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1 Abstract 14 

The environmental quality of land can be assessed by calculating relevant threshold values which differentiate 15 

between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and 16 

concentrations generated by point sources of elements.  A simple process allowing the calculation of these 17 

typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six 18 

elements of interest; arsenic, chromium, copper, lead, nickel and vanadium.  Three methods for identifying 19 

domains (areas where a readily identifiable factor can be shown to control the concentration of an element), 20 

were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF).  The 21 

ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was 22 

used to identify domains in this investigation.  Two statistical methods for calculating Normal Background 23 

Concentrations (NBCs) and Upper Limits of Geochemical Baselines Variations (ULBLs), currently used in 24 

conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain.  The 25 

NBC methodology was constructed to run within a specific legislative framework, and its use on this soil 26 

geochemical data set was influenced by the presence of skewed distributions and outliers.  In contrast, the 27 

ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than 28 

the NBCs.  TTVs indicate what a “typical” concentration of an element would be within a defined geographical 29 

area and should be considered alongside the risk that each of the elements pose in these areas to determine 30 

potential risk to receptors.  31 

2 Suggested Keywords 32 

Background; contaminated land; domain identification; threshold; NBC; ULBL 33 

3 Introduction 34 

Geochemical surveys are carried out for various different reasons.  Initially, they were used to define the extent 35 

of mineralised areas in prospectivity studies (Hawkes and Webb 1962) and often urban areas would have been 36 

avoided in these surveys (Johnson and Ander 2008).  However, with developments in the understanding of the 37 

effects potentially toxic elements (PTEs) have on the environment and human health, geochemical surveys are 38 

increasingly being used in investigations to determine land quality and contamination (Salminen and Tarvainen 39 

1997).  A fundamental aim of geochemical surveys is often to define PTE concentrations that provide relevant 40 

thresholds within spatial element distributions.  Originally used as a prospecting tool (Sinclair 1974), threshold 41 

values are increasingly employed as a method by which to discriminate “contaminated land” (Rodrigues et al. 42 

2009).  In this respect, the threshold is often set to differentiate between concentrations of the element that 43 

naturally occur in the soil and concentrations that result from diffuse anthropogenic sources, or even to 44 

differentiate between diffuse and point anthropogenic sources.  However, there remains little consensus on what 45 

the aim of calculating these values is, and how values should be calculated.   46 

Many terms are used in the literature to describe concentrations of elements in the soil, often with conflicting or 47 

overlapping definitions.  In order to distinguish between geogenic and anthropogenic contamination Matschullat 48 

et al. (2000) define the geochemical background as a “relative measure to distinguish between natural element 49 

or compound concentrations and anthropogenically influenced concentrations”, which is similar to Hawkes and 50 
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Webbs' (1962) definition of background as “the normal abundance of an element in barren earth material”.  51 

However British Standards (BS19258)  state that the background content of a substance in soil results from both 52 

geogenic sources and diffuse source inputs and that the background values should be a “statistical characteristic 53 

of the background content” (British Standards 2011) which is therefore similar to Salminen and Tarvainen's 54 

(1997) definition of a geochemical baseline as an element’s average concentration in the Earth’s crust regardless 55 

of the source.  A discussion by Reimann and Garrett (2005) examines in detail the various terms used to 56 

describe these values, including background, threshold, natural background and baseline and the many 57 

definitions that exist for these terms.     58 

Salminen and Tarvainen (1997) suggest that baseline values are of “essential importance in environmental 59 

legislation” to define limits of PTEs in contaminated land and recent changes in contaminated land legislation in 60 

England and Wales have recognised this by stating that “normal levels of contaminants in soil should not be 61 

considered to cause land to qualify as contaminated land, unless there is a particular reason to consider 62 

otherwise” (Defra 2012).  Similarly, a recent Government Decree in Finland on the Assessment of Soil 63 

Contamination and Remediation Needs (Ministry of the Environment Finland 2007) requires the input of 64 

geochemical baseline concentrations in Finnish soils during the assessment process.  An investigation of arsenic 65 

concentrations at a site of specific interest in southern Italy, led to the development of a statistical methodology 66 

for determining the difference between natural and anthropogenic concentrations of metals and metalloids in 67 

soils (APAT-ISS 2006).  This methodology was retained by the Italian government as it was considered to be 68 

not only applicable to this particular site, but also to all other sites of national interest where the same problem 69 

was occurring. 70 

Within the research described in this paper, the term TTV is used to refer to a value which gives a characteristic 71 

concentration for an element within a defined geographical area known as a domain.  Previous work by Ander et 72 

al (2013a) and Ander et al (2013b) has seen the development of a methodology to determine NBCs of 73 

contaminants in English soils, supporting the recent changes to the statutory guidance (Defra 2012).  Within this 74 

methodology, a domain was defined as an area in which a readily distinguishable factor could be identified as 75 

controlling the concentration of the element.  This approach has been maintained within this investigation, 76 

remembering that these areas need to be defined on an element by element basis using initial assessments of the 77 

distribution of the elements within the study area.  It is important that the methods used to identify domains take 78 

all the relevant factors affecting soil element concentrations into account; geogenic factors, diffuse source 79 

anthropogenic inputs and point source contamination.  In order to be most relevant and useful for environmental 80 

legislation, the typical threshold values calculated should define concentrations of PTEs that are typical of the 81 

threshold between geogenic and diffuse anthropogenic source contributions to soil and concentrations that are 82 

associated with point sources.  If point sources of anthropogenic contamination can be identified, they can be 83 

more readily assessed to determine if they pose any risk to the surrounding environment.  A number of different 84 

industries can make use of definite concentrations which achieve this differentiation.  In particular, 85 

contaminated land professionals can more easily determine sites that possibly require further investigations 86 

because the TTVs are exceeded.  In addition, the agricultural industry may be interested in depleted 87 

concentrations of these elements where they are also considered to be essential to animal and plant life e.g. 88 

copper. 89 
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Commonly investigated PTEs include arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), 90 

iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) (Ajmone-Marsan 91 

et al. 2008; Kelepertsis et al. 2006; Palmer et al. 2013; Paterson et al. 2003; Ramos-Miras et al. 2011).  92 

