Catalysts for Alkylbenzene and Alkylpyridine Ammoxidation

D.Kh. Sembaev*, F.A. Ivanovskaya, V.M. Pochtennaya

Institute of Chemical Sciences of Ministry of Education and Science of the Republic of Kazakstan 106 Walikhanov str., 480100 Almaty, Kazakhstan

Abstract

An increase of effectivity of binary and ternary vanadium containing oxide catalysts can be achieved by a regulation of chemical and phase catalyst composition during their preparation. Activity and selectivity of V-Ti catalysts depend on the ratio of V_2O_5 to VO_2 in the succession of substitutional solid solutions VO_2 - TiO_2 , as well as on the crystal modification of TiO_2 . It was investigated the influence of vanadium oxides over the rate of the polymorfous conversion from anatase to rutile and the kind of TiO₂crystal modification over V_2O_5 reduction degree during the thermal treatment of V-Ti catalysts. The synthesized catalysts offered producing nicotinonitrile from 3-methylpyridine with 93-95% mol. yield. Modifying of V-Ti catalysts by SnO₂ increased their activity. The reason is V=O bond weakening under the influence of SnO₂. That was verified by increasing of V_2O_5 dissociation rate almost by an order in comparison with V-Ti catalysts. SnO₂ in the ternary catalysts exists as individual phase and acts as a donor of oxygen for the lower vanadium oxides. It provides the high stability of V-Ti-Sn catalysts and possibility of obtaining isonicotinonitrile with 95-97% mol. yield from 4-methylpyridine. The investigation of the mutual influence of starting components in the ternary V-Ti-Zr catalysts showed that ZrO₂ prevented the polymorphous transformation from anatase into rutile. In its turn, anatase stabilized baddeleyite, which has a higher catalytic activity than ruffite. Taking into account the mutual influence of the components, it was able to prepare the selective V-Ti-Zr catalyst. It offered obtaining nicotininitrile from 3-methylpyridine with 92-96% mol. yield.

Introduction

One of the steady tendentions in catalysis consists in discovering of ways for the selection of the effective catalysts for oxidation and ammoxidation of benzene and pyridine derivatives to nitriles, imides and anhydrides of carbon asids, which are the important products of organic synthesis.

The vanadium containing oxide catalysts, which are widely used in the oxidative reactions, were investigated by many researchers [1,2]. However, it is necessary to continue this work, because there is a deficiency of information about phase and chemical composition of such catalysts. Especially it refers to the multicomponent catalysts. There is little information about them, or there is nothing at all.

The aim of the present work was to find a possibility to increase the effectivity of binary and ternary vanadium containing oxide catalysts in alkylbenzene and alkylpyridine ammoxidation during their preparation. The chemical and phase catalysts changes have been studied under various preparation conditions. At the same time the preparated catalysts were tested in the oxidative reactions. The following catalysts V-Ti, V-Sn, V-Zr, V-Ti-Sn and V-Ti-Zr were chosen as the investigatigation objects.

The results of our work gave us a possibility to synthesize the active and selective catalysts for alkylbenzene and alkylpyridine ammoxidation.

Experimental

Vanadium-titanium, vanadium-titanium-zirconium and vanadium-titanium-tin catalysts were prepared from V_2O_5 of «chem. Pure» mark, TiO₂ of «pure» mark, ZrO₂ of «pure» mark and SnO₂ of «pure» mark by mixing of oxides followed by pressing of the charge into pills. The formed samples were dried at 120°C and heated at 620°C in the air atmosphere.

The phase and chemical contents of the catalysts were studied by recording of sample difractograms on X-Ray difractometer.

^{*}corresponding author. E-mail: adm@chem.academ.alma-ata.su

Experiments of oxidation and oxammonolysis of o-xylol, 3-methylpyridine and 2-methyl-5-ethylpyridine were conducted on a running plant with a reaction tube made of stainless steel, of 1100 mm of length and 20 mm in diameter.

Analysis of the catalyst content was done by the method of chromatography. Chromaton N-AW-DMCS, impregnated with 15% of silicon DC-550 was used as a sorbent for separation of the reaction products.

Catalytic activity of the catalysts was studied in a gradient-free glass reactor with a mixing device.

Results and discussion

It is known [3,4], that the activity of anatase containing V-Ti catalysts is higher than that of rutile. The activity of anatase itself is two times as much than rutiles one. Thus, the anatase activity in 2-methyl-5-ethylpyridine oxidation is two times as much than that of rutile [5]. We have studied a polymorphous transformation of TiO₂ from anatase to rutile under the action of vanadium oxides, which can be present in V-Ti catalysts. It was determined, that this transformation is promoted by the all studied vanadium oxides, namely V_2O_5 , VO_2 and V_2O_3 . As Fig. 1 shows, the rate of polymorphous conversion depends on the oxidation degree of vanadium. The severity of exposure of vanadium oxides increases in the following row: $VO_2 < V_2O_5 < V_2O_3$.

