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This study presents a predictive modelling technique to map population distri-
bution and abundance for rural areas in Africa. Prediction models were created
using a generalized regression analysis and spatial prediction (GRASP) method
that uses the generalized additive model (GAM) regression technique. Dwelling
unit presence–absence was mapped from airborne images covering 98 km2 (30% of
the study area) and used as a response variable. Remote-sensing-based (reflectance,
texture and land cover) and geospatial (topography, climate and distance) data
were used as predictors. For the rest of the study area (228 km2; 70%), GAM
models were extrapolated, and prediction maps constructed. Model performance
was measured as explanatory power (adj.D2, adjusted deviance change), predic-
tive power (area under the receiver operator curve, AUC) and kappa value (κ).
GAM models explained 19–31% of the variation in dwelling-unit occurrence and
28–47% of the variation in human population abundance. The predictive power for
population distribution GAM models was good (AUC of 0.80–0.86). This study
shows that for the prediction of dwelling-unit distribution and for human popu-
lation abundance, the best modelling performance was achieved using combined
geospatial- and remote-sensing-based predictor variables. The best predictors for
modelling the variability in human population distribution using combined predic-
tors were angular second moment image-texture measurement, precipitation, mean
elevation, surface reflectance for Satellite Pour l’Observation de la Terre (SPOT)
red and near-infrared (NIR) bands, correlation image-texture measurement and
distance to roads, respectively. The population-abundance modelling result was
compared with two existing global population datasets: Gridded Population of the
World version 3 (GPWv3) and LandScan 2005. The result showed that for regional
and local-scale population-estimation probability, models created using remotely
sensed and geospatial data were superior compared to GPWv3 or LandScan
2005 data products. Population models had high correlation with Kenyan popu-
lation census data for 1999 in mountainous sub-locations and low correlation for
sub-locations that also extended into the lowlands.

*This paper came from a workshop entitled ‘Potentialities and Limitations in the Use of
Remote Sensing for Detecting and Monitoring Environmental Change in the Horn of Africa’. The
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the UN-FAO in Somalia (www.faoswalim.org).
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2 M. Siljander et al.

1. Introduction

Africa is experiencing one of the highest population growth rates in the world. The
sub-Saharan population is growing at a rate of 2.5% per year according to the United
Nations Children’s Fund (UNCEF), and in Kenya, both the growth rate of 2.8% and
the total fertility rate of 5.0 are extremely high. Population has grown from 10.9 mil-
lion in 1969 to 28.7 million in 1999 and, according to the United Nations (UN),
population is estimated to grow to 46 million by 2015. The population growth has sig-
nificant social, economic and environmental consequences, and there is an urgent need
to deepen our understanding of population distribution and population-abundance
patterns. Demographic information is usually provided in national or administrative
units, and for local-scale population analysis, more accurate measurement units are
needed. Furthermore, these sub-national reference units can be vastly different in size
and shape. For spatial analysis, it is often preferable to record human population
estimates using standardized units, such as regular analysis grids (Mubareka et al.
2008). However, most grid-based human population models (e.g. LandScan; Dobson
et al. 2000) exist only at a coarse scale, thus generalizing and obscuring the inter-
nal variability of population data. The larger the size of the analysis grid unit, the
more generalized the data are and the less suitable they are to be used at regional and
especially local scales. Therefore, cost-efficient applications to create spatially explicit
human population geospatial databases and distribution maps at finer scales are in
great demand.

Aerial photography has been the traditional method to estimate and to map popu-
lation distribution at local and regional scales. Porter (1956) used a rural dwelling-unit
count in Liberia, and Hsu (1971) used the same method in the Atlanta and Boston
metropolitan areas in the USA. A number of other studies have shown that a dwelling-
unit count from aerial photography is the most accurate remote-sensing method for
population estimation and distribution mapping (e.g. Lindgren 1971, Forester 1985,
Lo 1986, 1995). Unfortunately, the conventional dwelling-unit count method is a
time-consuming expensive process, and it requires abundant high-resolution aerial
photographs to cover large areas (Lo 1989). For rural areas in developing coun-
tries such as Kenya, up-to-date high-resolution airborne imagery is typically lacking.
Modern geospatial techniques and data, however, provide new possibilities for pop-
ulation distribution estimation in such areas without the need for high-resolution
airborne remote-sensing data. Powerful remote-sensing and geographic information
system (GIS) tools and statistical techniques can now be used for predictive mod-
elling to test the hypothesis that human population distribution and abundance can
be predicted using remotely sensed and geospatial-based predictors.

Predictive modelling techniques have been used successfully for over a decade
in ecological applications, such as in species-distribution and abundance modelling
(Guisan and Zimmermann 2000, Lehmann et al. 2002). This is mainly due to the
fact that wildlife population distribution and abundance can be predicted based
on habitat requirements of a given species, such as vegetation cover, distance to
water, temperature, precipitation and incoming solar radiation. It is more challeng-
ing to predict human population distribution and abundance as humans have the
capability to modify the environment as well as to transport elements of ‘suitable
habitat’ from remote locations through trade and exchange. This could explain why
predictive techniques have been used more rarely for human population distribu-
tion and abundance modelling. For existing human population models, mainly the
linear least squares (LS) regression method has been deployed (see, e.g. Schnaiberg
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Modelling rural population distribution in Africa 3

et al. 2002, Gustafson et al. 2005, Li and Weng 2005). In these models, environ-
mental predictors have been used to explain the variation in dwelling-unit or human
population data. However, the linear LS regression method has implicit statistical
assumptions; for example, the assumption of linearity, independence, homogeneity
of variance, and normality (Zar 1999), which are often violated when environmental
data with non-Gaussian and non-constant variance are used in regression analysis. To
counter the regression analysis violations discussed above, we used generalized addi-
tive models (GAMs) for prediction. This regression method supports non-Gaussian
error distributions and non-linear relationships between response and predictor vari-
ables (Hastie and Tibshirani 1990). To the best of our knowledge, GAMs have not
previously been used for human population prediction modelling, and therefore we
developed a hybrid modelling method using a 100 m analysis square size, advanced
remote-sensing, geospatial and statistical data derived from airborne remote-sensing
data, Satellite Pour l’Observation de la Terre (SPOT) satellite data and a geospa-
tial database. The resolution is considered suitable for local-scale population studies
and other GIS applications. We used the generalized regression analysis and spatial
prediction (GRASP) modelling method (Lehmann et al. 2002) that exploits GAMs
in a semi-automatic manner and has been used previously in species-distribution
prediction analyses (e.g. Zaniewski et al. 2002, Maggini et al. 2006).

In previous predictive human population studies, several predictors have proven
to be superior for determining population distribution. Land cover has been one of
the main factors used for determining population abundance (Dobson et al. 2000).
However, classified land cover, derived from moderate-resolution satellite imagery
such as the Landsat Enhanced Thematic Mapper Plus (ETM+), has been criticized
to be an inadequate predictor because it aggregates the true land cover (St-Louis et al.
2006, Bellis et al. 2008). An alternative method to thematic land-cover data is to use
image-texture values as remote-sensing-based predictors; for example, those based on
the grey-level co-occurrence matrix (GLCM) derived directly from satellite imagery
(Haralick et al. 1973, Li and Weng 2005). Such measures can be used to quantify
the variability of vegetation as a continuous variable in statistical modelling (Bellis
et al. 2008). In addition to land cover and image-texture predictors, we used envi-
ronmental predictors, derived from geospatial datasets and models, which are widely
agreed to be the best predictors for human population distribution and abundance
prediction (Dobson et al. 2000). These predictors are elevation, aspect, slope, precipi-
tation, distance to roads and distance to water. Topographic wetness index (TWI) and
solar radiation energy (irradiance) were also used as predictors. Each of the predic-
tors was derived from the Taita Hills Environmental Monitoring System (THEMS)
database. In the modelling, we used three types of predictor groups to reveal which
type of group had the best performance in explaining the variation in dwelling-unit
presence–absence and abundance data. The predictor groups were: remote-sensing-
based, geospatial and combined predictors groups. A description of the predictors
can be seen in table 1, and they are discussed in more detail in section 3.

