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In recent years there has been a rapid increase in the use of single-cell sequencing

(scRNA-seq) approaches in the field of immunology. With the wide range of technologies

available, it is becoming harder for users to select the best scRNA-seq protocol/platform

to address their biological questions of interest. Here, we compared the advantages

and limitations of four commonly used scRNA-seq platforms in order to clarify their

suitability for different experimental applications. We also address how the datasets

generated by different scRNA-seq platforms can be integrated, and how to identify

unknown populations of single cells using unbiased bioinformatics methods.
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INTRODUCTION

The immune system comprises a network of cells, tissues and organs that mediate host defense
against pathogens, but this network also plays a critical role in homeostatic activities, such as tissue
development (1), and metabolism (2). With the aid of microscopy and flow cytometry, immune
cells can be readily classified into distinct types based on specific surface markers. However,
not all immune cell types can be fully resolved by the sole analysis of phenotypic markers,
since many of these are expressed by multiple cell lineages, or are differentially regulated during
inflammation (3–5). Until recently, gene expression studies were performed on bulk populations
of sorted or purified immune cells in attempt to better understand their transcriptomes. During
this process, new and unique population markers were identified that can more effectively resolve
different immune cell compartments. Nonetheless, this type of analysis does not consider variability
in gene expression between individual cells, or the influence of sample contamination with
unrelated cell types that share overlapping phenotypic characteristics. Consequently, biologically
significant heterogeneity within a population can be masked, and relevant information averaged
with irrelevant signals from contaminating cells (6). This is particularly critical when studying
temporally dynamic processes, such as progenitor cell development into terminally differentiated
populations via multiple transitional stages. Bulk approaches to the analysis of cells that exist in a
continuum of differentiation and activation states leads to averaging of their distinct characteristics
and a corresponding loss of biologically important information.

Advances in next-generation sequencing technologies have recently made it possible to
interrogate the immune system at the level of individual cells. Single-cell RNA-sequencing
(scRNA-seq) is now widely employed in immunological studies seeking to resolve previously
under-recognized cellular heterogeneity (7, 8), define key processes in cell development and
differentiation (9, 10), unravel critical pathways of hematopoiesis (11–13), and understand the
gene regulatory networks that predict immune function (14–16). A static snapshot of single-cell
transcriptomes can provide a powerful window onto the various stages of differentiation and
activation states which are rarely synchronized between cells.
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The rapid development of low-input RNA-seq methods has
led to an explosion of scRNA-seq protocols, each with their own
advantages and limitations. As a result, it is becoming challenging
for non-experts to select the most appropriate method to address
a specific research question, or to assess whether a single cell
approach is even suitable for a given investigation. Here, we
list four of the most commonly-used scRNA-seq methods and
discuss their strengths and limitations in terms of workflow,
sensitivity, data quality, and cost (Table 1), thus providing a guide
that could help immunologists make an informed choice for their
scRNA-seq studies. We also demonstrated how unbiased single
cell identification could be performed, and how data obtained
from different scRNA-seq protocols could be integrated prior to
downstream analysis.

SINGLE-CELL RNA-SEQUENCING
TECHNOLOGIES

Since the first scRNA-seq protocol was published in 2009 (17),
there has been an expansion of scRNA-seq methods that differ

TABLE 1 | Summary of single-cell RNA sequencing methods.

Method Fluidigm C1 system

(SMART-seq)

Fluidigm C1 system

(mRNA Seq HT)

SMART-seq2 10X Genomics

Chromium system

MARS-seq

cDNA coverage Full-length 3′ counting Full-length 5′/3′ counting 3′ counting

UMI No No No Yes Yes

Amplification technology Template

switching-based PCR

Template

switching-based PCR

Template

switching-based PCR

Template

switching-based PCR

in vitro transcription

Multiplexing of samples No Yes No Yes Yes

Single cell isolation Fluidigm C1 machine Fluidigm C1 machine FACS 10X Genomics

Chromium single cell

controller

FACS

Cell size limitations Homogenous size of

5–10, 10–17, or

17–25µM

Homogenous size of

5–10, 10–17, or

17–25µM

Independent of cell size Independent of cell size Independent of cell size

Required cell numbers per

run

≥10,000 ≥10,000 No limitation ≥20,000 No limitation

Visual quality control check Microscope

examination

Microscope

examination

No No No

Long term storage No, must process

immediately

No, must process

immediately

Yes No, must process

immediately

Yes

Throughput Limited by number of

machines

Limited by number of

machines

Limited by operator

efficiency

Up to 8 samples per

chip

Process is automated

Cost + + + + + + + + + + + + + + +

Sample Preparation

Scenario 1 (∼5000 single

cell)

Targeted cell No: 4992

cells

Targeted cell No: 4800

cells

Targeted cell No: 4992

cells

Targeted cell No: 5000

cells

Targeted cell No: 4992

cells

26 rounds of 2 runs (2

C1 machines;

concurrent)

3 rounds of 2 runs (2

C1 machines;

concurrent)

