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ABSTRACT
Artificial prey techniques—wherein synthetic replicas of real organisms are placed
in natural habitats—are widely used to study predation in the field. We investigated
the extent to which videography could provide additional information to
such studies. As a part of studies on aposematism and mimicry of coral snakes
(Micrurus) and their mimics, observational data from 109 artificial snake prey were
collected from video-recording camera traps in three locations in the Americas
(terra firme forest, Tiputini Biodiversity Station, Ecuador; premontane wet forest,
Nahá Reserve, Mexico; longleaf pine forest, Southeastern Coastal Plain, North
Carolina, USA). During 1,536 camera days, a total of 268 observations of 20
putative snake predator species were recorded in the vicinity of artificial prey.
Predators were observed to detect artificial prey 52 times, but only 21 attacks were
recorded. Mammals were the most commonly recorded group of predators near
replicas (243) and were responsible for most detections (48) and attacks (20).
There was no difference between avian or mammalian predators in their
probability of detecting replicas nor in their probability of attacking replicas after
detecting them. Bite and beak marks left on clay replicas registered a higher ratio of
avian:mammalian attacks than videos registered. Approximately 61.5% of
artificial prey monitored with cameras remained undetected by predators
throughout the duration of the experiments. Observational data collected from
videos could provide more robust inferences on the relative fitness of different prey
phenotypes, predator behavior, and the relative contribution of different predator
species to selection on prey. However, we estimate that the level of predator
activity necessary for the benefit of additional information that videos provide to be
worth their financial costs is achieved in fewer than 20% of published artificial
prey studies. Although we suggest future predation studies employing artificial prey
to consider using videography as a tool to inspire new, more focused inquiry,
the investment in camera traps is unlikely to be worth the expense for most artificial
prey studies until the cost:benefit ratio decreases.
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INTRODUCTION
Studies of predator-prey interactions are often difficult since natural predation events are
challenging to observe (Irschick & Reznick, 2009). Moreover, the ability of the rare
observation of single predation events to provide general insights into predator-prey
interactions is inherently limited. To overcome both difficulties, artificial replicas of prey
species are commonly used to study predation in the wild. Such facsimiles allow key
features of prey phenotypes (e.g., color, pattern, shape, or size) to be easily manipulated
and produced in large numbers, thereby allowing predation to be studied in diverse natural
populations (Irschick & Reznick, 2009). Generally, these studies involve constructing
replicas (e.g., of pre-colored, nontoxic clay) bearing different colors, patterns, and
shapes and placing several hundred of these replicas in natural habitats, where they are
exposed to predation by naturally occurring, free-ranging predators. After a
pre-determined period of time, each replica is scored as attacked or not based on the
number and type of marks left on it. Conclusions are then drawn based on the patterns of
attacks across phenotypes and/or habitats. Such artificial prey techniques have been
used to address a wide variety of evolutionary and ecological questions, ranging from
predator psychology to aposematism and mimicry (reviewed in Bateman, Fleming &Wolfe
(2017)). These studies have been used to measure predator-mediated natural selection on
diverse taxa, including insects (Lövei & Ferrante, 2017), fish (Caley & Schluter, 2003),
frogs (Saporito et al., 2007), salamanders (Kuchta, 2005), turtles (Marchand et al., 2002),
lizards (Stuart-Fox et al., 2003), snakes (Pfennig, Harcombe & Pfennig, 2001), birds
(Ibáñez-Álamo et al., 2015), and mice (Vignieri, Larson & Hoekstra, 2010).

This traditional approach of using replicas to study predation in the field has three
major shortcomings. First, predation attempts—and the identity of the predators—are
inferred (Irschick & Reznick, 2009). Although most marks left by predators permit broad
classification of predator type (e.g., beak imprints indicate avian predation), they rarely
permit predators to be identified to species (Irschick & Reznick, 2009). Furthermore,
replicas can be easily removed by predators, making it impossible to determine if predation
even occurred. Second, only a subset of interactions between replicas and predators can be
assessed from marks left on replicas (Irschick & Reznick, 2009). For example,
predators might detect the replicas and decide not to attack them (Willink et al., 2014).
Most studies consider all replicas not bearing attack marks as equivalent in statistical
analyses, but a variety of factors can affect the probabilities that predators detect a replica
as well as not attack a replica after detecting it. Third, replicas are unlikely to sample
all potential predators (Irschick & Reznick, 2009). Predators that rely heavily on movement
(e.g., felids) or smell (e.g., canids) to detect prey might ignore motionless or odorless
replicas (Irschick & Reznick, 2009). In sum, new and improved insight into predation could
be gained from artificial prey studies if additional information on the identity and behavior
of predator species could be collected.
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Camera trapping technology could provide a potentially useful tool for field studies of
predation. A camera trap consists of a remotely activated camera that is equipped
with a motion or an infrared sensor (some also use a light beam as a trigger).
This technology has been used in ecological research for decades (Savidge & Seibert, 1988;
Griffiths & Van Schalk, 1993; O’Connell, Nichols & Karanth, 2011; Burton et al., 2015),
typically to detect or survey the abundance of naturally occurring animals.
Although several field studies of predation have experimented with camera trapping
techniques, most of these studies have used still images to monitor predator
activity (Picman, 1987; Paluh, Kenison & Saporito, 2015; Ho et al., 2016; Hanmer,
Thomas & Fellowes, 2017) and only a few have used video (Thompson & Burhans, 2004;
Latif, Heath & Rotenberry, 2012; Sato et al., 2014; Willink et al., 2014; Jedlikowski,
Brzezinski & Chibowski, 2015; Dziadzio et al., 2016; Fig. 1). Most these studies using video
to monitor predator activity near artificial prey have been conducted on small spatial scales
(e.g., at one or a few sites with similar habitat) and have only used videos to aid the
identification of predators attacking prey.

