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1 Introduction

Since the earliest graphical user interface (GUI) was introduced, the mouse has been

the most used pointing device. The mouse can be used to move through the user

interface and select or drag an item in an effective and accurate way. However,

the mouse is no longer the only pointing device that can be used. More and more

pointing devices with different technologies are being invented. For instance, the

touch screen is widely used on smart phones, tablets, and laptops or even desktops

recently and the mouse is not the only way that can be used to interact with GUI.

The mouse becomes a limited pointing device for some applications since it can

only be controlled by one hand and the tasks that the buttons can achieve are very

limited. People want to control GUI by their fingers, arms, bodies and eyes. In

order to meet people’s needs, many camera-based pointing devices were designed,

such as Leap Motion, Kinect and Tobii X120 [PAC13][FPT12]. Using these pointing

devices in a natural way is a problem. Some applications like painting require that

human’s behavior should be expressed in visually follow the right path while other

applications pay attention on the stableness of the output. In order to examine

the efficiency, accuracy and correctness of different pointing devices with different

pointing techniques, a systemic configurable framework is needed.

During the last twenty years, most pointing interface experiments were based on

International Organization for Standardization (ISO) 9241 Ergonomics of human–

system interaction, Part 400 Principles and requirements for physical input devices

[ISO10] compliant circular Fitt’s Law. The primary motivation of the standard is

to improve the user experience of computer pointing devices to cater to user’s phys-

iological capabilities and limitations. Meanwhile, the standard introduces uniform

testing procedures and guidelines to evaluate the performance of pointing devices

produced by different manufacturers [ISO10].

On the other hand, new pointing techniques were introduced to improve the perfor-

mance of pointing experience. Konig presented a precision enhancing technique to

reduce the error rate while users tried to point at a tiny object, namely Adaptive
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Pointing [KGDR09]. Adaptive pointing reduced the velocity of the pointer cursor

when the cursor was moving in low speed and a high precision was needed. How-

ever, the nature of adaptive pointing violated the assumption of absolute pointing

that displayed the pointer cursor in the right place where a user mentally wanted

to point at. Two years later, Gallo and Minutolo improved Adaptive Pointing so

that the pointer could follow the exact path that a user drew when ensuring the

stableness of the pointer, this new technique was called Smoothed Pointing [GM12].

Nevertheless, neither Adaptive Pointing nor Smoothed Pointing was a part of ISO

9241-400.

The aim of this thesis is to build an experimental platform which is able to gen-

erate experimental data for three pointing devices (Leap Motion, Kinect and Mi-

rametrix) based on a proposed configurable framework. The framework allows any

relative pointing or absolute pointing input to be enhanced with adaptive pointing

or smoothed pointing technique either through a calibration task or manually con-

figurations. The enhanced pointing data will be tested by an experiment task in

the experimental platform. At the same time, a model of human movement called

Fitts’s Law is used as the principle of the experiment task [AZ97].

This thesis is organized in six sections. Section 2 provides the background of the

research work. It introduces several absolute pointing devices and relative pointing

devices. Section 3 introduces the conceptual design idea of the platform architecture.

The algorithms of Adaptive Pointing and Smoothed Pointing as well as the principle

behind the experiment task are discussed. Section 4 shows how the platform is

implemented. The hardware and software of the implementation are introduced.

The calibration methods, the appearance of the application and the experiment

task are also included. In section 5, the platform is evaluated by gathering feedback

from several members in the research group and the results of the feedback are

summarized. Section 6 presents the concluding remarks as well as a brief analysis

of the results. At the end, future work is discussed.
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2 Pointing Interactions and Devices

In order to use any kind of computers, as the end user of computer program, hu-

man must communicate with a computer by sending messages to it or by receiving

feedback from it. These kind of exchanges are made by human through either an

input device or an output device depending on whether the information is going to

a computer or comes from a computer. Input devices are used to specify actions

and send information to computers and the output devices allow computers to show

the status or results of corresponding information. According to Preece [PRS+94],

input devices can be divided into two categories: keyboards and pointing devices.

Keyboards are the most popular input devices used to enter information into com-

puters. The number of possible commands is limited since the number of keyboard

keys which are used to produce letters, numbers or signs is finite. Pointing devices

are used to specify a state or a position in one, two or three dimensions. Computers

display the pointer continually according to the user action caught by the point-

ing devices. Certainly, the number of possible actions that a pointing device can

recognize is also limited.

Currently, lots of applications use both a keyboard and a pointing device together.

Normally, both of them are necessary, but some commands can be performed by

either a keyboard or a pointing device. For instance, icons on the desktop can be

selected by a keyboard or a mouse. Which device will be chosen depends on users’

preference.

2.1 Relative Pointing

Using relative pointing devices is a good choice when the available surface or space

is limited. Relative pointing devices let users move the cursor from a start position

to an ending position. Instead of mapping between a device and the coordinate on

the screen directly, relative pointing devices catch the coordinate in the motor area

and map into a corresponding coordinate on the visual area. The speed of moving
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a cursor can be adjusted by changing the value of the Control-Display Gain (CD-

gain). CD-gain is a unit free coefficient that maps the movement of the pointing

device to the movement in the display space [CVPC07].

3DConnexion SpaceBall 5000 (Figure 1) is a representative example, it is a relative

pointing device with 12 buttons and one trackball that allows the user to control the

rotation in applications and move a pointer cursor in 3 dimensions [DRBS90]. The

movement is performed by scrolling the rubber ball in desired direction while the

rotation is produced by rotating the ball horizontally. The SpaceBall can handle a

large movement in a very precise way since it can increase the CD-gain automati-

cally when fast speed scrolling is detected. Similar to most relative pointing devices,

the surface that the SpaceBall needs is relatively smaller than an absolute device

[DRBS90] needs. The SpaceBall is usually used as a succedaneum of traditional key-

board and mouse when users want to perform a navigation task in a 3D application

but only need several functional keys.

