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Abstract

Resolution of chronic hepatitis C is considered when serum HCV RNA becomes repeatedly undetectable and liver enzymes
normalize. However, long-term persistence of HCV following therapy with pegylated interferon-a/ribavirin (PegIFN/R) was
reported when more sensitive assays and testing of serial plasma, lymphoid cells (PBMC) and/or liver biopsies was applied.
Our aim was to reassess plasma and PBMCs collected during and after standard PegIFN/R therapy from individuals who
became HCV RNA nonreactive by clinical testing. Of particular interest was to determine if HCV genome and its replication
remain detectable during ongoing treatment with PegIFN/R when evaluated by more sensitive detection approaches.
Plasma acquired before (n = 11), during (n = 25) and up to 12–88 weeks post-treatment (n = 20) from 9 patients and PBMC
(n = 23) from 3 of them were reanalyzed for HCV RNA with sensitivity ,2 IU/mL. Clone sequencing of the HCV 59-
untranslated region from plasma and PBMCs was done in 2 patients. HCV RNA was detected in 17/25 (68%) plasma and 8/10
(80%) PBMC samples collected from 8 of 9 patients during therapy, although only 5.4% plasma samples were positive by
clinical assays. Among post-treatment HCV RNA-negative plasma samples, 9 of 20 (45.3%) were HCV reactive for up to 59
weeks post-treatment. Molecularly evident replication was found in 6/12 (50%) among PBMC reactive for virus RNA positive
strand collected during or after treatment. Pre-treatment point mutations persisted in plasma and/or PBMC throughout
therapy and follow-up. Therefore, HCV is not completely cleared during ongoing administration of PegIFN/R otherwise
capable of ceasing progression of CHC and virus commonly persists at levels not detectable by the current clinical testing.
The findings suggest the need for continued evaluation even after patients achieve undetectable HCV RNA post-treatment.
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Introduction

Hepatitis C virus (HCV) is a single-stranded RNA virus that is

the cause of clinically diagnosable chronic infection in approxi-

mately 170 million people worldwide. Of those acutely afflicted,

15% spontaneously resolve hepatitis, while the remaining develop

chronic hepatitis C (CHC) [1]. Up to15% of the patients with

CHC progress to fibrosis and cirrhosis, and they are at a greater

risk of developing hepatocellular carcinoma (HCC) [2]. HCV is

infectious even in trace amounts, with approximately 10 virions or

20 copies of viral RNA capable of transmitting infection in

chimpanzees [3,4] and with 20 to 50 virions able to establish

productive infection in human T cells in vitro [5]. The introduction

of nucleic acid amplification assays detecting HCV genomes with

high sensitivity, i.e., ,10 virus genome equivalents (vge) or copies/ml

or ,2.5 vge/mg RNA (,2 IU/ml), revealed that HCV persists at

low levels (usually below 100 vge/ml) for years after clinical

resolution of hepatitis either spontaneously or due to treatment with

interferon-a (IFN) alone or pegylated IFN/ribavirin (PegIFN/R)

[6,7]. The long-term consequences of this essentially asymptomatic

infection, termed as occult HCV infection (OCI), remains

uncertain; however, OCI coincides with histologically evident

protracted low grade liver inflammation and fibrosis in some

patients for at least 10 years after completion of antiviral treatment

[8–11]. Also, clinically diagnosed sustained virological response

(SVR) achieved due to IFN or PegIFN/R does not universally

prevent progression to HCC, which develops in up to 3.9% of these

individuals [12–17]. Contrary to prevailing opinion based on the

currently available clinical testing for HCV RNA, clinical diagnosis

of SVR does not reflect molecular eradication of HCV, as
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evidenced by assays of enhanced sensitivity supplemented with

examining of serial samples of plasma, peripheral blood mononu-

clear cells (PBMC) and, when available, liver biopsies, and by

procedures enriching HCV in test material by amplifying viral RNA

recovered from larger amounts of serum, liver biopsy material and/

or from mitogen-stimulated PBMC [6–9,18–20]. Further, the

detection of HCV RNA replicative (negative) strand is not

uncommon in OCI, particularly when ex vivo stimulated PBMC

and liver biopsy material are analysed [6,8,11,20]. Since discovery

of OCI in 2004, persistence of HCV after SVR was the subject of

studies by different groups which delineated virological and some

unique immunological properties of this infection [6–9,21–23].