Here, we studied the ability of camera trap videos to provide additional information to
field studies of predation employing artificial prey. The “prey” in our studies are
highly venomous New World coral snakes and various similarly patterned harmless
species, which are aposematic and mimetic prey, respectively, bearing conspicuous
phenotypes that have long been thought to facilitate the evolution of avoidance behaviors
in predators (Bates, 1862; Smith, 1975, 1977; Fig. 2). We used camera traps to extract
observational data from three independent artificial prey field experiments (Akcali,
Kikuchi & Pfennig, 2018; Supplementary Data). We did so to quantify the frequency at

Figure 1 Field studies of predation. Number of field studies of predation employing camera traps using
different types of monitoring methods and different types of artificial prey. Manuscripts were informally
searched in Google Scholar (http://scholar.google.com) using a variety of search terms (e.g., artificial
prey, artificial nest, clay model, and predation) and taxon terms (e.g., amphibian, bird, butterfly, frog,
lizard, salamander, and snake). The search was conducted December 23, 2017.

Full-size DOI: 10.7717/peerj.6487/fig-1
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which predators encounter, detect, and attack artificial prey. Using these data, we asked the
following questions. First, what are the relative frequencies at which predators encounter,
detect, and attack replicas? Second, how do the frequency of encounters, detections,
and attacks by predators vary temporally? Third, how does predator type, avian vs.
mammal, affect the probability that predators detect and attack artificial prey? Fourth, how
does the frequency at which predators encounter, detect, and attack prey vary between
predator species? Fifth, how do clay marks and videos differ in their ability to register
avian vs. mammalian predation attempts? After answering these questions, we conclude

Figure 2 Study snake species. A sampling of images of live snakes (A) (C) and (E) and artificial snake
replicas (B) (D) (F) from each experimental location. (A, B) The South American coral snake (Micrurus
lemniscatus) (photo credit: Mike Pingleton), (C, D) the variable coral snake (Micrurus diastema) (photo
credit: Eric Centenero Alcalá), and (E, F) the eastern coral snake (Micrurus fulvius) (photo credit:
Christopher K. Akcali). Note the bite marks and change in shape caused by a mammalian predation
attempt in D. Full-size DOI: 10.7717/peerj.6487/fig-2
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by discussing some of the costs and benefits of incorporating videography into field
studies of predation.

MATERIALS AND METHODS
Ethics statement
Data collection used non-invasive, remotely-triggered camera traps and hence did not
involve direct contact or interaction with animals. The clay used in all experiments
is nontoxic. Fieldwork was done under the following permits: Ecuador–N� 002-017
IC-FAU-DNB/MA; Mexico–SGPAJDGVS/09347/16. No permits were required
in North Carolina, USA.

Field experiments
Three field experiments using clay replicas of various species of coral snakes and their
presumed mimics (Fig. 2; Table S1) were conducted at three separate locations in
the Americas (Fig. 3). The first experiment was conducted in February 2017 in Amazonian
lowland rainforest at Tiputini Biodiversity Station, Orellana, Ecuador (~0�37′S, 76�10′W,
190–270 m asl; Table 1). This experiment is a part of a larger study that seeks to
understand the causes of diversity in aposematism. In this experiment specifically, the aim
was to characterize the pattern of selection on a set of aposematic phenotypes in a
region where coral snake diversity is high. The second experiment was conducted from

Figure 3 Study areas. Camera traps were used to collect observational data on predator behavior in three
field experiments, conducted in North Carolina, USA, Mexico, and Ecuador, that were aimed to test
hypotheses of aposematism and mimicry. Insets show habitat typical of the study areas: (A) longleaf pine
forest, North Carolina, USA (Photo Credit: Christopher K. Akcali); (B) premontane wet forest, Chiapas,
Mexico (Photo Credit: Christopher K. Akcali); and (C) terra firme rainforest, Orellana, Ecuador (Photo
Credit: Christopher K. Akcali). Full-size DOI: 10.7717/peerj.6487/fig-3
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June to July 2017 in premontane wet rainforest at Nahá Reserve, Municipality of Ocosingo,
Chiapas, México (~16�58′N, 91�35′W, 800–1,200 m asl; Table 1). The goal of this
experiment was to test the “multiple models hypothesis” of imprecise mimicry, which
proposes that mimics might evolve imprecise mimicry as a consequence of a selective
trade-off to resemble multiple model species (Edmunds, 2000). The third experiment was
conducted from October to November 2017 in longleaf pine forests of the Sandhills
and Coastal Plain of North Carolina, USA (~34�45′N, 78�32′W, 0–150 m asl; Table 1).
This experiment was a part of a larger study that tested whether a coral snake
species and its mimics were engaged in a coevolutionary arms race (Akcali, Kikuchi &
Pfennig, 2018).