26 rounds of 2 96-well

plates

1 run 13 runs of 1 384-well

plate

∼26 weeks ∼3 weeks ∼26 weeks ∼2–3 days ∼7 weeks

Sample Preparation

Scenario 2 (∼96 single cell)

Targeted cell No: 96

cells

Targeted cell No:

Minimum 800 cell

Targeted cell No: 96

cells

Targeted cell No:

Minimum 500 cells

Targeted cell No: 96

cells

1 run (1 C1 machine) 1 run (1 C1 machine) 1 run of 96-well plates 1 run 1 run of 384-well plate

∼1 week ∼1 week ∼1 week ∼2–3 days ∼2–3 days

in how the mRNA transcripts are amplified to generate either
full-length cDNA or cDNA with a unique molecular identifier
(UMI) at either the 5′ or 3′ end. For example, SMART-seq
(switching mechanism at 5′ end of RNA template sequencing)
(18) and its improved protocol, SMART-seq2 (19, 20) are
protocols designed to generate full-length cDNA, while MARS-
seq (massively parallel RNA single-cell sequencing) (21), STRT
(single-cell tagged reverse transcription) (22, 23), CEL-seq (cell
expression by linear amplification and sequencing) (24), CEL-
seq2 (25), Drop-seq (26), and inDrops (indexing droplets) (27)
are protocols designed to incorporate UMIs into the cDNA.
To facilitate automation and ease of sample preparation, some
of these protocols can be used together with microfluidic or
droplet-based platforms, such as the Fluidigm C1, Chromium
from 10X Genomics, and InDrop from 1 CellBio, respectively.
The protocols listed here are not comprehensive and alternative
scRNA-seq methods have been expertly reviewed in (28–31).

In this review we choose to focus on the following scRNA-seq
methods/platforms, namely MARS-seq, SMART-seq2, Fluidigm
C1, and 10X Genomics Chromium, as they have been widely
used by biomedical scientists in various fields. In addition to
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their use as standalone technologies, some of these methods can
also be combined with fluorescence-activated cell sorting (FACS)
which stains cells with fluorophore-conjugated antibodies in
order to facilitate separation from a heterogeneous suspension.
In particular, it is now possible to “index sort” using FACS to
isolate individual cells with known characteristics (e.g., defined
size, granularity and selected marker expression), and record
their positional location within an assay plate (11). Index sorting
allows unexpected questions to be addressed retrospectively
since it avoids the use of predefined cell sorting strategies. For
example, the phenotype of a rare cell population may not be
well-defined, hence an analysis of multiple different markers
in various different combinations can help to identify better
isolation strategies for downstream experiments. In addition, this
approach offers important experimental controls, specifically the
ability to determine which cell types are most sensitive to the
methodological and technological biases imposed by the protocol
e.g., by comparing initial numbers and identities of sorted cells
with those that pass later quality controls.

Massively Parallel RNA Single Cell
Sequencing (MARS-seq)
MARS-seq is an automated scRNA-seq method in which single
cells from the target population are FACS-sorted into 384-well
plates that contain lysis buffer (21). The 384-well plates can
be stored for long periods prior to sample processing, which
allows considerable flexibility with regards to time management.
This method is not restricted by cell size, shape, homogeneity
or total number. MARS-seq employs a 3′ end-counting mRNA
sequencing method which generates partial cDNA transcripts
(not full length). The cDNAs are tagged with barcodes together
with a unique molecular identifier (UMI) during the initial
reverse transcription step, before being pooled and amplified by
in vitro transcription (IVT). The UMI enables quantitation of the
expression levels of individual genes within single cells, thereby
reducing the technical variability and bias introduced during the
amplification step (23, 32, 33) (which is a distinct advantage
over C1 and SMART-seq2 methods, as discussed in more
detail later). The pooling strategy enables multiplexing of cDNA
amplification, which both simplifies the process and increases
sample throughput dramatically. At present, this method is able
to detect∼500–3,000 genes per primary cell (Figure S1).

Fluidigm C1 Single Cell Full Length
Messenger RNA (mRNA) Sequencing
The Fluidigm C1 is an automated microfluidic system that can
capture and process up to 96 individual cells for relative mRNA
quantitation on any Illumina R© sequencer. Cell capture, lysis,
reverse transcription, and cell multiplexing occur in an integrated
fluidic circuit (IFC) chip. Three different cell size cartridges (5–
10, 10–17, and 17–25µM) are available at present, allowing
a wide range of cell sizes to be analyzed, although the input
cells must be of relatively uniform size and shape in order to
avoid selection bias. A minimum of 10,000 cells is required for
counts and preparation, making this platform unsuitable for
identification of rare populations within a bulk cell sample. The

cells to be examined must also be obtained fresh and processed
immediately, hence this approach may prove difficult to integrate
with experiments that involve long processing times. In addition,
since each machine can accommodate only a single cartridge at
a given time, multiple machines are required to run multiple
cell populations/cartridges concurrently. The high cost of the
microfluidic cartridges can also limit the sample size used in each
project. Importantly, the C1 system allows captured cells to be
individually visualized under the microscope, thereby allowing
users to exclude empty wells, doublets, or wells that contain
cell debris prior to downstream library preparation. The C1
system employs SMART-sequencing, and generates full-length
cDNA (unlike the partial transcripts employed byMARS-seq and
10X Genomics Chromium). C1 technology is currently capable
of detecting 300–7,000 genes per primary cell (Figure S1).
While the recent introduction of the C1 mRNA Seq HT assay
significantly increases system throughput (allowing capture of up
to 800 individual cells in a single run), this approach uses 3′ end-
counting mRNA sequencing and thus loses read coverage across
the entire transcript.