Concentrations of PTEs are assessed for a variety of reasons; As, Hg and Pb are examples of elements 93 

commonly investigated in urban areas (Chirenje et al. 2003, 2004; Rodrigues et al. 2006; Wong et al. 2006), 94 

while Cr, Ni, V and Zn have previously been investigated as geogenically controlled PTEs within Northern 95 

Ireland (Cox et al. 2013; Palmer et al. 2013).  Previous research has identified concentrations of As, Cd, Cr, Cu, 96 

Ni, Pb, V and Zn in Northern Irish soils that exceed relevant Generic Assessment Criteria (GAC)/Soil Guideline 97 

Values (SGVs) (Barsby et al. 2012; Martin et al. 2009a; Martin et al. 2009b; Nathanail et al. 2009).  Six PTEs 98 

have been selected for investigation in this research; As, Cr, Cu, Ni, Pb and V.  These elements are expected to 99 

be governed by a mixture of geogenic and anthropogenic sources, a necessary factor in order to complete the 100 

aims of this study. 101 

The rationale behind this research is to investigate soil geochemical data for Northern Irish soils by 1) using a 102 

variety of techniques to identify the principal controls on the spatial variation of the PTEs and determining 103 

which technique is most appropriate for the available data set; 2) identifying domains i.e. areas of elevated and 104 

reduced PTE concentrations; 3) using previously developed statistical methodologies to calculate TTVs of PTEs 105 

within the aforementioned areas and 4) critically comparing the values calculated to determine which statistical 106 

method is most appropriate for use in differentiating between diffuse and point source element concentrations.  107 

It is worth noting that the TTVs do not assess risk, but instead provide an indication of PTE concentrations that 108 

are typical at a site. 109 

4 Materials and Methods 110 

4.1 Study area 111 

Northern Ireland is part of the United Kingdom which sits in the north east of the island of Ireland (Figure 1a) 112 

and is home to over 1.8 million people.  Despite being less than 14,000 km2 in area, the bedrock in Northern 113 

Ireland (Figure 1b) ranges from Mesoproterozoic to Palaeogene in age  and as a result is said to present an 114 

“opportunity to study an almost unparalleled variety of geology in such a small area” (Mitchell 2004).  The 115 

bedrock is often simplified into a series of Caledonian terranes and part of a Palaeogene igneous province with 116 

distinct geological characteristics.  The psammites in the northwest of Northern Ireland are of Neoproterozoic 117 

age.  The south eastern terrane is Lower Palaeozoic in age and also contains younger igneous intrusions.  These 118 

Palaeogene igneous intrusions consist of three central complexes; the Mourne Mountains, Slieve Gullion and 119 

Carlingford. The southwest comprises of a mixture of sandstones, mudstones and limestones, which are mainly 120 

Upper Palaeozoic in age with a distinct Lower Palaeozoic inlier.  The north east is dominated by a large area of 121 

extrusive Palaeogene basalts.  In terms of superficial geology, peatlands cover 12% of land area (Davies and 122 

Walker 2013) as shown on Figure 1c.  Two main urban areas exist within the country; Belfast and Londonderry, 123 

with populations of approximately 280,000 and 108,000 respectively (NI Statistics & Research Agency 2013), 124 

with other smaller urban centres including towns and villages (Figure 1c).   125 
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4.2 Soil geochemical data 126 

The Tellus project, managed by the Geological Survey of Northern Ireland (GSNI), comprised both geophysical 127 

and geochemical surveys.  The geochemical survey saw the collection of nearly 30,000 soil, stream-sediment 128 

and stream-water samples across Northern Ireland between 2004 and 2006.  Urban and regional soil samples 129 

were collected at densities of 4 per km2 and 1 per 2 km2 respectively.  Two depths were sampled at each 130 

location; a shallow sample taken between 5 and 20 cm and a deeper sample taken between 35 and 50cm.  The 131 

sample taken at each location was a composite of auger flights collected at the four corners and the centre of a 132 

20 by 20m square.  Samples were air-dried at the field-base before transport to the sample store where they were 133 

oven dried at 30°C for approximately two to three days.  The shallow samples were shipped to British 134 

Geological Survey (BGS) laboratories in Keyworth, Nottingham for preparation and analysis via x-ray 135 

fluorescence (XRF).  Sample preparation entailed sieving to a <2mm fraction, from which a sub-sample was 136 

produced for milling and pressed pellet production.   137 

A number of quality control methods were employed during the XRF analysis.  Two duplicate and two replicate 138 

samples were analysed per batch of 100 samples.  Three secondary reference materials that were collected in 139 

Northern Ireland specifically for the Tellus survey, and one material from BGS’s Geochemical  Baselines 140 

Survey of the Environment (G-BASE) program, were routinely analysed at a rate of two insertions per batch.  141 

Certified reference materials were also analysed before and after each batch.  Further details of quality control 142 

methods are provided by Smyth (2007). 143 

4.3 Domain Identification 144 

Fig. 1 Maps showing a location b simplified bedrock geology and c areas of peat substrate (superficial geology), 145 

rural and urban areas across Northern Ireland (Bedrock and superficial geology derived from data provided by 146 

GSNI (Crown Copyright)) 147 

4.3.1 Known controls over PTEs 148 

In order to calculate TTVs, domains were identified for each element.  Domains were selected based on 149 

knowledge of the factors shown in Figure 1 which were identified as the main controls over element 150 

concentrations in soils. 151 

Studies have shown that the majority of glacial till in Northern Ireland is found within only a few kilometres of 152 

its origin suggesting that soils usually reflect the character of the underlying geology (Cruickshank 1997; Jordan 153 

2001).  Therefore bedrock geology is expected to provide a strong control over element concentrations in soil.  154 

Geochemically, it is likely that the extrusive and intrusive (in particular, the Antrim Basalt formation and 155 

Mournes Mountain Complex)  igneous rocks of Northern Ireland will be of most interest, as previous studies 156 

have shown that they contain reduced and elevated concentrations of  a number of elements (Barrat and Nesbitt 157 

1996; Green et al. 2010; Hill et al. 2001; Smith and McAlister 1995; Smyth 2007).  Previous studies have 158 

demonstrated that soils from the basalt area are more homogeneous in their geochemical content than soils from 159 

areas of other rock types, suggesting that the basalts are acting as the soil parent material and the main control 160 

over geochemistry in that area (Zhang et al. 2007).  A simplified representation of bedrock geology in Northern 161 

