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Abstract

Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD)
exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to
persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette
smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term
effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease
production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to
the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the
vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these
effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV
synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8,
-12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways
of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein
phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these
phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first
time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed
mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact
on COPD severity and progression.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the third

leading cause of death in the US [1] and a foremost cause of

morbidity. Indeed, those with the disease have difficulty perform-

ing simple daily tasks such as walking, bathing and feeding

themselves. The economic costs of COPD are substantial both in

terms of healthcare expenditures and lost productivity [2,3]. Acute

exacerbations of COPD, defined as a sudden worsening of COPD

symptoms (shortness of breath, quantity and color of phlegm) that

typically lasts for several days, are a major contributor to disease

morbidity and mortality [4,5]. Indeed, those with 3 or more

exacerbations over a five-year time period had a survival rate of

30% compared to a survival rate of 80% for those without an

exacerbation [6]. In the Perception of Exacerbations of Chronic

Obstructive Pulmonary Disease (PERCEIVE) survey, 89% of

COPD subjects experienced at least one exacerbation in the past

year and 21% of these exacerbations resulted in hospital admission

[7]. These findings show that exacerbations are common in

COPD and impact significantly on the natural history of the

disease. Thus, these studies underscore the importance of

determining the etiologic factors underlying COPD exacerbations.

Infectious agents, such as viral infections, have been implicated

in the pathogenesis of COPD exacerbations [8,9]. Rhinovirus,

influenza and respiratory syncytial virus (RSV) are frequently

detected in the respiratory tract of COPD patients [10]. It is

estimated that almost everyone has experienced at least one RSV

infection as an infant [11] but immunity against RSV infections is

uncommon. RSV infections are frequently reported in infants, the

elderly and immunocompromised patients but also in healthy

adults [12,13]. RSV is detected in stable COPD patients [14] but

whether RSV plays a role in COPD progression is undetermined.

RSV readily infects the airway epithelium [11], which could

significantly contribute to inflammation and airway disease

progression. In fact, infection with RSV is associated with airway

inflammation and an accelerated decline in FEV1 in COPD

patients [15]. Moreover, the presence of RSV infection worsens

outcomes in COPD patients hospitalized for disease exacerbations

[16]. Once infected, RSV can persist in the lungs of COPD

patients by antagonizing antiviral cytokines, mimicking chemo-

kines, escaping detection through antigenic drift and by entering

immune-privileged cells such as pulmonary neurons [17]. Though

cigarette smoke impairs antiviral responses that clear RSV [18,19],

the consequence of persistent RSV infection on key disease
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parameters and outcomes in COPD has yet to be determined and

larger clinical studies are need to identify if smoke exposure is a

risk factor for increased RSV infections in COPD patients [20].

Few studies have examined the effects of cigarette smoking and

viral infections in vivo and the subsequent impact on lung

morphology [21,22]. Environmental tobacco smoke has been

associated with increased RSV infection and hospitalization in

children [23], however little is known about the clinical

implications in COPD, a disease that RSV frequently colonizes

[15,24]. Therefore this study aimed to examine how combined

RSV infections and smoke exposure would impact on airway

inflammation, protease production, apoptosis, lung tissue destruc-

tion and phosphatase activity. We hypothesized that dual

stimulation could lead to excessive inflammation and an enhanced

disease state closer to human COPD. We show that RSV infection

enhances cigarette smoke induced immune cell infiltration,

cytokine and protease production and airway remodeling.

Collectively, these data demonstrate that viral infection alone or

in combination with smoke exposure can significantly contribute

to airway remodeling and disease progression.

Methods

Ethics Statement
All animal procedures performed in this study are in accordance

with Institutional Animal Care and Use Committee (IACUC)

guidelines, and have been approved by St. Luke’s Roosevelt’s

Hospital IACUC at Mount Sinai School of Medicine.

