
interesting results. Widely current point of view on
the equation 9 consists on the using › as a vector only.
But very simple transformation of this equation
(premultiplication of this equation on the inverted or
pseudoinverted matrix of the form of normal vibra-
tions) leads to the next equation:

L-1GFL = Λ
All matrices in the left part of this equation are

square and their production is the square matrix too.
Therefore, the Λ is diagonal square matrix and off-
diagonal elements are zero, but they are also signifi-
cant. From this point of view the postulate about in-
sufficiency of data for the all force constant matrix
fitting is incorrect, too. It is additional argument to
use matrix method for the force constant fitting and
using of the matrix method to solve inverted vibra-
tion problem in our software.

Therefore, independently from the method of in-
verted problem solution, the best choice of the initial
force field is very important for the fitting. Decreas-
ing of the difference between initial force field and
fitted force field leads to decreasing of the deviation
of the form of normal vibrations matrixes and, thus,

(24)

(25)
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decreasing of the force field dependency on the in-
troduced model for the force field. There is one side
of the problem. The other side of this problem con-
sists on the correctness of the experimental spectra
assignment. All mathematical methods for the in-
verted vibration problem solution are senseless for
the incorrect assignment. But there is another big
problem and we will not discuss it in the current ar-
ticle.

Therefore, the problem of the first approximation
of the force field is very important. Before last de-
cade the main method for the force field construc-
tion was the method of force constant transfer in the
series of the analogous molecules or systems and/or
empirical dependencies between structure and force
constants. These methods were useful for the organic
compounds, but they were not so successful for the
inorganic and coordination compounds without se-
ries of the homology sequences. On our point of view
this reason is the main difficulty for the practical
application of the computational vibration spectros-
copy for the ordinary scientific research.

Inverted vibration problem and methods for force
constant scaling

We have described the method for quantum
chemical calculation of the force field as the initial
model for the experimental spectra assignment and
fitting. This method and its software realization can
be used not only with semiempirical quantum chemi-
cal methods but with any other quantum chemical
methods, too. But all known quantum chemical
method give us the force field with some systemati-
cal shifts of the frequencies to compare with experi-
mental. Therefore inorder to decrease this shifting
we have used the force constant scaling methodol-
ogy or SQFF (scaled quantum mechanical force field)
[30-33]. This method is based on the simple formu-
las for diagonal and out-off-diagonal force constants
scaling:

iii
sc

ii fCf =

( ) ij
1/2

ji
sc

ij fCCf =
This method is very simple for application be-

cause it needs the same amount of the scaling factor
as the number of vibration coordinates and it scales
force field matrix completely. The scaling facto for
ab initio force fields are in between 0.95-0.7 depend-
ing on the basis set and type of internal vibrational
coordinate. For semiempirical quantum chemical

methods the scaling factor is varied within the more
wide limits, which can be more then 1 – between
1.45 and 0.35 for some organic compounds [31].
Below we would like to present an alternative real-
ization of this scaling methodology and its relation
with the inverted vibration problem solution.

As it was shown before (eq. 20), the force con-
stant matrix can be presented as production of two

identical matrices 1/2
ff

1/2
gg LLV ΛΛ−= ;                . First

two components of matrix V form force field inde-
pendent and can be computed once only. First three
components of matrix V form the matrix Lp, called
impulse transform matrix, which one can evaluate as
Lp = LgΛ-1/2Lf. Therefore, the matrix V can be pre-
sented as the scaled using frequencies by column
impulse transform matrix

1/2
fp

1/2
ff

1/2
gg LLLV ΛΛΛ == −

The force constant matrix element fij can presented
as scalar production of two rows i and j from matrix
V. Diagonal force constant matrix element fii is
squared length of the corresponding row i. This pre-
sentation completely satisfies the definition of the
force constant matrix [26]: positively defined (the
length of the real vector is positive value always)

and for off-diagonal matrix elements ≤− jjii ff

jjiiij fff ≤ . Using this force constant matrix pre-
sentation one can present the scaling procedure as
the matrix V every row length correction to the square
root from the scaling factor. Off-diagonal scaling can
be obtained automatically during restoring force con-
stant matrix F by equation 20. Using model restric-
tion like equivalence of the force constants for the
diagonal elements is very simple – it is necessary to
make equivalent the length of the rows, correspond-
ing equivalent vibrational coordinates. As it was
tested numerically, in these cases, the off-diagonal
elements, which refers, correspond to the interaction
of the equivalent vibrational coordinates, are very
similar with small deviations. This fact shows the
good applicability for the proposed method.

