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Abstract 
 

Traditional indoor location technologies based on wireless sensor network have difficulty in satisfying the requirements 
of positioning accuracy and real-time tracking in the non-line-of-sight (NLOS) environment due to considerable errors. In 
this study, an indoor location and tracking algorithm for the ultra-wideband (UWB) system was proposed to solve 
accurate location and tracking problems of the moving target in the complicated indoor environments. First, this 
algorithm measured the distance between tag and anchor accurately by the two-way time-of-flight (TW-TOF) method, 
and then calculated the position coordinates of the tag by the CHAN algorithm after the range measurement. Second, the 
coordinates of tag position were used as the observation value of unscented Kalman filter (UKF) with the state updating 
equation of UKF modified. Finally, the real-time position states and speed of the tag could be acquired. The proposed 
algorithm was compared with the extended Kalman filter (EKF) through a simulation experiment. Results demonstrate 
that the improve UKF algorithm can realize accurate location and dynamic tracking of the moving target in the indoor 
NLOS environment. The location accuracy of the proposed algorithm is 33.5% higher than that of the EKF algorithm. 
The study can provide certain references for accurate location and tracking of the moving target in the complicated indoor 
environments. 
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1. Introduction 
 
The wireless communication technology has rapidly 
progressed as a response to the era of big data. Social 
demands for location awareness increase gradually to 
acquire accurate location information of targets and realize 
real-time tracking. Currently, outdoor location techniques 
become increasingly mature and are extensively used in all 
aspects of social life. However, abundant barriers between 
the target and anchor along with serious non-line-of-sight 
(NLOS) are present in complicated indoor environments. 
Thus, using traditional outdoor location techniques is 
difficult in indoor environments. As a result, indoor location 
technique is accepted as an important study field. Common 
indoor location techniques are mainly based on wireless 
local area network, radio frequency tag, Zigbee technology, 
Bluetooth technology, ultra-wideband (UWB) and infrared 
technology. These techniques have achieved abundant 
results and have thus facilitated the development of indoor 
location technologies to some extent. The UWB technology 
is superior to many location technologies due to its high 
location accuracy, and high temporal resolution, and strong 
anti-multipath ability, and strong signal penetration, which 
has achieved considerable development in recent years [1-3]. 

In wireless indoor location systems, location algorithms 
are divided into range-based location and range-free location. 
The former shows higher location accuracy than the latter 

and covers two steps of range measurement and location. 
Therefore, the accuracy of range-based location is 
determined by ranging technology and location algorithm. 
At present, time of arrival (TOA), received signal strength 
indicator (RSSI), time difference of arrival (TDOA) and 
arrival of angle (AOA) are common ranging methods. Two 
methods can also be combined to complement each other, 
such as TOA and AOA combined position technology [4]. 
Location accuracy is sensitive to the spreading of NLOS and 
multipath effect in complicated environments with abundant 
barriers between the tag and anchor; thus, the influences of 
NOLS should be decreased or eliminated urgently [5]. 

To address the above-mentioned problems, two-way 
time-of-flight (TW-TOF) method and CHAN algorithm 
were combined by the UWB location technology in the 
present study. Moreover, a moving target was located and 
traced by the improved unscented Kalman filter (UKF) to 
estimate the location of the moving target accurately and 
thus provide references for accurate location and tracking of 
the moving target in the complicated indoor environments. 
 