We purposely did not attempt to include socio-economic factors in the models,
except one surrogate predictor ‘the distance calculated to the main roads’, because
of five reasons: firstly, socio-economic factors are not available for the study area in a
reference unit that would be usable in this study; secondly, the reliability of the data
is questionable; thirdly, socio-economic factors, except distance-based calculations,
are also lacking from other remote-sensing- and GIS-based human population pre-
diction studies; fourthly, we used remote-sensing and geospatial predictors that can
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4 M. Siljander et al.

Table 1. Predictors from geospatial data and remote-sensing data used to generate the human
population distribution and abundance models. Variables correspond to percentage or means

obtained from averaging individual values from pixels to 100 m analysis square.

Predictor Description

Predictors from geospatial data
Elevation Mean elevation from DEM (Survey of Kenya 1: 50 000 scale

topographic map)
Aspect Mode aspect in degrees in 100 m analysis square (derived from

DEM)
Slope Mean slope degree in 100 m analysis square (derived from

DEM)
TWI Mean topographical wetness index in 100 m analysis square

(derived from DEM)
Irradiance Mean annual irradiance (kW h m−2 ) (scaled between 0 to 1) in

100 m analysis square (derived from DEM)
Precipitation Mean annual precipitation (mm) using ANUSPLIN

interpolation method
Distriver Mean Euclidean distance to rivers (m) in 100 m analysis

square.
Distroad Mean Euclidean distance to roads (m) in 100 m analysis

square.
Predictors from remote-sensing data
Reflectance, red band Mean spectral reflectance for SPOT satellite imagery red band
Reflectance, NIR band Mean spectral reflectance for SPOT satellite imagery NIR band
Asm2 Mean angular second moment image texture for SPOT band 2

using 7 × 7 analysis window
Corr2 Mean correlation image texture for SPOT band 2 using 7 × 7

analysis window
Croplands Percentage of crops land-cover class in 100 m analysis square

using SPOT imagery LULC mapping
Thicket Percentage of thicket land-cover class in 100 m analysis square

using SPOT imagery LULC mapping
Woodland Percentage of woodland land-cover class in 100 m analysis

square using SPOT imagery LULC mapping
Plantation forest Percentage of plantation forest land-cover class in 100 m

analysis square using SPOT imagery LULC mapping

Note: NIR, near-infrared; DEM, digital elevation model; LULC, land-use land-cover.

be obtained and derived easily, thus making this type of modelling technique suit-
able for application to other areas; and fifthly, our aim was to examine the potential
of remote-sensing and geospatial predictors for human distribution and abundance
predictive mapping. Therefore, our models are based on environmental predic-
tors derived from spatially explicit geospatial data using GIS and remote-sensing
techniques.

To validate our models, we used a comparative analysis between predicted human
abundance GAM models and two coarse-scale population datasets: the latest version
of Gridded Population of the World (GPWv3) at 5 km resolution and LandScan 2005
(Dobson et al. 2000) at 1 km resolution. The GPW project is a continuum to the
work of Tobler et al. (1995, 1997) to create a world population map with 5′ res-
olution based on sub-national census data and a smoothing algorithm. The latest
version of the GPWv3 dataset is available in 2.5′ resolution (Balk and Yetman 2004)
from the Center for International Earth Science Information Network (CIESIN)
Internet site (CIESIN 2005). The LandScan project (Dobson et al. 2000) is another
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Modelling rural population distribution in Africa 5

global population dataset at 30′′ resolution. The dataset is built using a model that
distributes sub-national census data into grids by using various remote-sensing and
geospatial data layers taking into account road proximity, slope, land cover and night-
time lights, and is validated using high-resolution panchromatic imagery. The newest
version, LandScan 2008, is available from the LandScan Internet site. A third effort
to make a gridded population dataset (in 1◦ resolution for the year 2000) has been
carried out under the UN Environment Programme/Global Resource Information
Database (UNEP/GRID 2006). This model was not used in the present study because
of the very coarse resolution and the time difference in creation of the database. We
also compared all three grid-based population models, prediction models, GPWv3
and LandScan 2005 with data derived from the Kenyan population census in 1999
(Republic of Kenya 2001).

Human population is an important component in landscape ecological studies and
geospatial modelling, but the currently available datasets have their limitations. The
resolution of the global population datasets, 5 km resolution of GPWv3 and 1 km
resolution of LandScan 2005, is too coarse for a very diverse and fragmented rural
mountainous landscape study area. Furthermore, the Kenyan population census is
undertaken with a 10 year interval and gives population for sub-locations as units,
which are often coarse and inappropriate for use in local-scale studies. The last cen-
sus in Kenya was in 1999 and, with population growth of 1.8% in the Taita Hills
study area, the data are outdated for many applications. In addition, as the sub-
locations are large, extending from densely inhabited hills to sparsely populated dry
plains, the geographical units are inadequate to model the population distribution in a
given landscape. To overcome these limitations in the current population datasets, we
employed a predictive technique to create 100 m resolution spatially explicit human
population distribution and abundance geospatial models for the Taita Hills. These
fine-scale gridded human population distribution and abundance maps take into
account internal variability of population data and are therefore more suitable to
be used in local-scale environmental studies, such as biodiversity (Githiru and Lens
2004), land-use and land-cover change (Pellikka et al. 2009) and other studies in the
Taita Hills.

The objectives of the study were:

1. to determine how well human population distribution and abundance can be
predicted by predictors derived from remote-sensing and geospatial data and
to determine which are the best predictors;

2. to explore the potential of remote sensing for enhancing the predictive power
of human population distribution and abundance models;

3. to extrapolate the predictive human population distribution and abundance
map for the whole of the Taita Hills; and

4. to compare the results with two existing population datasets and Kenya
population census data of 1999.

2. Study area and human population in the Taita Hills

The Taita Hills are located in the Taita Taveta district of southeastern Kenya at
03◦ 25′ S, 38◦ 20′ E (figure 1). The elevation limit to separate hills from lowlands was
set to 1100 m above sea level (a.s.l.), based on the gradient change from the plains
to foothills, resulting in a study area of 326 km2. Annual precipitation in the hills
is 1200 mm, whilst in the plains, it is c. 600 mm based on records from the Kenya
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6 M. Siljander et al.

Figure 1. The Taita Hills in southeastern Kenya. The areas above 1100 m a.s.l. are presented
as a shaded relief model, and the model building areas (30% of the Taita Hills), from where the
dwelling units were digitized, are shown as hatched polygons.