Among others, OCI displays a distinct profile of antiviral cytokine

expression in PBMC when compared to either CHC or healthy

individuals, shows an antagonistic relation between HCV and IFN-

a expression in PBMC, and that HCV replication in this

compartment can be completely eliminated by activation of

endogenous IFN-a [22,23]. Nonetheless, OCI is rarely investigated

and knowledge on this subject remains incomplete. To broaden

characterization of this infection entity, in particular to learn about

the fate of HCV during and shortly after completion of otherwise

clinically successful treatment with PegIFN/R, we re-examined,

using highly sensitive HCV genome detection methods, serial

plasma and, in some cases, PBMC samples collected prior to, during

and after completion of PegIFN/R therapy from patients with CHC

who finally achieved clinical SVR.

Materials and Methods

Ethics Statement
The study was approved by the Weill Cornell Medical College

institutional review board and was performed in accordance with

the Declaration of Helsinki. The samples were collected after

signing written informed consent.

Patients and samples
Serial plasma samples (n = 56) from 9 patients (3 men and 6

women; ages 38 to 62), who clinically resolved CHC in response to

treatment with PegIFN/R, and sequential PBMC samples (n = 23)

from 3 of them were investigated (Table 1). The patients were

infected with HCV genotype 1 or 2 (Table 1). The origin and the

route of HCV infection were undetermined; however none of the

patients was an active drug user during treatment or follow-up.

None of them also was co-infected with hepatitis B virus (HBV) or

human immunodeficiency virus or was receiving immunosuppres-

sive or anti-cancerous therapy. All patients received PegIFN/R

treatment for 24 or 48 weeks (wks) with the exception of 6/F, 7/F

and 2/F who were treated for 25, 44 or 68 wks, respectively

(median treatment time for all 9 patients was 43.3 wks) (Table 1).

The therapy resulted in the decline of plasma HCV RNA to

undetectable levels, as measured by clinical laboratory tests (see

below), and in normalization of liver enzymes, i.e., alanine

aminotransferase (ALT) and aspartate aminotransferase (AST),

starting within 3 to 4 wks after initiation of PegIFN/R. In regard

to plasma samples, 11 samples from a total of 19 collected prior to

initiation of the therapy (pre-treatment samples) were available for

re-examination. These 11 samples were obtained between week 21

and one before the start of treatment (median time of collection

8.1 wks). Among 55 plasma samples collected during the

treatment period (on-treatment samples), 25 were available for

re-evaluation (Table 1). Also, from 34 plasma samples collected

during follow-up lasting for up to 88 wks after completion of

PegIFN/R therapy (post-treatment samples), 20 were available for

reanalysis. The time of the last sample collection from individual

patients ranged between 12 and 88 wks post-treatment (median

33.1 wks). Plasma was stored in 1-mL aliquots at 280uC until re-

tested. One 1-mL aliquot per sample was available for investiga-

tion.

Serial PBMC samples collected at the time of plasma acquisition

were available from 3 of the patients (Table 1). In total, 23 PBMC

samples were investigated of which 5 were obtained before, 10

during and 8 up to 88 wks after completion of PegIFN/R

treatment. PBMCs were stored in liquid nitrogen at 56106 to

16107 cells per vial. One vial per sample was available for this

study.

PBMC isolation and mitogen stimulation
PBMCs were isolated from whole blood by density gradient

centrifugation. After washing, cells were suspended in heat-

inactivated fetal calf serum (FCS) with 10% DMSO, progressively

cooled down to 280uC, and stored in liquid nitrogen. A two-step

approach was used to prepare PBMCs for evaluation of HCV

expression. In the first approach when approximately 16107 cells

were available for investigation, the cells were thawed, extensively

washed, and split to two equal portions. One of the portions was

spun down and the cell pellet was immediately subjected to RNA

extraction. These cells were designated as untreated. The

remaining portion of the cells, as well as PBMC samples that

contained approximately 56106 cells, were suspended in 5 ml of

RPMI 1640 medium with 10% FCS, 2 mM glutamine, 50 U of

penicillin/ml, 50 mg of streptomycin mL-1, 0.1 mM nonessential

amino acids (all from Invitrogen Life Technologies, Burlington,

Ontario, Canada), 5 mg/ml of phytohemagglutinin (PHA; Sigma-

Aldrich Mississauga, Ontario, Canada) and 20 U/ml human

recombinant interleukin-2 (IL-2; Roche Molecular Diagnostics,

Pleasanton, CA), and cultured for 72 hours as reported [5,6,11].