RSV Culture
Human RSV strain A2 (ATCC, Manassas, VA; #VR-1540)

was infected at a multiplicity of 0.1 into Hep2 cells. The virus was

allowed to grow for 5 days at 37uC in a 5% CO2 atmosphere. The

infected Hep2 monolayers were collected and the virus was

released by sonication. Cell debris was removed by centrifugation

at 2500 g for 5 minutes at 4uC. Virus was collected by centrifuging

the supernatant for 2 hours at 220006g at 4uC. Virus were

suspended in culture media and snap frozen and maintained at 2

80uC. Infectious virus titers were determined on Hep2 cells by

performing serial dilutions of the RSV stocks and counting

infected cells stained for indirect immunofluorescence with an

RSV F-specific monoclonal antibody (Abcam, Cambridge, MA).

Additionally, plaque assays were performed as previously de-

scribed [25] on Hep2 cells using methyl cellulose overlay media

(R&D Systems) and staining with 0.5 mg/ml thiazolyl blue

tetrazolium bromide (MTT; Sigma Aldrich) solution in PBS for

3 hours at 37uC. Non-infected Hep2 cell cultures were processed

in the same manner as RSV infected cells and the resulting sample

collection was used as a mock control.

Cigarette Smoke Exposure and RSV Infection
C57BL/6J mice were purchased from the Jackson Laboratory

(Bar Harbor, ME). All mice were maintained in a specific

pathogen-free facility at St. Luke’s Roosevelt’s Hospital. 12-week-

old mice were used at the initiation point for all experiments and

each experimental parameter had 12 animals per group. Mice

were anesthetized by intraperitoneal injection of a mixture of

ketamine and xylazine. Mice were exposed to cigarette smoke in a

chamber (Teague Enterprises, Davis, CA) for four hours a day, 5

days per week at a total particulate matter concentration of

80 mg/m3. Smoke exposure was continued for 6 months with

RSV dosing or mock administered 2 weeks after initiation of

smoke exposures and continued monthly. RSV was intranasally

administered at a dose of 16106 pfu. RSV infected animals were

housed separately from non-infected animals. Animals were

monitored for discomfort, weight loss and any notable unusual

behavior. Body weight and survival were measured every 5 days,

for 6 months. Animals were sacrificed 12 hours after the last smoke

exposure, which was 10 days after the last RSV or mock

administration. The lungs underwent pressure-fixation and

morphometric analysis in accordance with our previously

published protocol [26] and in accordance with the ATS/ERS

issue statement on quantitative assessment of lung structure [27].

Bronchoalveolar lavage fluid (BALF) isolation was performed on

the mice. All mouse experiments were carried in strict accordance

with institutional protocols.

Lung Titers and RSV N Copy Number
Lungs of infected mice were excised 10 days post the last RSV

infection and homogenized using a mechanical homogenizer

(Kinematica, Bohemia, NY, USA). The viral titers in the

homogenates were quantified by plaque assay on Hep2 cells.

The concentration of RSV N (pg) was determined by PCR based

on a standard curve. The following primers were used at 100 pmol

each: 59-TGG GAG AGG TAG CTC CAG AA-39 and 59-AGA

ATC TGT CCC CTG CTG CTA-39. Ct was plotted against

known RSV standards. A Ct-value of 45 was chosen as the cut-off

value for sample infection positive. Results are represented as

natural log pico grams (pg).

Histological Analysis
Fixed tissue was H&E stained for inflammation and fibrosis

scoring and mean linear intercept (MLI) determination. Matrix

accumulation was assessed on fixed tissue with trichrome

evaluations using a commercial available kit (Abcam; ab150686).