Clay replicas in all experiments were constructed using pre-colored, odorless, nontoxic
Sculpey III modeling clay. Measurements of preserved snake specimens from several
museums (see the specific museum collections listed in Appendix S1) and photographs of
live specimens were used to design prey phenotypes in each experiment. Replicas in
all experiments were one cm in diameter, but varied in length (Table 1). Because each field
experiment was a part of its own independent study, the experiments varied in several
ways (Table 1). All damaged replicas were replaced with new replicas during each
experiment if transects where checked before their designated date of retrieval (Table 1).
Sampling effort for each field experiment in terms of replica days was calculated by
multiplying the number of days that replicas were left in the field by the total number of
replicas that were placed in the field. The latter includes the number of replicas in front of

Table 1 Field experiments.

Ecuador Mexico North Carolina, USA

Number of phenotypes 5 (four Micrurus variants
+ brown control)

4 (three P. elapoides
variants + brown control)

3 (three M. fulvius variants)

Length of replicas 165 mm 250 mm 180 mm

Number of transects 27 35 20

Minimum distance between transects 200 m 200 m Three km

Placement of replicas in transects Singly, along forest trails,
and one to four m off trails
on alternating sides

Singly, along forest trails,
and one to four m off
trails on alternating sides

Each variant in groups of
three off trails; all replicas
attached to nails

Distance between replicas or sets
of replicas

5–10 m 5–10 m 50–75 m

Replicas with cameras 37 22 69

Replicas without cameras 1,313 1,378 531

Days replicas without cameras left
in field

6 12 28

Days replicas with cameras left
in field

6, 8, or 14 30 28

Replica days 8,356 17,196 16,800

Interval replicas were checked 2 days 6 days Replicas not checked
during experiment

Note:
List of characteristics of field experiments that aimed to test hypotheses of aposematism and mimicry in Ecuador, Mexico, and North Carolina, USA. Camera traps were
employed at a subset of replicas to collect observational data on predator activity near artificial prey replicas.

Akcali et al. (2019), PeerJ, DOI 10.7717/peerj.6487 6/23

http://dx.doi.org/10.7717/peerj.6487/supp-5
http://dx.doi.org/10.7717/peerj.6487
https://peerj.com/


cameras (regardless as to whether the camera was functional or not) as well as the number
of replicas without cameras.

Camera trapping
We used several relatively inexpensive (<USD $100) digital camera traps (Spypoint Force
10, Scout Guard SG560V-31B, ANNKE C303, Bestguarder DTC-880V) triggered by
an infrared motion-and-heat detector to obtain observational data on predator activity
near replicas during each field experiment. Cameras used a variable number of AA
batteries and were equipped with 32-gigabyte SD cards. In each experiment, we attached
cameras to the trunks of nearby trees and positioned them ~0.75–1 m above the surface of
the ground at an approximately 45� downward angle. In Ecuador and Mexico,
cameras were placed randomly among transects, approximately one meter away from
single replicas and were set to have a high sensitivity (if sensitivity could be altered).
In North Carolina, cameras were placed approximately two to three m in front of sets of
three replicas in a clustered fashion (i.e., cameras were placed at every set of replicas
in two transects and part of a third transect) and were set to have a medium sensitivity.
Average distances between cameras were 1.25 ± 0.817 km, 1.37 ± 0.829 km, and
4.60 ± 4.11 km in Ecuador, Mexico, and North Carolina, respectively. Although vegetation
that, when blown by wind, might falsely trigger the cameras was cleared prior to arming
the cameras, we tended to place cameras at sites that were devoid of such vegetation
to minimize disturbance to the habitat. Cameras were programmed to take 60 s videos
when triggered. Videos were associated with data on the location (from GPS), identity of
the camera, date, and time. All data collected from camera traps were recorded using
data standards developed for the use of camera traps in biodiversity research
(Forrester et al., 2016).

Sampling effort for each field experiment in terms of camera days was calculated by
taking the sum of the total number of days that each camera was functional in the field.
In Ecuador, we placed 27 camera traps (13 Spypoint; 10 Scout Guard; one ANNKE)
in front of replicas for 14 days. Five camera traps (five Spypoint) were placed in front of
replicas for 8 days and then moved in front of replicas in other transects for the final
6 days. Three cameras (three Scout Guard) failed to take video throughout the duration of
the field experiment and one camera (one Spypoint) took video for 10 days until a spider
built a dense web in front of the lens, making it impossible to make out any animal
activity on video thereafter. Thus, cameras in Ecuador were armed for a total of 402 camera
days ((23 cameras � 14 days) + (1 camera � 10 days) + (5 cameras � 8 days) +
(5 cameras � 6 days)). In Mexico, we placed 22 camera traps (21 Spypoint; one ANNKE)
in front of replicas for 30 days. One camera (one ANNKE) failed to take video throughout
the duration of the field experiment. Thus, 21 cameras in Mexico were armed for a
total of 630 camera days (21 cameras� 30 days). In North Carolina, we placed 23 cameras
(21 Spypoint; one ANNKE; one Bestguarder) in front of replicas for 28 days.
Five cameras (four Spypoint and one ANNKE) failed to take video throughout the
duration of the field experiment. Thus, 18 cameras in North Carolina were armed for a
total of 504 camera days (18 cameras � 28 days). In Ecuador and Mexico, replicas in front
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of cameras were often exposed to predation longer than replicas that were not monitored
by cameras (Table 1).