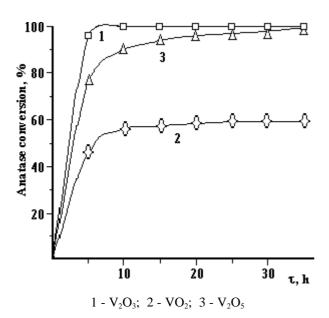


Fig. 1. Transformation of anatase into rutile in the precense of $V_x O_y$ (10% wt.) at 700°C.

On the other hand, the kind of TiO₂ crystal modification influences on the reduction degree of V_2O_5 upon the heat treatment of V-Ti catalysts. It is known [6], that the thermal dissociation of V_2O_5 with the formation of VO₂ takes place during the heating of such catalysts. The reduction rate of V₂O₅ into VO₂ increases with the rise of a treatment temperature. As Fig. 2 shows, V_2O_5 concentration decreases with the rising of temperature. The reduction of V_2O_5 is higher in the presence of anatase, than that in the presence of rutile. Forming VO_2 interacts with the rutile phase. The result is the formation of the succession of substitutional solid solutions of VO₂-TiO₂. They themselves have rather low activity in the oxidative reactions. However, it is possible to receive the highactive and selective catalyst by the choice of a necessary ratio of V₂O₅/solid solution.

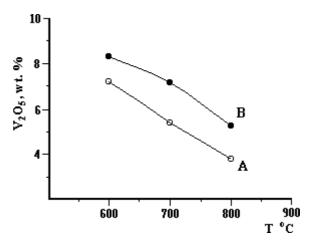


Fig. 2. V_2O_5 content as a function of temperature upon thermal treatment of V-Ti-catalysts (the atomic ratio of V : Ti = 1:8). A - in the presence of anatase; B - in the presence of rutile.

Taking into account the formation peculiarities of chemical and phase composition of V-Ti catalysts, it is possible to obtain the effective catalysts for the ammoxidation of o-xylene to phtalimid (85% yield) and 3-methylpyridine to nicotinonitrile (92-95% yield).

Modifying of V-Ti catalysts by SnO₂ results in a rise of their activity. The ternary catalysts have a specific catalytical activity almost two times higher, than the binary catalysts have in 4-methylpyridine ammoxidation. We supposed that the cause of it is an increase of V_2O_5 reaction capability due to V= O bonds weakening under the action of SnO₂. It is verified by the significant increase of V_2O_5 dissociation rate in the presence of SnO₂ in comparison with TiO₂. Fig. 3

Eurasian ChemTech Journal 2 (2000) 113-116

shows the kinetic curves of the oxygen emission at V_2O_5 thermal dissociation in the presence of TiO₂ and SnO₂.

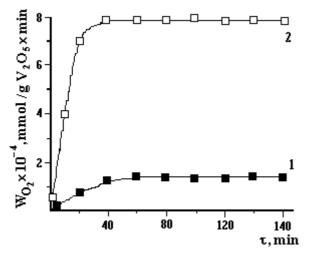


Fig. 3. The rate of oxygen emission at V_2O_5 thermal dissociation at 660 °C for the following compositions: 1 - V_2O_5 : TiO₂ = 1:16 (mol.); 2 - V_2O_5 : SnO₂ = 1:16 (mol.).

Unlike TiO₂, SnO₂ does not form the solid solutions with VO₂. It was determined by X-ray diffraction method, that only V₂O₅, VO₂ and SnO₂ phases are present in V-Sn catalysts. In the ternary V-Ti-Sn catalysts V₂O₅, SnO₂ and VO₂-TiO₂ solid solutions have been found. SnO₂ exists as an individual phase. Both in the ternary catalysts and in V-Ti ones V₂O₅ reduction degree depends on the calcination temperature, as well as on SnO₂ concentration. V₂O₅ reduction rate, as it is shown on the Fig. 4, increases with the decrease of TiO₂/SnO₂ ratio from infinity to zero.

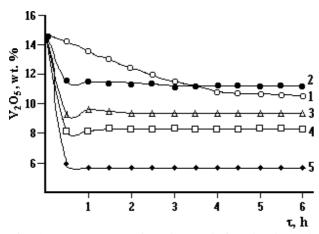


Fig. 4. V_2O_5 concentration change during the thermal treatment at 700°C for V-Ti-Sn catalysts of various compositions. The molecular ratio TiO₂/SnO₂ is equal to: $1 - \infty$; 2-10; 3 - 1; 4- 0,2; 5 - 0.

The ternary V-Ti-Sn catalysts differ from V-Ti ones by high stability. They hold their activity and selectivity for a long time. Our experiments have shown that SnO₂ is able to oxidize VO₂ with the formation of V₂O₅, as a final product. In the same time SnO₂ itself is reduced to SnO. Then SnO is easy reoxidized by oxygen from gas phase and can serve again as a donor of oxygen for the low vanadium oxides. Therefore, SnO₂ is able to stabilize the chemical composition of V-Ti-Sn catalysts, facilitating their reoxidation by the gas phase oxygen. Such catalyst worked on 4-methylpyridine ammoxidation a long time. It had high selectivity of isonicotinonitrile - up to 98%. The yield of nitrile was 95-98% mol., upon a loading to 300 g. of 4-methylpyridine on 1 l cat.per 1 h.

