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Abstract 

In this study, we conduct a detailed analysis of the Košice meteorite fall (February 28, 2010), in 
order to derive a reliable law describing the mass distribution among the recovered fragments. In 
total, 218 fragments of the Košice meteorite, with a total mass of 11.285 kg, were analyzed. 
Bimodal Weibull, bimodal Grady and bimodal lognormal distributions are found to be the most 
appropriate for describing the Košice fragmentation process. Based on the assumption of bimodal 
lognormal, bimodal Grady, bimodal sequential and bimodal Weibull fragmentation distributions, 
we suggest that, prior to further extensive fragmentation in the lower atmosphere, the Košice 
meteoroid was initially represented by two independent pieces with cumulative residual masses of 
approximately 2 kg and 9 kg respectively. The smaller piece produced about 2 kg of multiple 
lightweight  meteorite  fragments  with  the  mean  around  12  g.  The  larger  one  resulted  in  9  kg  of  
meteorite fragments, recovered on the ground, including the two heaviest pieces of 2.374 kg and 
2.167 kg with the mean around 140 g. Based on our investigations, we conclude that two to three 
larger fragments of 500-1000g each should exist, but were either not recovered or not reported by 
illegal meteorite hunters. 

1. Introduction 

The Košice fireball appeared in the night sky over the Central Europe on February 28th, 2010 at 
22:24:46 UT. As is usual for such notable cases (see e.g. the case of P ibram meteorite described in 
details by Ceplecha, 1961), a glare of the bolide illuminated ground at some places in Eastern 
Slovakia. Cannon-like burst or series of low frequency blasts were also reported (Tóth et al., 2014). 
Due to the cloudy skies, there were no direct fireball observations made by the European Fireball 
Network or the Slovak Video Network. Fortunately several surveillance cameras from Hungary 
captured the fireball (Borovi ka et al., 2013). Trajectory analysis of these records, performed by Jiri 
Borovi ka, lead to the conclusion, that significant number of fragments has survived the 
atmospheric entry and reached the ground forming strewn field near the city Košice in Eastern 
Slovakia. The data from Local Seismic Network Eastern Slovakia confirmed the derived Košice 
fireball atmospheric trajectory. The following search campaign was successful. The first meteorite 
fragment was discovered by Juraj Tóth on March 20th within the predicted area. In total 78 
meteorite fragments were found in expeditions organized by the Comenius University in Bratislava 
(under the leadership of Juraj Tóth), Astronomical Institute of the Slovak Academy of Sciences 
(under the leadership of Jan Svoren),  and Czech Academy of Sciences (under the leadership of 
Pavel Spurný). Also taking into account also meteorite fragments that were found during illegal 
searches, total 218 fragments of the Košice meteorite were recognized (Appendix I, Table 1). This 
makes Košice one of the richest instrumentally-recorded meteorite falls to date in terms of number 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/20125883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Cite as: Gritsevich et al. 2014. MAPS, 49, 328-345. DOI: 10.1111/maps.12252 

2/31 

of recovered fragments (Appendix I, Table 2). The two heaviest fragments weigh 2.374 kg and 
2.167 kg. The current total known mass of the Košice meteorite is 11.285 kg with almost 7 kg 
belonging to the collection of the Comenius University in Bratislava and Astronomical Institute of 
Slovak Academy of Sciences. The meteorites masses and positions collected in the strewn field 
were reported to Juraj Tóth by different searchers. After their evaluation, they were included in the 
list of meteorites. Laboratory analysis revealed that Košice meteorite is an ordinary H5 chondrite 
with average bulk and grain density 3.43 g/cm3 and 3.79 g/cm3 respectively which have resulted 
from the homogenous parent body (Kohout et al., 2014). 

Hypervelocity atmospheric entry is a complex multistage physical process lacking straightforward 
mathematical description due to the large number of factors. Ground-based meteor observations do 
not directly provide us with all necessary information needed for modeling, such as, for example, 
meteoroid bulk and grain densities, number and shape of individual meteoroid fragments and their 
homogeneity. Thus, numerical simulations are often computationally extensive and cover only few 
possible scenarios. Examples are an assumption that each fragmentation event of the meteoroid 
spawns a number of almost equal pieces (Borovi ka and Kalenda, 2003), or consideration of 
constant main body shape along the whole luminous segment of its trajectory (Halliday et al., 
1996). More recent studies are carried out by direct numerical computations with account for 
underlying physics with larger number of free parameters and/or key parameters varying along the 
trajectory (Ceplecha and ReVelle, 2005; Gritsevich et al., 2011; Dergham, 2013). Practical 
implementations usually demand simplification of the used mathematical models, though analytical 
approach helps to avoid running into the uniqueness problem by keeping simple set of free 
independent parameters (Gritsevich, 2008; Bouquet, 2013). 

Several numerical models focused on meteoroid’s fragmentation were implemented. Ivanov and 
Ryzhanskii (1999) modeled the meteoroid breakup as sequential dichotomy of the parent body. 
Artemieva and Shuvalov (1996) considered aerodynamic interaction between equally sized 
fragments. In later study, Artemieva and Shuvalov (2001) pointed out the stochastic nature of 
cracks in the meteoroid body, obeying the statistical strength theory and utilized the Weibull 
distribution to divide a meteor body into the non-equal pieces. 