 
2. State of the art  
 
Considerable studies have been conducted on target location 
and tracking in complicated indoor environments from 
aspects of location algorithm [6-7], filtering estimation 
algorithm [8-9], and reducing effects of NLOS [10]. A 
Newton location algorithm based on RSSI was proposed by 
Yangqianzi Luo, which achieved smaller measuring error by 
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preprocessing of range based on particle filtering algorithm 
and estimated coordinates of location node by Newton’s 
method. However, the RSSI method presents large errors 
[11]. An approximate maximum likelihood estimation 
method based on the approximate maximum likelihood 
location fuzzy elimination method was put forward to 
modify CHAN algorithm by Zijia Wang, with promising 
engineering application prospect possessed, which, however, 
neglected the influences of NLOS [12]. An improved 
constraint weighted least squares algorithm was proposed to 
solve the anomaly of measurement matrix that might occur 
in AOA and TDOA combined location by Leibing Yan, 
which achieved high location accuracy [13]. A location 
method based on rectangular coordinates and a location 
method based on polar coordinates by combining TDOA and 
AOA were propounded by Congfeng Liu, which provided 
certain theoretical references. Nevertheless, the location 
method based on AOA requires the corresponding antenna 
array, which consumes high cost and is difficult to be 
realized [14]. With the range measured by TOA, the location 
accuracy further increased by making fully utilizing the 
nonlinear filtering characteristics of the extended Kalman 
filter (EKF) algorithm by Fengchong Wang. Nevertheless, 
the EKF algorithm must remove second-order or higher-
order terms in the process of the linearization, which may 
cause certain errors [15]. The optimal course estimation of 
the moving target was carried out through the particle filter 
method by Ling Pei. This approach still has some 
disadvantages, such as heavy calculation loads and poor 
performance of real-time location [16]. A new robust 
second-order cone relaxation (SOCR) method by combining 
TOA was proposed by Shengjin Zhang, which, however, 
was insensitive to NLOS errors and presented lower 
calculation complexity than existing methods. Although this 
robust SOCR method has certain reference values, it 
neglects timeliness of location [17]. To address the 
significantly reduction in estimation accuracy of traditional 
location algorithms in multipath and NLOS environments, 
an indoor location algorithm based on AOA and phase 
difference of arrival was put forward by Yongtao Ma. 
Subsequently, the actual position of the tag was calculated 
by combining the weighted least squares algorithm and 
residual weighted algorithm, which can offer references for 
reducing the influences of NLOS [18]. A low-complexity 
NLOS control method based on the sparse pseudo-input 
Gaussian process was proposed by Yang X, which was 
considerably faster than the latest advanced machine 
learning method and gained comparable performances under 
small pseudo-data size. Nevertheless, the UWB signal 
characteristics in line-of-sight (LOS)/NLOS environment 
must be collected in advance, which restricts its practical 
applications to some extent [19]. On the basis of sampling of 
UWB signal characteristics in LOS/NLOS environment, a 
random forest discrimination model was constructed by Ling 
Zeng to identify NLOS anchors. This model applied 
different NLOS elimination methods for situations involving 
different NLOS anchors, thus increasing the location 
accuracy effectively. However, the range error between a 
moving target and anchor caused by system noises still must 
be solved [20]. 

The above-mentioned studies barely involve the tracking 
of moving targets. A large improvement space exists in 
decreasing or eliminating the influences of NLOS, and the 
location algorithm still can be further optimized. To solve 
accurate location and tracking of moving targets in 
complicated indoor environments, advantages and 

disadvantages of existing algorithms in this field were 
considered comprehensively in this study. The range 
between sensor nodes was measured by TW-TOF method, 
which has no time synchronization between the tag and 
anchors and can thus avoid the additional cost for acquiring 
time synchronization. After the range was measured, 
coordinates of location were calculated preliminarily by the 
CHAN algorithm and then used as an observation data of 
UKF with the state updating equation of UKF modified. 
Therefore, the iteration error was decreased and the location 
accuracy was increased effectively. The proposed algorithm 
is applicable to accurate location and dynamic tracking of a 
moving target in the indoor NLOS environment. The 
calculation complexity of the proposed algorithm is slightly 
lower than that of the EKF algorithm and the location 
performance is approximate to that under LOS state. 

The remainder of this study is organized as follows. 
Section 3 introduces the TW-TOF method, the CHAN 
algorithm, and the improvement of the UKF algorithm. 
Section 4 designs a simulation experiment for comparative 
verification between the proposed algorithm and EKF 
algorithm. Section 5 elaborates the conclusions. 
 
 
3. Methodology 

 
Asynchronous TW-TOF method is employed to measure the 
time of flight of UWB impulse accurately for obtaining the 
distance between the tag and anchor. Thereafter, coordinates 
of the tag are calculated by CHAN algorithm based on range 
and used as the observation data of UKF algorithm. Finally, 
location and tracking of the tag are realized. 
 
3.1 Two-way time-of-flight 
The asynchronous TW-TOF method requires no time 
synchronization of two communication parties and thus 
saves the corresponding cost, which requires the tag and 
anchor to be able to send and receive signals simultaneously. 
The tag can initialize range information periodically, while 
the anchor can receive signals emitted by the tag timely. The 
distance between the anchor and tag can be calculated in 
accordance with the difference in time based on data 
interaction. The measurement steps of TW-TOF method are 
shown in Fig. 1. 
 
 

 
Fig. 1.  Measurement steps of the TW-TOF method 
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The tag sends information to the anchor and record the 
transmission time (namely, the send timestamp) ( 1T  ). The 
anchor receives information and responds to the tag after a 
certain delay. Thereafter, the tag receives the response and 
records the received time stamp ( 2T  ). 