2.2 Absolute Pointing

Unlike relative pointing devices, absolute pointing devices require a larger surface or

space for reasonable movement. A pointer cursor will be shown at the exact place

that the user tries to point at. Laser pens are such devices; no matter how a user

moves the laser pen, the dot will always appear straight along the laser that comes

from the nib. However, absolute pointing devices like laser pen do not support any

enhanced pointing technology. Instead of using physically absolute pointing devices,

people usually perform a 3D tracking to obtain absolute pointing by a relative device.

Although relative pointing devices do not support absolute pointing by default, 3D

tracking systems can provide an absolute measurement with a relative input.

3D tracking uses sensors to monitor the key points or joints of human’s finger,

hand, body or eyes and calculates the corresponding coordinate according to the

collected information. There are mainly three technologies that can perform a 3D

tracking used in absolute measurement field, which are Video Tracking, Infrared



5

Figure 1: 3DConnexion SpaceBall 5000 Trackball. [3Dc14]

(IR) Tracking and Mechanical Tracking.

Video tracking is a low-cost tracking technology since the required devices are lim-

ited to cameras. Video tracking uses one camera or multiple cameras to locate a

moving object over time. The algorithm that performs video tracking analyzes con-

tinuous video frames and output the movement of target objects between two frames

[SxQlH07]. Video tracking is highly active, because the transmission speed from the

sensor to the object is the speed of light and the frames are only updated for thirty

to sixty times in a second [SxQlH07]. The update time duration between two frames
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allows the pointing devices to have time to transmit the image to a computer and

the computer have time to generate the output following a specific algorithm. Thus,

the more responsive the sensors and the computer are, the less delay the user will

recognize. Besides, video tracking does not need further equipment attached, the

whole tracking process is handled by the tracking algorithms regardless of what

object is being tracked. Nevertheless, the quality of caught image affects the accu-

racy of output. It depends on the environment lighting conditions and the distance

between cameras and objects.

Leap Motion (Figure 2) is a device that uses video tracking. It is a camera-based

pointing device that requires no hand contact or touching. The hand, finger or

tool motions are recognized by the sensor as input. The position of fingertip, the

direction of finger and the distance between the palm and fingertip, all these kind of

information related to users’ hand is transformed into numeric value and delivered

to an application. Meanwhile, the application analyzes the collected information

and displays the output according to the algorithm it performs.

IR Tracking is a lineal successor of video tracking. Since IR energy is emitted from

all things that have a temperature greater than absolute zero, the sensor used for

IR tracking does not have the problem with lighting condition, everything exists

on the earth can be detected by the IR sensor [WBA+13]. However, having this

advantage does not mean that IR tracking is better than standard video tracking.

Compare to the video tracking device, the relative higher capitalized cost of IR

sensor is still the main reason why most domestic device manufacturers prefer to

produce standard video tracking devices rather than IR tracking devices. On the

other hand, some detection problems occur when an IR sensor is trying to detect

the position of objects and other IR sources are around at the same time, those IR

sources can be candles or incandescent light bulbs [Cas06].

Nintendo Wii remote controller and sensor bar provide a platform for players so that

at most four players can be tracked by the IR sensors connected to the game console

regardless of television’s type or size. Figure 3 shows that a player is interacting
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Figure 2: Leap Motion. [LM14]

with Nintendo Wii. The player holds a Wii remote controller and try to aim at the

sensor bar placed upon a television. The Wii remote controller senses light from

the sensor bar and outputs the coordinate and size of the four brightest IR points

it recognizes [Ett11].

Mechanical Tracking is mainly used for motion capture which tracks body joint an-

gles. In order to use mechanical tracking, some sensors are usually attached to the

body, this is the reason why mechanical tracking is always referred to as Exoskeleton

motion tracking [PB02]. Haptic feedback is useful in a mechanical tracking system

when the system needs to guide users’ behavior. Unlike video tracking, mechanical

tracking system does not need to care about how bad the environment is, since all

motions are captured by sensors and the sensors communicate with the mechani-

cal tracking system through wired or wireless connections. Due to this advantage,

mechanical tracking is very accurate and the caught motions can be updated in a

high frequency. The disadvantage of mechanical tracking is obviously the weight of
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Figure 3: Player Interacts with Nintendo Wii. [Lim13]

sensors. Some system requires user to be equipped by rigid structures of straight,

jointed metal or plastic rod connected together. Those equipments usually weigh 3

kilograms (approximately 6.6 pounds) or even more than 3 kilograms, it is a hard

pressure for users if they need to do a series of continuous actions [PB02].

As a well-known mechanical tracking system. CyberGlove III (Figure 4) uses fifteen

flexion sensors, four abduction sensors and a palm-arch sensor to measure the hand

and finger positions with less than 1 degrees resolution in a minimum 90 records/sec

sensor data rate [KHW95]. It is usually used as a whole hand input device when

hand and arm gestures recognition are important to users [KHW95].
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Figure 4: CyberGlove III. [CS10]
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3 System Principles

The goal of this thesis is to build a framework which provides an experimental

platform for different pointing devices in order to test their performances with dif-

ferent pointing techniques. Two enhanced pointing techniques, adaptive pointing

and smoothed pointing are embedded in the framework. The calibration techniques

that the platform uses will be discussed. The concept behind the Fitts’s Law as well

as the experiment relies on it will also be explained.

3.1 Platform Architecture

Altogether eight modules operate within the framework. These modules include a

user interface module, two calibration modules, an experiment module, two pointing

techniques modules and one gesture module. The sequence diagram (figure 5) shows

the relationships among these modules and how they communicate with each other.

As the interactive interface of the system, the user interface is responsible for pro-

viding users options to change the parameters of the experiment and displaying the

latest values of those parameters.

Before the input data can be processed, each pointing device should offer absolute

pointing measurement by default. Otherwise, a calibration is needed for transform-

ing relative pointing measurement data into absolute pointing measurement data.

Since most relative pointing devices do not have the global view of their own ge-

ographical position, it is impossible for them to determine the distance between

the displayer and themselves. Thus, relative pointing devices need to calculate the

offset and calibrate the pointer cursor in the display space. The algorithm of the

calibration for relative pointing devices is discussed in section 3.2. Furthermore,

before the input coordinates can be enhanced by adaptive pointing and smoothed

pointing, another calibration must be applied on all pointing devices so that the

needed information for smoothed pointing can be collected by the platform.