The fragment mass distribution for the Košice meteorite was briefly discussed by Borovi ka et al. 
(2013). Based on the observed light curve and deceleration of the Košice bolide the authors 
estimated the meteoroid pre-atmospheric mass as 3500 kg. The authors also describe in great details 
possible scenario of its fragmentation in the atmosphere. According to the model, the first 
significant fragmentation occurred most likely in two phases at  heights of 57–55 km. The authors 
question the number of recovered meteorite fragments in the range 100 g - 1000 g, exceeding by 
almost 50% their model prediction (17 recovered meteorites against 12 according to their model). 
The modeled and actual strewn fields are also provided (Borovi ka et al. 2013, Fig. 18). It is 
suggested that the outlying fragments may be formed at higher altitudes and thus were not 
considered in the applied model. The authors note, that the number and masses of small fragments 
are not well retrievable from the light curve analysis, since different combinations of fragment mass 
range and their mass distribution could be used to fit the flares. 

In the following sections, we mathematically test popular distribution laws on the available Košice 
meteorite fragment data. We start with a normal and lognormal distribution of fragment masses in 
logarithmic and linear scales, respectively. Next, we consider more advanced distributions 
commonly used in fragmentation theory. These functions with carefully calibrated parameters were 
successfully applied earlier (Elek and Jaramaz, 2009, Silvestrov, 2004ab). As a result we obtain 
integral characteristics of the underlying fragmentation event. At the end we make predictions of 
meteoroid mass distributions following fragmentation events. These recommendations can be used, 
in particular, to generate most realistic population of fragments in the dark flight numerical 
simulations for meteorite-producing fireballs. 
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2. Application of selected statistical models 

2.1. Methodology and simple distributions 

The masses of the Košice meteorite fragments analyzed in this study are listed in the Appendix I, 
Table 1. Since fragment masses span over four orders of magnitude, it is convenient to operate with 
them in the logarithmic scale introducing non-dimensional mass values, further referred to as m, by 
scaling all masses given in Table 1 to one gram (e.g. for the largest fragment with mass 2374 g we 
obtain ln(2374)  7,77). Figure 1 shows empirical cumulative distribution function (CDF) for this 
data set. The experimental points on the plot have clearly distinguishable shape, which can be fitted 
by a number of distributions, including normal, logistical and other continuous sigmoid cumulative 
functions as Weibull distribution. For the sake of brevity and simplicity we consider only 
distributions commonly used to describe and simulate of various fragmentation processes such as 
grinding, milling and impact crushing of hard materials (Elek and Jaramaz, 2009, Silvestrov, 
2004ab). Usually these functions provide satisfactory approximation and it is highly unlikely to 
reproduce fragmentation sequences or even compose similar shaped sigmoid CDFs using more rare 
distributions. 

For example, the observed distribution can be approximated via normal CDF for the number of 
fragments, which has the form: 
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The mean  and the unbiased standard deviation are a-priori unknown and computed from the 
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In order to confirm or reject goodness of fit test of various selected theoretical distributions, we use 
Pearson's chi-squared test. The main idea behind this test is to compute a normalized relative error 
between the obtained sample and assumed distribution to compare it against chi-square quantile 
with desirable significance level. The test is described in details in the Appendix II. 

As  a  rule,  two  requirements  should  be  met  to  conduct  the  Pearson's  test  properly.  The  first  one  
requires that the sample size N  should be large enough ( 30N ) and the second one assumes that 
the expected frequencies kN  should not be less than five (Turin and Makarov, 1998). 

It is important to keep in mind that the null-hypothesis about assumed distribution is not a simple, 
but a composite one, since CDF parameters (e.g. mean and standard deviation) are a-priori 
unknown. The above mentioned estimations of these parameters are not applicable directly to the 
chi-squared test. Instead, techniques of maximum likelihood is applied. One can first take a sample 
mean and unbiased sample standard deviation as initial values for the required parameters, then 
vary them to “minimize” the chi-squared distance 2

emp  (as stated in Fisher’s theorem), and then 
compare obtained “minimal” distance to the desired chi-squared quantile. 

We consider following parameters for the Pearson’s test on the sample studied. The close ends of 
the interval L  are taken as 10 ln mx , NK mx ln , where  is a small number. Each 
subinterval kL  is constructed in such a way that its estimated sample frequency k  is no less than 
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10. For the chi-squared quantile we take 05.0 . Normal distribution has two independent 
parameters, so 2p . Our set of data (further referred to as observed distribution) yields the results 
summarized in the Appendix III, table 1. 

The result for empirical chi-squared statistics is: .68142
emp  and chi-squared quantile equals: 

26.31,
12 pK . Thus, the null-hypothesis for normal distribution can be accepted since it is 

valid with 95% probability. Taking into account that a continuous probability distribution of a 
random variable, whose logarithm is normally distributed, is a lognormal distribution, our finding 
looks quite reasonable and is in agreement with (Kolmogorov, 1941). 

However, the first obtained sample permits other similar-shaped continuous distributions, for 
example logistic function: 
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In this case, Pearson’s chi-squared statistics is even less and equals: 26.142
emp . The logistic CDF 

often considered as a more simple form not involving integration for normal distribution. 

There  are  several  other  goodness-of-fit  tests.  For  the  normal  distribution  we  also  use  modified  
Kolmogorov–Smirnov test (Turin and Makarov, 1998) and Wald–Wolfowitz runs test (Hauck, 
1971) (see Appendix II). 