Ireland derived from GSNI’s 1:250000 bedrock geology map is shown in Figure 1b, grouping bedrock types of 162 

similar composition and age.   163 
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Existing literature suggests that areas of peat substrate within Northern Ireland have a control over the 164 

distribution of a number of elements (Palmer et al. 2013).  Peat bogs that are fed solely by atmospheric 165 

deposition (ombrotrophic), can be used as archives of many types of atmospheric constituents (Shotyk 1996), 166 

including contamination in the form of PTEs.  Topographically elevated areas of peat are more likely to be 167 

affected in this way, as increased precipitation is usually associated with elevation (Goodale et al. 1998).  Areas 168 

of peat were defined using data derived from the GSNI’s 1:250000 superficial geology map and are shown on 169 

Figure 1c. 170 

Urban and rural areas were defined using a revised version of the Corine Land Cover 2006 seamless vector data 171 

(European Environment Agency 2012).  This approach is different to that taken in the NBC methodology, where 172 

the Generalised Land Use Database Statistics for England 2005 (Communities and Local Government 2007) 173 

were used.  The Corine Land Cover data set covers all of Europe and defines 44 land use classes based on the 174 

interpretation of satellite images (European Environment Agency 2012).  This has been simplified in Figure 1c 175 

to show urban and rural areas in Northern Ireland.  The majority of the land use classes were easily defined as 176 

either rural or urban, with a few others defined on a site by site basis. 177 

In the NBC methodology, metalliferous mineralisation and mining maps, were used to define mineralisation 178 

domains throughout the study (Ander et al. 2011).  As this information is not available for Northern Ireland, a 179 

different approach was taken in using mineral occurrence locations provided by GSNI, alongside relevant 180 

literature (Lusty et al. 2009, 2012; Parnell et al. 2000) to aid in mineralised domain identification. 181 

4.3.2 Method used for domain identification 182 

It is important that the methods used to define domains be robust to non-normality and the presence of outliers 183 

that are common in geochemical data.  Three methods to aid in the domain identification process were 184 

compared in this study; k-means cluster analysis (Ander et al. 2011), boxplot mapping (Reimann et al. 2008) 185 

and Empirical Cumulative Distribution Function (ECDF) mapping (Reimann 2005).  All statistical analysis of 186 

data was completed in the R statistical software package (R Core Team 2013), and all geographical analysis and 187 

images were completed using ArcMap 10.0 (ESRI 2009). 188 

The k-means cluster method (Figure 2a) was used to define domains by Ander et al. (2011) in the NBC 189 

methodology.  As k-means cluster analysis is of the partitional variety, the number of clusters must be assigned 190 

to the technique at the outset (Jain et al. 1999).  The most visually acceptable number of clusters, based on an 191 

antecedent visual assessment (Templ et al. 2008), was input into the technique and the data were partitioned into 192 

the selected number of clusters by minimising the “average of the squared distances between the observations 193 

and their cluster centres” (Reimann et al. 2008).    The algorithm constructed by Hartigan and Wong (1979), 194 

generally considered to be the most efficient (Ander et al. 2011), was used as the default setting in the R 195 

software package (R Core Team 2013).  Each data point was classified into a cluster by the technique, allowing 196 

the creation of a map of the clusters across Northern Ireland. 197 

Tukey boxplots of the log-transformed data (Figure 2b) were also used to define the classes for producing maps 198 

of the data distribution.  Assumptions regarding normal distribution of the data appear in the boxplot 199 

construction when the whisker values are calculated, as their calculation (box extended by 1.5 times the length 200 
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of the box in both directions) assumes data symmetry (Reimann et al. 2008).  Log transformations were applied 201 

as geochemical data are often strongly right-skewed, and the log-transformation helps the data distribution to 202 

approach symmetry, allowing a better visual demonstration of the data when mapped (Reimann et al. 2008).   203 

The boxplot was used to split the element concentrations into five classes for mapping; lower extreme values to 204 

lower whisker, lower whisker to lower hinge, lower hinge to upper hinge i.e. the box, upper hinge to upper 205 

whisker and upper whisker to upper extreme values. 206 

The third method applied to map the distribution of the elements used classes based on the empirical cumulative 207 

distribution function (ECDF) (Sinclair 1974).  The ECDF graph is a discrete step function which jumps by 1/n 208 

at each of the n data points.  As shown in Figure 2c, the ECDF plots have been constructed using the log-209 

transformed concentrations of the element, in this case nickel, in order to make breaks in the distribution more 210 

obvious.  Breaks in the distribution are demonstrated through changes of gradient in the graph, and are likely to 211 

be caused by the presence of different sub-populations within the data set, with different underlying factors 212 

controlling the concentrations of elements in these populations (Díez et al. 2007; Reimann et al. 2008; Reimann 213 

et al. 2005). Therefore breaks in the distribution can be used to distinguish mapping class boundaries. 214 

4.3.3 Domain Corroboration 215 

In order to corroborate the results of the domain identification process, a geostatistical approach involving the 216 

construction of semi-variograms was used to ensure that the controlling factors over element concentrations in 217 

soil were correctly identified.  The geostatistics were generated using ArcMap 10.0 (ESRI 2009).  A semi-218 

variogram is based on the Theory of Regionalised Variables (Matheron 1965), which permits interpolation of 219 

values on a surface by assuming that data points closest to each other spatially will have a greater influence over 220 

estimated values than would data points further away from each other.  Several important pieces of information 221 

can be identified from the semi-variogram: 222 

• Spatial variation at a finer scale than the sample spacing (Deutsch and Journel 1998) and measurement error 223 

(Journel and Huijbregts 1978) is represented by the nugget (C0).  Such small scale sources of variance can 224 

be an indication that sampling or analytical error is present or, that micro-scale processes are governing 225 

geochemistry to a greater degree than was detected by sampling resolutions.  226 

• The spatially correlated variation is represented by the structured component (C1) (Lloyd 2007).   227 

• The sill (Cx), where the semi-variogram levels off, is the distance at which pairs of data points are no longer 228 

spatially dependent upon each other. 229 

• The nugget:sill ratio (C0/Cx) gives the proportion of random to spatially structured variation at the scale 230 

being investigated. 231 

• Ranges of influence (a) can be statistically inferred from the lag distance at which the sill is reached 232 