Meteorological Institute. The southeastern and northeastern trade winds bring in
moisture from the Indian Ocean and cause orographic rains on the eastern slopes;
as a result, the western and northern slopes are in rain shadow. Population in the
Taita Taveta district was 246 671 inhabitants (Republic of Kenya 2001) in 1999, and it
is concentrated in the fertile Taita Hills, Sagala Hills and the town of Taveta close to
Mt. Kilimanjaro and in trading centres, such as Voi and Mwatate. The population in
the Taita Hills is concentrated in the best agricultural areas close to fertile river valleys
in areas receiving rainfall more than 1000 mm annually, with an exception that the
Mbololo massif is less densely populated compared to the Dabida massif.

The district capital Wundanyi is the only town in the hills with c. 4500 inhabitants
in Wundanyi sub-location in 1999, whilst the rural area consists of villages of vary-
ing size. The population density in the best agricultural areas is between 400 and 500
inhabitants per km2, but some sub-locations have a density of more than 900 per-
sons according to the 1999 Kenya census. The sub-locations consisting of areas in the
hills and the lowlands have a density between 100 and 200 people per km2, whilst the
rural lowlands have a density between 5 and 30 people. The population in Wundanyi,
Mwatate, Tausa and Mwambirwa divisions was 135 000 based on the 1999 census,
in an area of 3000 km2, resulting in an average population density of 253 per km2.
The least populated areas are the western and northern plains and northwestern parts
of the Taita Hills due to the rain-shadow effect. Most people in the hills live on small
farms at elevations between 1300 and 1800 m a.s.l., where the annual long-term rainfall
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Modelling rural population distribution in Africa 7

varies between 360 and 1935 mm, and the mean daytime temperature is 20.5◦C. The
average size of a farm is 2 ha (Soini 2005, Ruotsalainen 2008).

3. Material and methods

We used geospatial data and the GRASP regression method for predictive modelling.
We tested the hypothesis that remotely sensed and geospatial predictors can be used
to predict human population distribution and abundance. For the model building, the
response variable (dwelling-unit presence–absence) was derived from airborne imagery
covering 30% of the Taita Hills. Geospatial GIS- and remote-sensing-based data layers
were used as predictors. We randomly divided model building data (n = 10 488, 100 m
analysis squares) into model calibration 70% (n = 7342) and model evaluation 30%
(n = 3146) datasets (n = sample size). Prediction models were extrapolated to cover
the whole Taita Hills area (n = 34 143) and the human population-abundance model
was compared with two existing global population datasets, GPWv3 and LandScan
2005 and the Kenyan 1999 census data.

3.1 Airborne remote-sensing data

The 2004 digital camera data were acquired with 60% overlap and 30% sidelap
between lines using a Nikon D1X colour digital camera equipped with a 14 mm lens
producing a 78◦ opening angle. The camera is part of the EnsoMOSAIC system con-
sisting of flight-planning software, navigation software, triggering unit, a global posi-
tioning system (GPS) and a power source (Holm et al. 1999). Data acquisition took
place on 25 January between 8 and 9 am and on 27 January 2004 between 12 and 1 pm
at altitudes between 2100 and 2700 m above the land surface, resulting in an approxi-
mate ground resolution between 27 and 40 cm for the study area. Brightness variations
within the single frames of the 2004 data were removed by corrections for light-falloff
effect and bi-directional effects using the methods developed by Pellikka (1998), after
which the frames were mosaicked using EnsoMOSAIC (Holm et al. 1999). The result-
ing mosaics were orthorectified, projected to transverse mercator projection with a
Clarke 1880 spheroid and Arc 1960 datum and resampled to 0.5 m ground resolution.
The geometric accuracy was within 2 m as verified in the field using the GeoXT ™
GPS (Trimble Navigation Ltd, Sunnyvale, CA, USA) with differential correction base
(reference) data.

3.2 Satellite remote-sensing data

A SPOT 4 HRVIR 1 satellite image (15 October 2003, path & row 143-357, view angle
10.4◦) with 20 m pixel size was used to derive surface-reflectance, image-texture and
land-cover based predictors. The image was orthorectified utilizing a 20 m planimetric
resolution digital elevation model (DEM), interpolated from 15.45 m interval con-
tours captured from 1:50 000 scale topographic maps, then atmospherically corrected
utilizing the historical empirical line method (HELM; Clark and Pellikka 2005). As
noted by Moran et al. (2001), there is a near-linear relationship between at-satellite
radiance and the surface-reflectance factor through the range 0–70% reflectance.
Consequently, an accurate estimation of the HELM correction lines for each SPOT
spectral band can be obtained using only two within-scene reflectance targets: firstly,
a high-reflectance and spectrally invariant-in-time calibration site measured in the
field and, secondly, an estimate of path radiance derived directly from the imagery
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8 M. Siljander et al.

through identified within-scene dark objects. The HELM calibration target used was
a vegetation-free roadside quarry, which was ∼60 m wide and 200 m long, whilst the
within-scene dark objects were areas of topographic shadow for the green and red
bands and an area of standing water for the near-infrared (NIR). Surface-reflectance
factor measurements were made during field work in the Taita Hills in 2005, using
a FieldSpec® Handheld VNIR (325–1075 nm, 3.5 nm spectral resolution) spectro-
radiometer (ASD Inc., Boulder, CO, USA) calibrated to a Spectralon® reflectance
reference panel before each measurement set. The spectrometer was handheld in a
nadir view position at ∼1.2 m height facing towards the sun, with a 25◦ bare-head
optic giving a ground instantaneous field-of-view of 53 cm in diameter. In order to
provide validation data for the HELM correction lines, measurements were also made
of a sandy school playground, a compacted red-soil road area and an area of tarmac
hard standing. Furthermore, a GPS was used to record the position of the centre of
each of the targets so their location could be accurately determined within the SPOT
image.

Finally, a topographic normalization was applied using band-specific ‘c’ correction
factors calculated for identified general vegetation classes (Teillet et al. 1982, Clark
and Pellikka 2009). The satellite data acquisition date in October coincides with the
end of the dry season. Before the short rains occurring in November to December,
the croplands in the hills have just been planted (Jaetzold and Schmidt 1983) and
are without vegetative cover and the biomass of the forests and woodlands is at its
lowest. Consequently, differentiation between croplands and perennial vegetation is
more easily accomplished than with rainy season imagery.

3.3 Dwelling-unit data derived from airborne digital image mosaics

The dependent variable dwelling units were interpreted by on-screen digitization from
airborne digital image mosaics covering 30% of the Taita Hills using ArcGIS 9.3 soft-
ware (Esri Inc., Redlands, CA, USA) (figure 1). To improve interpretation accuracy of
dwelling units, ground-reference data were collected during January 2005 and 2006.
A random non-stratified household survey (n = 100) carried out in October 2006
resulted in an average of 6 persons per dwelling unit, whereas a survey carried out
by Soini (2005) resulted in an average of 6.2 people (n = 45). This number of inhabi-
tants is somewhat higher than the average of 4.7 inhabitants for the Wundanyi division
based on the population census of 1999. However, as the census presents fewer inhabi-
tants per household for sub-locations in the lowlands, a reliable figure to represent the
average number of dwellers per household for the whole of the Taita Hills was con-
sidered to be six people. This was the figure used with human population-abundance
regression analysis.

3.4 Satellite-image classification

The SPOT image was classified into land-use and land-cover (LULC) types, according
to nomenclature that was derived using the land-cover classification system (LCCS)
protocol developed by the Food and Agriculture Organization (FAO) of the UN and
the UN Environment Programme (Di Gregorio 2005). The LCCS software generates
unique codes and Boolean formulas for each class, which allows other users to recon-
struct the definitions used. The land-cover classes were defined based on the inspection
of the airborne remote-sensing and SPOT data and fieldwork (Clark and Pellikka
2009).