For the present sample and the above mentioned sample mean 52.2  and unbiased standard 

deviation 41.1  we obtain 664.085.01 D
N

N . The value of the Stephens corrected 

Kolmogorov quantile at level 05.0  is 0.895. This indicates that null-hypothesis is also accepted 
under Kolmogorov–Smirnov test. The use of other tests is highly dependent on their complexity. 
Among simple tests one can also apply G-test (Appendix II), which is slightly more accurate than 
Pearson chi-squared statistics. 

Regardless of the null-hypothesis acceptance for lognormal distribution, we consider other CDFs 
for better goodness-of-fit values. First, a histogram is constructed from the recovered masses. The 
histogram shape reveals that the sample points satisfy superposition of two or more distributions. 

The  plot  on  Fig.  2  shows  no  significant  secondary  peaks,  though  the  sample  exhibits  small  local  
maxima  on  the  left  and  right  tails.  In  our  case  this  form  of  statistical  representation  offers  little  
insight into the possible multimodal nature of the underlying theoretical distribution. Still, there is 
another approach to statistical investigation of meteorite fragments. It deals with the complementary 
cumulative number of fragments N instead of the normalized cumulative number of fragments mF  
as in classical CDF. 

First it is crucial to determine if collected data are statistically valid. To check this, we construct the 
mlog  vs. mlog  plot, where mN  is  the  number  of  fragments  with  mass  greater  than  m  

(Fig.3). Since our model functions and experimental data are often quite similar, we also present the 
difference plots (Fig. 10). One can observe a significant gap of data for massive fragments. 
Actually,  the  two last  points  stand  aside  from remaining  empirical  distribution  and  correspond to  
the  weak  local  maximum  on  the  Fig.2.  It  is  a  matter  for  discussion  whether  to  consider  this  
maximum as a second mode, since two data points do not provide any feasible statistics. On 
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contrary,  these two data points do not distort  goodness of fit  test  significantly.  There are still  few 
gaps in the mass samplings which can serve as possible delimiters for various modes. 
 
The common practice for constructing multimodal distribution is to limit the number of modes. 
Usually bimodal and trimodal CDFs are chosen: 

xFxFxFBM 211 , xFxFxFxFTM 33221321 , where  – are 
appropriate weight coefficients. 1;0 , 1;0,0,0 3232 . 

The reason for such limitation is following. The number of independent parameters for the 
distribution increases with each additional mode. While such flexibility can be handy to 
approximate given samples, it also decreases the total degrees of freedom for the chi-squared test 
and lowers the threshold of the quantile. 

We apply bimodal lognormal function to the sample. Since such function has two means, two 
deviations  and  the  weighting  coefficient,  the  resulting  shape  can  be  tuned  to  fit  sample  data  with  
better accuracy. Minimizing the functional of empirical chi-squared statistics we obtain suboptimal 
values for independent parameters 9.0  22.21 , 19.52  and the standard deviations 05.11 , 

88.02 , that provide empirical chi-square estimation equal to 44.92
emp  which is well below the 

threshold of 23.36 for the number of independent parameters 5p , and the number of subintervals 
K= 19. This distribution better follows original sample points than unimodal one (see Fig. 4-5).The 
effective minimization procedure is a complex problem especially for multidimensional multimodal 
case. For the described here problem, it is sufficient to proceed with manual iterations by 
introducing sample mean and sample variance (e.g. taking already estimated parameters from other 
distribution) and alternating the descent steps for mean and variance. This kind of search is 
appropriate for the sigmoid functions. The goal of the procedure is to reduce the chi-square 
estimation 2

emp  below the five percent quantile to confirm the underlying null-hypothesis. We 
leave questions of uniqueness of solution and standard deviation of sought parameters outside of the 
scope of the present paper. Alternative techniques can be found e.g. in (Elek and Jaramaz, 2009). 

2.2. Advanced statistical models 

Various aspects of fragmentation processes are quite commonly discussed in scientific literature 
(e.g. Kolmogorov, 1941, Gilvarry, 1961, Grady, 1985). To simplify our approach we omit 
theoretical issues involving Rosen – Rammler equation and its implications and focus on 
mainstream statistical distributions. Lesser known distributions, such as generalized Mott and Held 
distributions, are discussed e.g. in the paper by Elek and Jaramaz (2009).  

Apart from above-mentioned extensively used lognormal function, there are other well-known 
statistical laws dealing with fragmentation and size distribution of particles. 

The Weibull distribution provides successful empirical description for lifetimes of objects, fatigue 
data and the size of particles generated by grinding, milling and crushing operations. Moreover, 
Martin et al. (1980) showed that Weibull function describes a mass distribution for chondrules 
disaggregated from the various meteorites with considerable precision. The CDF for the mass of 
fragments has the form: 

m
M

mM
M

mMmFW exp11,,
00

, where M0 is the total mass of the obtained 

distribution. 
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The linear exponential distribution, known as Grady distribution (Grady and Kipp, 1985; Grady, 
1990) represents cumulative number of fragments as: 

m
N

mNmFGK exp11,
0

, where 0
0

M
N . 

