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The increasing interest for microfluidic devices in medicine and biology has opened
the way to new time-lapse microscopy era where the amount of images and their
acquisition time will become crucial. In this optic, new data analysis algorithms have to
be developed in order to extract novel features of cell behavior and cell–cell interactions.
In this brief article, we emphasize the potential strength of a new paradigm arising
in the integration of microfluidic devices (i.e., organ on chip), time-lapse microscopy
analysis, and machine learning approaches. Some snapshots of previous case studies
in the context of immunotherapy are included as proof of concepts of the proposed
strategies while a visionary description concludes the work foreseeing future research
and applicative scenarios.
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With its invention in 1590, microscopy abruptly gave us access to a completely new world. It uses
radiation and a system of lenses to study processes and structures at the micro scale and below.
Optical microscopy is used extensively in microelectronics, physics, biotechnology, pharmaceutical
research, cell macrostructure investigations and microbiology and has been demonstrated a
fundamental imaging technique for modern cell biology and immune-oncology research where
dealing with free cells or tissue fragments. The advent of semiconductor-based systems and modern
developments in Complementary Metal-Oxide Semiconductor (CMOS) and charge-coupled device
(CCD) cameras allowed changing the final perspective providing the capability to pass from optical
images to matrices of numbers (Thorn, 2016). In such scenario, computer algorithms developed to
process digital objects have become a fundamental tool to increase the precision of investigation
and the amount of information extracted from each experiment. However, what is really limiting
the strength of analysis is the difficulty in aggregating expertise from different areas, i.e., biological
fields as well image analysis, pattern recognition, technology, and sensor devices. Such convergence
allows going further in the biological studies, passing from static visualization to the real-time
analysis of cells, through the acquisition of video sequences (Figure 1) with the intent to study
its evolution under controlled experimental conditions (Chen et al., 2006). Moreover, focus on
cell motility has not yet been fully addressed until now. As well established, cell migration is a
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FIGURE 1 | Scheme of a high throughput platform for the advanced study
and reproduction of the tumor microenvironment. The microfluidic device is
manufactured ad hoc, according to the biological experiment requirements.
Then, the desired cell subsets are loaded into the chip together with tumor
cells, to an extent to propose a simplified version of the tumor
microenvironment. Time-lapse microscopy is used to acquire the
high-resolution frames of the whole video sequence. Microscopy setting is
functionalized by the scale of the objects of interest and the duration of the
time-lapse. Cells are then automatically localized and tracked across each
frame of the video sequence and trajectories are characterized in terms of
individual and aggregated kinematics and morphological descriptors. At this
point, specifically developed machine learning algorithms are then applied to
recognize patterns for biological reasoning. For example, cell tracking
datasets are then clustered into separated groups reflecting distinct cell
behaviors. The same kinematics and morphological descriptors can be used
as input for in silico models aimed at simulating on-chip experiments.

fundamental process for life (Li et al., 2017) being involved in
bacteria collective motion, in the morphogenesis of pluricellular
organisms, in adult physiological process (such as tissue repair
and immune cell trafficking), and in many cancer-related
diseases (such as cancer metastasis) (Gupta and Massagué,
2006) and immunotherapies (Nguyen et al., 2018). The large
variety of biological compartments involved in cell-motility
makes it striking to reconstitute the environment in microfluidic
devices in order to analyze the collective behavior of moving
cells minimizing the effects of external conditions (Sackmann
et al., 2014). The Organ-on-chip (OOC) approach expands the
traditional concept of standard cell culture methods, offering
the opportunity to co-culture a large number of trackable
cell types, in a variety of 2D and 3D microenvironments
(Huh et al., 2010; Businaro et al., 2013; Bhatia and Ingber,
2014). OOC technology development has the aim to replicate
diverse organ functionalities with in vitro models (Kamm
et al., 2018). However, while the OOC technologies are still
at a relatively early stage in development, nascent versions
of cardiac muscle (Lind et al., 2017), liver (Domansky et al.,
2010), brain (Adriani et al., 2017), lung (Huh et al., 2010),
skin (Mori et al., 2017), placenta (Miura et al., 2015) have
been reported. Similar systems have been designed to provide
new insights into fundamental disease processes such as cancer
(Chen et al., 2016) and Alzheimer’s disease (Choi et al., 2013).
Practical challenges of OOCs may include phenotypic instability,
low throughput associated with system complexity, material-
drug incompatibilities of commonly used device materials such

as PDMS, and biomaterial inconsistencies and limitations.
A fundamental question for OOC technology is if it will be
able to create microscale constructs that adequately recapitulate
the macroscopic organs. Two major scaling issues arise in OOC
design and construction on the ability to maintain absolute
values of physiological parameters and relative sizes between
different types of cells, tissues, and organs. For all these reasons, a
massive analysis through the use of video processing and machine
learning is even more required in order to demonstrate the
validity of OOC solutions and their actual capability to be ready
for being embedded into a network of OOCs toward a more
complex and realistic in vivo like environment.