D
ow

nl
oa

de
d 

by
 [

M
ik

a 
Si

lja
nd

er
] 

at
 1

3:
11

 1
0 

A
ug

us
t 2

01
1 



Modelling rural population distribution in Africa 9

A multi-scale segmentation/object relationship modelling (MSS/ORM) approach
using Definiens eCognition software (Trimble Navigation Ltd, Sunnyvale, CA, USA)
was applied for land-cover classification of the SPOT data (Burnett and Blaschke
2003, Baatz et al. 2004, Clark and Pellikka 2009). In a multi-scale segmentation, a
so-called ‘scale’ parameter is used to determine the average size of the image segments
at each level in the hierarchy. The first segmentation level is critical because the bor-
ders defined at this stage will be adhered to by any subsequent segmentations, either
subdividing the image-object primitives or combining them into larger objects. In the
small-scale cultivation areas in the hills, a very detailed initial segmentation with a
scale parameter of two was used, whilst in the shrublands in the foothills and low-
lands, an aggregation with a scale parameter of 4 was used. These segmentation levels
were merged to the final mapping level 2. In the classification process itself, various
segmented image-object spectral, contextual and hierarchical properties were used to
determine the land-cover type of each image segment. The output map was subject
to final visual inspection and manual editing of any noted errors. Ground-reference
test data were collected during field work in January 2005 and 2006 using stratified
random sampling and used in the classification accuracy assessment together with the
airborne digital camera data acquired three months after the SPOT acquisition date.
The overall accuracy of the final manually edited land-cover map was 89%, with a
kappa index for agreement of 0.87. The class-specific producer’s and user’s accuracy
assessment and image-segmentation methodology are discussed in more detailed in
Clark and Pellikka (2009).

3.5 Predictor variables

We derived three sets of predictors from the THEMS database; a first set of remote-
sensing-based variables: reflectance, texture, land cover; a second set of variables
derived from geospatial datasets: elevation, aspect, slope, TWI, precipitation, irra-
diance and distance from roads or rivers; and a third set of combined variables. All
predictors were organized in a geospatial database at 20 m grid resolution to match
with the spatial resolution of the SPOT data. The Zonal statistics or summarize func-
tions (ESRI 1991) in ArcGIS 9.3 was used to summarize mean, majority or percentage
values within each of the 100 m analysis squares across the study area. The predictor
variables are listed in table 1.

3.5.1 Predictors from remote-sensing data. The SPOT satellite data were used to
derive the predictors from reflectance statistics, image texture and the classified land-
cover map. First-order image statistics were the mean surface reflectance of SPOT
bands 2 and 3 (red and NIR). We excluded band 1 (green) because of high Pearson’s
correlation (r) with the red band (r > 0.95). For second-order image-texture mea-
surements, we used angular second moment, contrast, correlation, sum of squares
variance, inverse difference moment and entropy, as they are the most relevant texture
measures according to Baraldi and Parmiggiani (1995). Three different sizes of moving
windows in Geographic Resources Analysis Support System (GRASS) 6.3 software
(Open Source Geospatial Foundation, Vancouver, BC, Canada) were tested: 3 × 3,
7 × 7 and 15 × 15, with the result that 3 × 3 resulted in a ‘salt and pepper’ effect and
the 15 × 15 window in a very strong smoothing effect. Consequently, we employed
the 7 × 7 window size, as in Shaban and Dikshit (2001). The texture measures were
calculated in four directions (0◦, 45◦, 90◦ and 135◦) and averaged, as suggested by
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10 M. Siljander et al.

Haralick et al. (1973). Second-order image-texture measures based on the GLCM
were calculated for both the red and NIR band, but due to high correlation, only
texture measures for the red band were used in the regression analysis. Furthermore,
red-band second-order image-texture measures had strong correlation with each other,
except for angular second moment and correlation (r < 0.1). Therefore, we accepted
only angular second moment and correlation as second-order image-texture variables
for regression analysis. To summarize image-texture measures in the 100 m analysis
squares, we calculated the mean of pixel values from the texture images. Only four
land-cover classes (croplands, thicket, woodland and plantation forest) were used from
the LULC due to relatively low prevalence or high correlation with other predictors of
the other land-cover classes. The percentage of spatial coverage for different land-cover
classes in each 100 m analysis square was calculated using the summarize function in
ArcGIS 9.3.

3.5.2 Predictors from geospatial datasets. A 20 m planimetric resolution raster
DEM was interpolated from 15.45 m interval contour lines (captured from Survey
of Kenya 1:50 000 scale topographic maps), utilizing the TOPOGRID function in
ArcGIS, which is based upon the ANUDEM programme (Hutchinson 1989). The
method applies a discretized thin plate spline technique, in which the roughness
penalty has been modified to allow the fitted DEM to follow abrupt changes in relief,
such as streams and ridges, which is useful in rugged terrain. The spot-height infor-
mation on the scan maps was not used in the interpolation process, but rather these
heights were used to assess an altimetric root mean square error (RMSE) for the DEM
of ±8 m, whilst a digitization accuracy of ±1 mm derived a planimetric accuracy esti-
mate of ±50 m. The mean elevation, slope and aspect were calculated from the 20 m
DEM and a commonly used indirect soil moisture measurement, TWI, was derived
using a custom-made geoprocessing model in ArcGIS 9.3. The TWI (ω) was calculated
using the following formula:

ω = ln (As/tan α) (1)

where ln denotes the natural logarithm, As represents the upslope contributing area
and α the slope angle (Beven and Kirkby 1979, Moore et al. 1991). Irradiance, solar
radiation energy received on a given surface area in a given time (kW h m−2 month−1),
was calculated from the DEM using an ArcInfo AML macro (shortwavc.aml) (Esri
Inc., Redlands, CA, USA) (Kumar et al. 1997, Zimmermann 2000). For the analysis,
yearly mean irradiance values were scaled from 0 to 1. Long-term mean precipitation
grids were interpolated from monthly available meteorological data and surrounding
areas using ANUSPLIN software (Hutchinson 1995, Erdogan et al. 2011). Euclidean
distance to main roads and main rivers, digitized from the Kenya 1:50 000 scale
topographic map, were calculated using the Euclidean distance function in ArcGIS 9.3.

3.6 Statistical analysis techniques

We used GAMs (Hastie and Tibshirani 1990), which are a non-parametric exten-
sion of generalized linear models (GLMs) (McCullagh and Nelder 1989) to relate
the dwelling units to remotely sensed and geospatial predictor datasets. GAMs were
fitted using a logit link function and binomial error distribution for dwelling-unit dis-
tribution models and a Poisson error distribution via logarithmic link function for
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Modelling rural population distribution in Africa 11

dwelling-unit abundance models (Hastie and Tibshirani 1990). GAMs were run using
smoothing splines with four degrees of freedom as default (Venables and Ripley 2002).

3.6.1 Model calibration. Models were calibrated using the GRASP 3.3 package
(Lehmann et al. 2002) for S-PLUS 6.2 (TIBCO Software Inc., Somerville, MA, USA).
The full dataset for model building (n = 10 488) was randomly divided into a calibra-
tion dataset including 70% (n = 7342) of the samples and into an evaluation dataset
(n = 3146) using random selection in SPSS 15.0 for Windows (IBM Corporation,
Armonk, NY, USA) following the split-sample approach (Guisan and Zimmermann
2000).