Histological analysis of H&E stained slides were used to determine

perivascular vascular inflammation (PVI) and bronchial inflam-

mation using a modified quantification schema [28,29]. Briefly,

the intensity of perivascular or bronchial inflammation was scored

on a scale of 1 to 9. 0, was no inflammation; 1–3, was scant cells

but not forming a defined layer; 4–6, one to three layers of cells

surrounding the vessel; 7–9, four or greater layers of cells

surrounding the vessel or bronchial. Every vascular vessel and

bronchus was measured on multiple lung lobes from 3 different

depths of sectioned tissue. The validated semiquantitative Ashcroft

score was used to score pulmonary fibrosis; scoring from 0 (normal

lung) to 8 (total fibrous obliteration of the field) under 100X

magnification using trichrome stained sections [30,31]. Each

histology analysis was performed on 12 animals per treatment

group.

Protease and Cytokine Measurements
MMP, cathepsin and cytokine gene expression was performed

by qPCR using validated Taqman probes (Life technologies/

Applied Biosystems, Carlsbad, CA). RNA was isolated using

Qiagen RNeasy kit following tissue homogenizing and cDNA was

reverse transcribed using the Applied Biosystems high capacity

cDNA kit. qPCR was performed on the Bio-Rad CFX384 real

time system. No cDNA template, no reverse transcriptase treated

samples and no DNA polymerase controls were examined for each

qPCR throughout this study. Exogenous (human targets) and

endogenous (Actin) positive controls were also monitored for each

assay. All qPCR results are represented as relative quantification

(RQ) compared to the mock and room air treated animals and

corrected to actin levels. Several MMP and cytokine levels were

measured in BALF using a beads assay (EMD Millipore, Billerica,

MA) with the BioRad Bio-Plex 200 system (BioRad, Hercules,

CA). Cathepsin S activity assays were performed on BALF as
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previously described [32]. BALF collagenase activity was deter-

mined by a colorimetric ninhydrin method, as previously

described [33]. Results of enzyme activity are expressed as a

relative percentage of activity compared of the mock and room air

treated animal group. BALF gelatinase activity was determined by

gelatin zymography as described previously [34].

Figure 1. Chronic cigarette smoke exposure enhances RSV pathology in mouse airways. (A) Protocol for administering A2 RSV strain and
cigarette smoke to C57BL/6J mice. C57BL/6J mice (n = 12 animals/group) were infected with monthly RSV infections in combination with 6 months of
smoke exposure. (B) Changes in body weight of each treatment group of C57BL/6J mice, represented as a percentage of initial weight of mock and
room air treated mice at the beginning of this study. p values shown, comparing both groups by 2-way ANOVA. (C) RSV N copy number was
determined 10 days post final infection in the lungs of C57BL/6J mice infected with 16106 pfu of RSV A2 strain and exposed to either room air or
cigarette smoke for 6 months. Absolute RSV N concentration was represented as natural log pg. (D) BALF immune cellularity was measured and
changes were observed following repeat monthly RSV infections in combination with 6 months of smoke exposure on total immune cell number,
macrophages, neutrophils and lymphocytes. Graphs are represented as mean 6 S.E.M., where each measurement was performed 3 times on 12
animals/group. p values shown, comparing both treatments connected by a line.
doi:10.1371/journal.pone.0090567.g001
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Intracellular Signaling
Lung tissue protein from mice was homogenized in RIPA

buffer, centrifuged at 13,0006g for 10 minutes and supernatants

collected. Immunoblots were conducted to determine levels of

cathepsin E, S, G, K, W, Z (all cathepsin antibodies from Santa

Cruz Biotechnology, Paso Robles, CA), MMP-28 (EMD Milli-

pore) and actin (Cell Signaling Technologies, Danvers, MA).

Chemiluminescence detection was performed using the Bio-Rad

Laboratories Molecular Imager ChemiDoc XRS+ imaging

Figure 2. RSV infections enhance cigarette smoke induced airway enlargements and fibrosis. (A) Perivascular and (B) bronchial
inflammation was recorded in mice exposed to cigarette smoke and RSV for 6 months and their corresponding controls. (C) Matrix accumulation was
assessed with trichrome staining in each mouse group and quantified by the Ashcroft fibrosis score. Representative images of mice lungs from each
group are presented here (scale bar = 20 mM; left panels). Fibrosis and inflammation scores were calculated for each treatment group (right panels
where n = 12 animals/group). Each graph is represented as mean 6 S.E.M. where each measurement was performed on 12 animals/group. p values
shown, comparing both treatments connected by a line.
doi:10.1371/journal.pone.0090567.g002
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system. Densitometry was performed on each target and

represented as a ratio of pixel intensity compared to actin, using

Bio-Rad Laboratories Image Lab software (version 4.0, build 16).