The Gilvarry distribution (Gilvarry, 1967, Gilvarry and Bergstrom., 1967) is proposed for the same 
purpose as before-mentioned statistical functions. However, it is given as the dimensional 
probability density. For example, its one dimensional form is: 

m
m

M
mfG exp1 0  

According to laboratory experiments, Gilvarry distribution describes breaking with fine fragments 
excessively contributing to the size spectrum, which, practically, disperse in the atmosphere and 
cannot be recovered. Cumulative distribution can be obtained by integrating mfG : 
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G dxx
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This integral is diverging since the exponential integral Ei(x) has a singularity at zero argument (see 
e.g., Gritsevich and Koschny, 2011). However this divergence occurs only as a mathematical 
formalism. Indeed the number of fragments mfG  goes to infinity as their individual masses m  go 
to zero. But the total mass remains bounded: 

mMdxxM
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In reality the fragmentation is discrete, so there is constraint on a minimal fragment mass. If we 
introduce such constraint 0m  to the mfG , we get 
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This leads to convergence of complementary CDF: 
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This integral can be also expanded into the series as: 
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It is more convenient to integrate probability density function numerically by trapeze method on 
sufficiently fine grids. The setback of this distribution is the arbitrariness of cut-off mass 0m . It is 
prudent to take it as a minimal single mass of recovered meteorite fragments, i.e. 0,3 g for the 
Košice meteorite. One can also apply this limit with account for the smaller unrecovered particles. 
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These above mentioned distributions in their bimodal forms are applied to the obtained data. The 
resulting values of the Pearson’s chi-squared for each of respective distributions are summarized in 
the Table 1. The values of Kolmogorov-Smirnov test and Wald–Wolfowitz runs test are given in 
Appendix 2. 

First, we investigate the bimodal Weibull distribution: 

21

21
2211 exp11exp1,,,,, mmmFW . 

The parameters for this CDF are the weighting factor , the shape 1  and scale 1  for the first 
mode and 2  and 2  for the second one. Therefore, one gets 5p  for computing theoretical chi-
squared quantile with significance level  and 1pK  degrees of freedom. The number of 
subintervals K is 19. The quantile value is 22.36. The parameters are tuned manually to find 
suboptimal local minimum for empirical 2

emp . The chi-squared goodness of fit test gives 

89.92
emp  for the values 8.0 , 14.121 , 1.131 , 1402 .  This  is  clearly  below  the  

threshold of 22.36, so the Weibull distribution is also suitable for approximation (Fig. 6.). The 
cumulative number of fragments distribution is defined as ,1, mFNxN WW , where dot 
denotes the list of appropriate arguments. 

Next we use the bimodal Grady distribution: 

22211
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where M  and  is the subtotal mass and the average mass for the first and second modes 
respectively. The cumulative number of fragments is described as: 

22

2
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1
2211 expexp,,,, mMmM

MMmNGK . 

Chi-squared test yields the value 11.152
emp  for the following arguments: 59.20471M , 121 , 

09.92372M , 1402 .  The threshold for 20K and 4p  is 251,
12 pK ,  so  the  null-

hypothesis about Grady distribution is also acceptable with significance level . 

The bimodal version of Gilvarry CDF is: 

m

m

m
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function for cumulative number of fragments is: 
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The Gilvarry distribution has one special aspect in comparison of other considered distributions. 
Silvestrov (2004a) emphasize that Gilvarry theory overestimates the number of small lightweight 
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fragments. One can see this on the Fig.8. Goodness-of-fit test yields the value 85.892
emp  for the 

28.67431M , 1501 , 4.45412M , 7.22702 . This is beyond the threshold of 

26.31,
12 pK , with 21K , 4p . Thus, the analyzed data set cannot be approximated by 

this distribution. 

Both Grady and Gilvarry distributions are correct under assumption of nearly-instant singular 
breaking (Silvestrov, 2004ab). If material is exposed to multiple successive fragmentation events, 
then the above- mentioned statistical laws are no longer applicable. In this case we must implement 
the CDF for the fragmentation theory. 

The CDF for sequential fragmentation is (Brown, 1989): 
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The corresponding mass distribution has the form: 
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where 
x

t dtetx 1,  is a complementary incomplete gamma function. In this mass CDF the 

ratio of these two gamma functions is essentially the continuous Poisson distribution with parameter 
1

1
1 m  (Ilienko, 2011), obtained by spreading initial discrete probabilistic measure 

continuously onto ;0 .  This relation forms the link between discrete distribution of fragments and 
continuous distribution of masses. There is a similar expression in the paper of (Elek and Jaramaz, 
2009), governing the relative (normalized) cumulative number of fragments for another formulation 
of Weibull distribution: 

11,11,, mmN . 

We use binormal variant of sequential fragmentation CDF: 
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Corresponding complementary cumulative number of fragments is obtained via relation: 

221102211 ,,,,1,,,, mFNmN SFSF  

The goodness of fit test gives 42.212
emp  for  the  values  8.0 , 09.01 , 1.131 , 01.02 , 

1212 . The number of independent parameters is 5p , and the number of subintervals K is 18. 
The value of theoretical chi-squared quantile with significance level  and 1pK  degrees of 
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freedom is 21.03. This threshold is slightly larger than empirical distribution, so the null-hypothesis 
is still rejected. However, the plot shows good agreement (see Fig.9). 