For three different datasets (full, calibration and evaluation data), we fitted three
types of regression models: two partial models and one full model, which enabled us to
study the individual model performance. The first partial model used only the remote-
sensing-based predictors, the second only the geospatial predictors and the full model
all the predictors. In each modelling case, we started from a complete model with all
variables included. Stepwise regression procedures were used in model selection based
on Akaike’s information criterion (AIC) (Akaike 1974).

3.6.2 Model evaluation. All models were evaluated as follows:

1. By using the percentage of explained deviance as an indicator for model
explanatory power (D2). It was obtained by dividing the difference between null
and residual deviance by the null deviance. We adjusted the D2 value following
Weisberg (1980) and Guisan and Zimmerman (2000) as:

adj.D2 = 1 − [(n − 1)/(n − p)][1 − D2] (2)

The value of the adjusted D2 (adj.D2) increases with an increasing number of
observations (n) or a decreasing number of parameters (p) in the model. This
approach corrects the D2 (deviance explained) for the number of fitted regres-
sion parameters and the number of observations, thus considering the degrees
of freedom.

2. By using the area under the curve (AUC) from the receiver operating charac-
teristic plot to indicate the model predictive power (Fielding and Bell 1997).
A rough guide for classifying the accuracy of the AUC is the traditional aca-
demic point system (Swets 1988): 0.90–1.00 = excellent; 0.80–0.90 = good;
0.70–0.80 = fair; 0.60–0.70 = poor; 0.50–0.60 = fail.

3. By using Cohen’s kappa statistic (Cohen 1960). The kappa value was calculated
using optimal thresholds determined with the PresenceAbsence R-package
(http://cran.r-project.org). kappa scores were calculated for 100 threshold val-
ues (in 0.01 increments), and the one that provided the highest kappa became
the accepted threshold (Segurado and Araújo 2004). According to Landis and
Koch (1977), models can be classified based on the kappa statistics into: poor,
κ < 0.00; slight, κ = 0.00–0.20; fair, κ = 0.21–0.40; moderate, κ = 0.41–0.60;
substantial, κ = 0.61–0.80 and almost perfect, κ = 0.81–1.00.

4. By calculating the contribution for each predictor in the combined distribution
and abundance models using a calibration dataset. Model contribution gives
an indication of the contribution of the variable within the selected model.
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12 M. Siljander et al.

It corresponds to the possible range of variation on the scale of the linear
predictor (Lehmann et al. 2002).

5. Predictor maps from selected models were used to predict probability of
dwelling occurrence on a 100 m grid resolution for the whole study area.
Prediction maps were built in ArcView 3.2 (Esri Inc., Redlands, CA, USA).
Models were first exported from S-PLUS as lookup tables and processed in
ArcView 3.2 by a ready-made Avenue script, which is a part of the GRASP
package. This script reclassifies the predictors maps corresponding to those
selected in the model (Lehmann et al. 2002).

3.7 Comparison of model output with global and Kenyan population data

LandScan 2005 and GPWv3 global population grids covering the study area were
converted from grid format to vector format as points using ArcGIS 9.3. Each point
then represented the total population of the grid cell. As a result, we were able to
compare our predictive population models with LandScan 2005 and GPWv3 datasets
by selecting points that fell inside the Taita Hills study area. We also made upscaling
operations in ArcGIS 9.3 by summing the LandScan 1 km population data to match
with the GPWv3 5 km grid and then doing the same with the 100 m population-
abundance modelling data. This upscaling method proved to have a weakness, since
some 5 km grids fell partly outside the study area (figure 2). In the end, only 14 grids
were used for comparing the population. Correlation analysis was made between these
three different datasets.

In order to compare predicted population models with Kenyan census data for 1999,
we summed 100 m population-abundance modelling points that fell inside a specific
sub-location polygon. The first dataset included the 32 sub-locations located totally
above the 1100 m elevation zone and the second one included sub-locations extend-
ing also to the lowlands, totalling to 50 sub-locations (figure 2). Correlation between
Kenyan census data for 1999 and different population models was calculated for both
datasets.

4. Results

4.1 Explorative data analysis

Before the model calibration process, correlations between predictor variables were
investigated in order to avoid problems caused by multi-collinearity in regression anal-
ysis (Farrar and Glauber 1967). Despite high correlation (r = −0.88) between slope
and irradiance, we kept both variables for modelling because of our interest in depen-
dency of dwelling-unit locations on them. The correlation coefficient for all the other
variables was lower. As an example, relatively high correlation (r = 0.39) occurred
between reflectance values in the NIR band and elevation, expressing that there is
more strongly reflecting green vegetation in higher areas, evidently as a result of the
high rainfall and cooler temperatures (table 2).

4.2 Explanatory and predictive power of the models

The distribution models explained 19–31% of variation in the dwelling-unit occur-
rence data (adj.D2). When comparing the explanatory power for calibration and
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Modelling rural population distribution in Africa 13

Figure 2. Study design for comparing different population datasets: LandScan 2005 (1 km);
GPWv3 (5 km); Kenyan census data for 1999 sub-locations in the Taita Hills (n = 32) and
sub-locations also extending into the lowlands (n = 50). GAM model grids (100 m) not
shown.

evaluation data, the adj.D2 was only slightly lower for evaluation data, confirm-
ing that the models were stable. Predictors from remote-sensing data explained
25% of the dwelling-unit distribution, whilst predictors derived from other geospa-
tial data explained 20%. Combined models with all predictors had the best model
performance, explaining 31% of the variation in dwelling-unit data distribution
(table 3).

D
ow

nl
oa

de
d 

by
 [

M
ik

a 
Si

lja
nd

er
] 

at
 1

3:
11

 1
0 

A
ug

us
t 2

01
1 



14 M. Siljander et al.

T
ab

le
2.

C
or

re
la

ti
on

m
at

ri
x

of
th

e
en

vi
ro

nm
en

ta
l

pr
ed

ic
to

rs
us

ed
in

th
e

st
at

is
ti

ca
l

an
al

ys
es

.
C

or
re

la
ti

on
co

ef
fic

ie
nt

s
an

d
st

at
is

ti
ca

l
si

gn
ifi

ca
nc

es
w

er
e

de
ri

ve
d

fr
om

th
e

bi
va

ri
at

e
co

rr
el

at
io

n
pr

oc
ed

ur
e.

re
d

N
IR

P
la

nt
at

io
n

V
ar

ia
bl

e
E

le
va

ti
on

A
sp

ec
t

Sl
op

e
T

W
I

Ir
ra

di
an

ce
P

re
ci

pi
ta

ti
on

D
is

tr
iv

er
D

is
tr

oa
d

ba
nd

ba
nd

A
sm

2
C

or
r2

C
ro

pl
an

ds
T

hi
ck

et
W

oo
dl

an
d

fo
re

st

E
le

va
ti

on
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

n.
s.

∗∗
∗∗

∗∗
∗∗

∗∗
A

sp
ec

t
−0

.1
4

n.
s.

∗∗
∗∗

∗∗
∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗
Sl

op
e

0.
17

0
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗

T
W

I
−0

.1
0.

04
−0

.0
9

n.
s.

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
n.

s.
n.

s.
∗∗

∗∗
Ir

ra
di

an
ce

−0
.0

9
−0

.0
2

−0
.8

8
0.

01
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

P
re

ci
pi

ta
ti

on
0.

61
−0

.2
0.