The experiment module can be considered as a core of the whole system. It in-
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Figure 5: Sequence Diagram of Experiment Platform.
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stantiates adaptive pointing module, absolute pointing module and gesture modules

and forms experiment tasks for the framework based on Fitts’s Law according to

the information obtained from the user and the input pointing device. Whenever

an experiment is performed, the experiment module starts to record all necessary

data and stores these values into a log file. Once a series of tasks are done by the

user, the experimental platform will return to the user interface and be ready for

the next round.

In order to have a global control power of the whole system, the platform maintains

a script which stores all the variables needed by all the modules. The parameters

modified in the user interface, the transformed coordinate data and the variables

used during the experiment are all stored in this script.

3.2 Calibration Algorithm

In order to be aware of where a user is trying to point at on a display screen, we

must first "teach" the system what the user’s actions look like when the user is

pointing at known locations on the display screen.

A two-point calibration is used as the main calibration technique for the relative

pointing devices. The two-point calibration is more accurate than a one-point cali-

bration. The one-point calibration can only calibrate one point from the motor space

to the display space, but any other points will skew since this calibration technique

has no awareness about how big the offset is. The farther a point is located away

from the calibrated point in the motor space, the more it will skew from the actual

point that it should be displayed. By using the two-point calibration, normalized

size of the screen height and width should be calculated so that the coordinates in

the motor space can be mapped into the display space accurately. The points on

the lower left and upper right of the display screen are measured and the calibration

follows the equation below:
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Figure 6: Linear Function of Calibration Formula.

Xdisp =
(Xmot −XLD)

XRU −XLD

XRU and XLD represent the X axis coordinates of the right upper point and left

lower point respectively while Xmot represents the X axis coordinate of the current

pointer cursor in the motor space and Xdisp represents the X axis coordinate of the

current pointer cursor in the display space. The codomain of Xmot is from 0 to 1.

The value of Xmot can neither lower than 0 nor greater than 1. Figure 6 shows the

equivalent graph of the linear function.

The red line and blue represent the one-to-one relationships between the X axis

coordinates in the motor space and the display space. The red line shows the

relative pointing when the value of XRU equals to 1 and the value of XLD equals

to 0, the X coordinate in the display space remains the same as it in the motor

space. Nevertheless, after a relative pointing device has been calibrated by two-

point calibration, the input data will be transformed into the absolute pointing

measurement data. For instance, the blue line shows the relationship of XRU and

XLD when the value of XRU reduces to 0.9 and the value of XLD increases to 0.1.
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At this moment, the X axis coordinates in the motor space and the display space

become different, absolute pointing is now performed. The same algorithm also

applies to the Y axis coordinates in the motor space and the display space.

Although the two-point calibration can be used for eye-tracking pointing input, the

system can no longer ensure the correctness of transforming relative pointing data

into absolute pointing data since the allowed movement space of human’s pupil

is relatively too small compare with the ordinary screen size. An one millimeter

movement of human’s pupil can be enlarged to 70 millimeters when the movement

is mapped to display space with absolute pointing measurement [CVC12]. Thus, a

more precise calibration is need for eye-tracking. According to Cerrolaza, a standard

calibration set of eye-tracking usually consists of 9 points distributed as a 3x3 grid

and the polynomial can be defined as [CVC12]:

 Xdisp = a0 + a1Xmot + a2Ymot + a3XmotYmot + a4X
2
mot + a5Y

2
mot

Ydisp = b0 + b1Xmot + b2Ymot + b3XmotYmot + b4X
2
mot + b5Y

2
mot

where the coefficients a0...a5 and b0...b5 are the unknown values and can be computed

using least squares.

The platform supports both relative pointing input and absolute pointing input.

However, relative pointing devices need an extra calibration to obtain absolute point-

ing measurement since both adaptive pointing and smoothed pointing are based on

absolute pointing [KGDR09][GM12]. As a part of smoothed pointing technique, the

extra calibration for absolute pointing devices will be discussed in section 3.4.

3.3 Adaptive Pointing

Absolute pointing provides a position-to-position mapping which offers the user a

more natural pointing experience and convenient hand-eye coordination compared

with relative pointing. However, absolute pointing suffers from the precision problem

caused by the distance between the pointing device and the display screen. In order
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to overcome the drawback of absolute pointing, Konig introduced a velocity-oriented

approach, namely adaptive pointing [KGDR09].

The basic idea of adaptive pointing is to improve the performance of absolute point-

ing measurement while ensuring that users mentally realize the absolute pointing

operation is performed [KGDR09]. Users desire a one-to-one mapping pointing ex-

perience between the motor space and the display space. Adaptive pointing provides

a natural absolute pointing behavior and enhances the precision of pointing by ad-

justing the CD-gain of a pointer cursor whenever a higher precision or an absolute

pointing measurement is needed [KGDR09]. The decision of the CD-gain adjustment

depends on the present velocity of the pointing movement and the offset between

the motor space and the display space. The range of adjustable CD-gain is limited

between gmin and gmax while vmin and vmax define the velocity bounds when the

algorithm is notified to adjust the CD-gain. The following equations are introduced

by Konig [KGDR09], only the X axis coordinate xdisp(t) in the display space will

be discussed. The same algorithm applies for the Y axis coordinate ydisp(t) in the

display space.

v̂x(t) =


1 if vx(t)>vmax

0 if vx(t)<vmax

vx(t)− vmin

vmax − vmin

otherwise

(1)

The equation 2 and 3 concern the offset of the point coordinates in the motor space

and the display space in order to define the offset bounds in normalized values using

the same method as in equation 1:

dx(t) = xmot(t)− xdisp(t− 1) (2)
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d̂x(t) =


1 if |dx(t)|>dmax

0 if |dx(t)|<dmax

dx(t)− dmin

dmax − dmin

otherwise

(3)

where dmin and dmax are the offset bounds and dx(t) is the current offset in X axis

coordinate in normalized values. Meanwhile, equation 4 compares these two factors

and chooses the greater one to be used in the next operation.

mx(t) = max(v̂x(t), d̂x(t)) (4)