Thus as summarized in the Table 1, the best for use distributions are bimodal lognormal, Weibull 
and Grady. Wald–Wolfowitz runs test confirms hypothesis for randomness of residual distributions 
for lognormal and logistic distributions, and rejects it for other distributions. However the runs test 
is weak in the sense that it would reject this hypothesis even for very precise approximating 
function approaching to empirical distribution from one side. Kolmogorov-Smirnov test for 
complex hypothesis is stronger than the runs test, but if the distributions under comparison differ 
from normal ones, the appropriate Kolmogorov quantile becomes dependent on distribution 
parameters and function type. For normal-like sigmoid functions and large sample the dependence 
is small but still can affect acceptance or rejection of likelihood hypothesis. KS-test shows that both 
bimodal Gilvarry and sequential distributions fail to confirm goodness of fit. Bimodal Grady 
statistics is slightly above the quantile so formally also does not comply with obtained distribution. 
Such contradiction between tests demonstrates that statistical estimations are always tricky for real 
cases and the further discussion of results is desirable. 

Discussion 

The recovered fragments of Košice meteorite together with the recorded trajectory data reported by 
Borovi ka et al. (2013) provide an unprecedented opportunity to develop an experimentally 
justified approach involving proved statistical laws in fragmentation modeling. A reliable 
fragmentation model is required to interpret number of similar fireball events and to significantly 
decrease the number of free parameters in future. The application of distribution laws also gives 
insight about the completeness of fragments recovery within one meteorite fall. Smaller particles 
can completely vanish in the atmosphere and lead to underestimation of exact number of fragments 
and meteoroid’s pre-entry mass. Mathematical statistics methods could be therefore also used to 
estimate total meteorite mass based on partial discoveries as well as provide insights on the ablation 
mechanisms. In this paper we did not focus on modeling the breakup process and analyzed only 
recovered meteorite fragments. This can be used to estimate the number of key fragmentation 
events occurred during the atmospheric descent.  

Oddershede et al. (1998) and Vinnikov et al. (2014) conducted similar research analyzing the fit of 
scaled exponential distribution on the meteorites with large number of recovered fragments. They 
concluded that the scaling parameter in distribution is largely determined by the initial form of the 
meteoroid than by the atmospheric trajectory. The authors therefore emphasize that such statistical 
analysis can be used to empirically estimate the initial meteoroid shape by comparison with relevant 
data of obtained masses. 

Thus the distributions considered in this study provide us additional information about Košice 
meteorite. Our investigation shows good agreement of the anticipated statistical functions with 
distribution of recovered fragments, especially when bimodality is assumed. According to bimodal 
lognormal, bimodal Grady, bimodal sequential and bimodal Weibull fragmentation distributions we 
can assume that two processes took place. One process with the mean fragments mass about 12 g, 
and another one with the mean mass around 140 g. It can hint on primary singular precursor 
breaking into two independent pieces with residual masses of approximately 2 and 9 kg respectively 
(the  latter  includes  two  last  anomalously  heavy  pieces  of  about  2  kg  each)  at  early  stages  of  the  
entry ahead of later shower fragmentation in lower layers of the atmosphere. We attribute heavy 
fragments to the second piece since smaller one has insufficient remaining mass to produce two 
heavy fragments along with corresponding amount of smaller fragments. Thus the lesser ancestor 
yields about 2 kg of multiple lightweight fragments with the mean around 12 g. The bigger ancestor 
produces 9 kg of fragments with the mean around 140 g. 
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The above mentioned sample gap spans from 318 to 2167.4 g. Assuming mutual independence of 
meteorite fragment masses the probability for a piece to occur within the gap is ,318,4.2167 FF . 
Table 2 provides such probabilities for various distributions with suboptimal free parameters. Each 
singular event is known as Bernoulli trial, and the stochastic sequence of successes/failures is 
known as binomial distribution. The binomial CDF gives the total probability for the n  trials with 
number of successes no greater than k with singular success probability equal to sp . 

The results obtained show that it is very unlikely not to encounter at least one fragment inside the 
specified gap. The expected frequencies provide the mean number of fragments within the interval. 
The actual residual masses of anticipated pieces are arbitrary within the bounding values of (318; 
2167.4), but from extrapolation of mass ratios and uniform filling of other intervals we can 
speculate about three missing pieces, e.g. with masses about 500, 800 and 1200g. As an alternative, 
these pieces can be accounted for by ‘dividing’ one of the massive fragments. This would support a 
presence of initial macro-scale cracks within the entering body (Consolmagno and Britt, 1998) or 
would lead to the conclusion that the large pieces are more durable than small ones and their 
microstructure differs from all other fragments, what was not confirmed by measurement results 
reported in Kohout et al. (2014). 

The statistical investigation of obtained samples is based on the assumption that even intensive 
ablation after the fragmentation does not alter resulting cumulative mass distribution. According to 
Oddershede et al. (1998), ablation becomes negligible after fragmentation took place. We also 
regard the invariance this of statistical property as highly plausible, at least for chondrite bodies. 
However it is quite desirable to prove this hypothesis and outline its area of applicability. 

It would be useful to conduct further study addressing the correlations between best-fit parameters 
of statistical distributions for the obtained sample and the experimentally gained corresponding 
values for the generalized initial shape of the fragmenting brittle body. Dark flight simulations of 
meteorite fragments can be conducted with respective masses generated via one of the appropriate 
above mentioned CDFs (Vinnikov et al., 2013). 