25
−0

.4
4

−0
.1

8
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
D

is
tr

iv
er

0.
04

0.
01

0.
26

−0
.6

2
−0

.1
5

0.
49

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
D

is
tr

oa
d

−0
.2

3
0.

12
0.

21
0.

08
−0

.1
9

−0
.1

4
0.

12
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
n.

s.
∗∗

re
d

ba
nd

−0
.2

2
0.

06
−0

.3
5

0.
14

0.
3

−0
.4

7
−0

.1
8

−0
.0

3
∗∗

∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

N
IR

ba
nd

0.
39

−0
.1

4
0.

04
0.

02
−0

.0
9

0.
4

−0
.1

2
−0

.2
8

−0
.2

8
∗∗

∗
∗∗

∗∗
∗∗

∗∗
A

sm
2

0
0.

06
0.

14
−0

.0
3

−0
.1

3
0.

16
0.

13
0.

27
−0

.4
−0

.0
5

n.
s.

∗∗
∗∗

∗∗
∗∗

C
or

r2
0.

09
−0

.0
4

0.
1

−0
.0

4
−0

.0
8

0.
03

0.
03

−0
.0

6
−0

.0
1

0
−0

.4
∗∗

∗∗
∗∗

∗∗
C

ro
pl

an
ds

0.
22

−0
.2

1
−0

.2
2

0.
01

0.
2

0.
13

−0
.1

3
−0

.3
8

0.
4

0.
36

−0
.3

8
0.

02
∗∗

∗∗
∗∗

T
hi

ck
et

−0
.2

7
0.

07
0.

2
0

−0
.1

2
−0

.2
2

0.
11

0.
31

−0
.0

5
−0

.5
8

0.
11

0.
03

−0
.4

6
∗∗

∗∗
W

oo
dl

an
d

0.
09

−0
.0

5
0.

2
0.

02
−0

.2
1

0.
25

0.
02

0.
01

−0
.5

2
0.

51
0.

06
0.

07
−0

.1
7

−0
.2

5
∗∗

P
la

nt
at

io
n

fo
re

st
0.

26
−0

.0
1

0.
01

−0
.2

0.
01

0.
33

0.
1

−0
.1

4
−0

.4
4

0.
06

0.
11

0.
1

−0
.1

7
−0

.2
−0

.0
4

N
ot

e:
P

ea
rs

on
’s

co
rr

el
at

io
n

(∗∗
=

p
<

0.
01

,∗
=

p
<

0.
05

,n
.s

.=
no

n-
si

gn
ifi

ca
nt

).

D
ow

nl
oa

de
d 

by
 [

M
ik

a 
Si

lja
nd

er
] 

at
 1

3:
11

 1
0 

A
ug

us
t 2

01
1 



Modelling rural population distribution in Africa 15

Table 3. The explanatory power (deviance explained) of model fit. Adjusted D2 values are
listed for the models containing both predictor sets (combined), the geospatial predictors

only (geospatial models), and the remote-sensing-based (RS) predictors, respectively.

Geospatial models RS models Combined models
adj.(D2) adj.(D2) adj.(D2)

Distribution models
All data (n = 10 488) 0.20 0.24 0.30
Calibration data (n = 7342) 0.20 0.25 0.31
Evaluation data (n = 3146) 0.19 0.24 0.29

Abundance models
All data (n = 10 488) 0.30 0.38 0.46
Calibration data (n = 7342) 0.32 0.39 0.47
Evaluation data (n = 3146) 0.28 0.36 0.44

Fourteen variables with smoothing splines and four degrees of freedom were
included in the final GAM model for population distribution. The regression formula
has the form:

Dwelling-unit presence ∼ s(Elevation, 4) + s(Aspect, 4) + s(Slope, 4) + s(TWI, 4) +
s(Precipitation, 4) + s(Distriver, 4) + s(Distroad, 4) + s(red band, 4) + s(NIR band, 4)
+ s(Asm2, 4) + s(Corr2,4) + s(Croplands, 4) + s(Thicket, 4) + s(Woodland, 4) where
s = spline smoother and 4 is the number of degrees of freedom for the spline smoother.

All distribution models were capable of discriminating between presence and
absence dwelling units, with AUC values ranging from 0.80 for models based on
geospatial data to 0.86 for combined models. According to the classification by Swets
(1988), discrimination is low if AUC < 0.7, fair if 0.7 < AUC < 0.8, good if 0.8 <

AUC < 0.9 and excellent if AUC > 0.9. Consequently, all the models had good
discrimination capacity (table 4).

Abundance models explained 28–47% of the variation in dwelling-unit abundance
data (adj.D2). Models based on the geospatial data explained c. 28% to 30%, mod-
els based on the remote-sensing data explained 36–39% and models combining both
sources explained 44–47% of the variation in dwelling-unit abundance (table 3).
Fifteen variables with smoothing splines and four degrees of freedom were included
in the final GAM model for population abundance. The regression formula has the
form:

Population abundance ∼ s(Elevation, 4) + s(Aspect, 4) + s(Slope, 4) + s(TWI, 4) +
s(Precipitation, 4) + s(Distriver, 4) + s(Distroad, 4) + s(red band, 4) + s(NIR band,
4) + s(Asm2, 4) + s(Corr2, 4) + s(Croplands, 4) + s(Thicket, 4) + s(Woodland, 4) +
s(Plantation forest, 4) where s = spline smoother and 4 is the number of degrees of
freedom for the spline smoother.

Table 4. Model performance predictive power (area under the receiver operator
curve, AUC).

Geospatial models RS models Combined models
Distribution models AUC AUC AUC

All data (n = 10 488) 0.80 0.83 0.86
Calibration data (n = 7342) 0.80 0.83 0.86
Evaluation data (n = 3146) 0.80 0.82 0.85
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16 M. Siljander et al.

Table 5. Model accuracy assessed using Cohen’s kappa value (Cohen 1960).

Geospatial models RS models Combined models
Distribution models (kappa) (kappa) (kappa)

All data (n = 10 488) 0.37 0.42 0.47
Calibration data (n = 7342) 0.37 0.42 0.47
Evaluation data (n = 3146) 0.36 0.41 0.46

Kappa statistics for distribution models were calculated using optimized thresholds
in the PresenceAbsence R-package. The kappa value was the best for combined mod-
els, good for models based on remote-sensing data, but less satisfactory for models
based on geospatial data (table 5).

4.3 Model contributions of predictors

Table 6 shows the contribution of each predictor within the selected population distri-
bution and abundance models. Angular second moment image-texture measurements
for SPOT red band (Asm2) had the highest contributions in both of the models. Other
variables contributed less, but precipitation, mean elevation and reflectance in red and
NIR bands played an important role in the distribution models. For abundance mod-
els, remote-sensing-based predictors also contributed the main part. Precipitation,
distance to roads (Distroad) and elevation were the major geospatial contributors for
abundance models.

4.4 Partial response curves

One of the key parts of the interpretation of GAM models is the description of the
predictors’ partial response curves represented in figure 3. The model predicts that

Table 6. Contribution in percentage of each predictor within the selected models
(model contribution in GRASP).