Switching Mechanism at 5′ End of RNA
Template (SMART-seq2)
SMART-seq2 is the improved version of SMART-seq (similar to
Fluidigm C1), featuring refinements to the reverse transcription,
template switching, and pre-amplification steps in order to
increase yield and length of cDNA libraries generated from
each individual cell (while also using off-the-shelf reagents that
are available at lower cost) (20). SMART-seq2 generates full-
length cDNAs and gives good read coverage across the entire
transcript, thereby allowing the detection of gene isoforms or
allele-specific expression using single-nucleotide polymorphisms
(SNPs). However, UMIs and barcodes cannot be incorporated,
hence gene level quantification or multiplexing of samples is
not possible, leading to increased complexity of downstream
processing. Similar to MARS-seq, individual cells from the target
population are sorted into 96- or 384-well PCR plates pre-filled
with lysis buffer (hence this method is perfectly compatible
with an index sorting approach), and the plates can be stored
for long time prior to sample processing. Likewise, SMART-
seq2 is not restricted by cell size, shape, homogeneity, or total
numbers, making it suitable for experiments that deal with
very rare populations. Unlike automated scRNA-seq methods,
the reactions are carried out in individual wells which require
manual pipetting, thereby making it more time consuming and
increasing technical variability. Accordingly, this method may
not be the most efficient for experiments that require thousands
of individual cells, although liquid handling robots can be used
to reduce pipetting issues (albeit at substantially increased cost).
Importantly, this method allows a far higher numbers of genes to
be detected in each primary cell (∼4,000–7,000; Figure S1).

10X Genomics Chromium Single Cell RNA
Sequencing
The 10X Genomics Chromium system performs rapid droplet-
based encapsulation of single cells using a gel bead in emulsion
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(GEM) approach. With this method, each gel bead is labeled
with oligonucleotides that consist of a unique barcode, a 10
bp UMI, sequencing adapters/primers, and an anchored 30 bp
oligo-dT (7). This system allows high throughput and reduces
the need for sorting equipment or workflows that involve large
numbers of assay plates. Up to eight different samples can be
processed simultaneously, making it suitable for experiments
that require time course elements or multiple treatments. The
downstream processing of individual cells (reverse transcription,
cDNA amplification, and library construction) is extremely
simple in comparison with the other methods described above,
since the reactions for all cells can be performed together
in a single tube (rather than requiring the processing of
multiple 96-well plates). This platform is currently able to
detect 500–1,500 genes per primary cell (Figure S1). While the
10X Genomics Chromium system is the most cost effective
and time saving of the methods discussed here, this protocol
offers little control over cell input and can be susceptible
to selection biases, leading to inaccurate reflection of system
biology. Consequently, rare cell populations may not be properly
represented if insufficient cell numbers are analyzed. In addition,
users are unable to determine which cells are collected prior
to downstream processing and quality control measures. This
is in contrast to a FACS-based approach where the user knows
which cells have been loaded and whether they pass quality
control measures. Importantly, the 10X Genomics Chromium
system can be used in combination with cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq), a
method that allows the detection of multiplexed protein markers
with unbiased transcriptome profiling for thousands of single
cells (34). Briefly, the cells are stained with antibodies-oligo
complexes prior to processing for scRNA-seq. The stained single
cells are encapsulated into nanoliter-sized aqueous droplets, lysed
in the droplets thereby releasing cellular mRNAs and antibody-
derived oligos that anneal via their 3′ poly A tails to gel beads
containing oligo-dT, and are indexed by a shared cellular barcode
during reverse transcription (34). CITE-seq could be used for
studies to study post-translational gene regulation at the single-
cell level or even large scale immunophenotyping with large
panels of antibodies. Therefore, this may enhance discovery and
description of cellular phenotypes, especially cellular populations
with subtle transcriptomic differences.

Considerations for Choosing the Right
Platform: Biological Pragmatism at Best!
Advancement in next generation sequencing techniques and
computational methods will continue to make scRNA-seq more
attractive for general laboratory use. It is clearly paramount
to select an appropriate platform for a specific study, but
this is highly dependent on the type of biological question
being addressed, and is further influenced by the perpetual
compromise between cell numbers, information depth, and
overall cost (Table 1). A major challenge here is that most
investigators will require a reasonable estimate of the level
of cellular heterogeneity they expect prior to conducting the
experiment.