In order to avoid unexpected switching from a relative mapping to a absolute map-

ping or conversely, equation 5 represents a modulated sine wave to smooth the

switching. This feature makes the adjustment still more natural.

gx(t) = gmin +
1

2
[sin(mx(t) · π − π

2
) + 1](gmax − gmin) (5)

Then the last movement in the motor space is computed as in equation 6.

sx(t) = xmot(t)− xmot(t− 1) (6)

Meanwhile, the most recent CD-gain will be decided in equation 7 as follow:

ĝx(t) =


1− (gx(t)− 1) if gx(t)>1 AND dx(t)>0 AND sx(t)<0

1− (gx(t)− 1) if gx(t)>1 AND dx(t)<0 AND sx(t)>0

gx(t) otherwise

(7)

Finally, equation 8 will apply the current CD-gain to the movement sx(t) and adds

the value of the last coordinate xdisp(t− 1) so that the current X axis coordinate in

the display space can be calculated.
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xdisp(t) = xdisp(t− 1) + ĝx(t) · sx(t) (8)

According to the algorithm, if a user reduces the velocity of a pointer cursor less

than vmax insistently, the CD-gain will be decreased smoothly as well. Until the

defined minimum velocity vmin is reached, the CD-gain will be fixed at once even

the actual velocity is lower than vmin. Similarly, if the user increases the velocity

insistently, the CD-gain will be increased until a defined maximum CD-gain gmax is

reached. However, the value of gmax is defined greater than 1 in general [KGDR09].

It means that the CD-gain will be always greater than the one used in the absolute

pointing measurement even the user moves the pointer cursor in high speed all the

time. The character of adaptive pointing violates the nature of absolute pointing.

Although adaptive pointing improves the accuracy of pointing experience when high

precision is needed, it can not guarantee that the user can perform an unadulterated

absolute pointing measurement at other times.

3.4 Smoothed Pointing

Smoothed pointing was introduced by Gallo [GM12] to overcome the weakness of

adaptive pointing. It is very similar to adaptive pointing which adjusts CD-gain dy-

namically so that the precision can be improved in low-speed movement. However,

unlike adaptive pointing, smoothed pointing also provides a pure absolute pointing

measurement in high speed movement by applying offset recovery into the algo-

rithm [GM12]. The offset recovery allows smoothed pointing to recover the offset

engendered when the CD-gain has been reduced and then increases to 1.

On the other hand, smoothed pointing applies a calibration task for absolute point-

ing inputs. The task requires the user to concentrate on pointing at a specific point

for a period of time. The distance between the pre-defined point and the pointer cur-

sor as well as the velocity in each frame will be recorded. Suppose that the amount

of the distance data or the velocity data collected in all frame is n and all the data
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from k1 to kn are organized in ascending order. According to Delage [DM07], the

equation 9 is concluded to calculate the value of 90 percentile d90.

d90 =



k n
90

+ k n
90

+1

2
if
n

90
mod 1 = 0⌈

k n
90

⌉
if
n

90
mod 1 > 0.5⌊

k n
90

⌋
if 0 <

n

90
mod 1 ≤ 0.5

(9)

For instance, a user is trying to pointing at the spot located in (400,500) and the

data has been collected for 10 seconds. As a result, the calculated value of d90 is

45 pixels. It means that according to the user’s habitual behavior, if the velocity of

movement reduces to less than vmax and the distance between the current pointer

cursor and the spot (400,500) is less than 45 pixels, then we can assume that the

user is aiming at the spot (400,500). On the other hand, a minimum target size

Xmeters that a human with 6/6 vision is able to recognize from a distance D can be

calculated by

Xmeters = 2 ·D · tan

(
1

120

◦)
(10)

where D is the distance between the user and the display screen. Since a display

screen is used as the output, Xmeters must be convert to Xpixels as

Xpixels =
Xmeters · 100 · kdpi

2.54
(11)

where kdpi is the dots per inch(dpi) of the screen. Meanwhile, the value of dmax can

be easily found as hundredfold of Xpixels. As the value of d90 and Xpixels are known,

the minimum allowed CD-gain gmin can be calculated by

gmin =
Xpixels

d90
(12)

The calculations of dx(t), sx(t) and mx(t) remain the same as in adaptive pointing.
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However, instead of calculating the velocity v(t) with X axis and Y axis separately,

the velocity v(t) now concerns the movement of the pointer cursor in both X and Y

axes in each frame. The calculation is formulated as

v(t) =

√
∆x(t)2 + ∆y(t)2

T
(13)

where ∆x(t)2 and ∆y(t)
2 represent the movements in X and Y axes in one frame

and T is the duration between two frames. In smoothed pointing, v̂x(t) is no longer

fixed to 0 or 1 no matter if the value of vx(t) is greater or less than vmax. According

to Gallo, the value of vmin can be found from the results of the calibration task

for smoothed pointing and the value of vmax is five times as much as vmin [GM12].

Meanwhile, the offset between the motor space and the display space d̂x(t) is defined

as

d̂x(t) =
|dx(t)|
dmax

(14)

A offset will be recovered when the CD-gain has been adjusted and the system tries

to perform a pure absolute pointing measurement. Thus, the algorithm need to

decide when gx(t) should be set to 1 and when gx(t) should be set a bit greater than

1. Instead of fixing the value of gxmax(t), Gallo presented a new formula to adjust

the value of gxmax(t) [GM12]. The CD-gain gx(t) is formulated as

gx(t) =


gmin +

1

2
[sin(mx(t) · π − π

2
) + 1](1− gmin) if v(t) ≤ vmax

gxmax(t) otherwise
(15)

where
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gxmax(t) =


dx(t)

sx(t)
+

1

v̂(t)

(
1− dx(t)

sx(t)

)
if dx(t) · sx(t) > 0

1

v̂(t)(1 + d̂x(t))
otherwise

(16)

Eventually, as well as adaptive pointing, the mapped coordinate value is calculated

by

xdisp(t) = xdisp(t− 1) + gx(t) · sx(t) (17)

Obviously, compare to adaptive pointing, the advantage of smoothed pointing is that

it can recover the offset in a short period and switch to pure absolute pointing mode

immediately. Certainly, the switching process is performed smoothly benefited from

the flexible formula gxmax(t). Although smoothed pointing is able to adjust CD-gain

dynamically and all the related parameters except the distance D can be measured

automatically, smoothed pointing still has several weaknesses. According to equation

10, the algorithm assumes that all the users have a 6/6 vision by default. Therefore,

the algorithm is not suitable for the users whose vision is lower or higher than 6/6.