Combining equations 20, 28 and the method of
their computing an advanced method for the inverted
problem solution were developed. Using initial force
constant matrix one can solve direct vibration prob-
lem and compute impulse transform matrix Lp. Scal-
ing the column of this matrix Lp on the experimental
frequencies in the form Λf

1/2 one can obtain the ma-
trix V. Keeping the length of the every column of the

(26)

(27)

~
VVF =

(28)
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matrix V by the constant and making the equivalent
every row length for the equivalent vibration con-
stants it is easy to construct selfconsistent process
for the matrix V concordance. It is possible to use
the differential method like increasing computational
accuracy. To do this it is necessary to use the differ-
ence between calculated and experimental eigenval-
ues in the equation 28 instead of the experimental
eigenvalues Λf

1/2. But in this case it is necessary to
compute the positive and negative increments to the
force constant matrix separately to prevent complex
number utilization in the software. This incremental
method significantly accelerates the inverted vibra-
tion problem solution and it is introduced into our
software.

Intensity calculation. Normal coordinate analy-
sis part

We have used three types of experimental vibra-
tion spectra – inelastic neutron scattering (INS), in-
frared (IR) and Raman spectra. Therefore, to use all
potential ability of experimental study for the com-
putation vibration spectroscopy we should compute
all these spectra using the same force field and the
different weighing factors to convert calculated den-
sity of the vibration states (VDOS) to the real ex-
perimental spectra. It means that we need to have the
coupling coefficient to convert VDOS to the mea-
sured spectra.

Intensity for all three types of experimental vi-
bration spectra – inelastic neutron scattering (INS),
infrared and Raman spectra – is calculated using
Cartesian atomic shift or displacement. One can
evaluate the displacement of atoms D using internal
depended coordinates [20,21] by equation 14
( f

1/2
gg

1 LLBMD −−= Λ
~

) and all known matrixes.
Program for intensity calculation reads the matrix B
for Cartesian to internal coordinate conversion from
external files and impulse transform matrix Lp (Lp =
LgΛ-1/2Lf) and compute the matrix D of the displace-
ment of atoms. This part of calculation is identical
for all three programs for intensity calculation.

INS spectra intensity calculation is performed
basing on the a little bit simplified formula 4.1.56
from [34]. Since we integrate the scattering data over
all angles and calculate only relative intensities we
are able to neglect absolute scattering factors and
angle dependency. INS measurement is performed
at low temperature and, therefore, it is possible to
neglect the population of the higher vibration levels.

Result formula for normal vibration with frequency
ω is:

∑∑
= =

→→

×+=
N

i

N

j ji

ji
jiijji mm

CC
I

1 1

)( σσδββω

where βi – is coherent cross-section for the neutron
scattering for atom i, σi - is incoherent cross-section
for the neutron scattering for atom i, mi – is mass for
atom i, ji CC

→→
 − is length of the vector of the atoms i

and j shifting, N – is total number of atoms in the
system under study. Production βiβj represents co-
herent part of neutron cross-section and production
σiσj represents incoherent part of neutron cross-sec-
tion. Delta-function δij indicates that incoherent part
of neutron cross-section should be included for the
same atom only. The values for the coherent and in-
coherent cross-sections for the neutron scattering for
atoms are experimental and tabulated. Therefore, to
compute INS intensity and INS spectrum we need
the space structure and force field only or, in other
words, the amplitude of the atomic displacements
without any additional approximation and param-
eters. There is a reason to call INS spectra as the
amplitude-weighted density of vibration states –
AWDS, which directly represents VDOS. There are
no selection rules for INS spectra and one can, in
principle, observe any vibration in the system under
study, which is inactive in the other vibration spectra
such as IR or Raman. There is a big advantage of the
INS spectroscopy, from one side, and imperfection,
from other side due to this phenomenon makes spec-
tra more complicated. Therefore, the best way is us-
ing all kind of vibration spectra.

As it was noted, the IR-intensity represents the
changing of the system dipole moment for the nor-
mal vibration. To compute this system dipole mo-
ment changing we use derivatives of the total dipole
moment δµ /δx and displacement (∆x) of atoms D in
the Cartesian coordinates.