Which Protocol Should I Use?
The choice of which scRNA-seq protocol to use depends on
the nature of the research question. Technically, the four
approaches described here can be categorized into two groups:
full-length methods (SMART-seq2 and Fluidigm C1) and
molecular tag-based methods (MARS-seq and 10X Genomics
Chromium). Full-length methods cover the entire transcriptome
and increase the number of mappable reads, making them
suitable for applications including cell-type discovery, assessing
tissue composition, allelic gene expression analysis, and even
isoform discovery. However, one of the major drawbacks of
full-length methods is that they cannot be multiplexed via
sample pooling into a single tube for library generation, thereby
increasing overall cost and labor. Moreover, UMIs cannot be
incorporated to allow digital quantification of the transcripts. In
contrast, molecular tag-based methods are based on sequencing
of the 5′ or 3′ end of the molecule, hence these can be combined
with UMIs to enable multiplexing of samples to improve gene
expression quantification and throughput. However, since the
reads are restricted to just one end of the transcript, overall
sensitivity is reduced compared with “full-length” methods.
Despite this drawback, the low cost and high throughput of tag-
based approaches means that these are now widely employed
in studies of gene expression levels, cell-type discovery, and
tissue composition. Platform sensitivity is therefore a critical
determinant of sequencing depth and total number of genes
detected per cell. The sensitivity of a method is defined as the
minimum number of input RNA molecules required for a spike-
in control to be confidently detected. Hence, a high sensitivity
allows the detection of weakly expressed genes. Two groups
have compared the performance in sensitivity, accuracy and cost
efficiency of the frequently used scRNA-seq methods (35, 36).
Both groups have suggested that 1 million reads per cell is
sufficient for saturated gene detection. MARS-seq, Fluidigm C1,
and SMART-seq2 was found to detect a median of 4,763, 7,572,
and 9,138 genes, respectively (36), which was consistent with
what we observed in our analysis of data generated from MARS-
seq, SMART-seq2, Fluidigm C1, and 10X Genomics Chromium
platform (Figure S1). SMART-seq2 has outperformed the other
methods in terms of sensitivity probably due to more mappable
reads since the transcripts of tag-based methods may have
proximal sequence features that are difficult to align to the
genome (30, 36).

How Many Cells Do I Need to Sequence?
Another key consideration of single-cell experimentation is the
number of cells required for discovery, which in turn also
depends on the specific research objective. For instance, studies
that aim to describe the immune landscape or discover rare cell
populations can use a breadth-based approach, in which a few
hundreds to tens of thousands of cells might be sequenced to
provide a reasonable distribution of tissue composition. This
type of approach has already been used to map multiple tissues
including spleen (21), brain (37, 38), and intestine (39).

One of the pioneering works demonstrated by Amit and
colleagues were to dissect the cellular diversity within mouse
spleen with the use of MARS-seq (21). From 1536 CD11c+ single
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cells, they identified eight transcriptionally distinct groups that
corresponded to B cell, natural killer cell, macrophage, monocyte,
and 4 different dendritic cell (DC) subpopulations. In a separate
study to map the cellular heterogeneity of the murine brain,
3,005 individual cells from mouse primary somatosensory cortex
region S1 and hippocampal region CA1 were sequenced using
the Fluidigm C1 platform, in which 47 molecularly distinct
subclasses of cells were identified that corresponded to the
known major cell types in murine cortex (37). Among these,
six different classes of oligodendrocytes were identified, likely
representing distinct stages of maturation. Taken together, these
studies suggest that the required cell number is dependent on
the number of discrete cellular states within the population.
In a heterogenous population where the cellular states are
transcriptionally distinct and equally distributed, 1,000–2,000
single cells could be sufficient for de novo clustering of the
different cell states (28). However, if the cell of interest has a
distinct transcriptional profile from the mixture of cells, it may
be revealed with lesser cells and at a shallower sequencing depth.
With the popularity of droplet-based technologies, there will be
an increase of low sequencing depth studies that examine 10-
to 100-fold more cells (7, 26, 27). Hence, researchers should
consider which approach best suits their research questions and
budget.

What Are Some Potential Applications of

scRNA-seq?
scRNA-seq has been used in a variety of immunolo gical
studies. Traditionally, immune cells have been considered to
be homogenous in nature, although some populations may
display functional heterogeneity. Recent scRNA-seq studies
have revealed that what was once thought to be well-
defined immune populations can comprise transcriptionally
distinct populations that share overlapping phenotypic markers
(9, 40–42). For instance, Bjorklund et al. identified four
distinct innate lymphocyte cell (ILC) clusters in human tonsils
that corresponded to known phenotypic characterized ILC
populations, namely ILC1-3 and natural killer (NK) cells
(9). In addition, they also uncovered three transcriptionally
and functionally diverse subpopulations within the ILC3 (9).
Similarly, Gury-BenAri et al. assessed the heterogeneity of helper-
like ILC in the mouse small intestine (40). By combining MARS-
seq with chromatin immunoprecipitation-sequencing (CHIP-
seq) and assay for transposase-accessible chromatin-sequencing
(ATAC-seq), they were able to obtain the transcriptional and
regulatory landscape of the cells. Importantly, they revealed that
under homeostatic conditions, these helper-like ILC cells showed
15 transcriptional states and a high degree of functional plasticity
within the subsets (40). Overall, the studies showed that scRNA-
seq can help to reveal cellular heterogeneity that may be masked
in traditional phenotypic studies.