The total round time ( roundT ) can be gained from 1T   
and 2T  TOF  value ( t ) can be acquired by setting the fixed 
delay of time ( delayT ) for the anchor to send the signals: 
 

2
12 delayTTT

t
−−

=                                  (1) 

 
On this basis, the range r  can be acquired as follows: 
 

( )
2
12 delayTTTc

r
−−

=                              (2) 

  
where c  is the signal velocity, that is, velocity of light. 
 
3.2 CHAN algorithm 
The distances of the tag to at least three anchors can be 
acquired by the two-way TOA location method based on the 
time of flight. Subsequently, location of the tag is calculated 
by the CHAN algorithm to gain the coordinates of the tag to 
be located. The CHAN algorithm is solved using the least 
squares algorithm twice to obtain non-iterative closed-form 
solution to the corresponding nonlinear equation set. When 
the range error of the location system obeys Gaussian 
distribution, the CHAN algorithm presents high location 
accuracy. The solving process of CHAN algorithm is 
introduced as follows. 

( )yxT ,  is set as the tag (namely, the estimating position) 
and ( )iii yxX ,  represents the coordinates of the anchor. n  
is the number of known anchors. The distance ir  between 
the tag and the anchor X i  is: 

 

( ) ( )22 yyxxr iii −+−=                         (3) 
 
The anchor X i  is used as the standard. The range 

difference 1,ir  of the tag T  to ( )1≠iX i  and X 1  is: 
 

.,...2,1,11,1, nirrctr iii =−==                              (4) 
 

where c  is the velocity of light, and 1,it is the difference of 

time of the tag T  to ( )1≠iX i  and 1X . From Eqs. (3) and 
(4), the following condition can be obtained: 

 

( )21,111,1,1, 2
1

iiiii rKKrryyx −−=++                      (5) 

 
where 22

iii yxK += , 11, xxx ii −=  and 11, yyy ii −= . 

1,, ryx  are the independent variables and Eq. (5) can be 
converted into a linear equation set: 

 
hzG aa =                                                     (4) 
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{ }0*  is defined as the value without noise. Thus, the 
error vector in Eq. (6) is: 
 

hZGhe aa
0−=                                         (7) 

 
e  is assumed to approximately obey Gaussian 

distribution with a covariance matrix. Therefore, the 
covariance matrix is: 

 
( ) BQBceeE T 2==ψ                                  (8) 

 
where { }00

3
0
2 ,...,, nrrrdiagB =  and Q  is the covariance 

matrix of noise vectors that obeys Gaussian distribution. 
The least squares solution of Eq. (6) is equivalent to 

solving the normal equation. 
 

hGzGG T
aaa

T
a =                                      (9) 

 
Elements in za  are assumed to be independent mutually. 

The problem turns into a weighted least squares problem 
after errors of each data group are weighted. Thus, Eq. (7) 
can be rewritten as follows: 

 
( ) hGzGG T

aaa
T
a ψψ =                         (10) 
 
Therefore, the weighted least squares estimation of za  is: 
 

( ) hGGGz T
aa

T
aa

111 −−−= ψψ                     (11) 
 
B  covers the real distance from T  to iX  and is 

unknown at calculation. When the distance from T  to X i  
is large, Ψ  can be replaced by Q . Therefore,  

 

( ) hQGGQGzz T
aa

T
aaa

111~ −−−=≈                       (12) 
 
The initial solution is obtain from Eq. (12) and is then 

used to recalculate B . Calculate results of B  are introduced 
into Eq. (8) and then to Eq. (10), for obtaining the results 
of az , which are the first estimation results. 

On the basis of the first estimation results, a group of 
error equation set is reconstructed for the second estimation: 
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where iaz ,  denotes the component i  of az , [ ]3,1∈i . 

321 ,, eee  are estimation errors of az . 
Therefore, the second estimation is: 
 

( ) 1
1
11

1
1

1
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−−−= ψψ                     (14) 
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The pre-estimation results of tag coordinates are: 
 

( ) ( )Ta
T yxzyx 11,,

1
+±=                        (15) 

 
3.3 Kalman filter algorithm 
The combined TW-TOF and CHAN algorithm mainly 
calculates coordinates of a static tag. The location methods 
for the static target cannot be applied to the moving target 
directly because the coordinates at the current and previous 
moments are connected to some extent. In this study, the tag 
is located and tracked by the UKF algorithm with 
considerations to the possible movements of the tag. 