These ex vivo stimulated cells were designated as treated cells.

RNA extraction and cDNA transcription
Total RNA was extracted from 250 ml of plasma and, if the

sample was HCV RNA nonreactive, from the remaining 750 ml of

the same sample using Trizol LS reagent (Invitrogen) [6,11].

Untreated PBMC and those cultured in the presence of PHA and

IL-2 (treated cells) were extracted with Trizol (Invitrogen). With

each RNA extraction, a mock sample of sterile bi-distilled water

(contamination control), serum or PBMC from a healthy donor

(negative control) and serum or PBMC from a patient with serum

HCV RNA-reactive CHC (positive control) were included. RNA

from cells (2 to 4 mg) and all RNA extracted from 250 ml or 750 ml

of plasma were transcribed to cDNA with Moloney murine

leukemia virus reverse transcriptase (Invitrogen), as reported

[6,11].

Detection of HCV RNA positive and negative strands
For detection of HCV RNA positive (vegetative) strand, reverse

transcriptase-polymerase chain reaction (RT-PCR) was applied

using primers specific for the HCV 59-untranslated region (59-

UTR), cycling conditions and quantification standards reported

before [6,11]. In selected samples (depending upon availability of

test material), the presence of the HCV RNA positive strand was

also examined by amplification with the virus E2 region-specific

primers, as reported [6]. Detection of OCI normally requires two

rounds of cDNA amplification by PCR, direct and nested,

following stringent precautions typical when working with nested

PCR, and inclusion of appropriate contamination and negative

controls at each step of RNA and cDNA preparation, and PCR

amplification [6,7]. In all instances, signal specificity was

confirmed by nucleic acid hybridization (NAH) using 32P-labeled
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recombinant HCV 59-UTR-E2 fragment as a probe [6].

Sensitivity of the RT-PCR/NAH assays with either 59-UTR or

E2 region-specific primers was ,10 vge/ml or ,2.5 vge/mg RNA.

Overall, the underlying methodology and the resulting sensitivity

of these assays employed in the current study were closely

comparable to those of the PCR/NAH assays previously

developed and applied for detection of occult HBV and

woodchuck hepatitis virus infections [24,25]. HCV RNA negative

(replicative) strand was detected by RT-PCR/NAH using rTth

DNA polymerase, as described in detail before [6,26]. This assay

detects ,102 copies of the correct (negative) strand, while

identifying $106 vge of the positive strand [6,26]. Specificity of

PCR amplicons and validity of the controls was routinely

confirmed by NAH. In every analysis, a number of negative and

contamination controls were included, as described before [6].

Cloning, sequencing and analysis of the HCV 59-UTR
To assess possible sequence variations and compartmentaliza-

tion of HCV, 59-UTR amplicons were cloned using the TOPO-

TA cloning kit (Invitrogen). The highly conserved 59-UTR was

chosen because it would allow for reliable identification of most

unwavering sequence variants. Ten or 20 randomly selected clones

were analyzed from each PCR product derived from 7 pairs of

plasma and PBMC samples collected at the same time points of

follow-up (with one exception) prior to, during or after completion

of PegIFN/R treatment from 2 patients (5/M and 8/F) from

whom sufficient amounts of sample material were available. The

sequence was determined in both directions using universal

forward and reverse M13 primers, and the ABI-Prism 7000

Sequence Detection System (Applied Biosystems, Streetsville,

Canada). The resulting sequences were aligned using Sequencher

software version 4.7 (Gene Codes Corp., Ann Arbor, MI). The

HCV subgenotype-specific sequences D00944 and AF169005 for

2a genotype, and D10988 and AF238486 for 2b genotype from

GenBank were used as the references. The phylogenetic relation-

ships of the variant 59-UTR sequences identified in plasma and

PBMC of 5/M and 8/F patients were examined by the maximum-

likelihood method [27].