scRNA-seq can also be used to profile tissues and aid in
the identification of molecular drivers of the disease. This was
demonstrated in experimental autoimmune encephalomyelitis
in mice. Gaublomme et al. profiled 976 T helper 17 cells with
the Fluidigm C1 platform, and showed that these cells were
highly heterogeneous and displayed transcriptional signatures

that may be correlated with pathogenicity (42). A recent study
by Keren-Shaul et al. identified disease-associated microglia
(DAM) where they showed DAM interacting and phagocytizing
plaques in Alzheimer’s disease (41). Such studies can help to
better understand the immune responses and pathogenicity of
the disease, and pave new roads for the development of new
therapeutic agents to treat, manage and even cure the disease.

scRNA-seq can also be used to study immune function, such
as antigen receptor repertories. The sequences of T cell receptors
can be assembled from scRNA-seq reads and map against a
reference pool (43). This was demonstrated by Stubbington
et al. who identified various transcriptional states within a
single expanded T cell clonotype during Salmonella infection
in mice (44). A similar tool has also been developed for B
cell receptors (45). Such applications will provide a better
understanding of how adaptive immunity responds to immune
insults, such as infection, autoantigens or vaccination, and
spearhead development in therapeutic approaches.

In a developmental context, Giladi et al. recently dissected
the differentiation trajectories of hematopoietic stem cells in
murine bone marrow, tracking their development into each
hematopoietic lineage at single cell resolution (46). This study
used MARS-seq to profile gene expression in more than 60,385
individual cells, thus enabling the authors to generate an
unbiased reference model of hematopoiesis in normal murine
bone marrow. Recognizing the potential of these approaches,
the global scientific community has now embarked on an
international collaboration using scRNA-seq technologies to
establish a “human cell atlas” which maps every cell type
in the human body (47). When complete, this atlas will no
doubt advance current understanding of human physiology and
significantly impact all fields of biology and medicine.

CASE STUDY: USING scRNA-seq TO
RESOLVE DENDRITIC CELL ONTOGENY

A cell type of interest as a case study for this review is Dendritic
Cell (DC) as it is small in numbers and heterogeneous in
subsets (48). Human peripheral blood mononuclear cells consist
of approximately 90% lymphocytes, 10% monocytes, and 1%
dendritic cells. In a recent report, scRNA-seq using the 10X
Genomics Chromium system was performed on 68,000 unsorted
peripheral blood mononuclear cells (PBMC) in order to identify
various immune cell populations (7). While this study was able to
identify all the major immune cell populations present in blood,
the authors found it difficult to identify or resolve cell types whose
frequency was less than 1%. Although this type of approach
can provide a useful snapshot of the cellular composition of
a given tissue, it may be necessary to enrich rare cell types
in the sample prior to scRNA-seq, for example by pre-sorting
using known or novel surface markers. Indeed, this strategy
was recently used by two separate groups to identify human
precursors of dendritic cells (pre-DC) in human peripheral blood
(8, 10). Villani and colleagues focused on lineage−HLA-DR+

cells, which comprise known blood DCs and monocytes (8).
In their study, the authors performed SMART-seq2 on 2,400
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lineage−HLA-DR+ single cells and detected transcriptionally
distinct cell clusters that could be identified using novel surface
markers, thus facilitating their isolation by FACS and subsequent
analysis by scRNA-seq to validate transcriptional identity. With
this method, the authors were able to identify several new types of
DCs and monocytes as well as a novel DC precursor population.
Separately, our group focused on human blood lineage−HLA-
DR+CD135+ cells which consist of both DC subsets and their
precursors (10). We performed MARS-seq on 710 lineage−HLA-
DR+CD135+ single cells and identified two transcriptionally
distinct clusters of plasmacytoid DC (pDC), two subpopulations
of conventional DC (cDC), and a new cluster that was later
found to constitute pre-DC. Further interrogation of this novel
pre-DC population in human bone marrow and peripheral
blood revealed that the pre-DC compartment contained distinct
lineage-committed sub-populations (one early “uncommitted”
CD123high pre-DC subset, and two CD45RA+CD123low lineage-
committed subsets with distinct functional features). Together,
these studies demonstrate that different scRNA-seq platforms
can be successfully applied to similar biological questions in
complementary ways.