∆µ = (δµ /δ x)×∆x
Without normalizing conditions the IR-intensity

one can evaluate as:
Iir=C|∆µ|2

Cartesian displacement are calculated by equa-
tion 14. After that the unnormalized IR-intensity for
normal vibration can be calculated as:

Iir=|∆µx|2+|∆µy|2+|∆µz|2

This value, normalized up to 100% IR intensity
and their x, y and z components are printed and saved

(29)

(30)

(31)

(32)
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to the file.
For Raman intensity the proposed method is used

too. According to [21] the Raman intensity is:
2

2

44

3
16 P

c
I υπ=

where P = αE is induced dipole moment, α is polar-
izability and E is a vector of external electric field
intensity. Using Cartesian derivatives of polarizabil-
ity and Cartesian shifts of every atom one can de-
scribe:

∆α = (δα /δx)×∆x
The Raman intensities are defined by the follow-

ing (35) two quantities. Using better notation from
the [35] without confusing misstatement (α as pola-
rizability and α as matrix spur) with previous used
notation for polarizability and second hyperpolariza-
bility the intensity activity coefficient one can write
(I):

I = 45T2 + 7G2

and depolarization ratio:

22

2

4G45T
3G

+
=ρ

This notation (T) and (G) for last two equation is
better to compare with very often used notation (T
⇒ α and G ⇒ γ) because these values are not the
same as before, where α is polarizability tensor and
γ is second hyperpolarizability. The relation between
these values can be defined as:
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In these equations we have shown [15] the rela-
tion between the polarizability tensor deviation ij

~
α ,

which was computed by quantum chemical program
QuChem, from one side, and mean (isotropic) polar-
izability T (spur of derivative polarizability tensor
matrix) and anisotropy of the derivative polarizabil-
ity tensor matrix G2, from other side. Using these
data it is possible to compute Raman intensity for
current normal vibration:

×
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−×=
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This equation is used for Stokes line and unpola-
rized light. For polarized light this equation should
be modified:
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The Stokes and anti-Stokes intensity ratio can be
given by the next equation:
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In these formulas ν is frequency of normal vibra-
tion in cm-1, c is the light speed, h is the Planck con-
stant, k is the Boltzmann constant. Coefficient K con-
tains some physical constants and collection solid
angle for scattered light. Therefore this constant K
as usually is not computed directly and is used as a
spectrometer constant.

The program for Raman intensity calculation com-
putes Stokes and anti-Stokes intensities for polarized
and unpolarized light depolarization ratio and save
all these data to the external files.

Spectra building and band contour fitting

All three programs for intensity calculation, called
NALL, INT and RAM, produce intensities as delta
functions, i.e. as a table with band position and in-
tensity. To compare with experimental spectra it is
better to build the theoretical spectra too. To perform
this we have used broadening function for convolut-
ing calculated delta function. To simplify this pro-
cess we have used simplest broadening function –
Gauss type for the elementary function y=ai×exp((bi-
b)2/2ci), where ai, bi and ci are intensity, position and
broadening parameters for the i-th band and b is the
current wavenumber. The coefficient before expo-
nent is the same for all bands and can be neglected
due to total normalization of the result spectrum up
to 100%. Total spectrum is the sum of all bands and
can be plotted using any appropriate software. There
is a global problem to obtain the broadening param-
eters without common solution. For INS spectra we

(33)
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(36)
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have used the instrumental broadening function,
which is known for the used INS spectrometers
(KDSOG and NERA in Joint Institute for Nuclear
Research (Dubna, Russia). For IR and Raman spec-
tra we have used initial value for the band broaden-
ing parameter 10 cm-1 and after that, if it is neces-
sary, one can perform the fitting of these broadening
parameters for better coincidence of theoretical and
experimental spectra. If three vibration spectra (INS,
IR and Raman) for our model under study are enough
similar to the corresponding experimental spectra, it
means that our model under study reproduce the space
and electronic structure for the real system under
study and it may be adequately used for explanations
and prediction of properties.

Conclusion

We have illustrated the pathway for the computa-
tion chemistry investigation and, more deeply, the
verification of the model using computation vibra-
tion spectroscopy methods. A brief review for the
computation details for the vibration spectra calcu-
lation, including force field and intensity calculations,
was done. All these features are included into work-
ing software, which are named QuChem for the quan-
tum chemical and COSPECO for the vibration spec-
troscopy investigation.
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