Statistical analysis
Results were analyzed by Chi-Square test using SPSS Statistics

software version 19.0 (IBM, Armonk, New York State, USA).

Differences between sample groups were considered to be

significant when P values were below or equal to 0.05.

Results

HCV RNA detection in clinical assay virus-negative
plasma samples collected during or after antiviral
treatment

Using the standard clinical assays, plasma HCV loads in

samples collected prior to initiation of PegIFN/R therapy ranged

between 1.56104 and 2.46106 IU/ml (mean 4.56105 IU/ml). All

11 samples available for re-examination were, as expected, HCV

RNA reactive when RNA extracted from 250-ml plasma was

assayed by RT-PCR/NAH (Table 2). However, among 55

samples collected in total during the treatment period only 3

(5.4%) obtained from 3 different patients were reactive for HCV

RNA by the clinical assays at levels not exceeding 1.16103 IU/ml.

When 25 of the 55 samples were re-tested by RT-PCR/NAH

using RNA from either 250 ml or 750 ml of plasma, 17 (68%) were

identified to be HCV RNA positive (Table 2). These positive

samples were obtained at different time points of PegIFN/R

treatment from 8 of 9 patients examined, including samples
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collected at the end or within one month prior to completion of

the therapy from 4 of the patients. It should be noted that from 2/

F patient who was found HCV RNA nonreactive during therapy

only a single plasma sample collected through that period was

available for re-examination; however, subsequent plasma samples

from the same individual were virus reactive for up to 59 wks post-

treatment. Further, amongst 34 post-treatment samples none was

HCV RNA reactive by the standard clinical assays. Nonetheless,

among 20 of these 34 samples re-examined, which were collected

between 18 and 88 wks after treatment, 9 (45%) were HCV RNA

positive by RT-PCR/NAH. Thus, virus was detected in 8 of the 9

samples when RNA extracted from 750 ml of plasma was tested

(Table 2). These 9 reactive samples originated from 4 of the 9

individuals studied. In these 4 patients, virus reactive samples were

collected at 23–24 or 59 wks post-treatment. Overall, using as

template RNA extracted from 750 ml of plasma acquired either

during or after completion of PegIFN/R therapy gave more than a

3-fold greater rate of HCV RNA detection than in RNA isolated

from 250-ml samples when tested by RT-PCR/NAH, i.e., 19/38

(50%) vs. 7/45 (15.5%), respectively (P = 0.001) (Table 2). Overall,

among 45 on- or post-treatment samples re-examined, of which

only 3 (6.6%) were HCV RNA reactive by clinical assays, 26

(57.7%) were positive for virus by more sensitive RT-PCR/NAH,

giving in total an 8.7-fold increase in detection of plasma HCV

RNA (P,0.0001).

Expression of HCV RNA in PBMC of CHC patients prior to,
during and after antiviral treatment

In the first instance, when a cell number of about 16107 was

available for investigation, PBMC (i.e., untreated cells) were

directly subjected to RNA extraction and HCV RNA expression

was examined. As showed in Table 2, 6 of 23 (26.4%) samples

tested under such conditions were HCV RNA positive strand

reactive. Taking advantage of the previous finding that mitogen

stimulation of lymphoid cells from HCV-infected patients

enhanced virus replication and, in consequence, virus detection

[6,11,18,20], the initially HCV RNA-negative PBMC samples or

those in which the cell number was close to 56106 were cultured

in the presence of PHA and IL-2 and then HCV RNA expression

assessed. This ex vivo stimulation allowed detection of HCV in an

additional 11 (i.e., 11/17; 54.7%) samples. Overall, virus was

identified in 17 of 23 (73.9%) PBMC samples tested (Table 2).

Among them, 8 of 10 (80%) obtained during PegIFN/R treatment

and 4 of 8 (50%) acquired after completion of therapy were HCV

RNA positive.