Contributions (%)

Predictor Distribution models Abundance models

Elevation 3.73 2.19
Aspect 0.37 0.16
Slope 1.77 1.79
TWI 1.59 1.09
Irradiance Not in the model Not in the model
Precipitation 3.92 2.72
Distriver 0.96 0.72
Distroad 2.47 2.26
red band 3.57 2.49
NIR band 3.7 2.86
Asm2 14.9 13.36
Corr2 2.53 1.13
Crops 1.07 0.76
Thicket 0.64 0.67
Woodland 0.79 1.07
Plantation forest Not in the model 0.61
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Figure 3. Response curves from the final population distribution GAM model based on
Akaike’s information criterion (AIC) selection method for dwelling units. Results are expressed
in the scale of the additive predictor before transformation into the prediction scale by the
inverse link function. Dashed lines represent upper and lower pointwise twice-standard-error
curves. Tickmarks show the location of observations along the variable range. For definitions
of the predictor variables units, see table 1.

more people tend to live at lower elevations between 1100 and 1300 m a.s.l. and on east
and southeast facing slopes. This may be explained by rain-shadow effects related to
the aspect causing the western slopes to be less favourable for agriculture. The response
curve for slope shows that dwelling units are present on slopes less than 35◦, whilst the
maximum response was obtained at slope angles of 10◦. Actually, almost all the land
area above 1100 m a.s.l. in the Taita Hills is inclined. Fewer people are expected to
live in very moist areas (TWI in figure 3), and there is a clear pattern that there are
more houses in areas with higher precipitation. People seem not to live very close
to rivers, since the maximum value being reached was at a distance of 200 m from
rivers. The reason might be that in rough mountainous areas, the rivers are at the
bottom of steep valleys, whilst the small brooks and springs attracting people are not
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18 M. Siljander et al.

included in the river data derived from the topographic map. As expected, people tend
to live close to roads. There is a curvilinear association between presence of dwelling
units and red reflectance, with dwelling-unit occurrence peaking at a reflectance value
of 17%, which may be explained by the fact that there is strongly reflecting barren
land associated with built-up areas. The NIR band peaked at the reflectance value
35%, presumably caused by strongly reflecting orchard trees and croplands adjacent to
dwelling units. Image-texture measurement angular second moment for the red band
(Asm2) had more dwellings at low values, and the same type of almost linear decline
can be seen for image-texture correlation measurement (Corr2). The response curve
for the croplands had a positive association peaking at c. 40% and declining from
there on, which is as expected since farming in the area is typically practised by small
households. Dwellings were present at low values for thicket and woodland because
agriculture is not favourable in those land-cover types. Irradiance was dropped out
from the final distribution and abundance models because of the high correlation with
slope variable, and plantation forest class was also dropped out from the distribution
model due to the relatively low prevalence of the class in the dataset.

4.5 Predicted human population distribution and abundance maps

The GAMs were extrapolated for the whole study area, and dwelling-unit probability
maps were produced using GIS techniques as shown in figure 4, in which it is seen that
the model is capable of discriminating between inhabited and uninhabited areas. In
figure 4, there are no dwelling units in Ngangao forest or in the lake and swamp in the
northeastern part of the image, for example. The model is also capable of predicting
human population concentrations in and around the villages and distinguishes the
absence of dwellings on cultivated fields by giving a low dwelling-unit probability. A
probability map of human population distribution extrapolated for the whole study
area (Taita Hills above 1100 m) can be seen in figure 5.

4.6 Model comparison with two existing population databases and
Kenyan census data

We compared our population-abundance models with two existing global scale pop-
ulation products, GPWv3 and LandScan 2005. There was a statistically significant
correlation between our combined and remote-sensing-based models and the GPWv3
product (r > 0.8), but the correlation was non-significant with the geospatial model
(r = 0.19). For LandScan 2005, the correlations were lower (table 7).

The correlation between Kenyan census data for 1999 and predicted population-
abundance models are high for remote-sensing data (r = 0.71) and combined models
(r = 0.51) when solely sub-locations over 1100 m a.s.l. (n = 32) were used. For
geospatial models, the correlation was non-significant. There was low correlation
(r = 0.34) between remotely sensed population-abundance models and Kenyan cen-
sus data for 1999 for the sub-locations also extending into the lowlands (n = 50), and
no correlation for combined and geospatial models (table 8).

5. Discussion

To give an answer to two simple questions, ‘how many are we’ and ‘where do we live’
is not an easy task, since estimation of human population distribution and abundance
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Modelling rural population distribution in Africa 19

Dwelling-unit probability

Figure 4. (a) Typical rural area in the Taita Hills around Ngangao indigenous forest in the
digital camera mosaic acquired on 25 January 2004 and (b) the prediction map of inhabited
areas around the same area (100 m grid). The location of Ngangao forest can be seen in figure 1.

is very challenging. In Europe, for instance, population census counts are carefully
collected and stored in digital format, but in Kenya, for example, population data are
gathered by counting people by a traditional census, which is a complex nationwide
error-prone operation. The census is carried out at a household level, and the data are
then aggregated to administrative units, from sub-location to district levels. Population
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Figure 5. A map of land cover and the predicted inhabited areas in the Taita Hills. The prob-
abilities for dwelling-unit occurrence were calculated for the whole study area with a calibrated
GAM at 100 m resolution using combined predictors.

data in Kenya are determined by these administrative areas, even though often stan-
dardized units, such as regular analysis grids, are preferred in scientific applications.
We used GRASP regression modelling based on airborne imagery and geospatial data
for predicting human population distribution and abundance in the Taita Hills, Kenya,
to obtain population estimates in regular analysis grids.
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Modelling rural population distribution in Africa 21

Table 7. Correlation between different population data sets upscaled to 5 km grid
(n = 14). Correlation coefficients and statistical significances were derived from the

bivariate correlation procedure.

Population Combined RS Geospatial
model GPW LandScan (mean) (mean) (mean)

GPWv3 n.s. ∗∗ ∗∗ n.s.
LandScan 2005 0.47 ∗ ∗∗ n.s.
Combined (mean) 0.82 0.67 ∗∗ n.s.
RS mean 0.83 0.70 0.91 n.s.
Geospatial (mean) 0.19 0.20 0.53 0.19

Note: Pearson’s correlation (∗∗ = p < 0.01, ∗ = p < 0.05, n.s. = non-significant).

Table 8. Correlation between population models and Kenya population census 1999 for sub-
locations solely in the Taita Hills (n = 32) and for sub-locations also extending to lowlands
(n = 50). Predicted population was summed to a specific sub-location. Correlation coefficients

and statistical significances were derived from the bivariate correlation procedure.

Taita Hills data (n = 32)
Taita Hills and lowland data

(n = 50)

Combined RS Geospatial Combined RS Geospatial

Kenya census 1999 0.54∗∗ 0.71∗∗ 0.11 n.s. 0.19 n.s. 0.34∗ −0.07 n.s.

Note: Pearson’s correlation (∗∗ = p < 0.01, ∗ = p < 0.05, n.s. = non-significant).

5.1 Model performance

The results of the GAM models presented here suggest that the distribution and abun-
dance of population can be explained using remote-sensing and geospatial data. The
explanatory power of the models was moderate, and the predictive power was good.
Predictors combined from remote-sensing and geospatial data had the best model per-
formance, indicating that both variable groups are needed in modelling, which is in
line with other studies. Lo (1995), for example, integrated digital imagery and geospa-
tial data for population density regression analysis for the Hong Kong metropolitan
area. Studies in species population distribution modelling, including remotely sensed
variables and topographic and climatic variables (Thuiller et al. 2004, Zimmermann
et al. 2007), confirmed that remotely sensed variables improved the fit of the models.
Thuiller et al. (2004) found that the inclusion of land cover significantly improved
the explanatory power of bioclimatic species models, whereas Zimmermann et al.
(2007) analysed the partial contributions of remotely sensed and topographic–climatic
predictor sets and concluded that the model fit was highest when using combined
predictors. Buermann et al. (2008) found that distribution models that included topo-
graphic, climatic and remote-sensing-derived vegetation variables were more accurate
than models including only topographic and climatic variables.