Analyses
All vertebrate species that triggered the cameras were recorded. Although a variety of
vertebrate species have been documented to prey on coral snakes and their mimics,
including frogs, toads, snakes, caimans, hawks, falcons, kestrels, shrikes, anis, puffbirds,
skunks, and mustelids (Roze, 1996; Campbell & Lamar, 2004), we focus on potential avian
and mammalian predators in this study as reptiles and amphibians were rarely detected
on cameras and would likely not be selective agents for aposematic coloration.
Furthermore, we excluded potential rodents and lagomorph predators from analyses, as
has often been done in previous studies (Brodie, 1993; Kikuchi & Pfennig, 2010),
as well as non-predatory passerines, doves, and tinamou species, as these species would
likely not represent significant threats to real snakes (see list of vertebrate species
considered as predators in analyses in Table S1). Although our choice of which species
to consider as predators might be inaccurate, our focus in this study is on the ability of
camera traps to provide additional information. So although we refer to all species
captured on videos that might be snake predators as “predators” throughout the
manuscript out of convenience, we recognize that it would be more appropriate to refer
to many of these predator species as “potential predators.”

We noted whether each video demonstrated an encounter, detection, attack, and
avoidance by a predator. Encounters were simply defined as videos that contained a
predator. However, we classified videos of predators as belonging to independent
encounters if more than 30 min had elapsed between consecutive videos of the same
species at the same location. We used 30 min as a cut-off because visits by herds of
peccaries (Tayassu pecari and Peccari tajacu) were typically the longest of any species at
any given site among the three experimental locations, but most visits were less than
30 min. Thus, when we use the term “videos,” we are referring to the unit (i.e., the actual
number of videos) that cameras have taken. In contrast, when we use the term
“encounter,” we are referring to independent records of predator presence that might
include several videos. Detections were defined as encounters where a predator clearly
detected a replica (i.e., the predator decreased the rapidity of its movement near the replica
and directed attention toward the replica either with its eyes or nose). Attacks were
defined as detections where a predator bit a replica (Video S1–S7). Avoidances were
defined as detections that did not result in an attack (Video S8–S10). Obviously, cases of
avoidance may have arisen because a predator failed to recognize a detected replica as a
snake but made a decision not to attack. Thus, when we use avoid, we do not make
the implicit assumption that predators recognize replicas as snakes.

Prior to reviewing camera records, all replicas with and without associated camera traps
were scored in the field as attacked or not attacked, based on the presence or absence
of tooth and beak marks, or missing (i.e., no trace of the replica was present). At each
replica or sets of replicas with cameras, we then tallied the number of encounters,
detections, and attacks by predator species using camera trap videos. We classified
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predator activity and behavior by hour, starting at midnight, to examine diurnal patterns.
Diurnal activity and behavioral patterns were sufficiently well marked that statistical tests
were not needed. We also asked how likely predators were to detect a replica they
had encountered, and to attack a replica they had detected. We modeled the
probability that a predator would detect a replica given that it had encountered it—that is,
P(Detection|Encounter) and the probability that a detection would result in an
attack—that is, P(Attack|Detection). To obtain a sample size sufficient for analysis,
we pooled data across Ecuador and Mexico to analyze P(Detection|Encounter),
and across Ecuador, Mexico, and North Carolina to analyze P(Attack|Detection).
We used different datasets for these two analyses because in North Carolina, cameras
were directed at triads of replicas rather than individual replicas, making the calculation
of P(Detection|Encounter) different from that in Ecuador and Mexico. We used the
glmer function in the lme4 package to fit logistic regressions of whether or not
each encountered replica was detected (or attacked, in the second model) as a function of
whether the predator was a bird or a mammal, with transect and replica identity
included as random effects. Analyses at the species level were not possible due to the
low sample sizes of individual species.

We also asked whether there was a difference in detecting attacks by birds vs. mammals
using marks left in clay or videos. We tested whether the proportion of attacks by birds
vs. mammals differed between clay marks and videos using Fisher’s exact test.

RESULTS
Predator activity patterns
After eliminating videos with no identifiable animal or only with people, we had 1,071
videos. After classifying videos not separated by at least 30 min per species at a given site as
representing single records, we had 906 encounters. After eliminating encounters by
species that were not classified as snake predators, we were left with 268 encounters of
20 predator species (Table 2), which included 25 encounters of six avian predator species
(six families; Table 2) and 243 encounters of 14 mammalian predator species
(eight families; Table 2).