A Computational Approach for Cell Type
Identification of Unknown Single Cells
Before the emergence of scRNA-seq techniques, cell types
were typically defined using a panel of antibodies directed
against pre-selected cell surface markers (often guided by

prior knowledge of the cell lineage in question and general
availability of the relevant antibodies). As technologies have
continued to advance, the number of markers per cell that
can be measured using flow cytometry or mass cytometry has
increased from <10 to >40. This high number of markers allows
dissection of cellular heterogeneity in far greater detail, but still
lags far behind the level of resolution possible with unbiased
methods of cell type identification that employ transcriptomic
or proteomic techniques. Indeed, scRNA-seq technologies are
now able to measure the transcriptomes of several thousand
individual cells in only a short time, and rapid progress
in computational methods has made it possible to perform
robust identification of these cells in a completely unbiased
way. However, a major challenge for biologists after obtaining
their scRNA-seq data is knowing how to cluster the data
and/or perform cell identification. Many different algorithms
are now being used to cluster single cell data, including shared
nearest neighbor (SNN) (49), SNN-Cliq (50), pcaReduce (51),
clustering through imputation and dimensionality reduction
(CIDR) (52), single-cell consensus clustering (SC3) (53), single
cell RNA-seq profiling analysis (SINCERA) (54), rare cell type
identification (RaceID) (39), GiniClust (55), and single-cell
latent variable model (scLVM) (56). After identification of cell
clusters, genes that are differentially expressed in each cluster
are determined and then assigned as known/novel cell types
(based on potentially biased prior knowledge of defining lineage
markers).

FIGURE 1 | Identification of cell types using scRNA-seq data from 10X Genomics Chromium system. (A) tSNE clustering of single cells in PBMC. (B) Alignment of

clusters to known immune cell populations. (C) tSNE clustering of combined cluster 9 and 10 which was inferred as monocytes and DC. (D) Superimposed

correlation-inferred cell type on the tSNE representation of combined cluster 9 and 10. (E) Superimposed CIBERSORT-based cell type classification on the tSNE

representation of combined cluster 9 and 10.
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Here, we explore the use of themethod, cell-type identification
by estimating relative subsets of RNA transcripts (CIBERSORT)
(57), in an unbiased cell type identification of single-cell
transcriptomes, where we analyzed human peripheral blood
mononuclear cells (PBMC) scRNA-seq data from two different
studies that utilized either the 10X Genomics Chromium (7)
or SMART-seq2 (8) platforms. Zheng et al. performed single-
cell RNA-seq of 68,000 human PBMC using the 10X Genomics
Chromium system (7), then computationally clustered the cells
into 10 discrete subsets (Figure 1A), and identified cluster-
specific patterns of gene expression. The identity of cell types
in each cluster was inferred by aligning cluster-specific genes to
known markers of distinct PBMC populations (Figure 1B), as
well as by comparing against the scRNA-seq profile of 11 purified
PBMC subsets. Single-cell transcriptomes were compared with
the average transcriptomes of the 11 purified populations by
Spearman’s correlation. Each single cell was then assigned the
same identity as the purified population with which it had the
highest correlation; an approach found to be largely consistent
with conventional marker-based methods. For both analyses,
cluster 9 was found to contain monocytes and DC, whereas
cluster 10 contained DC only. Cells from cluster 9 and 10
were subsequently extracted for further analysis. Cells assigned
to cluster 9 segregated into 4 discrete sub-populations when
further analyzed using the Seurat package (58) (Figure 1C).
These 4 sub-clusters were visually verifiable on the t-Distributed

Stochastic Neighbor Embedding (tSNE) reduced dimensions
plots. tSNE, as used by Becher et al. to define murine myeloid
sub-populations (4), visualizes high-dimensional similarities of
cells in a two-dimensional map, which plots cells with similar
properties close together, thereby allowing interpretation of each
cell type on the basis of location (59, 60). Single cells were initially
identified as different lineages via correlation with the purified
PBMC populations superimposed on the tSNE plot (Figure 1D).
Cluster 2 was found to comprise mainly DC, while clusters
0, 1 and 3 comprised mainly CD14+ monocytes. Although
correlation-based cell type classification is largely consistent with
clustering methods, a number of cells located in monocyte
clusters were in fact identified as DC. To resolve whether these
cells were indeed monocytes or rather true DC, we performed
cell type identification via CIBERSORT analysis (57) using the
monocyte and DC gene signatures defined by the single-cell
transcriptomic data (i.e., from the 11 purified PBMC subsets).
First, we extracted CD14+ monocytes and DC and calculated the
average gene expression level per cell type. Genes with maximum
expression >0.0001 UMI were selected for CIBERSORT analysis,
and percentage enrichment of signature genes was calculated for
each individual cell, thus allowing assignment of lineage identity
according to the most highly enriched gene sets. When this
CIBERSORT-based cell type classification was overlaid on the
tSNE plot, we observed much higher concordance with both
clustering and tSNE segregation (Figure 1E).