Evidence of HCV replication in PBMC of patients on and
after anti-HCV therapy

All PBMC identified to be HCV RNA positive strand reactive

were evaluated for HCV RNA negative (replicative) strand using

the highly sensitive RT-PCR/NAH assay [6,11,26]. Since this

replication intermediate normally occurs at a much lower copy

number than the positive strand and the assay detecting the

negative strand is approximately 10 to 100-fold less sensitive than

that used for the positive strand identification [6,26], HCV RNA

negative strand expression was examined only in PBMC found

reactive for the positive strand. Overall, this form of HCV RNA

was detected in 10 out of 16 (62.5%) PBMC samples investigated

(Table 3 and Fig. 1C). Among the negative strand reactive

PBMCs, 4 out of 4 samples were collected prior to treatment, 4 of

8 during ongoing therapy, and 2 of 4 post-treatment (Table 3).

The reactive post-treatment samples were obtained at 12 wks after

cessation of PegIFN/R therapy.

Detection of HCV in paired plasma and PBMC samples
during and after antiviral treatment

Examination of HCV expression in serial plasma and PBMC

samples collected at the same time points of follow-up was possible

in 3 of the patients investigated. Considering HCV RNA detection

in either 250-ml or 750-ml plasma samples and in either untreated

or ex vivo stimulated lymphoid cells (Table 3), among 22 plasma-

PBMC pairs examined, 13 (59.1%) were HCV positive in both

plasma and PBMC, while virus was detected in 5 (22.7%) of the

pairs in plasma only and in 4 (18.2%) other pairs in PBMC alone.

Further, among 18 plasma-PBMC pairs collected during the

treatment or post-treatment periods, 9 (50%) plasma-PBMC pairs

were HCV positive in both compartments, while 5 (27.8%) and 2

(22.2%) were HCV reactive in plasma and PBMC, respectively.

Identification of HCV RNA in serial plasma and PBMC

samples collected at the same time points of follow-up from 8/F

patient infected with HCV genotype 2a and treated for 48 wks

with PegIFN/R was shown in Figures 1A and 1B, respectively.

Figure 1C illustrates detection of HCV RNA replicative strand in

PBMC samples identified to be virus RNA positive strand reactive.

Persistence of HCV variants in plasma and PBMC during
and after antiviral therapy

To assess whether otherwise successful treatment of CHC had

an effect on the diversity of HCV variants, clones of 59-UTR

amplicons derived from 5/M and 8/F plasma and PBMC

collected before, during and after completion of PegIFN/R

administration were sequenced in both directions. Two types of

comparisons were performed; one using as the baseline the HCV

sequence identified in plasma of a given individual prior to

initiation of therapy and second using as references two relevant

sequences from GenBank for each of the HCV subgenotype of

interest. The analyses showed that the point mutations unique to a

given individual already existed in the pre-treatment plasma and/

or PBMC, that the majority of these mutations persisted through

therapy and follow-up, and that some variants tended to spread

with time from one compartment to another, i.e., from plasma to

PBMC (e.g.,126insC, G151A, A256G and C271T in 58/F) or vice

versa (e.g., G97A and A115G in 58/F) (Table 4). Considering the

HCV sequence identified in the pre-treatment plasma, the results

indicated that HCV variants unique to PBMC appeared prior to

as well as during treatment and some of them persisted through

the whole observation period. It is of note that two point

mutations, G255T and A275C, which were consistently detected

in all clones tested (n = 100) from plasma or PBMC of 8/F, were

distinct from the 2b genotype sequences reported in GenBank

used for comparison (data not shown). Overall, the analysis

confirmed that HCV not only persisted but also suggested that its

replication progressed during the period of administration of

PegIFN/R since new variants appeared and spread from one

compartment to another. The 59-UTR variants and wild-type 59-

UTR sequences found in 5/M and 8/F patients have been

deposited in GenBank under accession numbers KF548005-

KF548035.