In this work we assume that the Košice meteorite fragments originate from at least two materials 
with  different  structural  strength  (due  to  random  density  of  cracks)  within  one  pre-entry  body  or  
from two major primary fragmentation events. However, we question the formation of two largest 
fragments. They are too few to form their own statistically valid distribution and do not fit within 
the mass distributions of the more lightweight pieces. The most obvious purpose of all presented 
models is to check if the recovered collection of fragments is complete. Based on our results it is 
estimated that two to three larger fragments 500-1000g each exist, but may be not recovered or 
were not reported by illegal meteorite hunters. 

Conclusions 

Based on the recovered meteorite fragments, we have constructed a robust theory for meteoroid 
mass distribution during fragmentation. Following Borovi ka et al. (2013) we confirm that the first 
significant fragmentation of the Košice meteoroid occurred in two phases, which can be described 
by bimodal lognormal, bimodal Grady, bimodal sequential and bimodal Weibull fragmentation 
distributions. This conclusion hints either at fragmentation before Earth encounter and atmospheric 
entry of two independent meteoroids, or at meteoroid collapse in the upper atmosphere due to the 
presence of initial macro-scale cracks within the entering body. Thus, prior to extensive 
fragmentation in the lower atmosphere, the Košice meteoroid was represented by two independent 
pieces: (a) the smaller piece produced in total about 2 kg of multiple lightweight meteorite 
fragments with the mean around 12 g; (b) the larger piece produced in total about 9 kg of meteorite 
fragments, including the two heaviest pieces of 2.374 kg and 2.167 kg, with the mean around 140 g. 
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There are clear indications for the existence of Košice meteorite fragments with the masses ranging 
from 500 g to 1000 g, which may not have been recovered or, at least, were not officially reported.  
Our investigation of Košice meteorite fragments suggests the use of the following models as being 
most appropriate to derive the fragment distributions: Bimodal Weibull, bimodal Grady and 
bimodal lognormal. Furthermore, the Weibull and Grady functions have a more extensive physical 
basis and are thus the most highly recommended. 
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 Figures: 

 

 

Fig. 1. The dotes (1) denote  observed mass distribution of fragments (Mfrac) less or equal than m 
(ln(m)); (2) – normal distribution with the mean 52.2  and the standard deviation 41.1 . 
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Fig. 2. Observed mass distribution histogram with 21 uniform sampling mass - ln(m) subintervals 
vs. fraction of total fragments number f(m). 



Cite as: Gritsevich et al. 2014. MAPS, 49, 328-345. DOI: 10.1111/maps.12252 

16/31 

 

Fig. 3. Dependence of the complementary cumulative number of fragments mN  vs m (decimal 
logarithm scale) for the observed fragment distribution. 
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Fig. 4. Complementary cumulative number of fragments mN  vs ln(m). 1 – Observed distribution, 
2 – Normal distribution for mln  with the mean 52.2  and the standard deviation 41.1 ,  3 – 
Logistic distribution for mln  with the same mean and deviation. 
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Fig. 5. Complementary cumulative number of fragments mN  vs m (decimal logarithm scale). 1 – 
Observed distribution, 2 – Bimodal lognormal distribution with the means 22.21 , 19.52 , the 
standard deviations 05.11 , 88.02 and 9.0 . 
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Fig. 6. Complementary cumulative number of fragments mN  vs m (decimal logarithm scale) for 
the sample. (1)  – Observed distribution, (2) – Bimodal Weibull distribution with the weighting 
factor 8.0 , 14.121  and 1.131 , 1402 . 
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Fig. 7. Complementary cumulative number of fragments mN  vs m (decimal logarithm scale) for 
the sample. 1 – Observed distribution, 2 – Bimodal Grady distribution with 59.20471M , 121 , 

09.92372M , 1402 . 
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Fig. 8. Complementary cumulative number of fragments mN  vs m (decimal logarithm scale) for 
the sample. 1 – Observed distribution, 2 – Bimodal Gilvarry distribution with 28.67431M , 

1501 , 4.45412M , 7.22702  
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Fig. 9. Complementary cumulative number of fragments mN  vs m (decimal logarithm scale) for 
the sample. 1 – Observed distribution, 2 – Bimodal sequential fragmentation distribution with 

8.0 , 09.01 , 1.131 , 01.02 , 1212 . 
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Fig. 10. Relative errors between observed fragment distribution and considered models: a) 
lognormal, b) logistic, c) bilognormal, d) Grady, e) Gilvarry, f) Weibull, g) sequential 
fragmentation. 
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Tables: 

Table 1. Pearson’s chi-squared test results for the selected distributions. 

Distribution 
Pearson’s test 
value, 2

emp  
Number of free 
parameters, p 

Number of 
subintervals, 

K 

Threshold 
quantile 

Lognormal 14.68 2 19 26.3 

Logistic 14.26 2 19 26.3 

Lognormal bimodal 9.44 5 19 22.36 

Weibull bimodal 9.89 5 19 22.36 

Grady bimodal 15.11 4 20 25.0 

Gilvarry bimodal 89.85 4 21 26.3 

Sequential bimodal 21.42 5 18 21.03 

 

Table 2. Probabilities for selected distributions with suboptimal free parameters. 