Remotely sensed variables alone have also proven to be good predictors in species
population distribution studies. Zimmermann et al. (2007) found that models derived
only with remotely sensed predictors had only slightly less satisfactory model perfor-
mance than combined models. This was in accordance with our findings where the
model explanatory and prediction performance was lower for only remotely sensed
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variable groups than for combined models, but still the model fit was reasonably
good. We used first- and second-order texture measurements, and in the final pop-
ulation distribution and abundance models, the angular second moment was the best
predictor. St-Louis et al. (2006) also used image-texture measurements for species-
distribution models with high model performance. Li and Weng (2005) used Landsat
ETM+ imagery to estimate urban population density, and they found that integration
of texture, temperature and spectral predictors substantially improved the accuracy of
population estimation.

The normalized difference vegetation index (NDVI) is commonly used for assessing
landscape characteristics in species modelling, even though it has significant corre-
lation with the red and NIR bands, as it is calculated from these reflectances. We
investigated NDVI values for human population models, but eliminated it due to
the high correlation with the red and NIR bands. A relatively low performance of
land-cover variables made us wonder if it was necessary to include land-cover clas-
sification at all, given the production effort needed to generate such data, when the
first-order image statistics and second-order texture measurements from the origi-
nal SPOT imagery had higher contributions to the population models. Guisan and
Zimmermann (2000) and Bellis et al. (2008), for example, stated that land-cover maps
derived from remote sensing are often not detailed enough to improve predictions of
species distribution models.

Variables derived from geospatial data had by far the lowest model performance in
our population models, and therefore we suggest that they should not be used alone
as predictors for dwelling-unit distribution and abundance modelling. However, avail-
ability of a more precise road network and hydrographic network might have improved
the model performance. For example, in the rural areas of the Taita Hills, the majority
of houses are accessed only by footpaths, which are not included in the road net-
work (which we digitized from 1:50 000 scale maps). Therefore, the distance to roads
resulted only in an indicative result. Other predictors from geospatial data, for exam-
ple, soil type, could also be tested for model improvement. Precipitation was the main
determinant factor derived from geospatial data for human population distribution
at a local scale. Due to orographic rainfall patterns, rainfall is more abundant in
higher elevations, especially on the south and southeastern slopes. Another reason
why elevation correlated with abundance of dwelling units is lower temperatures at
higher elevations causing decreased evapotranspiration for plants and a more tolera-
ble climate for people. However, temperature was left out from the modelling due to
an almost linear correlation with elevation. In our final models, distance-based vari-
ables, especially the distance to roads variable, had a surprisingly low role, as discussed
earlier.

When calculating the GRASP model contribution (table 6), the angular sec-
ond moment image-texture measurement had the highest contribution. Second-
order image-texture factors have been shown to be important factors in urban
population-density analysis (Shaban and Dikshit 2001, Li and Weng 2005), and
species-occurrence analysis (St-Louis et al. 2006). These results are in accordance with
our study, where both texture measurements, angular second moment and correlation
had an important contribution in dwelling-unit modelling performance. First-order
image statistics values, that is, red and NIR reflectance from the SPOT data, were also
important predictors.

There was statistically significant correlation between our combined model and the
model derived from remote-sensing data and the GPWv3 product, but the correlation
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Modelling rural population distribution in Africa 23

was non-significant, with the model derived from geospatial data. For LandScan 2005,
the correlations were lower, which indicates that GPWv3 should be used instead of the
LandScan product if population is estimated for rural mountainous areas in Africa.
However, the coarse resolution of 5 km of GPWv3 at the equator makes it a bit less
usable than the LandScan product, which has a resolution of 1 km. It can be con-
cluded that GPWv3 is too coarse for local-scale population studies, and the accuracy
of LandScan 2005 is questionable. Having stated this, it needs to be borne in mind
that population models are place and time dependent, and our population-abundance
model for the Taita Hills relates solely to dwelling-unit count and is based on the
assumption that six persons live in each dwelling unit. In reality, the exact numbers
might vary though.

Local-scale predictive human population models proved to have high correlation
with the Kenyan census data for 1999 in the Taita Hills, but low or no correlation at
all when the sub-locations that extended into the lowlands were analysed. This finding
confirms that the present sub-location units are inadequate to model the population
distribution in mountainous rural areas in which the population density is highly vari-
able within the sub-location. The difference between our population prediction in the
area over 1100 m a.s.l. and the census could also be partially explained by the popula-
tion growth and the time gap between 1999 and 2005 and 2006, when the field survey
was carried out.

In this study, we omitted socio-economic predictors, except distances calculated to
the main roads, even though socio-economic factors, such as kinship, cost of land,
land tenure and migration patterns, are important determinants of human settlement
patterns. The reason these factors were omitted is that they are often very hard or
even impossible to collect and use in a proper manner in predictive human population
grid-based geospatial analyses, especially in studies conducted in data impoverished
developing countries. This study deliberately aimed at testing the suitability of using
solely remote-sensing and geospatial predictors to estimate human population distri-
bution and abundance at a local scale. Based on the results of this study, we believe
that the omission of socio-economic factors may affect modelling performance. This
factor probably manifested itself in our models as the fairly low predictive power in
explaining 19–31% of variation in the dwelling-unit occurrence data and 28–47% of
the variation in dwelling-unit abundance data. Therefore, we recommend the inclu-
sion of socio-economic factors in human prediction models if such data have been
collected for the study area in question and are available in a suitable way for predictive
modelling. However, we believe that the results of this study in estimating population
distribution and abundance using solely remote-sensing and geospatial predictors are
encouraging. Therefore, we suggest that these models could be used if up-to-date cen-
sus data is not available or if the resolution of existing grid-based population models is
too coarse for the study purpose. Predictive modelling techniques can be considered as
a noteworthy alternative for human population distribution and abundance analysis,
especially in areas of rapid population growth and land-cover change, such as Africa.

6. Conclusions

Accurate data of human population size and distribution are not available for many
parts of the world or are of poor quality. In a local-scale population study, the global
population products GPWv3 and LandScan 2005 proved to be ill-fitting to estimate
the Taita Hills population at a fine scale, and population census data, based on
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sub-locations as geographical and statistical units, proved to be cumbersome. The pre-
dictive models using predictors from remote-sensing and geospatial data created here
were found to be more accurate than global datasets and correlated well with the cen-
sus data too. However, it must be kept in mind that the modelling can often be applied
only with sufficient datasets within a limited geographical extent.

Consideration should be given to the possibilities of local specialists to repli-
cate the methodology in the creation of population and other kinds of geospatial
models for Africa. Models should be straightforward and the GIS and statistical soft-
ware used should be free, low-cost or open-source software. In this study, we used
GRASP with commercial software S-PLUS 6.2 (Insightful Corp.), but there is also
a GRASP package for the freeware R-program (R Development Core Team 2008).
Similarly, low-cost or free GIS software (e.g. GRASS) could be used for the creation
of geospatial datasets. Finally, based on our experience, we highly recommend that the
GRASP method should be used in manifold predictive modelling for the sustainable
management of the vulnerable environment.
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