(McKinley et al. 2004), permitting interpretation of specific environmental factors that may be influencing 233 

the mapped element of interest.  234 

• Depending upon the nature of fitting measured values to a semi-variogram, multiple spatial structures can 235 

be identified.  This is of particular interest where investigations into multiple environmental factors that 236 

may be controlling the element of interest are required. 237 
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• An apparent lack of spatial structure also provides important information, such as giving an indication about 238 

the suitability of analytical or sampling methods in accurately detecting total element concentrations which 239 

are thoroughly representative of a particular study area. 240 

4.4 Calculation of Typical Threshold Values 241 

In response to the legislative requirements discussed in the introduction, different authors have derived methods 242 

by which “background” values can be calculated.  The NBC methodology (Ander et al. 2013a; Ander et al. 243 

2013b) aims to provide a mechanism for revised legislation that differentiates between levels of contamination 244 

from geogenic and diffuse sources and those from point source contamination.  In order to take account of 245 

spatial variability, domains were defined for each element by comparing the results of a k-means cluster analysis 246 

to a soil parent material model, land use classifications and mineralisation and mining geographical mapping.  247 

Within the methodology, it is recommended that the domains are based on at least 30 values.  The NBC was 248 

then calculated for each domain using a statistical methodology that (1) assesses the skewness of the 249 

geochemical data by observing a histogram and calculating the skewness and octile skewness of the distribution. 250 

Based on the results of that assessment, the method (2) performs either a log transformation or a box-cox 251 

transformation on the data if necessary and then (3) computes percentiles using either parametric, robust or 252 

empirical methods depending on the results of the transformation applied.  The NBC is then taken to be the 253 

upper 95% confidence limit (UCL) of the 95th percentile.  A detailed explanation of how the methodology was 254 

constructed and how it should be applied is given in Cave et al. (2012).   255 

Jarva et al. (2010) have developed a methodology to allow the calculation of “baselines” in Finland, which in 256 

this instance refer to both the “natural geological background concentrations and the diffuse anthropogenic input 257 

of substances at regional scale”.  As with the above NBC calculations, Finland was divided into a number of 258 

geochemical provinces.  A key difference between the two methodologies is the consideration of soil type, with 259 

baseline values calculated by soil type within geochemical provinces.  The ULBL is based on the upper limit of 260 

the upper whisker line of the box and whisker plot.  A box and whisker plot identifies any values which fall 261 

above the upper whisker line as outliers, which may “represent natural concentrations of an element at the 262 

sampling site” (Jarva et al. 2010) but are probably not typical of the geochemical province as a whole.   263 

Logarithmic transformed data were not used to plot the box and whisker plots, as the untransformed data led to 264 

the highest amount of outliers and therefore was felt to give a more conservative value.  265 

A key difference between the NBC and ULBL methodology is the determination of what a “conservative” value 266 

is considered to be.  The ULBL methodology aims to identify the maximum number of outliers, therefore 267 

generating a lower concentration for the ULBL and the possibility that larger areas of land will be identified as 268 

exceeding the ULBL. The NBC methodology supports the English contaminated land regime, which aims to 269 

identify sites where “if nothing is done, there is a significant possibility of significant harm such as death, 270 

disease or serious injury” (Ander et al. 2013a).  Therefore, by taking the upper 95% confidence limit of the 95th 271 

percentile, the aim seems to be to identify the highest risk sites in order to prioritise further investigation and 272 

management of these sites. 273 

Within this research, both the NBC and the ULBL methodologies were applied to the shallow XRF data 274 

available for all of Northern Ireland.  NBC calculations were carried out using the R scripts prepared by Cave et 275 
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al. (2012) while ULBL calculations were undertaken in R using scripts prepared by the authors.  Data from 276 

shallow soils were selected for analysis so both anthropogenic and geogenic influences on the element 277 

concentrations could be determined.  XRF was selected as the most appropriate analytical method as it is said to 278 

give total results (Ander et al. 2013a). 279 

5 Results and Discussion 280 

5.1 Comparison of domain identification methods 281 

Fig. 2 Domain identification methods completed for Ni concentrations in the shallow soils of Northern Ireland 282 

analysed by XRF; a completed by a k-means cluster analysis, b classes defined by boxplot of log transformed 283 

concentrations as shown, and c classes defined by ECDF of log transformed concentrations as shown, with 284 

inverse distance weighting used to map the results (output cell size of 250m, power of two and a fixed search 285 

radius of 1500m) 286 

Figure 2 gives a comparison of the three methods used to map the distribution of elements and therefore identify 287 

domains using Ni as an example.  The k-means map (Figure 2a) highlights only the basalts which overlie 288 

northeast Northern Ireland.  Both the boxplot map (Figure 2b) and the ECDF map (Figure 2c) show areas of 289 

elevated and reduced concentrations.  Both show elevated concentrations over the basalts, with the boxplot 290 

method mapping the boundary of the basalts most effectively.  Reduced concentrations are more easily 291 

identified through the ECDF map, and are obviously correlated to the Mourne Mountain complex of south 292 

eastern Northern Ireland.  By comparing this image with areas of peat substrate (Figure 1c), an association 293 

between areas of peat and reduced concentrations was also identified. 294 

The k-means technique, used in the NBC methodology, produces useful results in the determination of elevated 295 

domains; however, it is more commonly used to compare a number of variables and estimate which variables 296 

are similar and dissimilar to each other (Romesburg 2004) and the inability of the method to determine domains 297 

of reduced concentrations does limit its applicability in practice.  In the case of Ni (Figure 2a), the initial 298 

assessment demonstrated that 3 clusters would be most appropriate, however a certain amount of prior 299 

knowledge regarding the controls over element concentrations is expected in this assessment. 300 