Across all experimental locations, we found no difference between avian and
mammalian predators in their probability of detecting replicas after encounter
in Ecuador and Mexico (Fig. 4; Likelihood ratio test; v1

2 = 0.2; p = 0.79). We found no
difference between avian and mammalian predators in their probability of attacking
replicas after detection in Ecuador, Mexico, and North Carolina (Fig. 4; Likelihood
ratio test; v1

2 = 0.01; p = 0.92). In total, videos captured 21 attacks and 31 avoidances
(Table 3).

The frequency of encounters increased approximately five and 12 times more
rapidly than the frequency of detections and attacks, respectively, as a function of camera
trapping effort (Fig. S1). The frequency of detections increased approximately 2.4 times
more rapidly than the frequency of attacks (Fig. S1).

The timing of encounters, detections, and attacks varied among experimental
locations (Fig. 5). In Ecuador, activity peaked during daylight hours (Fig. 5). In contrast, in
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North Carolina, activity peaked at night, with most attacks occurring just after sunset
(Fig. 5). In Mexico, predator encounters were more common at night; however, most
detections and attacks occurred during the day (Fig. 5).

Table 2 Predator species.

Ecuador

Family Common Name (Scientific Name) Encounters Detections Attacks

Bucconidae Brown nunlet (Nonnula brunnea) 2

Tayassuidae Collared peccary (Peccari tajacu) 26 11

Dasypodidae Giant armadillo (Priodontes maximus) 1

Psophiidae Gray-winged trumpeter (Psophia crepitans) 16 4 1

Dasypodidae Nine-banded armadillo (Dasypus novemcinctus) 6 2

Felidae Ocelot (Leopardus pardalis) 2

Tayassuidae Peccary sp. 8

Accipitridae Slate-colored hawk (Buteogallus schistaceus) 2

Tayassuidae White-lipped peccary (Tayassu pacari) 4 1 1

Total 67 18 2

Mexico

Family Common Name (Scientific Name) Encounters Detections Attacks

Didelphidae Common opossum (Didelphis marsupialis) 19 1 1

Procyonidae Common racoon (Procyon lotor) 1

Canidae Gray fox (Urocyon cinereoargenteus) 8 6 6

Mephitidae Hooded skunk (Mephitis macroura) 1

Felidae Jaguarundi (Puma yagouaroundi) 1

Momotidae Lesson’s motmot (Momotus lessonii) 1

Dasypodidae Nine-banded armadillo (Dasypus novemcinctus) 12

Felidae Ocelot (Leopardus pardalis) 8

Mustelidae Tayra (Eira barbara) 2

Procyonidae White-nosed coati (Nasua narica) 1

Total 54 7 7

North Carolina, USA

Family Common Name (Scientific Name) Encounters Detections Attacks

Corvidae American Crow (Corvus brachyrhynchos) 2

Ursidae Black bear (Ursus americanus) 19 7 5

Procyonidae Common racoon (Procyon lotor) 80 17 4

Canidae Gray fox (Urocyon cinereoargenteus) 29 5 2

Didelphidae Virginia opossum (Didelphis virginiana) 15 3 1

Phasianidae Wild Turkey (Meleagris gallopavo) 2

Total 147 32 12

Note:
Frequency of encounters, detections, and attacks by each snake predator species observed from camera trap videos during
three field experiments conducted in Ecuador, Mexico, and North Carolina, USA, that were aimed to test hypotheses of
aposematism and mimicry. Nomenclature follows Ridgely & Greenfield (2001),Wilson & Reeder (2005), Peterson (2010),
and Vallely & Dyer (2018).
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Variation among predator species
The frequency and timing of encounters, detections, and attacks also varied among
predator species. In Ecuador, activity was dominated by collared peccaries (Pecari tajacu),
white-lipped peccaries (T. pecari), and gray-winged trumpeters (Psophia crepitans)
(80.5% of encounters, 88.9% of detections, and 100% of attacks; Table 2). In Mexico,
activity was dominated by common opossums (Didelphis marsupialis), gray foxes
(Urocyon cinereoargenteus), and nine-banded armadillos (Dasypus novemcinctus)
(72.2% of encounters, 100% of detections and attacks; Table 2). In North Carolina, activity
was mostly restricted to black bears (Ursus americanus), common racoons (Procyon lotor),
Virginia opossums (Didelphis virginiana), and gray foxes (97.3% of encounters,
100% of detections and attacks; Table 2).

A total of 11 of 20 predator species (five bird species and six mammal species) that were
encountered never detected replicas (Table 2). Each of these species was encountered
10 times or less (mean ± s.d.: 2.27 ± 2.72; median = 2; Table 2). In contrast, nearly all of the

Figure 4 Detection and attack probabilities of avian vs. mammalian predators. The probability that
avian vs. mammalian predators detected replicas after encounter (A) and attacked replicas after detection
(B) across all experimental locations. Full-size DOI: 10.7717/peerj.6487/fig-4
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nine species of predator (one bird species and eight mammal species) that detected replicas
were commonly encountered near replicas (mean ± s.d.: 26.11 ± 22.40; median = 19; Table 2).
Species with the highest detection per encounter rates were Pecari tajacu (42.3%), Ursus
americanus (36.8%), and Urocyon cinereoargenteus (29.7%) (Table 2). Species with the lowest
detection per encounter rates included ocelots (Leopardus pardalis; 0.0%), Didelphis
marsupialis (5.2%), and Dasypus novemcinctus (11.1%) (Table 2). Of species that detected
replicas at least five times, the highest attack per detection rates were by Urocyon
cinereoargenteus (72.3%) and Ursus americanus (71.4%) (Table 2). Species with the lowest
attack per detection rates were Pecari tajacu (0.0%) and Procyon lotor (23.5%) (Table 2).