Furthermore, in spite of automatic configuration, this feature does not allow users

to perform some tasks with specific requirement. For instance, it is impossible for

a user to perform an experiment which allows high error rate in smoothed pointing

mode if the error rate has been calculated according to the 90 percentile calibration

task.

There is no standard that defines if smoothed pointing is better than adaptive

pointing or conversely. Thus, both of them are embedded into the framework in

order to meet the needs of the users with different purposes.



21

3.5 Fitts’s Law

Fitts’s Law is a model of human movement proposed by Paul Fitts mainly used

in ergonomics and human-computer interaction (HCI) [AZ97]. Fitts’s Law is used

to model the act of pointing which measures the performance and correctness of

pointing movement either by virtually pointing or physically touching objects with

a part of human’s body [AZ97].

The original formulation introduced by Fitts is given by [OGRP12]:

MT = a+ b · ID (18)

where

ID = log2(
2D

W
) (19)

MT is the average movement time spent when a pointing movement task is per-

formed. a and b are constants determined by linear regression, they can be consid-

ered as reaction time taken when an action needs to be performed by the pointing

device. The values of constants a and b depend on the performance of the pointing

device as well as the tracking algorithm applied on the device. For instance, both

Kinect and Leap Motion may be used for pointing, but the constants a and b are

different for each of them. ID is the index of difficulty of the task that moves the

pointer cursor from a start point into a target object with width W and D is the

distance between the start point and the center of the target object.

Shannon modified Fitts’s original version by changing the formula of ID as [MB92]:

ID = log2(
D

W
+ 1) (20)

In addition to guaranteeing the value of ID is always non-negative, the modified

Fitts’s Law also fits the measured data better than the original version [MB92].
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3.6 Experiment Principle and Algorithm

Once a experiment is performed, the user will need to carry out a multi-directional

dragging task as described in ISO 9241-400 [ISO10] which includes pre-defined num-

ber of trials. In each trial, there will be even objects placed along a circular track.

The dragging tasks are arranged in target pairs. If the location of a source target is

decided, the target object will be placed in the opposite side of the track.

Suppose there are n objects placed along the track and the objects are numbered

from 0 to n-1 in ascend order. If the number of source object is i, then the number

of target object j can be found by:

j = i+
(n

2
− 1
)

mod n (21)

In the next round, the target object will be replaced as a new source object and

the number of the new target object can be calculate by using the same formula as

equation 21. Now that the system knows the number of the source object and the

target object in each pair, the next step is to calculate the coordinate of each object

according to their numbers.

Figure 7 shows an example with 16 objects on the track. Assume that the number

of the source object is 0, the number of the target object can be computed and 7

is got as the result according to the equation 21. After the task for this round is

done, now the number of the new source object becomes 7 and the number of the

new target object becomes 14. The same process continues until the eighth round

is done.

Equation 22 shows how the X axis coordinate of object with a number of k can be

calculated according to the coordinate of the center of the track as well as its radius.

Ox = Tx +R · sin
(

360◦ · k
n

)
(22)

where Ox and Tx are the X axis coordinates of the center of the object and the
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Figure 7: Experiment with 16 Objects.

center of the track respectively. R is the radius of the track and k is the number

of the object. Similarly, the Y axis coordinate of the center of the object can be

calculated by:

Oy = Ty +R · cos

(
360◦ · k
n

)
(23)

where Oy and Ty are the Y axis coordinates of the center of the object and the center

of the track respectively.

The coordinate of object k can be calculated as long as all the variables are known

in equation 22 and 23. Refer to the Figure 7, if the coordinate of object 1 needs to

be calculated, the only things need to be known are the coordinate of the center of
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the track as well as its radius. Suppose that the coordinate of the center of the track

is (500, 500) and its radius is 100 pixels. Since the amount of the objects is known

as 16, the coordinate of the center of the object 1 can be calculated and (538, 592)

is got as a result.

In order to carry out grab-release tasks during the experiment, the experimental

platform has a functionality that allows any input devices to notify the system

whether an object is movable or not. The system examine the movability of the

object by monitoring the distance between the pointer cursor and the center of the

object as well as the status whether the object is notified as clicked by the chosen

gesture. Suppose that the radius of an object is r, the movability of the object can

be divided into four cases (Table 1).

Case Status_isClicked Distance Movable
1 no greater than r no
2 no less than r no
3 yes greater than r no
4 yes less than r yes

Table 1: Movability of Objects.

Case 1 and 2 show that no matter how far the cursor is away from the object, the

object will not be movable as long as it is not notified as clicked. At the same time,

case 3 and 4 show that the object is movable only when it is recognized as clicked

and the cursor is located within the range of the object. It is worthwhile to note

that the condition of case 4 does not always hold, a user may click on the object and

then move the cursor into the range of the object. In this case, even the condition of

case 4 is met, the object cannot be considered as movable since the actual click event

happened before the cursor has been moved into the range of the object. Thus, a

flag is placed to indicate the status of the object in the last frame. If the object is

not clicked in the last frame, then the condition of case 4 holds.
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4 Implementation

4.1 Design

The framework is applied as it is introduced in section 3.1 to our experimental

platform. Leap Motion, Kinect and Mirametrix are integrated into the platform

as the main input devices for testing purpose. The control agent is hand, arm or

eyeball. The activity diagram (Figure 8) shows the activities that a user needs to

perform in order to finish a complete round of experiment.

Figure 8: User Activity.
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Once the application is run, the user who is using the platform has to determine

whether the input pointing device offers a relative pointing measurement or an

absolute pointing measurement. If the pointing device offers an absolute pointing

measurement, then the user is required to perform a calibration task as discussed

in section 3.4. The purpose of the calibration task is to calculate the value of 90

percentile d90 that allows a 90 percentages error rate while the user is trying to point

at an expected spot. Otherwise, the user needs to perform another calibration task

as discussed in section 3.2 so that the platform can transform the relative pointing

input into the absolute pointing input according to the value of the offset between

the motor space and the display space.