Terminal Deoxynucleotidyl Transferase dUTP Nick End-
labeling (TUNEL) Analysis
Apoptosis was determined on paraffin-embedded tissue by the

TUNEL in situ cell death detection kit AP (Roche Diagnostics),

using the instructions provided by the manufacturer. At least 10

random sections were obtained from each lung from 3 different

depths of sectioned tissue. After staining, a minimum of 1000 cells

was visually evaluated in each section. The labeled cells were

expressed as a percentage of total nuclei.

Phosphatase Levels
PP2A and PTP1B activities were determined as previously

described [35]. qPCR was performed for PTP1B and the A

subunit of PP2A using Taqman probes, under the same criteria as

described above.

Statistical Analyses
Data are expressed as means 6 S.E.M. We determined

statistical significance by Student t-tests (two tailed) using

GraphPad Prism Software (Version 5 for Mac OS X). Two-tailed

ANOVA repeat measure analysis was employed to determine the

changes in animal body weight over time. All data sets are

represented as mean +/2 standard error.

Results

Cigarette Smoke Enhances RSV Infection
Mice were administered a monthly dose of RSV either in

combination with daily cigarette smoke or room air, as depicted in

Figure 1A. Animals were sacrificed 10 days after receiving the final

dose of RSV, to eliminate a saturation of inflammation persisting

from the viral infection. Mice exposed to cigarette smoke gained

less weight over the study, which was amplified by repeated RSV

Figure 3. RSV infections enhance cigarette smoke induced airway enlargements. Lung morphology was determined in mice exposed to
cigarette smoke and RSV for 6 months and their corresponding controls. (A) Representative images (scale bar = 50 mM) and (B) mean linear intercepts
(MLI) of mice lungs from each group are presented here. Graph is represented as mean 6 S.E.M., where each measurement was performed on 12
animals/group. p values shown, comparing both treatments connected by a line.
doi:10.1371/journal.pone.0090567.g003

Table 1. RSV infections alter cigarette smoke induced airway
protease gene expressions.