UKF based on unscented transformation (UT) is a 
nonlinear filter algorithm, which processes nonlinear 
transmission of mean and covariance through UT and 
applies the nonlinear model of the system. Thus, UKF 
realizes the linear processing of nonlinear functions. EKF 
algorithm is an approximation of the Gaussian distribution 
of the nonlinear function and implements the system 
linearization close to the working point. Given the 
approximate linearization, noise and state are assumed to 
obey Gaussian distribution. Thus, only the mean and 
covariance matrix need to be calculated. However, the 
Jacobian matrix of EKF is relatively complicated. The initial 
state and covariance are difficult to be determined. Therefore, 
EKF algorithm is inapplicable to strongly nonlinear systems. 

UKF algorithm hypothesizes that the state meets the 
Gaussian distribution, and the Sigma points are produced 
through UT to approximate nonlinear mean and variance, 
thus obtaining a large number of observation defaults, which 
avoids ignorance of high-order problems in the linearization 
and only processes the posterior probability density. 
Therefore, the UKF algorithm obtains the secondary optimal 
solution and shows higher calculation accuracy and stronger 
adaptation than the EKF algorithm. In consideration of the 
discrete time nonlinear system in the NLOS environment, 
the state and observation equations of UKF are: 

 
( ) kkkk wxfx +=+1                        (16) 

 
( ) kkkkk nvxhz ++=                      (17) 

 
where Nk ∈  is the time variable. nk Rx ∈  is the system 
state vector at k . nk Rx ∈+1  is the system state vector at 

1+k . kn  is the practical NLOS error ( 0>kn ). mk Rz ∈  is 

an observation vector at k . f k  denotes the propagation 

function of an n-dimensional state. kh  is a measurement 
function of a m-dimensional vector. kw  and kv  are 
independent Gaussian white noises with zero means. 

UT, which is a nonlinear approximation method, 
constructs a group of sampling points (Sigma points) based 
on mean and variance of current state. And the mean and 
variance of the nonlinear transformation can be 
approximated by the mean and variance of this group of 
sampling points. Given Gaussian white noises, UKF 
implements the nonlinear functional processing to a few 
Sigma points and can calculate the statistical characteristics 
of random variables. 

The statistical characteristic of x  is ( )xPx,  and a total 
of 12 +n  Sigma points are constructed. If ( )nii 2,2,1,0 !=ξ , 
then the method to produce Sigma points is: 
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where ( ) nkn −+= 2αλ  is a proportional coefficient， n  is 
the dimension of state，and α  determines the scattering 
degree of Sigma (generally 0.01). Influences of high-order 
terms are minimized by adjusting the value of α . k  is an 
adjustable parameter that has a value of 0 in general. 

( )( )ixPn λ+  is the column i  of the new matrix gained 

after square root matrix is collected from the matrix 
( ) xPn λ+ . 

UKF algorithm is mainly divided into state prediction, 
observation prediction and state updating. A group of 
sampling points (Sigma points) and the corresponding 
weights are obtained through UT. The one-step prediction 
values of the group of sampling points are calculated for 
calculating the one-step prediction and covariance matrix of 
the state variable. In accordance with the one-step prediction 
value, UT is used again to produce a new Sigma point set. 
This set is introduced into the observation equation to 
predict observation variables and update the state. 

The state prediction equation is: 
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where Qk  is the variance of kw  and ω  is the 
corresponding weight. 
 

The prediction equation of observation variables is: 
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where kR  is the variance corresponding to kv . 

The state updating equation is: 
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NLOS errors can obey Delta distribution, uniform 

distribution or exponential distribution in different channel 
environments. In this study, NLOS errors are assumed to 
obey the exponential distribution. x  is a random variable 
and conforms to the exponential distribution with parameter 
y . The conditional probability density function is: 
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where ξdTy 1=  denotes the root-mean-square delay. ξ  
reflects the random variable conforming to the logarithmic 
normal distribution. d  is the distance between the tag and 
anchors. iT  is the mid-value of delay extension when the 
distance is d . 

The mean and variance of additional delay caused by 
NLOS propagation can be expressed as follows: 
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where zm  and zδ  are mean and standard deviation of the 
Gaussian random variable εlog10=z . ε  is an index 
between 0.5 and 1. 

In practical applications, the real distance between the 
tag and unknown nodes is unknown and replaced by the 
predicted value. Thus, the error caused by NLOS 
propagation can be obtained as follows: 

 

( ) ( )c
a
NtEcNtEn i

ik
,ˆ

, ==                          (25) 

 

where ( )NtE i ,ˆ  is the mean delay of prediction results and c  
is the velocity of light. a  is a constant. The prediction value 
is often higher than the real value due to errors. As a result, 
a  is higher than 1. 