Clay marks vs. videos
Using marks left in clay replicas, we observed 33 avian attacks and 21 mammal attacks in
Ecuador, 78 avian attacks and 92 mammal attacks in Mexico, and 16 avian attacks
and 198 mammal attacks in North Carolina (Fig. 6). A total of 18, 57, and 12 replicas from
Ecuador, Mexico, and North Carolina, respectively, were scored as missing, as we
were not able to locate any trace of these replicas at their original location (Fig. 6).
Using video, we observed one avian and one mammal attack in Ecuador, seven mammal
attacks in Mexico, and 12 mammal attacks in North Carolina (Fig. 7; Table 3).
We found that marks left in clay replicas revealed a significantly higher ratio of avian:
mammalian attacks than camera trap videos (Fisher’s exact test; p = 0.012).

Across all experimental locations, 13 replicas that were registered as attacked based on
videos were also scored as attacked based on clay marks (Table 3). Eight replicas that were

Table 3 Camera trap observations.

Ecuador Mexico North Carolina Total

402 630 504 1,536

Predator encounters 16.7 (67) 8.6 (54) 29.2 (147) 17.4 (268)

Mammalian predator encounters 11.7 (47) 8.4 (53) 28.4 (143) 15.8 (243)

Avian predator encounters 5.0 (20) 0.2 (1) 0.8 (4) 1.6 (25)

Detections 4.0 (16) 1.1 (7) 6.3 (32) 3.4 (52)

Mammalian predator detections 3.0 (12) 1.1 (7) 6.3 (32) 3.1 (48)

Avian predator detections 1.0 (4) 0.3 (4)

Attacks 0.5 (2) 1.1 (7) 2.4 (12) 1.4 (21)

Mammalian attacks 0.2 (1) 1.1 (7) 2.4 (12) 1.3 (20)

Avian attacks 0.2 (1) 0.1 (1)

Attacks recorded on clay but not cameras 0.2 (1) 0.99 (5) 0.39 (6)

Attacks recorded on cameras but not clay 0.5 (2) 0.63 (4) 0.4 (2) 0.52 (8)

Attacks recorded on both cameras and clay 0.48 (3) 1.98 (10) 0.78 (12)

Number of replicas with functional cameras 34 21 54 109

Number of undetected replicas 24 14 29 67

Number of marks on replicas with cameras 3 15 18

Note:
Frequency of encounters, detections, and attacks are in behavioral events/100 camera days (total number of observations
is given in parentheses). Number of camera days is given below the site headings. Numbers of encounters, detections, and
attacks are based on records separated by at least 30 min (for a given species at a given site).
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registered as attacked based on videos were not scored as attacked using clay
marks (Table 3). In five of these cases, replicas were scored as missing in the field as videos
confirmed that predators removed replicas from their original location. In two cases,
replicas were present but no impressions indicative of bite marks were visible. In a final
case, one predator attacked a replica without destroying it and another predator later
attacked the same replica; thus, this replica was scored as having two attacks according to

Figure 5 Temporal activity patterns. Diurnal patterns in the frequency of encounters (A), detections (B),
and attacks (C) in field experiments conducted in Ecuador, Mexico, and North Carolina, USA. Daytime
ran from 6 to 18, 6 to 19, and 8 to 17 h in Ecuador, Mexico, and North Carolina, USA, respectively.

Full-size DOI: 10.7717/peerj.6487/fig-5
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video but only one attack was scored based on clay marks. No evidence of attacks by
predators was obtained from videos for six replicas that were scored as attacked based on
clay marks (Table 3).

Figure 6 Results of field experiments. Numbers of replicas—both with and without camera traps—that
bore marks indicative of attacks by avian and mammalian predators as well as numbers of replicas that
were missing (i.e., no trace of replica found) in field experiments conducted in Ecuador, Mexico, and
North Carolina, USA. Full-size DOI: 10.7717/peerj.6487/fig-6

Figure 7 Camera trap observations. Numbers of encounters, detections, and attacks by avian and
mammalian snake predators observed from camera trap videos at each experimental location:
EC, Ecuador; MX, Mexico; NC, North Carolina, USA. Full-size DOI: 10.7717/peerj.6487/fig-7
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DISCUSSION
We evaluated whether camera trap videos can provide additional information that
could be useful to field studies of predation employing artificial prey. Field studies typically
rely on the relative frequencies of clay marks on different prey phenotypes to infer
avoidance behaviors of predators (Noonan & Comeault, 2008; Marek et al., 2011;
Dell’Aglio, Stevens & Jiggins, 2016; Kristiansen et al., 2018). Previous predation field studies
that have employed camera traps have generally used photography (Fig. 1), have been
conducted on small scales, and have primarily employed cameras for the sole purpose of
identifying predators attacking artificial prey. Our observational data collected from
three field experiments conducted in three separate locations show that camera trap videos
can be used to provide benefits to field studies of predation beyond predator identification.