FIGURE 2 | Identification of cell types using scRNA-seq data from SMART-seq2. (A) tSNE clustering of dendritic cell subsets. (B) Superimposed CIBERSORT-based

cell type classification on the tSNE representation of SMART-seq2 dataset. (C) Alignment of SMART-seq2 clusters with microarray dataset of DC subsets. (D) tSNE

clustering of DC cluster derived from 10X Genomics Chromium dataset. (E) Superimposed CIBERSORT-based cell type classification on the tSNE representation of

DC cluster derived from 10X Genomics Chromium dataset. (F) Alignment of DC clusters with microarray dataset of DC subsets.
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In this study with the 10X Genomics Chromium system,
the use of reference populations of purified PBMC allowed
classification of unsorted single cell transcriptomes into 11 major
immune cell types. We combined DC from cluster 9 and 10
and then further grouped these into distinct subsets. DCs in
human blood are known to comprise two populations of cDC
(CD141+ cDC1 and CD1c+ cDC2) as well as a subset of pDC
(5), and a distinct population of pre-DCs (10). In our study
(10), we sorted pure populations of CD141+ cDC1, CD1c+

cDC2, pDCs, and pre-DCs from human blood and generated
bulk microarray data, from which we derived characteristic
gene signatures for each subset. We next validated these gene
signatures against published SMART-seq2 single cell data for
each of the four DC populations described in Villani et al. (8).
Single cells pooled from each population were subjected to tSNE
dimension reduction and then clustered into four subsets using
the Seurat package (Figures 2A, S2A). CIBERSORT comparison
of these data against microarray-derived gene signatures allowed
computational inference of cellular identities that were highly
concordant with classification by FACS (Figures 2B,C). Sorted
populations of CD141+ cDC1, CD1c+ cDC2, and pDC were
largely assigned to the corresponding cell type by CIBERSORT,
with only a small portion of each being classified as pre-DC
(likely representing progenitor cells committed to cDC1 or cDC2
fates, as well as uncommitted pre-DC that share phenotypic
similarities with pDC). More intriguingly, the majority of
sorted double negative cells were predicted to be pre-DCs,

suggesting that this compartment may contain genuine cDC
precursors. It was not possible to identify some cell types
where permutation p-values were >0.05. However, despite the
fact that cell sorting for microarray and SMART-seq2 was
performed by two independent labs, this work confirmed that
the signatures derived from microarray were able to aid lineage
identification of SMART-seq2 single cells via CIBERSORT.
We therefore proceeded to apply the same gene signatures
to the prediction of cell types for single cells analyzed with
the 10X Genomics Chromium dataset. We first performed
tSNE dimension reduction and clustering of individual DC
using Seurat (Figure 2D), and overlaid CIBERSORT-inferred cell
types on the tSNE plot (Figures 2E,F). Among the 3 clusters
generated, cluster 2 comprised predominantly of CD141+ cDC1.
Unsupervised clustering was in line with cell type inference
using sorted cells, suggesting that the conventional marker-based
identification of cDC1 is well-defined and can be validated using
a marker-free approach. In contrast, cluster 0 represented a
mixed population of CD1c+ and undetermined cells, whereas
cluster 1 comprised amixture of pDC, pre-DC and undetermined
cells. These findings are consistent with earlier reports that
CD1c+ cDC2 in fact represent a heterogeneous population of
poorly characterized composition (8, 10, 61), whereas pDCs are
phenotypically similar to pre-DC (hence some progenitor cell
functions have likely been mistakenly attributed to pDC because
of contaminating pre-DC) (10). Cluster 0 and cluster 1 were
assigned as CD1c+ cDC2, and pDC, respectively (Figure S2B).

FIGURE 3 | Batch effect correction of SMART-seq2 dataset. (A) Batch effect was observed in two separate SMART-seq2 datasets before CCA normalization, but this

was absent after application of CCA normalization. (B) Cell clusters corresponded to the batch of SMART-seq2 dataset before CCA normalization. After CCA

normalization was applied, both batches of single cells overlapped with each other.

Frontiers in Immunology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 2425

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


See et al. A Single-Cell Sequencing Guide

Compared with SMART-seq2, the 10X Genomics Chromium
dataset generated a higher number of unsorted cells that were
labeled as undetermined. These cells were not significantly
enriched in signatures of cDC1, cDC2, pDC, or pre-DC,
suggesting that these could be unknown subsets acquired by
marker-free scRNA-seq of unsorted cells.

In summary, we used two different methods, Spearman’s
correlation and CIBERSORT, to identify cell types in the
10X Genomics Chromium PBMC dataset. We found that
CIBERSORT performed slightly better than did a correlation-
based approach. A major reason for this could be that
CIBERSORT first identified signature genes for each cell type,
followed by an additional step of vector regression to calculate
a gene signature enrichment score. In any case, both methods use
bulk transcriptomes for reference and are thus highly dependent
on the cell types present in the reference dataset. Accordingly,
the use of a comprehensive dataset that is directly relevant to the
study of interest will significantly improve the accuracy of cell
type identification.