It is worthwhile to note that the results generated by the two calibrations are only

valid for one person who interacts with a running pointing device in a couple of hours

since every person has different habitual behavior and even the ability that a person

can focus on a specific target may change from time to time. At the same time,

the accuracy that a pointing device can offer is totally depending on its hardware

specifications and the tracking algorithm it is applied with. Therefore, it is necessary

to perform these two calibration tasks frequently to ensure the correctness of the

results unless it is required to keep the same parameters.

When the pointing input is in absolute pointing mode either by the technique that

the pointing device supports or by the calibration task the platform provides, the

user can choose if he wants to perform the experiment task in adaptive pointing

mode or smoothed pointing mode. If the former one is chosen, the user will have to

manually set the parameters that the adaptive pointing technique relies on although

the default set of parameters have been suggested by the platform. Otherwise, the

user can skip this step if the smoothed pointing technique is chosen instead.

Before the experiment starts, the user has to decide the pointing device and the

pointing technique that will be used during the experiment. Obviously, the decided

pointing device has to be the one the user calibrated with. Finally, the gesture has

to be decided to perform the grab-release tasks as the minimum requirement of the
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experiment. The gesture can be provided by the devices differ from the one used for

pointing purpose if needed.

Once a round is completed, the user can either quit the application or run the next

round. If the user decides to continue the experiment with the same pointing device,

he will have to start from the option to set the parameters manually or automatically.

Otherwise, the user needs to start the whole process over again.

4.2 Hardware

The hardware is currently limited to a Leap Motion, a Kinect, a Mirametrix eye

tracker and a 2.4G wireless mouse. Leap Motion, Kinect and Mirametrix are all

video-based pointing devices.

There are four main reasons why Leap Motion, Kinect and Mirametrixis are decided

to be chosen as the pointing input devices. Firstly, they are widely used and can be

found in markets easily. Secondly, they are connected to a computer through wired

USB cables, one probability that the single may be lost in wireless connection does

not need to be worried about although the nature of most video-based pointing

devices can not be avoided. That is, noises may be caused by the environment

factor. Thirdly, the control agents are different, they capture the motions of human’s

hands, body and eyeballs respectively. Finally, they are relative pointing devices,

all of them need to perform the calibrations to get into the absolute pointing mode

except Mirametrix since the manufacturer of Mirametrix has provided a functional

calibration platform already [SAJ+11].

The mouse is used to replace the gesture function provided by other pointing input

devices. Since video-based pointing devices cannot always recognize gestures cor-

rectly [KJA+13], it is necessary to have an input device with physical buttons to do

the job for video-based pointing devices. A 2.4G wireless mouse is a proper choice.

Compared with other input devices with physical buttons, mouse is relatively lighter

and smaller. It is easy for a user to point with one hand and move around freely

while holding a mouse with another hand. More importantly, the delay caused by
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the wireless transmission can be ignored since 2.4G wireless communication is able

to transfer small data with almost non-delay rate [XXH10].

4.3 Software and Libraries

The platform was developed in C# with Unity 3D(4.2.2f1) under Windows 7 Ulti-

mate. The drivers used for Leap Motion, Kinect and Mirametrix were Leap Motion

Controller 1.1.3, KinectSDK-1.8 and Mirametrix Tracker 2.5.1.152 respectively.

The main libraries used in the platform were UnityEngine [Tec14], Leap [LM14],

FubiNET, System.Net [Cor14a] and System.Xml [Cor14b]. As a video game devel-

opment tool, UnityEngine was used to display any visual graphics within the user

interface, calibration tasks and experiment tasks. The GUI was also allowed to

be displayed in a changeable frame rate and UnityEngine provided a functionality

which could count the real time in each frame.

On the other hand, Leap and FubiNet were used to transform users’ graphical mo-

tions into numerical data. For instance, when a user held his hand above a Leap

Motion, the library could transform the position of the user’s fingertip as a coordi-

nate (X, Y, Z) according to the corresponding position between the device and user’s

fingertip in space. Since Mirametrix Tracker had provided the pointing function for

Mirametrix already, it was unnecessary to import a library to handle the pointing

and calibration tasks for Mirametrix. System.Net was used to create a socket which

allowed Unity 3D and Mirametrix to exchange data.

The configurations of a experiment task did not need to be recorded by the user

interface. Therefore, System.Xml was used to store the configurations into a XML

file so that the old configurations would be replaced immediately once the newer

ones were saved.
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4.4 User Interface

The user interface mainly consists of five boxes. The layout of the user interface is

shown in Figure 9.

Figure 9: Layout of User Interface.

The box in the upper left should be accessed first since the input should be ensured

that it is in absolute pointing mode and the parameters for adaptive pointing and

smoothed pointing have been measured. After the necessary calibrations are done,

the user may set the parameters manually within the box under the former one

(Figure 10).

Obviously, the platform is flexible, not only the performance of two pointing tech-

niques can be adjusted by modifying the variables they rely on, but also the param-

eters of the experiment can be adjusted through the user interface. The box in the

upper middle (Figure 11) is used to configure the color of object circulars and define

the size of the circulars as well as the track that these circulars are placed on. Since

users may desire to remain the experiment environment for several rounds, a button

is offered to save the changes and another button is used to reset the configuration.

The box on the right side provides a place for users to choose the pointing input

device, the pointing technique and the gesture. The button with text "+" are
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Figure 10: Manually Parameter Setting.

reserved for the future extension.

Eventually, the box at the bottom allows users to perform the decided experiment

task. The second button within the box is also reserved for future extension, how-

ever, this experimental platform only supports for testing based on Fitts’s Law at

the moment.