Our study demonstrates how data on the frequency at which different predator
species encounter, detect, and attack replicas could be gathered using videography.
These data could be used in a variety of ways to enhance predation studies employing
artificial prey.

First, these observational data could be used to make more robust evaluations of the
relative fitness of different prey phenotypes. For example, in heavily shaded habitats
such as the tropical forests where field experiments were conducted in Ecuador and
Mexico, the warning coloration of coral snakes and their mimics is unlikely to provide
protection from predation at night given that the visibility of their color patterns to
predators should be low (Kelber, Yovanovich & Olsson, 2017). Information on warning
coloration is therefore unlikely to factor into decisions by predators to attack replicas at
night in such habitats. As a result, an analysis that omitted the two attacks that were
observed at night in Mexico (Fig. 5C) would provide a more robust test of how warning
coloration factors into prey-selection decisions by predators. Similarly, because
different color pattern phenotypes might vary in their conspicuousness to predators,
differences in predation rates could be driven by both variation in prey preference and
variation in visual detection rate (Stuart, Dappen & Losin, 2012; Rojas, Rautiala &Mappes,
2014). Variation in visual detection rate has been shown to be an unlikely
explanation for differences in predation rates between color pattern phenotypes in at least
a few aposematic taxa (Brodie, 1993; Wüster et al., 2004; Buasso, Leynaud & Cruz, 2006;
McElroy, 2016). Nevertheless, restricting analyses to replicas that were actually
detected would provide more direct tests of the fitness consequences associated with
different prey phenotypes, given that the fitness benefits of aposematic prey should only be
realized after predators have detected prey. Replicas monitored by cameras across all field
experiments more often remain undetected than detected throughout the monitoring
period (Table 3). Thus, field studies of aposematic prey that limited analyses to the subset
of detected replicas could potentially benefit from increased statistical power to resolve
differences in predation between phenotypes.

Second, these observational data could be used to more precisely characterize how
different predators contribute to selection on prey phenotypes. Although predator
communities as a whole did not have a tendency to attack or avoid replicas following
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detection (Fig. 4), the data tentatively suggest that predators might vary in their
behavioral responses to aposematic phenotypes (Table 2). At least one predator species,
Peccari tajacu, had a tendency to disproportionately avoid coral snake phenotypes, while
most other predator species (e.g., Urocyon cinereoargenteus) attacked them (Table 2).
Given that Peccari tajacu is largely diurnal and is one of the most common predators at
Tiputini Biodiversity Station in Ecuador (Blake et al., 2012; Blake & Loiselle, 2018),
their contribution to selection might be disproportionately small relative to their
abundance. Likewise, Urocyon cinereoargenteus is one of the more common mammals
encountered during camera trap surveys conducted in the Carolina Sandhills (C. Akcali
and D. Pfennig, 2015, unpublished data), where they are largely crepuscular and nocturnal
like the coral snake mimics with which they co-occur (Palmer & Braswell, 1995;
Whitaker, 1998). Consequently, Urocyon cinereoargenteusmight have been a key predator
in facilitating the recent rapid evolution of a coral snake mimic in the Carolina Sandhills
(Akcali & Pfennig, 2014). However, these claims remain speculative until additional
data are gathered that permit a more robust characterization of the prey selection functions
of these predators.

Third, observational data from videos could allow more data to be collected from
artificial prey experiments. When no traces of a replica can be located at their
original location, researchers often conservatively score such replicas as missing and omit
them from subsequent analyses (Kikuchi & Pfennig, 2010; Chouteau & Angers, 2011;
Lawrence, Mahony & Noonan, 2018). However, videography—more often than
photography—can provide conclusive evidence of cases where missing replicas were due to
removal by predators. Across all three experiments, videos revealed that all six replicas
that were scored as missing in the field were actually removed by predators.
Given that a total of 87 replicas were scored as missing across all three field experiments
(Fig. 6), the potential for videos to rescue lost data might be substantial.

Fourth, these observational data could provide insight into the extent to which artificial
prey approaches sample a biased subset of the predator community. Several studies
have suggested that avian predators should be more important selective agents on coral
snake color patterns than mammalian predators, especially in the tropics (Brodie, 1993;
Brodie & Janzen, 1995; Hinman et al., 1997). During our field experiments, avian
predators were substantially underrepresented on videos relative to the frequency at which
their beak marks were recorded on replicas that were not monitored by cameras
(Figs. 6 and 7). This pattern is generally consistent with most camera trapping studies that
report capture rates for both mammalian and avian species, which have found that avian
species tend to have lower capture rates on cameras (Stein, Fuller & Marker, 2008;
Blake et al., 2011; Naing et al., 2015). Thus, it is not clear whether this difference in the
representation of avian predators in videos and clay marks reflects the fact that
avian predators often moved too fast to be recorded on videos, that avian predators
detected replicas outside the field of view of the cameras and actively avoided cameras as a
consequence, or alternatively, that this was simply due to the low number of cameras
relative to replicas that were not monitored by cameras (Table 1). Avian predators
and some mammalian predator species (e.g., L. pardalis; Table 2) might have extremely
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low rates of detections relative to encounters. Predators with low detection rates might not
be capable of being sampled using artificial prey approaches either because replicas do not
provide the cues needed for predators to easily detect them or because these predators
detect replicas but do not classify them as edible prey. In such cases, laboratory
experiments might be necessary to definitely characterize the ability of predators to detect
replicas (Röẞler, Pröhl & Lötters, 2018). Predator species that are infrequently captured
on video would be particularly important for controlled experiments given that low
encounter rates ultimately preclude assessment of predator sampling biases of
artificial prey.