V-Zr binary catalysts can include either ZrV_2O_7 compound and V_2O_5 , or ZrV_2O_7 and ZrO_2 , according to the ratio of the starting components. V_2O_5 in V-Zr catalysts is not subjected to thermal dissociation. VO_2 is not determined. It seems that ZrO_2 and ZrV_2O_7 stabilize V_2O_5 . The catalysts, containing ZrV_2O_7 and ZrO_2 , have the highest activity and selectivity. Such catalysts don't require activation and don't suffer the changes during ammoxidation. They have high stability and can work upon a high loading - up to 300 g of o-xylene per 1 l of cat. for 1 hour. The formation of ZrV_2O_7 compound proceeds rather fast and finishes in 8-9 hours upon the thermal treatment of the starting oxide mixture at 600°C (Fig. 5).

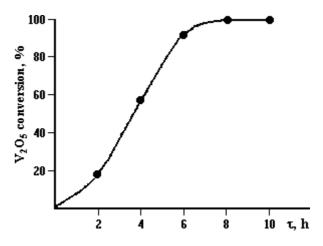


Fig. 5. ZrV_2O_7 formation rate for V_2O_5 - ZrO_2 catalyst (the molecular ratio is 1:1) at 600°C.

The catalytic properties of V-Zr catalysts largerly depend on ZrO_2 crystal modification. The specific catalytic activity and selectivity of o-tolunitrile formation on baddeleyite, which is a monoclynic crystal

Eurasian ChemTech Journal 2 (2000) 113-116

modification of ZrO_2 , is higher by an order in o-xylene ammoxidation, than that is on ruffite (tetrahedral structure). However, a selectivity of phtalimide formation on ruffite is more than that is on baddeleyite.

The ternary V-Ti-Zr catalysts can consist of following phases: V₂O₅, TiO₂, ZrO₂, ZrV₂O₇, solid solutions VO₂-TiO₂, limited solid solution ZrTiO₄. The finished catalyst composition depends on a ratio of the starting components and preparation conditions, as well as on mutual influence of catalyst's components. As we noted, V_2O_5 increases the transformation of anatase into rutile. On the other hand anatase promotes V₂O₅ dissociation and VO₂ formation. Then, the interaction between rutile and VO₂ gives solid solutions VO₂-TiO₂, which have a low catalytic activity. It would be desirable to prevent their formation. The study of the mutual influence of anatase and baddelevite showed, that baddelevite inhibited the polymorphous transformation of anatase into rutile. ZrV₂O₇ compound prevents this process too. The solid solutions VO₂-TiO₂ were not found in the presence of baddeleyite and ZrV₂O₇. Anatase, in its turn, prevents the phase transition of baddeleyite into ruffite. Thus, the catalysts, containing the excess of ZrO_2 , consist of the following phases: ZrV₂O₇, anatase, baddeleyite and limited solid solution ZrTiO₄. The mutual stabilization of anatase and baddeleyite causes the raised activity and selectivity of the ternary catalysts. For example, the yield of nitrile is 93-95% on 3methylpyridine ammoxidation.

Anatase partially transforms into rutile in the presence of chemical compound upon the rising of a calcination temperature up to 800°C. It is explained by a decomposition of the chemical compound into V_2O_5 and ZrO_2 at such a temperature. V_2O_5 is the strong rutilisator. Its action exceeds a retarding action of ZrO_2 . In consequence of it, the solid solutions are formed and catalyst activity decreases.

Conclusions

Thus, the investigations made have shown a possibility to regulate valent state of vanadium, its reaction capacity, the formation of crystal phases and chemical compounds on the studied catalysts. This work became a basis for a synthesis of the active and selective catalysts for ammoxidation of benzene and pyridine derivatives.

References

- In M.V.Shimanskaya (ed.), Vanadium Catalysts for the Oxidation of Heteroatomic Compounds, "Zinatne", Riga, 1990.
- Alkhazov, T.G., and Margolis, L.Y., High-selective Catalysts for Oxidation of Hydrocarbons, Moscow, 1988.
- 3. Mori K., Miyamoto A., and Murakami Y., Ztschr. Phys. Chem., Bd.131, S.251-254 (1982).
- Volta J.C. Adsorption and Catalysis on Oxide Surfaces. Amsterdam etc.: Elsevier, 1985, pp. 331-344.
- 5. Yugay, O.K., and Sembaev D.Kh., Izvestiya MON RK, ser.chem., 4:9 (1998).
- 6. Sembaev D.Kh., Suvorov B.V., Saurambaeva L.I., and Suleimanov H.T., Kinetika i Kataliz XX:3:750 (1979)

Received 22 February 2000.