Stimuli

Target
Mock/
Room air

Mock/
Smoke

RSV/
Room air

RSV/
Smoke

MMP-2 1.0060.13 1.2160.17 1.6560.30 4.5460.41#

MMP-8 1.0060.21 2.7360.38* 3.4560.83* 3.8260.75#

MMP-9 1.0060.05 1.9360.26* 1.8160.24* 1.2360.15

MMP-12 1.0060.13 1.8760.24* 6.7661.04* 7.8561.56#

MMP-13 1.0060.26 0.7460.11 3.9360.63* 4.3860.60#

MMP-14 1.0060.13 1.5960.04* 1.7560.16* 1.8160.16

MMP-16 1.0060.11 0.7260.18 1.5760.20* 1.8860.11#

MMP-19 1.0060.13 0.7860.07 1.1260.20 1.3660.17#

MMP-20 1.0060.31 0.4960.16 0.9560.30 1.7460.40#

MMP-23 1.0060.19 0.9960.08 0.4760.10* 0.7560.29

MMP-28 1.0060.23 0.7560.14 1.2260.39 1.8960.27#

Cathepsin A 1.0060.29 1.0260.04 0.5160.07 0.5560.16#

Cathepsin E 1.0060.43 3.9960.78* 5.8261.15* 7.5361.16#

Cathepsin F 1.0060.12 0.8060.12 0.5460.02* 0.8760.19

Cathepsin G 1.0060.26 2.7560.52* 3.9060.34* 4.9360.76

Cathepsin K 1.0060.19 1.3260.25 0.8260.13 0.7160.15#

Cathepsin L1 1.0060.06 0.8160.02* 0.7060.10* 0.9060.01

Cathepsin M 1.0060.16 1.8960.19* 1.7960.23* 2.1260.43

Cathepsin S 1.0060.11 1.6760.12* 5.0860.84* 7.1361.42#

Cathepsin W 1.0060.03 0.9160.14 5.3561.41* 6.0560.70#

Cathepsin Z 1.0060.16 0.7360.07 1.6260.05* 1.6560.12#

Values are represented as mean 6 S.E.M., where each measurement was
performed 3 times on 12 animals/group. Bold numbers denoted by *represents
a p value less than 0.05 compared to mock and room air treated mice.
#denotes a p value less than 0.05 compared to either smoke or RSV treated
mice.
doi:10.1371/journal.pone.0090567.t001
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infections (Figure 1B). Significant differences in body weight loss

were initially found between mock controls and RSV treated mice

after 140 days (p,0.05), between smoke and smoke/RSV treated

mice after 45 days (p,0.01) and between RSV and smoke/RSV

treated mice after 140 days (p,0.05). RSV was still detectable in

the lungs of mice 10 days post infection, by qPCR (Figure 1C) but

was undetectable by plaque assay (data not shown) as similarly

observed by other investigators [25]. Cigarette smoke exposed

mice had a higher RSV N copy number than room air exposed

mice (Figure 1C). Not surprisingly, exposure to RSV or smoke

alone lead to an infiltration of macrophages, neutrophils and

lymphocytes into the lung (Figure 1D). Interestingly, smoke

exposure synergistically enhanced RSV induced inflammation,

with macrophages, neutrophils and lymphocytes.

RSV Enhances Cigarette Smoke Inflammation and
Fibrosis
RSV and cigarette smoke-exposed mice exhibited perivascular

lymphocytic inflammation, which was additionally augmented by

exposure to both RSV and cigarette smoke (Figure 2A). An

inflammation score was also performed on the inflammatory cell

infiltration around the bronchial airways and the results were

comparable to the perivascular inflammation, with RSV enhanc-

ing smoke-induced inflammation (Figure 2B). Trichrome staining

demonstrated increased airway fibrosis in mice exposed to both

cigarette smoke and RSV infections (Figure 2C), with collagen

deposition observed around the airways. Ashcroft fibrosis scoring

confirmed increased fibrosis in mice exposed to both cigarette

smoke and repeat RSV infection (Figure 2C). Therefore, dual

stimulation with smoke and RSV infection lead to an exaggerated

inflammation and fibrotic airway remodeling response.

RSV Infections Enhance Cigarette Smoke Induced Airway
Remodeling
Others have demonstrated that short term smoke exposure in

combination with viral infection or poly (i:c) could enhance airway

remodeling in animal models [21,36]. To investigate the long-term

impact of combined smoke exposure and multiple viral infections

on lung remodeling, we examined airway remodeling by MLI

analysis. Not surprisingly, chronic cigarette smoke exposure alone

caused a significant increase in alveolar size determined morpho-

metrically by MLI (Figure 3). Interestingly, repeated RSV

infection also enhanced airspace enlargement (Figure 3A–B).

Combined stimuli of smoke and RSV induced a synergistic

enhancement of airway remodeling (Figure 3A–B).

RSV Infections Alter the Cigarette Smoke Induced Airway
Protease Response
Increased protease levels have been frequently observed in