Thus, videography can provide some additional information for artificial prey studies,
but is it worth the costs? An informal survey of predation studies employing artificial prey
(see Fig. 1 for search details) revealed that—out of studies that report both sample
sizes and the length of time artificial prey were exposed to natural predators (N = 441
studies)—most employ large numbers of replicas (mean ± s.d. = 482 ± 712, median = 300)
for an exposure period close to 2 weeks (mean ± s.d. = 12.7 ± 9 days, median =
12 days). Although the amount of information provided by videos varied substantially
among our experiments (Fig. 7; Table 3), one camera, averaged across all three
experiments, obtained 0.18 encounters, 0.04 detections, and 0.01 attacks per day by species
that we classified as predators. If these frequencies are calculated over a single transect
consisting of 30 video-monitored replicas, which would represent 10% of the total
replicas employed in the median artificial prey experiment, over a 12-day study timeline,
representing the length of the median artificial prey experiment, a total of 65.3 encounters,
13.7 detections, and 4.8 attacks would be expected to be observed. If each camera
were to cost $100, each additional encounter, detection, and attack in terms of camera
expenses would cost approximately USD $46, $219, and $625, respectively. If these figures
were to be calculated for avian predators alone, a total of 7.1 encounters, 1.2 detections,
and 0.3 attacks would be expected for a single 30-replica transect monitored by
cameras for 12 days, with each additional encounter, detection, and attack requiring
USD $423, $2,500, and $10,000, respectively, in camera costs. Thus, obtaining additional
information via videography can be relatively expensive even without considering its
accompanying logistical and time costs, which are not negligible but relatively minor
comparatively speaking (Table S2). Indeed, the cost of cameras that was incurred for each
of our field experiments was more than the total cost of conducting any one experiment
without cameras (Table S2). The reliability of video recording can impose additional
costs, as six out of 18 replicas monitored by cameras bore clay marks by predators but no
evidence of predation was captured on video.

In other systems, however, these costs might not be quite as high. If the percent
of replicas attacked per day is used as a proxy for predator activity, the average predator
activity level from our three experiments (ca. 1% replicas/day) was lower compared
to other artificial prey studies (mean = 6% replicas/day, median = 4% replicas/day, N = 424
studies). If we recalculate the amount of information and costs that would be expected for a
single transect of the median artificial prey study (30 camera-monitored replicas for
12 days) assuming that differences in encounters, detections, and attacks are proportional
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to differences in encounters, detections, and attacks that were estimated in our study, a
total of 98 encounters, 20.6 detections, and 7.2 attacks would be expected, with each
additional encounter, detection, and attack requiring approximately USD $31, $146, $416,
respectively, in camera costs. If these same calculations and assumptions are made
using each of the predation rates that have been reported from our informal literature
survey, the minimum level of predator activity (in terms of % predation per day)
necessary for the purchase of one additional camera to capture an additional encounter,
detection, or attack would be approximately 0.01%, 0.03%, and 0.08% replicas/day,
respectively (Fig. S2). Approximately 68.3% of artificial prey studies have
reported predator activity levels higher than the 0.03% threshold, whereas only 18.2% of
such studies have reported predator activity levels higher than the 0.08% threshold.
Unless measures are taken to increase the rate at which information could be obtained
(e.g., increasing the realism of replicas; Paluh, Hantak & Saporito, 2014), the benefits
of additional information would only be worth the cost of cameras in a minority
of systems.

CONCLUSIONS
Results from this study provide quantitative estimates of the amount of additional
information that camera trap videos could provide to artificial prey studies and
demonstrates some of the benefits of using videography over remote photography in
artificial prey studies. Across three field experiments, dozens of observations were
obtained on the frequency at which predators encounter, detect, attack, and avoid
artificial prey. Observations of predator activity were dominated by mammals.
Videography likely underestimates activity by avian predators as marks on artificial prey
registered a higher ratio of avian:mammalian attacks than videos. These observational
data can be used to estimate the rates and probabilities of encounters, detections,
attacks, and avoidances by predators. This information could then be used to conduct
more direct tests of the relative fitness of different artificial prey phenotypes as well as
provide insight into the relative contribution of different predator species to selection
on prey. However, the incorporation of cameras into artificial prey studies that
experience low rates of predator activity would be difficult to justify given the current
costs of cameras. Nevertheless, videography would still prove useful at smaller scales
as a tool to generate new observations that could lead to new questions or ideas
for testing.
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