4.5 Calibration

When a user performs the calibration task for relative pointing inputs. It is necessary

to let the system know whether the user is pointing at either the left lower or the

right upper of a display screen. This situation can not be realized by the system

immediately since the system never know where the user is pointing at in the display

space before the calibration is done. Thus, our solution is to let the user point at

the left lower and the right upper of the screen in proper order. After a graphical

notification circular is shown on the screen, if the user is pointing at a point and keep

still for 3 seconds, then the truth that the user is pointing at the notified location

can be firmly believed. The user does not need to be absolute still, however, any

movement less than 50 pixels in two interfacing frame will be ignored.

If the calibration task for absolute pointing inputs is performed, a red crosshair
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Figure 11: Experiment Configuration.

(Figure 12) will be displayed in the middle of the screen. The user will need to

point at the center of the crosshair to start the calibration task. Due to the nature

of video-based pointing devices, it is impossible to match the actual point on the

display screen with the location that a user wants to point at mentally even an

absolute pointing mode is applied. Therefore, instead of caring about where his is

going to point at physically, the user should concentrate on moving and keep the

pointer cursor in the center of the crosshair. Since the user is able to recognize

where the pointer cursor is, the system will start the calibration immediately once

an adjacent cursor is detected.

Distinguished from other tracking techniques, eye tracking relies on the motions of

eyes. It is extremely hard for a human to control the movement of a cursor while

looking at another place if there is a deviation between the motor space and the

display space. Thus, a similar solution is applied as it is used for adaptive pointing

input. That is, the calibration will start in 3 seconds if the user aims at the center

of the crosshair and non large movement is detected.
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Figure 12: Crosshair for Calibration.

4.6 Experiment

Once the experiment starts, the system generates a number of tracks with different

radius according to the parameters set in the user interface. Then each track will

generate a number of objects and calculate their coordinates. The information

of tracks and objects will be stored in a list. In order to ensure the fairness of the

experiment, the order of displaying these tracks and objects is decided by the system

randomly.

During the experiment, the source object and target object on the track are displayed

in pairs. The user’s task is to move the pointer cursor upon the source object, click

the object with a defined gesture, drag the source object into the range of target

object and release the gesture. Figure 13 shows the layout of the experiment in one

round.
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Figure 13: Layout of Experiment.

The parameters of the current track and objects are displayed as text in the upper

right corner. If the source object is clicked, the system will start to count the timer.

The counter will stop once the source object is dropped into the target object. At

this moment, system will record the duration time, the distance between two objects,

the settings of the experiment as well as the parameters of the objects and the track.

Eventually, the system will log these records while each round in the experiment is

processing so that those data can be analyzed by the user for any analysis purpose.

As an example, figure 14 shows the example data log of the experiment. The experi-

ment was performed for three trials with 8 objects. First two lines show the settings

of the experiment. The user used a Leap Motion to perform the experiment while a

mouse was used to control the objects as the gesture. The parameters of the point-

ing technique were obtained by the system automatically since a smoothed pointing

mode was activated. Meanwhile, the following lines show the data log generated by
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the system in each round. The radius of the source objects were set by the user

while the radius of the target objects and tracks were determined by the system

randomly according to the information that the user gave in the user interface. The

variable "Distance" indicated the distance between the present source object and

the target object, it was fair for any round in one trial. Obviously, the conditions

for every round in each trial were the same, but the duration time spent by the user

to perform each task was different.

Figure 14: Output of Experiment.
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5 Evaluation

The experimental platform was evaluated by reviewing with several experts in HCI

and getting feedback from them. 4 volunteers (2 males, 2 females) were served as

experts. They had at least on year of research experience in HCI. The ages of these

experts were from 28 to 33 years old. Three of the experts were right-handed while

the other one was left-handed and they used computers on a daily basis. Two out

of four had pointing experience with Leap Motion, Kinect and Mirametrix. All of

them were used to playing 3D games.

5.1 Apparatus

The review was conducted on an Intel i5 2.6GHz desktop computer with a 50"

Samsung television. The input devices were limited to a Leap Motion 3D Controller,

a Kinect for Windows, a Mirametrix S2 Eye Tracker and a Logitech Wireless Mouse

M560.

The TV was hung on the wall 110 centimeters from the ground. The Kinect was

placed on the bottom of the TV and all experts were required to stand 2 meters

away from the Kinect because Kinect sensor required a minimum 1.4 meters space

between the device and the object in order to detect a person’s motions accurately

[FPT12]. Due to the nature of Mirametrix, it needs to catch the movement of a rel-

ative smaller object and requires more accurate graphical recognition than Kinect.

Thus, the Mirametrx was placed in front of the experts where the Mirametrix is 60

centimeters away from the experts and 1.4 meters away from the television respec-

tively. Meanwhile, since Leap Motion was used to catch the motions of the experts,

it was placed on both side where the experts could hold their hands above the device

naturally. The location of mouse was not fixed since the experts would need to hold

it in their hand and click the right button.

The default frame per second(FPS) of Kinect is 30 while the FPS of Leap Motion

is 60 [FPT12][PAC13]. Therefore, the FPS was limit to 30 for both devices so that
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the Leap Motion and the Kinect could be reviewed fairly. Unlike Kinect and Leap

Motion, Mirametrix tracks the movement of human’s eyes. Instead of dragging a

pointer cursor from one place to another place all the way along the actual path

of human’s motions, Mirametrix monitors the movement of human’s eyes to control

the cursor from point to point jumpily. The Mirametrix did not care about how the

path went, that was the reason why the FPS of it was limited to 10.

The Leap Motion and Kinect can be operated by either the left hand or the right

hand. If an expert decide to use Leap Motion or Kinect as a pointing device and

use the right button of the mouse as the gesture, he has to pointing with one hand

and control the mouse with another hand. If Mirametrix is used, then which hand

should be used to control the mouse depends on expert’s preference.

5.2 Procedure

Four experts were asked to test the experimental platform with different pointing

devices. Each expert was given 5 minutes to get familiar with Leap Motion, Kinect

and Mirametrix through a simple pointing task. The test was performed in 6 turns.

Each expert tested the experimental platform starting from the calibration tasks

and ending by the experiment tasks.

Both adaptive pointing and smoothed pointing were tested with each pointing device

in proper order and each gesture was used twice. Except showing how the gestures

operated, no guidance was given during the test.