In this context, one of the most challenging scenarios for
OOC devices is represented by cancer-immune cross-talk due to
the very complex and not still completely discovered signaling
modalities between immune cells and cancer insult or among
clustered cancer cells. Some attempts have been presented with
the aim to model cancer–immune interaction (Vacchelli et al.,
2015) through time-lapse microscopy analysis. Critical is the
need to translate moving cells into trajectories, and kinematics
descriptors using label-free artificial intelligence architecture.
Machine learning becomes hence a key component of such a
virtual laboratory to manage and analyze a large amount of
data describing biological complexity and introduces to the new
definition of the so called in silico experiments. First, cells should
be located and tracked through the video sequence by means of
automatic cell tracking software [an example can be Cell Hunter
approach (Biselli et al., 2017; Parlato et al., 2017; Figure 1) but
there are several open software’s in the literature (Chenouard
et al., 2014)]. In this field, challenging aspects are the need to
locate cells using non-invasive strategies and to reliably track cells
in highly dense heterogeneous cultures (Chenouard et al., 2014;
Biselli et al., 2017; Parlato et al., 2017). Trajectories of moving cells
have to be then translated into kinematics descriptors (such as
speed, angular direction, persistence, directionality, step length,
etc.) and, in presence of clustered cells (Di Giuseppe et al.,
2019), automatic cell clustering has to be performed in order
to aggregate cells exhibiting a similar kinematic activity. In this
regard, it is of key note to mention that a group of cells apparently
different from a biological point of view can be clustered by
using the aforementioned parameters, such as cells having the
same step length. As a mere example, it has been demonstrated
that Formyl Receptor 1 (FPR1) expression in peripheral blood
monocytes can modulate the extent of their step length (Biselli
et al., 2017). After cell motions has been quantified in terms of
numerical features, machine learning algorithms [Deep Learning,
Support Vector Machine, Discriminant Analysis, etc. (Jordan and
Mitchell, 2015)] can be then exploited to recognize common
patterns (e.g., target direction, motion kinds) in different cells
and/or cell clusters in order to understand the biological behavior
with respect to contaminants, insults, chemical stimuli, etc.
(Figure 1). The study of tumor microenvironment represents an
application scenario where this approach will have a tremendous
impact in the near future. This is a complex biological entity
composed of different cell types, e.g., cancer cells, fibroblasts,
pericytes and immune cells, whose mutual interaction dictates
cancer progression and metastatic spread. The application of
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OOC in the context of the tumor microenvironment allows
to separately study the migratory behavior of specific immune
cell subsets toward the tumor cells loaded in a separate
chamber (e.g., dendritic cells, T lymphocytes). For example,
cancer cell movements alone can be analyzed to discover
cancer leadership, invasion and segregation phenomena (Kabla,
2012). Additional applicative scenarios include tumor cells
such as murine fibrosarcoma cell line loaded together with
spleen cells in which DC (an immune cell subset) are
labeled (and thus identified) with a DC-specific antibody
such as anti-CD11c antibody. In these experimental settings,
DCs are monitored on-chip in presence of tumor cells by
yielding the aforementioned cell tracking parameter by Cell
Hunter method (Nguyen et al., 2018). Motility studies are
fundamental not only as further proof of concept of elsewhere
verified therapeutic effects but also to discover unexpected cell
behavior. As an example, cancer cells may behave differently
according to the position in the cell cluster and to the
motion of neighboring cells. In this way, quantifying cells
motility may also reveal cancer mechanisms in support of
future treatments (Yasuda, 2013; Klemm and Joyce, 2015).
Furthermore, the prediction capability of such a platform for
analysis may allow not only to understand what is under
the microscope but definitely to serve as feedback for further
OOCs experiments. For example, modeling coordinated cell
movements (Comes et al., 2019) allow reconstituting totally
in silico artificial videos of cell movements. Video analysis
and machine learning algorithms are then tuned according
to the synthetic videos in which the user may also simulate
the presence of drugs through specific mathematical equations.
In this way, dynamic drug administration may be performed
(e.g., precise modulation of drug concentration) according to
cell movements extracted in synthetic videos with the effect to
make the ex vivo experiment more robust, to conduct synthetic

massive tests, to reduce time-to therapy and patient undesired
treatment effects.

The described platform is expected to open new scenarios
of cell network modeling such as agent-based system (e.g.,
autonomous model of each cell within an interacting network
of agents) in order to simulate more advanced organs-on-chip
model coupled to artificial intelligence (AI)-based algorithms
and neural networks to provide more affordable organs-on-chip
models of study. These AI-based OOC may potentially shorten
the distances between in vivo and ex vivo like scenarios in favor
of reduced invasiveness and deep understanding.

Future application scenarios include the possibility to develop
a hybrid system in which OOC-based environment interacts
with in silico-based devices. Such a scenario allows enlarging the
potentiality of OOCs experiments by increasing the mimicking
capability of the platform toward in vivo like environment.

This scenario is made possible counteracting the limitations
imposed by the need of very high frame rate and high spatial
resolution of the acquired images that lead to undesired effects
such as phototoxicity and storage of more than Gigabytes of a
single experimental data. Thanks to the exploitation of modern
Deep Learning (DL) architecture (Goodfellow et al., 2014), future
hybrid OOCs device could adopt DL strategies to virtually
increase the video quality thus maintaining accurate analysis
results reducing cell illumination rates and memory storage
and increasing at the same time the capability to follow the
system evolution.
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