The phylogenetic tree analysis of the variant 59-UTR sequences

identified in 5/M and 8/F showed the lack of separate clustering

of plasma and PBMC derived variants (Fig. 2). This was consistent

with the finding that the same variants occurred both in plasma

and PBMC, and that they tended to spread from one compart-

ment to another during follow-up (Table 4).
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Discussion

This study demonstrated that HCV is not cleared during

ongoing administration of standard PegIFN/R therapy or after its

completion even when the treatment lowers circulating HCV to

the levels undetectable by clinical testing and was finally capable of

inhibiting progression of CHC. While persistence at low levels of

HCV in plasma or sera in the context of detectable antibodies to

HCV (anti-HCV), undetectable serum HCV RNA by clinical

testing, and essentially normal levels of liver enzymes has been

reported in individuals long after clinical resolution of CHC

following treatment with IFN or PegIFN/R [5,6,8,9,11,20], the

detection of HCV and its replication during ongoing treatment

with PegIFN/R when the virus genome became undetectable by

clinical assays has not yet been examined and our study is the first

in this regard. Although this finding per se was expected,

considering frequent detection of OCI after clinically apparent

SVR when methods enhancing virus identification were used

[6,11,18,19,20], it adds a new dimension to the robustness of HCV

infection in the face of antiviral treatment even if such treatment is

ultimately capable of inhibiting progression of the disease. It also

confirms inability of the standard PegIFN/R therapy to

completely eradicate HCV from an infected host.

In addition to persistence of HCV in plasma during OCI, virus

and its replicating genomes were uncovered in PBMC and liver

biopsies in individuals for many years after having been considered

to be clinically cured of hepatitis C [5–9,11,20,22]. In regard to

infection of PBMC, different subsets of circulating immune cells

were found to carry HCV, its RNA replication strand, displayed

intracellularly virus protein (i.e., nonstructural protein 5a; NS5a),

and virus sequence variants not encountered in the patients’

plasma or liver [8,20,28–30]. Also, cultured PBMC from

individuals with OCI continuing after SVR due to PegIFN/R

therapy released HCV virion-like particles identifiable by im-

munoelectron microscopy with anti-HCV E2 antibodies and

transmitted infection to virus-naı̈ve human T lymphocytes in

culture [5]. Taken together, the accumulated data showed that

HCV residing in immune cells fully retains biological competence,

including infectivity [5,31]. These and other findings prove that

immune cells, including T lymphocytes, are targets of naturally

occurring virus, they are reservoirs of replicating HCV regardless

of symptomatic or occult appearance of infection and, since these

cells are readily accessible, they can be utilized for evaluation of

the status of HCV replication during infection and progression of

antiviral treatment [32]. In this context, the detection of HCV

positive and, in some cases, virus negative (replicative) strands in

PBMCs in the current study is indicative that these cells

Table 3. Detection of HCV RNA positive strand in plasma and HCV RNA positive and negative (replicative) strands in parallel PBMC
samples from patients who clinically resolved CHC due to PegIFN/R treatment.

HCV RNA positive strand
HCV RNA negative
strand

Plasma PBMC

Patient Week of treatment Phase of treatment 250 ml or 750 ml Untreated (naive) Treated (stimulated) PBMC

5/M 25 Before POS NT POS POS

4 During POS POS NT POS

24 During NEG POS NT NEG

+4 After POS NT POS NEG

+12 After POS NT POS POS

+24 After POS NEG NEG NA

7/F 214 Before POS NT POS POS

4 During POS NEG POS NEG

25 During NEG NEG POS POS

29 During NEG NEG POS NEG

44 During POS NT NEG NA

+6 After NEG NEG NEG NA

+88 After NEG NEG NEG NA

8/F 214 Before POS NEG POS POS

24 Before POS NT POS POS

4 During POS POS NT NEG

12 During POS POS NT POS

18 During No sample POS NT POS

24 During POS NEG NEG NA

48 During POS NT NEG NA

+4 After POS POS NT NEG

+12 After NEG NT POS POS

+24 After POS NT NEG NA

M, male; F, female; 2, prior to initiation therapy; +, after completion of therapy; POS, positive; NEG, negative; NT, not tested; NA, not available.
doi:10.1371/journal.pone.0080078.t003
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constituted a virus reservoir during both ongoing PegIFN/R

treatment and after its completion.