 If the environment for signal propagation is fixed, then 
the mean and variance of root-mean-square delay caused by 
NLOS can only be determined by the distance from the tag 
to anchors. Thus, the state updating formula of the UKF is 
improved to eliminate the NLOS errors conforming to the 
exponential distribution. In this way, the iteration is 
corrected to reduce iteration error every time: 

 
( )kkkkkkkkk nzzKxx −−+= −− 1|1|| ˆˆˆ                    (26) 

 
Combined with the initial coordinates of the tag obtained 

by the CHAN algorithm, the UKF algorithm is improved in 
accordance with the characteristics of the NLOS 
environment, which can decrease NLOS errors effectively 
and obtain estimation results close to those in the LOS 
environment. As a result, accuracy of location and tracking 
can be guaranteed. 

 
4 Result Analysis and Discussion 

 
To verify the validity of the proposed algorithm, the tag was 
located and traced accurately in the Matlab environment. 
The results were compared with those of the EKF algorithm. 
Three anchors with coordinates of (0 m, 0 m), (110 m, 190 
m), and (220 m, 0 m) were set in an equilateral triangle. The 
real coordinates of the tag were X (160 m, 0 m). Distances 
from the tag to every anchor were acquired by the TW-TOF 
ranging model. Thereafter, the initial coordinates of 
unknown nodes were calculated as X0(148.6 m, -3.7 m) by 
the CHAN algorithm, which was used as the initial value of 
UKF algorithm. Figs. 2 and 3 show the state trails of the tag 
in the X and Y directions, respectively.  
 

 
Fig. 2.  State trail of X direction 
 

 
Fig. 3.  State trail of Y direction 
 

The state trails of the tag with time by the UKF and EKF 
algorithms were compared (Fig. 2 and Fig. 3). The 
coordinates estimated by the EKF algorithm are 
considerably higher than the real values.  
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Fig. 4.  Velocity trail of X direction 
 

 
Fig. 5.  Velocity trail of Y direction 
 

 
Fig. 6.  Estimation error along the X direction 
 

 
Fig. 7.  Estimation error along the Y direction 
 

Figs. 4 and 5 show the velocity trails of the tag along the 
X and Y directions, respectively. The filtered velocity trails 
are close to the real value. Figs. 6 and 7 show the location 
errors of EKF and UFK algorithms along the X and Y 
directions, respectively. The location error of UKF algorithm 
is considerably smaller than that of the EKF algorithm and 
the location accuracy of the former is 33.5% higher than that 
of the latter. The EFK algorithm omits second-order and 
higher-order terms during the approximate linearization of 
the system. Moreover, linear working point is only an 
estimated mean rather than the real mean of input state in 

most cases, thereby showing great accuracy loss. On the 
contrary, the UKF algorithm dose not implement linear 
approximation, but employs Gaussian approximation after 
the nonlinear transformation of the sigma point. Accordingly, 
the resulting error is small. 

 
 

5. Conclusions 
 
The complicated indoor NLOS environment can influence 
location considerably. Traditional location technologies have 
difficulty in realizing accurate location and tracking of the 
moving target. To relieve the influences of NLOS and 
increase the location accuracy of the moving target, an 
indoor location and tracking algorithm applicable to the 
UWB system was proposed, which combined the TW-TOF 
and CHAN algorithms and employed the improved UKF 
algorithm for location and tracking of the moving target. 
From the results, the conclusions could be drawn as follows: 

(1) The combination of TW-TOF and CHAN algorithms 
can achieve relatively good preliminary location results. 
TW-TOF can avoid time synchronization problem and has 
high ranging accuracy. The CHAN algorithm, which 
employs the weighted least square algorithm twice, can use 
range information reasonably and achieve a balance between 
complexity and accuracy.  

(2) The improved UKF algorithm reduces the iteration 
error in the state updating process and shows high location 
and tracking accuracy of the moving target in the NLOS 
environment. The improved UKF algorithm achieves 
considerably higher location and tracking accuracy than the 
EKF algorithm. 

The proposed indoor location and tracking algorithm not 
only can fully utilize the high time resolution of UWB but 
also can offset poor location accuracy of traditional 
technologies (e.g., WIFI and Bluetooth) to the nonlinear 
moving target in the indoor NLOS environment. The 
proposed algorithm, which has good filtering, location and 
tracking performances, provides some references for 
wireless indoor location scenes with high requirements on 
location accuracy. Although the TW-TOF algorithm can use 
the advantages of UWB technology effectively, the 
combination of several location means is superior and thus 
increases the location accuracy. Meanwhile, location and 
tracking of multiple targets should be considered in future 
studies. 
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