Boxplots allow identification of both elevated and reduced concentrations of the elements, with different 301 

sections of the distribution related to separate parts of the boxplot.  However, the splits in the distribution are 302 

still set at arbitrary values within the dataset, meaning actual controlling factors over the element concentrations 303 

could be missed. 304 

The ECDF method was superior in terms of spatially identifying both elevated and depleted concentrations of 305 

elements as it retains a great deal of information about the distribution of the element in the mapped output.  It 306 

clearly delineates areas of both elevated and depleted concentrations allowing controls over the PTE 307 

concentrations to be determined.  However, the method does require a level of interpretation as the individual 308 

inspecting the graphs decides where the gradient changes occur.  This introduces potential for bias as a level of 309 

knowledge of the modelled domains could influence the results.  It is however important to remember that the 310 

outputs from this process are maps, and therefore even though different individuals will generally produce 311 
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different results when splitting the ECDF plot by gradient, the same general trends will be obtained.  Of each of 312 

the 3 methods, the ECDF methodology provides the greatest detail and opens the methodology to applications 313 

other than the identification of land contamination.   314 

5.2 PTE Domains 315 

Within this investigation, the maps produced using the ECDF technique were compared to the main factors 316 

known to control the distribution of elements across Northern Ireland in order to identify domains.  The majority 317 

of domains were easily identified and the results correlated well with existing literature describing the 318 

distribution of elements in Northern Ireland (Young 2013 In Press). 319 

Fig. 3 Domains identified for a arsenic b chromium, copper, nickel and vanadium and c lead based on the 320 

ECDF maps produced 321 

Finalised domains are shown in Figure 3 for the elements under investigation: arsenic, chromium, copper, lead, 322 

nickel and vanadium.  Similar controlling factors were identified for Cr, Cu, Ni and V, with elevated 323 

concentrations of these elements observed over areas of basalt bedrock geology creating a basalt domain.  324 

Reduced concentrations are seen in the Mourne Mountains Complex, associated with naturally occurring low 325 

concentrations of these elements in granites, creating the Mournes domain.  Cr, Cu, Ni and V are known to be 326 

found at elevated concentrations in the Antrim Basalts (Barrat and Nesbitt 1996; Hill et al. 2001; Smith and 327 

McAlister 1995) and at reduced concentrations in granites (Wedepohl et al. 1978). 328 

Concentrations of Cr, Cu, Ni and V were generally depleted in peat samples overlying all bedrock geologies 329 

except the basalts.  Overlying the basalt formation, some areas of peat showed depleted Cr, Cu, Ni and V 330 

concentrations, while others (generally at lower topographical elevation) showed higher concentrations of each 331 

element in line with the basalt domain.  This distribution is probably explained by the type of peatland and the 332 

land use activities taking place on it (Joint Nature Conservation Committee 2011).  Lowland peats appear to 333 

have less of a control over element concentrations, meaning the basalts remain as the primary controlling factor 334 

and higher concentrations are observed.  Upland peats, however, appear to exert a greater control with reduced 335 

concentrations being observed.  It is also possible that the differing land use on the peat could be affecting its 336 

ability to function efficiently, however this subject would require further exploration.  This distribution of Cr, 337 

Cu, Ni and V was also observed by Young (2013 In Press) and therefore a peat domain was selected which 338 

incorporated all areas of peat that do not overlie the basalts, along with areas of peat overlying the basalts that 339 

are associated with reduced concentrations of these elements.  Depletion of Cr, Cu, Ni and V in this domain may 340 

reflect biogeochemical cycling of PTEs within the peats (Novak et al. 2011) but further research would be 341 

required to confirm this. 342 

All the domains shown for lead are associated with elevated concentrations of the element.  The Mourne 343 

Mountains Complex show elevated concentrations of lead (Mournes domain), fitting with known elevations of 344 

lead in granites (Krauskopf 1979).  Elevated concentrations of lead were also associated with urban areas across 345 

Northern Ireland (urban domain).  Pb is well known for its correlation with anthropogenic activity, and therefore 346 

urban centres (Albanese et al. 2011; Locutura and Bel-lan 2011).  Identified sources of lead in urban 347 

environments include historical use of leaded fuel and lead in paint (Chirenje et al. 2004; Mielke and Zahran 348 
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2012; Mielke et al. 2011).  A strong correlation was observed between areas of elevated topography with a 349 

covering of peat and elevated lead concentrations, as previously described by Young (2013 In Press).  This is 350 

not surprising, as peat soils are well known for acting as historical records of atmospheric pollution, with higher 351 

heavy metal concentrations common in upper peat layers (Givelet et al. 2004; De Vleeschouwer et al. 2007).  352 

Chronologies of Pb deposition have been completed for a raised bog in Ireland (Coggins et al. 2006), showing 353 

elevated concentrations within the depth range (5-20cm) of the shallow Tellus samples.  These topographically 354 

elevated areas of peat were separated out from the full peat dataset to form lead’s peat domain.   355 

Fig. 4 Mineral occurrences provided by GSNI shown for a lead on a map showing lead’s mineralisation domain 356 

and b zinc, lead, gold and copper on a map showing arsenic’s mineralisation domains (Crown Copyright) 357 

Finally, a mineralisation domain was also identified for lead.  This area was defined using the elevated 358 

concentrations of lead as determined on the ECDF map and the extent of the domain was corroborated by the 359 

strong correlation between lead mineral occurrences as provided by GSNI, shown in Figure 4a, areas of high to 360 

very high prospectivity potential (Lusty et al. 2012) and the mineralised domain identified for Pb.  It is worth 361 

noting that lead mineral occurrences were identified by GSNI in the south east of Northern Ireland (Figure 4a), 362 

however as significantly elevated Pb concentrations were not recorded in that area a mineralised domain was not 363 

created in this region.  In contrast, the area of lead mineralisation identified in the north west of Northern Ireland 364 

was in an area of elevated Pb concentrations.  However, closer inspection of the spatial distribution of areas of 365 

elevated concentrations and comparison with peat maps showed that although mineralisation may be 366 

contributing to the elevated concentrations, their spatial distribution suggests that peat has a controlling role in 367 

accumulating this element, probably from atmospheric deposition. 368 

The domains for arsenic were more difficult to define as there was greater uncertainty regarding the factors 369 

controlling the distribution of this element.  The Shanmullagh formation, consisting of early Devonian age 370 

sandstone and mudstone (Mitchell 2004) contained slightly elevated arsenic concentrations, creating the 371 

Shanmullagh domain.  Two other areas, thought to be associated with mineralisation, were also shown to 372 

contain elevated concentrations.  These two mineralisation domains were defined in the same manner as the lead 373 

mineralisation domain, using the ECDF map, and were named mineralisation 1 and 2.  As there are no shown 374 

arsenic occurrences on the mineral occurrences information provided by GSNI, a different approach was used to 375 

corroborate the extent of these areas.  Arsenic is well known as a pathfinder for gold, and is therefore used in 376 

prospectivity investigations along with silver, gold, copper, lead, zinc, bismuth and barium (Lusty et al. 2009).  377 