Distribution 

Probability sp  of 
singular fragment 

to occur within 
the gap (318; 

2167.4) 

Expected 
frequency 

Probability of 
complete 

absence of any 
fragment from 
the set within 

the gap 

Probability of  5 
or fewer (at least 
1) fragments to 
occur within the 

gap 

Lognormal 0.010740382 2.341403304 0.094982003 0.873568719 

Logistic 0.014009552 3.054082381 0.046158347 0.86580947 

Lognormal bimodal 0.024869714 5.421597703 0.00412721 0.537362366 

Weibull bimodal 0.015649293 3.411545776 0.032112121 0.83856535 

Grady bimodal 0.02876744 6.806713155 0.001019256 0.323890721 

Gilvarry bimodal 0.016412515 4.438049085 0.011468547 0.703942053 

Sequential bimodal 0.014428405 3.145392184 0.042074882 0.860137211 
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Appendix I 

Table 1. Dimensionless masses of known recovered Košice meteorite fragments, No – number in 
sequence 

 

g
Mass  

No 

0.3 218 

0.57 217 

0.64 216 

1.15 215 

1.15 214 

1.2 213 

1.2 212 

1.2 211 

1.3 210 

1.48 209 

1.61 208 

1.79 207 

1.8 206 

1.85 205 

2 204 

2.2 203 

2.3 202 

2.38 201 

2.42 200 

2.5 199 

2.5 198 

2.61 197 

2.68 196 

2.75 195 

2.92 194 

2.93 193 

3 192 

3 191 

3.03 190 

3.03 189 

3.09 188 

3.16 187 

3.3 186 

3.4 185 

3.45 184 

3.5 183 

3.6 182 

3.85 181 

3.9 180 

3.94 179 

3.95 178 

3.97 177 

4 176 

4 175 

4.09 174 

4.2 173 

4.33 172 

4.57 171 

4.58 170 

4.7 169 

4.8 168 

4.84 167 

4.88 166 

5.06 165 

5.11 164 

5.11 163 

5.4 162 

5.64 161 

5.76 160 

5.8 159 

6 158 

6 157 

6.02 156 

6.02 155 

6.08 154 

6.09 153 

6.19 152 

6.33 151 

6.4 150 

6.41 149 

6.47 148 

6.5 147 

6.53 146 

6.57 145 

6.62 144 

6.68 143 

6.84 142 

7.22 141 

7.34 140 

7.36 139 

7.36 138 

7.41 137 

7.5 136 

7.51 135 

7.73 134 

7.79 133 

8 132 

8 131 

8.1 130 

8.4 129 

8.5 128 

8.67 127 

8.74 126 

8.8 125 

8.83 124 

9.01 123 

9.11 122 

9.2 121 

9.3 120 

9.37 119 

9.41 118 

9.5 117 

9.53 116 

10.04 115 

10.2 114 

10.3 113 



Cite as: Gritsevich et al. 2014. MAPS, 49, 328-345. DOI: 10.1111/maps.12252 

26/31 

10.32 112 

10.37 111 

10.6 110 

10.68 109 

11 108 

11.61 107 

11.77 106 

11.9 105 

12.1 104 

12.4 103 

12.54 102 

12.62 101 

12.81 100 

13.41 99 

13.44 98 

13.8 97 

14.13 96 

14.5 95 

14.6 94 

15.01 93 

15.3 92 

15.8 91 

16 90 

16.2 89 

17.25 88 

17.38 87 

18 86 

18.06 85 

18.21 84 

18.3 83 

18.54 82 

18.56 81 

18.72 80 

19.33 79 

19.41 78 

20.15 77 

20.9 76 

20.93 75 

21 74 

21.22 73 

21.4 72 

21.55 71 

21.95 70 

22.39 69 

22.57 68 

23.03 67 

23.17 66 

23.41 65 

24.08 64 

24.17 63 

24.4 62 

25.97 61 

26.89 60 

26.9 59 

27.25 58 

27.32 57 

27.6 56 

27.7 55 

27.89 54 

28.48 53 

30.2 52 

30.9 51 

32 50 

32.98 49 

33 48 

33.14 47 

37.3 46 

37.6 45 

38.5 44 

39.3 43 

40.23 42 

40.71 41 

45.89 40 

46.67 39 

46.82 38 

47.12 37 

51.96 36 

53.2 35 

54.22 34 

56.7 33 

56.8 32 

58.3 31 

60.21 30 

60.8 29 

61.03 28 

61.4 27 

70 26 

70.86 25 

71.85 24 

81.3 23 

92 22 

97.48 21 

99.1 20 

103.25 19 

106.75 18 

127.57 17 

141 16 

147.52 15 

154 14 

155 13 

163 12 

176.17 11 

193.6 10 

210.5 9 

218 8 

240 7 

249 6 

292 5 

315.91 4 

318 3 

2167.4 2 

2374 1 
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Table 2. Number of recovered fragments in H chondrite meteorites with known orbits. 
 

Meteorite name country year mass found, 
kg type No of 

pieces reference 

íbram Czechoslovakia 1959 5.8 H5 4 Ceplecha, 1961; Spurný et al., 2003 
Lost City USA 1970 17.2 H5 4 McCrosky et al. 1971 
Benešov* Czech Republic 1991 0.002 H5 3 Spurný et al., 2012 
Peekskill USA 1992 12.6 H6 1 Brown et al., 1994 
Morávka Czech Republic 2000 1.4 H5 6 Borovi ka and Kalenda, 2003 

Buzzard Coulee Canada 2008 ~ 41 H4 129 Milley, 2010 
Grimsby Canada 2009 0.22 H4-6 13 Brown et al., 2011 
Košice Slovakia 2010 11.3 H5 218 Borovi ka et al., 2013 

Mason Gully Australia 2010 0.025 H5 1 Spurný et al., 2011 
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Appendix II 

Goodness of fit tests 

Pearson's chi-squared test is carried out as follows: 

1. The initial sample interval KxxL ;0  is divided into K successive subintervals kkk xxL ;1  

so that k
K

k
LL

1
. It is expected that every subinterval contains experimental points and every 

experimental point belongs to one interval only. 