In regard to the above, it is of interest to note that human

recombinant IFN-a 2b is capable of total elimination of HCV

replication in cultured normal human T lymphocytes infected de

novo with different HCV genotypes at concentration of

1000 U mL-1 [5,31; MacParland and Michalak, unpublished

data]. Also, replication of HCV in T cells of patients with CHC or

OCI persisting after SVR can be completely abrogated by

activation of endogenous IFN-c in CHC but of IFN-a in OCI

after ex vivo stimulation of the cells with a mitogen prompting

proliferation of T cells [23]. These data suggest that IFN-a has in

fact ability to totally purge HCV from infected cells, at least in the

immune cell compartment.

The bidirectional sequencing analysis of the 59-UTR encom-

passing the virus internal ribosomal entry site (IRES) suggested

nucleotide polymorphisms between plasma and PBMC obtained

at the given time points of follow-up, either before, during or

following PegIFN/R treatment, which were particularly apparent

in samples from 8/F patient (Table 4). The existence of HCV

polymorphisms in PBMC comparing with plasma and liver has

been previously reported in patients with CHC or OCI and in

individuals after SVR with a past exposure to HBV [11,20,28,29].

In this study, a minority of variants identified before or during

therapy were not detectable thereafter, suggesting that the breadth

of HCV polymorphism tended to decline after cessation of the

therapy. However, as already noted, the majority of the point

mutations detected prior to the initiation of PegIFN/R therapy

persisted throughout the treatment and the post-treatment periods.

Moreover, they showed an inclination to spread from one

compartment of virus occurrence to another, implying that the

antiviral treatment was without meaningful effect on their fate.

This trend to spread from PBMC to plasma or vice versa was

confirmed by the phylogenetic tree analysis of the 59-UTR

sequences identified during the observation period of 5/M and 8/

F patients, which showed the lack of segregation to separate

clusters of the variants detected in plasma and PBMC (see Fig. 2).

Some of the variants detected were reported before. Thus,

126insC mutation found in plasma of 8/F prior to treatment

and then in PBMC and plasma during and after PegIFN/R

therapy has been reported for HCV derived from brain [33], while

125delC detected in PBMC during treatment of 8/F patient was

previously found in PBMC of a patient with occult HCV infection

[11].

Figure 1. Expression of HCV RNA positive strand in serial plasma and PBMC samples and HCV RNA negative (replicative) strand in
PBMC prior to, during and after completion of PegIFN/R treatment of 8/F patient with the initial diagnosis of CHC. (A) HCV RNA
positive strand detection using total RNA extracted from 250 ml or 750 ml of plasma. (B) HCV RNA positive strand identification using 2 mg of total
RNA extracted from either mitogen-treated (*) or native (untreated) PBMC. (C) Detection of HCV RNA negative strand in HCV RNA positive strand
reactive PBMC samples shown in B. Plasma and PBMC were collected in parallel (except 4A PBMC sample) at the time points (weeks) indicated under
panels A and B. Minuses before week numbers indicate sample collections prior to initiation of PegIFN/R therapy, while pluses indicate collections
after completion of the treatment. As positive controls for HCV RNA positive strand detection, RNA extracted from equivalent of 10 ml of HCV RNA-
positive plasma (panel A) or 1 mg RNA from PBMC (panel B) of a patient with active CHC, and serial 10-fold dilutions of recombinant HCV 59-UTR-E2
(rHCV UTR-E2) fragment carrying indicated copy numbers/reaction were used. For HCV RNA negative strand detection, 2 mg of total RNA from PBMC
of the same control CHC patient as in panels A and B, and synthetic HCV RNA positive strand (sHCV RNA pos) and HCV synthetic RNA negative strand
(sHCV RNA neg) at 104 copies/reaction were used as positive and specificity controls. Water amplified in direct (DW) and nested (NW) reactions and a
mock (M) extraction served as contamination controls. Positive signals showed the expected 244-bp oligonucleotide fragments. Numbers under the
panels represent relative densitometric units (DU) given by hybridization signals.
doi:10.1371/journal.pone.0080078.g001
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Figure 2. Phylogenetic analysis of the HCV 59-UTR variants found in plasma and PBMC from patients 5/M and 8/F obtained prior to,
during and after PegINF/R therapy. The numbers 5 and 8 identify patient 5/M and 8/F, respectively. M indicates the variant and wild wild-type
sequence found in the majority of the clones derived from a given patient prior to, during and after therapy. B stands for before treatment, D during
treatment, and A after treatment with PegIFN/R. The variants from plasma are marked with S, while those from PBMC with C. The numbers 1–20
indicate individual clones. The genotype 2a and 2b nucleotide sequences serving as references are marked as Ref.
doi:10.1371/journal.pone.0080078.g002

Table 4. Single-nucleotide polymorphisms in the HCV 59-UTR sequence in sequential plasma and PBMC samples obtained from
patients with CHC prior to, during and after treatment with PegIFN/R.