A strong correlation is again shown between the mineralised zones identified in this study and mineral 378 

occurrences of Ag, Cu, Pb and Zn (Figure 4b), the only mineral occurrences from the previous list that were 379 

available from GSNI.  The prospectivity for gold within all the identified As mineralised domains is again 380 

shown to be high (Lusty et al. 2009, 2012).  An interesting, and possibly unexpected finding is the lack of an 381 

urban domain for arsenic.  However, this was also the case in the calculation of NBCs for England (Ander et al. 382 

2013a). 383 

5.2.1 Domain Corroboration 384 

Table 1 Experimental semivariogram modelled parameters for Ni, Cr, V, As, Cu and Pb concentrations as 385 

measured by XRF in shallow soils of Northern Ireland where C0 = nugget effect, C1 and C2 = structured 386 
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component, a1 and a2 = ranges of influence, Total Cx = sill and C0/Total Cx = proportion of variance accounted 387 

for by C0 388 

The results of the geostatistical approach employed as corroboration are given in Table 1 for all the PTEs 389 

investigated.  These show that the extent of Cr, Cu, Ni and V distributions in Northern Ireland are strongly 390 

controlled by the presence of basalts in the northeast of the region, with ranges (a) not exceeding the largest 391 

spatial extent of this geologic formation of approximately 90 kilometres (Figure 1b).  Based on variography and 392 

source domain identification, elevated concentrations of these four trace elements in the region are attributable 393 

to geogenic sources on a spatial scale that exceeds other potential influences over the distribution of this 394 

element.  However, approximately 13-35% of total variances in Cr, Cu, Ni and V spatial distributions are 395 

accounted for by the nugget variance (C0) suggesting such proportions of variance may be accounted for by 396 

smaller scale processes not detected within the soil sampling resolution of the Tellus Survey (Table 1).  Arsenic, 397 

by comparison, is controlled by a spatial function covering a smaller spatial extent than elements associated with 398 

the basalts, with a nugget effect accounting for approximately half of all variance in spatial distribution (48.1%).  399 

Lead exhibits the shortest range spatial function, characteristic of trace elements whose distributions are heavily 400 

influenced by small scale processes such as anthropogenic activity in urban areas.  This trend is also supported 401 

by the large nugget effect for this element. 402 

On the whole, these results confirm the main controlling factors identified for the PTEs investigated, especially 403 

the identification of a basalt domain for Cr, Cu, Ni and V.  While the semi-variogram is very useful for 404 

identifying spatial controls over elevated element concentrations, reduced domain concentrations cannot be 405 

identified using this method. 406 

5.3 Typical Threshold Values 407 

5.3.1 Normal Background Concentrations 408 

In order to assess what is a typical concentration of elements in Northern Irish soils, both the NBC statistical 409 

methodology developed by Cave et al. (2012), and the ULBL statistical methodology (Jarva et al. 2010) were 410 

applied to data within the defined domains.  411 

Fig. 5 Outputs derived from NBC methodology using R-scripts developed by Cave et al. (2012) for nickel’s 412 

basalt domain showing a histogram and b percentiles and relative uncertainty computed using the empirical, 413 

gaussian and robust methods 414 

Figure 5 gives a visual example of how the NBC methodology was applied.  The distribution of Ni within the 415 

basalt domain was assessed using a histogram; the values fell within the parameters set by Cave et al. (2012) 416 

(Figure 5a) allowing a Gaussian approach to be adopted for calculating percentiles (Figure 5b).  A bootstrapping 417 

method was applied to calculate the uncertainty surrounding the percentile values (Figure 5b) and the 50th, 75th 418 

and 95th percentiles and their associated uncertainty are plotted in Figure 6. 419 

Fig. 6 50th, 75th and 95th percentiles of each of the elements’ domains along with their respective 95% upper and 420 

lower confidence limits (vertical lines shown), ULBL concentrations and SGV/GAC where R = residential, A = 421 
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allotment and C = commercial.  Previous SGVs for Pb have been withdrawn; elsewhere SGVs/GACs that are 422 

not given are beyond the scale of the graphs 423 

Elevation of Cr, Cu, Ni and V in the basalt domain is obvious from Figure 6, while reduced concentrations of 424 

these four elements are seen in the Mournes and peat domains.  For Cr, the differences between the domains are 425 

maintained throughout the 50th, 75th and 95th percentiles.  The upper 95% confidence limits of the 95th 426 

percentiles for the basalt, Mournes, peat and principal domains are 460, 84, 150 and 290 mg/kg respectively.  427 

The Mournes and peat domain contain substantially lower concentrations than those in the principal domain. 428 

Similar results are shown for Cu at the 50th and 75th percentiles, but the 95th percentile shows a slight skew in Cu 429 

concentrations in the peat domain, with a higher concentration calculated at the 95th percentile in the peats than 430 

in the principal domain.  The upper 95% confidence limits of the 95th percentile for the basalt, Mournes, peat 431 

and principal domains are 130, 41, 68 and 59 mg/kg.  The distribution of Cu in the peat domain is heavily right-432 

skewed, with a large presence of outliers.  However, a log-transformation of the data brought it within the 433 

skewness limits set by Cave et al. (2012) and the gaussian approach was followed for calculating percentiles.  434 

Another possible explanation for this distribution is the existence of another controlling factor, other than solely 435 

peat substrate, which is contributing to the concentrations of Cu in this domain. 436 

A large degree of uncertainty is associated with the values generated for Ni and V in the Mournes domain.  For 437 

Ni, the 95th percentile was calculated as 24 mg/kg, with the lower and upper confidence limits calculated as 12 438 

and 170 mg/kg respectively.  The NBC value calculated for the Ni Mournes domain, of 170 mg/kg would 439 

therefore appear to be unrealistic, as the maximum value of Ni encountered in this domain was 37 mg/kg.  The 440 

Mournes domain for Cu, Cr, Ni and V are based on the same 73 data points, making it the smallest domain, but 441 

still exceeding the 30 data points recommended in the NBC methodology (Cave et al. 2012).  Reasonably large 442 

uncertainty is also calculated for vanadium, with the lower and upper confidence limits of the 95th percentile 443 

calculated as 39 and 174 mg/kg respectively.  In comparison, much less uncertainty is shown for chromium and 444 

copper, where the differences between the upper and lower confidence limits for the 95th percentile are 40 and 445 