Data Integration and Correction of
Technical Variation
With the increased data yield provided by scRNA-seq, researchers
can now mine existing datasets to perform multiple different

types of analysis. However, the datasets generated by different
scRNA-seq platforms often require integration prior to
downstream analysis, and technical variation between datasets
must be corrected before these can be combined. When applying
scRNA-seq to a large number of cells, the experiments are
usually carried out in batches, resulting in prominent inter-assay
variability that can conceal biological heterogeneity. For example,
Villani et al. performed SMART-seq2 on two separate batches of
sorted cDC1, cDC2, double negative DC, and pDC (8), before
performing t-SNE dimension reduction and clustering analysis,
which identified two distinct sub-populations for each input
cell type (Figure 3A). Overlaying batch information onto the
tSNE plot revealed that these sub-populations corresponded to
the two separate assay runs (Figure 3B). To remove this batch
effect, the Seurat package implements the canonical correlation
analysis (CCA) algorithm, which identifies the dimensions in
which batch 1 and 2 have the highest correlation and projects
the cells onto these dimensions. After CCA normalization, the
same cell types from batch 1 and batch 2 were well-aligned
(Figure 3A), with no evident separation of cells between assay
runs (Figure 3B).

Next, we used CCA to integrate single-cell data as generated
by SMART-seq2 method and 10X Genomics Chromium system.
Single cells isolated from purified cDC1, cDC2, double negative

FIGURE 4 | Correction of technical variation in DC subset dataset from 10X Genomics Chromium and SMART-seq2 datasets. (A) tSNE clustering of SMART-seq2

and 10X Genomics Chromium dataset. (B) Cell type identification in the combined tSNE clusters of SMART-seq2 and 10X Genomics Chromium dataset. (C) CCA

normalization of DC subsets from SMART-seq2 and 10X Genomics Chromium dataset. (D) Identification of cell types after CCA normalization.
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FIGURE 5 | Correction of technical variation in monocytes and DC subset dataset from 10X Genomics Chromium and SMART-seq2 datasets. (A) tSNE clustering of

SMART-seq2 and 10X Genomics Chromium datasets. (B) Cell type identification in the combined tSNE clusters of SMART-seq2 and 10X Genomics Chromium

datasets. (C) CCA normalization of monocytes and DC subsets from SMART-seq2 and 10X Genomics Chromium datasets. (D) Identification of cell types after CCA

normalization.

cells, and pDC populations were prepared using SMART-seq2.
Single cell data from unsorted PBMCs were generated by 10X
Genomics Chromium system and only DC were isolated for
integration with SMART-seq2 data. DCs from the 10X Genomics
Chromium experiment were inferred based on CIBERSORT
analysis as mentioned previously. Before CCA normalization,
cells from SMART-seq2 method and 10X Genomics Chromium
system were well-separated (Figure 4A), and two distinct subsets
were identified for each lineage, reflecting the use of the
two different analytical platforms (Figure 4B). After CCA
normalization, the cells analyzed by each platform became
well-mixed (Figure 4C) and were clustered mainly by cell
type (Figure 4D). Notably, the double negative cells that were
previously separated from other lineages were also observed to
merge with the CD1c+ population after CCA.We next attempted
to integrate datasets of slightly different cellular composition
by adding monocytes to the 10X Genomics Chromium data,
whereas the SMART-seq2 dataset still comprised DC only. Cells
were clustered mainly by cell type regardless of the platform
used, except that double-negative DCs were now allocated to the
monocyte cluster and some CD141+ cells were now present in
the CD1c+ cluster (Figure 5).

Our analysis indicates that CCA is able to correct batch
effect confounders when no other biological factors differ
between experimental replicates. The CCA algorithm make the
assumption that data from both batches have the same or
similar cellular composition. It is important to note that CCA
can still force batches to align even if they have dissimilar
cellular composition, which can result in masking of genuine
biological variation. To overcome this limitation, the mutual
nearest neighbor (MNN) algorithm (62) can be employed to
identify similar cell populations or “pairs” that are present in
both batches. MNN pairs are used to calculate analytical drift
between assay runs and subsequently compensate batch effect
for all cells present. In the absence of any shared structure, a
cell population of known composition (e.g., a cell line) can also
be spiked into each sample in order to remove batch effects by
providing a uniform reference population. While both CCA and
MNN are powerful tools, several other normalization techniques
(both current and future) may further improve batch effect
correction in the years ahead. However, a thorough comparison
of these novel methods will be required using variable input
data in order to identify which approaches best suit which
datasets.
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CONCLUDING REMARKS

In this review, we discussed the relative strengths and limitations
of some widely-used scRNA-seq platforms, as well as current
technical barriers to analyzing single-cell transcriptome
datasets. As next generation sequencing techniques and
computational methods continue to improve, the use of
scRNA-seq in immunological studies will become more
widespread and eventually even routine. Once a complete set
of reference databases or “immune mapping” studies has been
completed, new strategies will be required to multiplex single-cell
profiling with other techniques that permit analysis of multiple
molecular features of individual cells in parallel (63–65). As
the complexity of these technologies increases, investigator
choice of analytical platform must be carefully guided by specific
hypotheses and biological questions, hopefully leading to deeper
insight into the role of the immune system in health and
disease.
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