2. Number of points is counted within every subinterval kL  as the sample frequency kN , 
K

k
k NN

1
. 

3. Theoretical frequencies k  are computed from a probability to place occur a random variable 
X  within the subinterval kL  with regard of asymptotic tails. The applicability for theoretical 
distribution of X  to approximate the sample is the idea behind so called null hypothesis. 

,; 1011 xFNxLXPN , 

,, 1kkkk xFxFNLXPN , 1,,2 Kk , 

,1; 1KKKK xFNxLXPN . 

4. The empirical chi-squared statistics is formed from the calculated data via chi-squared 

distance: 
K

k k

kk
emp

N

1

2
2  

5. Obtained statistics 2
emp  is compared against chi-squared quantile with significance level  

and 1pK  degrees of freedom, where p  is the number of parameters for the assumed 
theoretical distribution with ,xF  as its CDF. 

G-test is an more accurate extension of chi-squared test and is calculated as 
K

k k

k
kemp

N
NG

1
ln2 . This test didn’t receive acknowledgement until the development of fast 

personal computers, due to complexity of manual multiple calculations of the logarithm function. 

Kolmogorov’s test computes another distance D  between empirical and theoretical CDFs: 

,sup xFxFD emp
x

, where 
N

i
iemp xxI

N
F

1

1  and 
i

i
ik xx

xx
xxI

,0
,1 . Then obtained 

statistics D  is compared against desired quantile of Kolmogorov’s distribution. In practice, the 
evaluation of the supremum over continuous x  is  replaced  with  the  equivalent  computation  of  
the maximum over discrete ix : 

N
ixFxF

N
iD ii

Ni

1,;,max
1

. 
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One can also use other methods. For example we consider more simple Wald–Wolfowitz runs 
test applied to residuals of abovementioned complementary distributions of fragments number. 
This non-parametric statistical test checks a randomness hypothesis for the error vector defined 
as N

iiemp
N

i xNxNee 11 , . The algorithm proceeds as follows: 

1. Count the numbers n , n of positive and negative signed ie . Count the number of runs 
r (sequences of the same sign). 

2. If 10n and 10n  compute the mean 1
2

nn
nn  and the standard deviation as 

1

22
2

2

nnnn

nnnnnn . For the case of 103 n , 103 n  see (Draper et al, 1998). 

3. Proceed with upper r  and lower r  tail tests: 5.0r
L , 5.0r

U . Compute 

p-value of the standard normal distribution: 1,0,12 F . Compare it against significance level 
. The hypothesis of residual randomness is rejected if obtained p-value is less then , and 

accepted otherwise. 

However, this test is a complementary to chi-squared test, since the latter deals with the distances 
but not the signs. 
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Appendix III. 

Table 1. Pearson's chi-squared test for normal distribution. 

k kx  kN  k  
k

kk N 2
 

0 -1.214 – – – 

1 0.222385 8 11.25128 0.939522 

2 0.740802 7 11.29922 1.635805 

3 1.118383 15 12.31689 0.584488 

4 1.397432 14 11.50578 0.540699 

5 1.631209 11 11.15427 0.002134 

6 1.862518 15 12.24445 0.620122 

7 2.048975 15 10.59152 1.834934 

8 2.246532 16 11.74108 1.544863 

9 2.424881 10 10.88509 0.071969 

10 2.636484 11 13.0244 0.314655 

11 2.816412 8 10.96292 0.800779 

12 3.021477 12 12.13565 0.001516 

13 3.225763 15 11.48688 1.074444 

14 3.480819 12 13.20342 0.109686 

15 3.700543 8 10.16259 0.460199 

16 4.052569 10 13.68793 0.993639 

17 4.459967 9 11.82676 0.675635 

18 5.218622 12 12.40047 0.012933 

19 7.783332 10 6.119386 2.460896 

Total 218 – 14.67891501 
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Table 2. Wald–Wolfowitz runs test for selected distributions. 

Distribution n  n  r     

Lognormal 108 110 7 28.25 7.37 0.0049 

Logistic 106 112 17 28.23 7.36 0.1449 

Lognormal bimodal 29 189 17 13.57 3.38 0.3861 

Weibull bimodal 108 110 13 28.25 7.37 0.0452 

Grady bimodal 2 216 2 N/A N/A N/A 

Gilvarry bimodal 141 77 8 25.9 6.73 0.0097 

Sequential bimodal 207 11 13 6.22 1.38 5.72E-06 

 

Table 3. Kolmogorov-Smirnov test for selected distributions. Quantile at level 05.0  is 0.895. 

Distribution 
D

N
N 85.01  

Lognormal 0.664 

Logistic 0.798 

Lognormal bimodal 0.841 

Weibull bimodal 0.861 

Grady bimodal 0.897 

Gilvarry bimodal 13.819 

Sequential bimodal 1.275 

 