22 mg/kg respectively.  It seems that the distributions of these elements in the Mournes domain are responsible 446 

for the degree of uncertainty associated with the percentiles calculated.  This may be due to the fact that the 447 

Mourne granite complex has several fabrics associated with fractionation of basaltic and crustal rock melts 448 

(Meighan et al. 1984; Stevenson and Bennett 2011).  For V and Ni, a larger occurrence of outliers means that 449 

the Box-cox transformation was applied but higher uncertainties were still recorded for the 95th percentiles using 450 

this method.  Fewer outliers present for Cr and Cu reduced the uncertainty associated with the percentiles, 451 

allowing for the calculation of more realistic NBCs.   452 

The existence of outliers in vanadium’s peat domain saw the application of a log-transformation in order to 453 

bring its distribution closer to normal.  However, the outliers have still affected the calculation of the 95th 454 

percentile (120 mg/kg) and its confidence limits, while the 50th (27 mg/kg) and 75th (49mg/kg) percentiles 455 

appear to remain more representative.  Nickel’s peat domain contained even more outliers, meaning in this case 456 

the Box-cox transformation was required to bring the data within the necessary skewness limits (Cave et al. 457 

2012).  In this instance, the box-cox transformation appears to be more effective in reducing the effect of the 458 
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outliers, meaning the 50th, 75th and 95th percentiles (7mg/kg, 14mg/kg and 46 mg/kg) seem to give appropriate 459 

concentrations when compared to the mapped outputs (Figure 2). 460 

For As, elevated concentrations are seen in the two mineralisation domains and the Shanmullagh domain when 461 

compared to the principal domain.  If the 95th percentile is used as a comparison, the mineralisation 2 domain 462 

result is approximately five times greater than the 95th percentile for the principal domain.  However, a large 463 

degree of uncertainty is associated with the 95th percentiles in the mineralisation 2 domain, as the lower and 464 

upper confidence limits range between 56 and 85 mg/kg respectively.  The data for this domain were box-cox 465 

transformed and theoretical percentiles calculated based on the mean and standard deviation of the data set after 466 

an assessment of its distribution.  However, the presence of one extreme outlier which lies over 60 mg/kg away 467 

from the remainder of the outliers is likely to be causing the extreme skew seen in the calculation of the 95th 468 

percentile.  For the other three domains; mineralisation1, principal and Shanmullagh, the assessment of the data 469 

distribution led to robust percentiles and uncertainties being calculated.  Although outliers are also present in 470 

these domains, none of them contain outliers as extreme as the one identified for the mineralisation 2 domain.  471 

This causes much smaller differences between the upper and lower 95th confidence limits than those identified 472 

for the mineralisation 2 domain. 473 

For Pb, elevated concentrations are obvious in the urban domain, followed by the mineralisation, Mournes and 474 

peat domains.  The lowest concentrations of Pb are found in the principal domain.  Within the urban domain, 475 

reasonably large differences occur between the upper and lower confidence limits, as they range between 240 476 

and 300 mg/kg for the 95th percentile.  This is to be expected in the urban domain as anthropogenic sources of 477 

Pb increase the amount of outliers present in the data set, which in turn increases the uncertainty associated with 478 

the percentiles calculated.  Although these values of lead are high compared to the principal domain for 479 

Northern Ireland, where the 95th percentile ranges between 71 and 77 mg/kg, they are not as high as those found 480 

in some other urban areas.  Chirenje et al. (2004) reported a 95th percentile of Pb concentrations in Miami, USA, 481 

as 453 mg/kg. 482 

Figure 6 shows both the strengths and the weaknesses of the NBC methodology.  A large presence of outliers 483 

within the data set causes issues in the distribution assessment and ultimately in the uncertainty calculations.  484 

This stems from the overall distribution of the data, and the effectiveness of the transformation applied and is 485 

particularly obvious in the Mournes domain for Ni and V.  It is important to note that the NBC methodology is 486 

not meant to be used for reduced concentration domains, which the Mournes domains for Ni and V are examples 487 

of.   However, even for As and Pb where all the domains contain elevated concentrations, the high degree of 488 

uncertainty associated with some of the domains causes unrealistic concentrations at the upper 95% confidence 489 

limit of the 95th percentile, which is likely to pose difficulties if attempts are made to use NBCs during risk 490 

based assessment of contaminated sites rather than just identifying potentially contaminated land as legally 491 

defined in the UK as was originally intended.  Also, this raises the question as to whether the UCL of the 95th 492 

percentile is an effective means of differentiating between diffuse and point contamination from anthropogenic 493 

sources. 494 

From Figure 6, it is clear that the values shown for the 50th percentile provide a more realistic representation of 495 

the comparison between the domains, i.e. for Ni the 50th percentile shows elevated concentrations in the basalt 496 
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domain (100 mg/kg), widespread concentrations of 27 mg/kg in the principal domain and reduced 497 

concentrations of 4.0 and 7.2 mg/kg in the Mournes and peat domains respectively.  However, this median value 498 

should not be taken as the typical threshold value as it doesn’t fulfil the aim of TTVs as whilst median values 499 

are a central value for the domain, they don’t allow for a differentiation between diffuse and point source 500 

anthropogenic contamination.  However considering the 50th percentile may be effective within sectors other 501 

than the contaminated land sector, as the 50th percentile values can provide useful information on reduced 502 

concentration zones, where a possible depletion of essential elements, such as copper, could have consequences 503 

for industries such as agriculture. 504 

5.3.2 Upper Limit of Geochemical Baseline Variation 505 

TTVs calculated using the ULBL methodology are also shown on Figure 6.  The NBC value (upper confidence 506 

interval on the 95th percentile) calculated for copper’s peat domain (68 mg/kg) is higher than the value 507 

calculated for the principal domain (59 mg/kg) despite outputs from the ECDF domain identification method in 508 

Figure 2 suggesting that the peat is an area of depleted copper concentrations.  In comparison, the ULBL 509 

method provides a more accurate representation of the values expected in reduced domains, with the peat, 510 

Mournes and principal domain containing ULBL concentrations of 47, 27 and 76 mg/kg respectively. 511 