The experimental platform required the experts to start with choosing a pointing de-

vice and performing a calibration task according to the input type that the pointing

device supported by default. The parameters would be given automatically through

the calibration task for absolute input if a smoothed pointing mode was selected.

Otherwise, the experts were required to set the parameters manually.

After the experts had decided the color of the source object and the target object,

they configured the variables for the experiment tasks such as the maximum and
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minimum radius of the tracks and target objects as well as the number of trials and

objects. Once the configurations for the experiment task and pointing technique

were ready, they chose a proper pointing device, a pointing technique and a gesture

to run the experiment task.

During the experiment task, the experts were asked to drag a source object into a

target object for several rounds. The size of target objects and tracks were different

in each trial. Once the experiment task was done, the output data would be available.

5.3 Result

At the end of the test, the experts were asked to offer some suggestions and describe

the impression of the experimental platform in several respects such as the major

flaws experienced with pointing devices, gestures, user interface, calibration tasks,

experiment tasks and outputs.

All the experts complained that pointing with one hand and making the gesture

with the same hand affected the correctness of the pointing experience. Using the

button of the wireless mouse as a gesture was the most preferred choice.

Concerning the user interface, three out of four experts suggested to insert an box to

the user interface that allowed the users to input information of themselves. Two out

of four experts wanted to have the configuration of experiment tasks in centimeters

and inches as an extra choice. One expert had trouble with figuring out the right

order of processing the boxes in the user interface.

Although all experts were satisfied with the calibration tasks, one expert complained

that the objects were overlapped with the text displayed in the experiment task.

Meanwhile, another expert suggested to having the round information so that the

user could realize how many rounds remained during the experiment task.

On the other hand, two out of four experts wanted the output of size and position

data to be generated in centimeters. One expert wanted to have the real time

included in the output and suggested that the format of the output could be different
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for European Standard and American Standard. Finally, another expert suggested

to add a variable selection function for the output.

5.4 Discussion

As expected, the experimental platform was able to guide the experts to complete

the experiment tasks and generate proper output for analysis purpose. All the

pointing devices used in the test were able to be calibrated and generate expected

output data. However, pointing devices like Leap Motion and Kinect were not yet

suitable for extended usage during the experiment task due to the nature of video-

based pointing devices. For instance, if a user is dragging a source object and the

system suddenly loose the gesture recognition, the duration time of the dragging

task will no longer be valuable references. Thus, it is necessary to have a device

with physical button to be used as a click event unless the user desire to count the

correctness of gesture recognition as a part of the analysis.

The user interface provided the basic functions for the experts to access the modules

in the experimental platform. The system could be even easier to deploy in exper-

iments if the user interface could provide some text fields for users to input their

personal information such as hand preference, ethnic group, weight, hight, glasses or

length of the index finger since the experiment conductor would not need to gather

these data with separate questionnaires. Those information could be consulted as

a factor of the data log. At the same time, some limitation could be applied to the

configuration for the experiment task. For example, the radius of the source object

can never be greater than the radius of the target object and the location of objects

can not be exceeded the displayable space of the screen according to the sum of the

radii of tracks and objects.

The textual and graphical information provided by the experiment task were able to

guide the experts to perform the tasks in the right way. Nevertheless, the layout of

the experiment task could be improved so that the information could be displayed

correctly in any case. Tracks and objects could be bounded into a limited area in
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order to avoid the overlap of objects and textual information. On the other hand, the

textual information could be even more informative if it could include the number

of rounds to let users realize the number of remain tasks that will be performed.

The output generated all the necessary data related to the experiment task. The

output could be even more humanized if users was able to decide which variable

should be involved in the output. Eventually, instead of using a comma as the

separator of different variables in the output, it was useful to use a vertical bar as

the separator since comma was added to numbers after every third digit from right

to left in some countries while other countries use a dot and this situation might

mislead the separator.
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6 Conclusions and Further Work

In this thesis, a configurable framework was applied to the design of an experimen-

tal platform. A composite synthesis architecture comprising two enhanced pointing

techniques and Fitts’s Law were proposed and used as a conceptual model. A pro-

totype application experimental platform was then implemented in Unity 3D using

C# as the programming language. The main results of the thesis are discussed in

section 6.1 and some additional features and improvements are suggested in section

6.2.

6.1 Conclusions

The entire process from architectural design to the actual implementation phase

was repeatable. The two-point calibration algorithm should best be regarded as a

normalized calibration technique for most video-based pointing devices while a nine-

point calibration technique was supplied for more precise pointing devices (i.e. Eye

Tracking System). The calibrated absolute pointing input was made to be enhanced

either by adaptive pointing or smoothed pointing technique. Adaptive pointing

worked better when a more flexible adjustment needed to be applied during the

experiment task while smoothed pointing worked better if a pure absolute pointing

experience was required as the key condition for the measurement. Meanwhile,

the contained variables of a well-known model Fitts’s Law were consulted as the

principle of the experiment algorithm. The experiment algorithm was able to decide

the order of the tasks and the coordinate of each objects.

The implementation phase of the experimental platform succeeded relatively well.

The libraries provided by Unity Engine, Leap and Fubi were sufficient for the de-

velopment. All the modules worked in proper order. A clear path from calibration

task, via parameter configuration to the experiment task was proposed for users to

perform a complete experiment. As a result, the format of the output was defined to

store all the necessary variables which were valuable for the future analysis purpose.
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The experimental platform met the essential needs of the professional pointing anal-

ysis. It was easy for users to operate the platform without any verbal guidance.

Although the functions of the experimental platform worked well as expected, there

were still some user experience issues which remained for future efforts.

6.2 Future Research and Extensions

Although the overall concept of experimental platform is already in its final stage, the

platform itself still needs a function which allows user to load any pointing modules

with an associated pointing device. If a new pointing technique or experiment task

is available, they should be loaded as modules dynamically as well.

A new pointing technique should be introduced to overcome the factor of smoothed

pointing that the algorithm of smoothed pointing holds only under the condition

that a 6/6 vision is assumed by default.

It will be interesting to include a feature which can evaluate and compare the per-

formance between two solutions since users are responsible for analyzing the output

data on their own so far.
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