Phase of treatment

Age/sex Genotype Sample Before During After

Time of collection (week): 25{ 4{ +12{

5/M 2b plasma A177G (1) A177G (1) A177G (2)

PBMC A177G (1) A177G (1)

Time of collection (week): 24` 12{ +4{ +12{ +24{

8/F 2a plasma 126insC (1) A115G (1) A115G (1) NA A115G (1)

G151A (2) 126insC (1) 126ins (2) 126insC (1)

A256G (1) C236T (1) C271T (2) C271T (1)

C271T (1) C271T (1)

PBMC G97A (1) 126insC (1) 126insC (2) 126insC (2) NA

A115G (3) 125delC (1) C271T (2) C271T (2)

A256G (1)

C271T (1)

M, male; F, female; PBMC, peripheral blood mononuclear cells; 2, prior to initiation of therapy; +, after completion of therapy; NA, not available;
{, 10 clones per sample sequenced;
`, 20 clones per sample sequenced.
doi:10.1371/journal.pone.0080078.t004
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Treatment with PegIFN/R inhibits progression of CHC in 40%

to 50% of those chronically infected with HCV genotype 1

without benefiting the remaining infected with this genotype [34].

Nonetheless, HCV persists for years, if not decades, even in those

who achieved clinical SVR at levels which are only occasionally

detectable by clinical molecular tests of improved sensitivities

[5,6,8,9,35]. The relevance of this low level HCV persistence to

virological relapse after SVR, as defined by detection of HCV

RNA by clinical assays, appears to be low or very low based on the

data from pertinent clinical trials and related prospective studies.

These data indicate that the late reappearance of HCV detectable

by clinical tests among responders to IFN or PegIFN/R is ranging

from that close to none to 11.6% [36–38]. However, the results

outside clinical trials show that virological and clinically evident

relapse after IFN-induced SVR happens and is usually linked to

situations where the host’s immune system is compromised due to

either immunosuppressive treatment or comorbid disease [39–41].

The accumulated data imply that it will be prudent to monitor the

molecular markers of HCV infection and liver function enzymes in

patients with a history of HCV infection and SVR who are

subjected to temporal or prolonged immunosuppressive therapies

and/or suffer from diseases diminishing the host’s immune

surveillance, as it has become common in recent years for

individuals with a past exposure to HBV and persistent occult

HBV infection [42,43].

Currently PegIFN/R treatment remains the most commonly

utilized approach against CHC, although patients infected with

HCV genotype 1 benefit from supplementing this therapy with

direct acting antivirals (DAAs) targeting virus proteases or

polymerase. While it is expected that new generations of DAAs

will replace the need for IFN-a use in the majority of patients

infected with different HCV genotypes, although IFN-a may

remain as part of the treatment scheme for patients who relapse

after DAA therapy. Nonetheless, to fully recognize the sterilizing

potency of new DAAs in the context of the extremely high

mutagenic capacity of HCV and the virus’ resulting ability to

generate drug resistant mutants, the DAA effects on virus

replication at extrahepatic sites, particularly in immune cells,

should be routinely assessed since these cells also are the site of

virus active propagation. There are very limited data in this

regard. However, telaprevir, an HCV-specific protease inhibitor

recently approved for clinical use (VX-950; Vertex Pharmaceu-

ticals, Cambridge, MA) [44], has been shown to totally inhibit

replication of native, patient-derived HCV infecting Molt4 T cells

at the cell nontoxic concentration of 4 mM, as our recent study

demonstrated [26]. This indicates that this DAA has the ability to

enter and inhibit propagation of HCV in cells other than

hepatocytes.
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