At elevated concentrations, both the ULBL and NBC methods appear to calculate similar values, with the ULBL 512 

method generally calculating slightly lower values for Pb.  With regard to the elevated concentrations in the 513 

basalt domain for Cr, Cu, Ni and V, the ULBL method calculates concentrations that are at least 20% higher 514 

than the respective NBC.  This is probably due to the fact that the distribution of these elements in the basalt 515 

domain is relatively homogeneous and therefore closer to a normal distribution.  When the boxplot is used to 516 

identify outlying values for a more normal distribution, fewer values will be identified and so a higher typical 517 

threshold value will be set using this method.  Although set methods are used in the NBC methodology 518 

depending on the distribution of the data, a major strength of the boxplot is it’s resistance to different types of 519 

distribution. 520 

5.3.3 Comparison with relevant criteria 521 

Figure 6 also provides details of SGVs and GACs where they are available for the elements.  SGVs and GACs 522 

are used to “represent cautious estimates of levels of contaminants in soil at which there is considered to be no 523 

risk to health or, at most, a minimal risk to health” (Defra 2012).  Therefore they are based on a different 524 

approach than that behind the NBC methodology where the aim is to identify sites where “if nothing is done, 525 

there is a significant possibility of significant harm” (Ander et al. 2013a).  However, a comparison can still be 526 

drawn between the values.  Figure 6 highlights certain domains for a number of the elements where the typical 527 

threshold values are higher than the reference values for residential, and in some cases allotment end uses.  528 

Therefore, depending on the size of the exceedance, surpassing these SGV values could suggest a possible risk 529 

to human health.  For As, the residential SGV of 32 mg/kg (Martin et al. 2009a) is narrowly exceeded in the 530 

mineralisation 2 domain and is therefore unlikely to pose significant risks to human health.  GAC for Cr-VI are 531 

shown on Figure 6 (Nathanail et al. 2009), with exceedance of these concentrations shown in all domains.  532 

However, no distinction was drawn between Cr-III and Cr-VI in the Tellus survey.  For Ni, the basalt domain 533 

shows a significant exceedance of the residential SGV (130 mg/kg) (Martin et al. 2009b) using both the NBC 534 

(200 mg/kg) and the ULBL (250 mg/kg) methods, however recent studies by Barsby et al. (2012), Cox et al. 535 
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(2013) and Palmer et al. (2013) indicate the oral bioaccessibility of Ni in these soils is relatively low (1% to 536 

44%).  The NBC for Ni in the Mournes domain, whilst high (170 mg/kg), is not a representative value when 537 

compared to mapped outputs (Figure 2) and all values for Cu fall within the GAC (Nathanail et al. 2009) 538 

making them unlikely to pose significant risks to human health.   The NBC for vanadium in the Mournes 539 

domain again is unrepresentatively high, with the ULBL method calculating a value of 46 mg/kg which appears 540 

to be more representative of mapped outputs.  All vanadium results exceed the allotment GAC with values for 541 

the basalt, peat and principal domains also exceeding the residential GAC (Nathanail et al. 2009).  However 542 

bioaccessibility testing reported in Barsby et al. (2012) and Palmer et al. (2013) suggests that only a small 543 

fraction of total V in these areas is bioaccessible (8%). 544 

6 Conclusions 545 

In terms of domain identification, the three methods exhibit specific advantages and disadvantages.  The k-546 

means technique provided useful results in the determination of elevated domains but its applicability in practice 547 

would be limited as it cannot be used to define reduced concentration domains.  The boxplot and ECDF methods 548 

both allowed identification of elevated and reduced concentration domains.  However, the boxplot method splits 549 

the distribution at arbitrary values, whereas changes in gradient linked to different data distributions within the 550 

overall data set are used to divide the ECDF graph.  Splitting the ECDF graph requires a level of interpretation 551 

by the individual completing the work, which introduces potential for bias as a level of knowledge of the 552 

modelled domains could influence the results.  Of the 3 methods, the ECDF methodology provides the greatest 553 

amount of detail and opens the methodology to other practical applications rather than just identification of land 554 

contamination.  However, choice of method may ultimately lie with the decision maker as whatever method 555 

they choose may depend on the original goals behind the use of this methodology. 556 

The NBC methodology has been developed to sit within a specific legislative framework.  By defining the NBC 557 

as the upper 95% confidence limit of the 95th percentile it generates a question as to how conservative the 558 

approach taken is.  In contrast to this, the ULBL methodology generates the maximum number of outliers by 559 

using a boxplot of non-transformed data, in order to generate the lowest ULBL concentration.  This is 560 

demonstrated in Figure 6, where generally the ULBL values calculated are slightly lower than the NBC 561 

concentrations.  A notable exception to this is for Cr, Cu, Ni and V in the basalts domain, where on all four 562 

occasions the ULBL method calculated higher concentrations than the NBC methodology.  The largest 563 

difference was for Cu, where the ULBL method calculated a concentration 28% higher than the NBC. As well 564 

as this, the distribution of the data within each of the domains seems to have a large control over the amount of 565 

uncertainty calculated for the relevant percentiles in the NBC method, particularly where a large amount of 566 

outliers are present.  The transformations applied mainly account for the skewed distributions, but examples 567 

remain where the data transformation does not seem to be fully effective (vanadium’s peat domain).  It is clear 568 

from the previous discussion that both methods have their strengths, however in general the ULBL 569 

concentrations provide more realistic concentrations for typical threshold values as defined in this study, across 570 

the area and elements shown. 571 

An interesting investigation, following on from this work, would be to consider the geographic location of each 572 

of the outliers identified using the ULBL method.  If specific sources of elements could be identified as causing 573 
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the elevated concentrations of the outlying values, then clarification of how effectively the method discriminates 574 

between anthropogenic diffuse and point source concentrations of elements could be gained.  575 

One of the primary aims of this research was to investigate soil geochemical data for Northern Ireland, and 576 

determine an output in the form of relevant TTVs which define the boundary between geogenic and diffuse 577 

anthropogenic source contributions to soil, and those associated with point sources.  In this respect, the 578 

following is suggested for use; 579 

• ECDF mapping method for identifying the main controls over PTE concentration distributions and 580 

allowing the identification of domains, 581 

• Calculation of TTVs using the ULBL method (currently employed in Finland) within each of the 582 

defined domains. 583 

These values will be of interest to a number of parties, as they indicate what a “typical” concentration of an 584 

element would be within a defined geographical area.  These values should be considered alongside the risk that 585 

each of the PTEs pose in these areas, in order to determine potential risk to receptors.  586 
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