human airway diseases [33,37]. The influence of exposures to viral

infection on smoke induced protease expression was investigated

by qPCR, multiplex analysis, immunoblots and activity assays

from tissue or BALF. C57BL/6J mice infected multiple times with

RSV have significant gene expression increases for matrix

metalloproteinases (MMP) -8, -9, -12, -13, -14, -16 and cathepsins

E, G, M, S, W and Z (Table 1; see Table S1 for gene expression of

remaining MMPs and cathepsins). Multiplex assays confirmed

increased MMP-2, -8, -9 and -12 in the BALF of RSV infected

mice (Figure 4A). RSV exposure also increased tissue protein levels

of cathepsin G, S and Z (Figure 4B–C). Smoke exposure induced

significant gene expression increases for MMP-8, -9, -12, -14 and

Figure 4. RSV infections enhance cigarette smoke induced airway protease response. (A) BALF MMP (-2, -8, -9 and -12) levels were
determined by multiplex analysis in the BALF of mice exposed to cigarette smoke and RSV for 6 months and their corresponding controls. Cathepsin
G, K, Z, E, S, W and MMP-28 lung protein expression levels were analyzed by (B) immunoblotting and (C) densitometry. Graphs are represented as
mean 6 S.E.M., where each measurement was performed 2 times on 12 animals/group. p values shown, comparing both treatments connected by a
line.
doi:10.1371/journal.pone.0090567.g004

Figure 5. RSV infections enhance cigarette smoke induced
cathepsin S activity. BALF protease activity was of mice exposed to
cigarette smoke and RSV for 6 months and their corresponding
controls. (A) Total BALF collagenase and cathepsin S relative activity was
determined. (B) Gelatinase activity was determined in BALF and
densitometry was performed for MMP-9 and MMP-2. Graphs are
represented as mean 6 S.E.M., where each measurement was
performed 3 times on 12 animals/group. p values shown, comparing
both treatments connected by a line.
doi:10.1371/journal.pone.0090567.g005
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cathepsins E, G, M and S (Table 1). Multiplex assays confirmed

increased MMP-8, -9 and -12 in the BALF of smoke exposed mice

(Figure 4A) and immunoblotting confirmed that smoke induced

cathepsin G, Z, E and S levels in tissue (Figure 4C). Combined

RSV infection and smoke exposure induced enhanced gene

expression of MMP-2, -8, -12, -13, -16, -19, -20, -28 and

cathepsins E, S, W and Z (Table 1). Multiplex assays confirmed

that smoke enhanced RSV-induced MMP-8 and -12 in the BALF

(Figure 4A). Tissue protein levels of cathepsin G, S and W were

also synergistically enhanced by smoke (Figure 4B–C). MMP-3

BALF protein levels were also examined to confirm qPCR data of

a protease that was unaltered by either stimuli and was confirmed

to be unchanged in all mouse groups (Figure S1 and Table S1).

Protease activities were also altered within the BALF of mice, with

repeat RSV or smoke exposure increasing collagenase, gelatinase

and cathepsin S activity in BALF of mice (Figure 5). Repeat RSV

exposure enhanced smoke induced cathepsin S activity in BALF of

mice but did not appear to enhanced total BALF collagenase

activity (Figure 5A). Interestingly, smoke alone increased MMP-9

gelatinase activity levels more so than RSV infection, which varied

from the qPCR and multiplex data (Figure 5B). Therefore, RSV

infections impacts on smoke associated protease production, which

may contribute to the airway remodeling observed in this animal

model.

RSV Infections Alter Cigarette Smoke Induced Airway
Cytokine Release
Microbial infection in the airways can contribute to disease

exacerbations, which have been associated with cytokine and

chemokine release from lung-residential cells [21]. C57BL/6J

mice infected multiple times with RSV have significant BALF

increases for IL-1a, IL-1b, IL-6, IL-10, IL-17, IFN-c, RANTES

and KC (Table 2; see Table S2 for cytokines unaltered by RSV or

smoke), determined by multiplex assays. Gene expression analysis

also identified increased IL-13, IL-27, CXCL9, CXCL10,

CXCL11, G-CSF, IFN-a and IFN-b in the tissue of RSV infected

mice (Table 3; see Table S3 for gene expression cytokines

unaltered by RSV or smoke). Smoke exposure alone-induced

increased BALF protein levels of IL-17, TNF-a and KC (Table 2).

Table 2. RSV infections alter cigarette smoke induced airway cytokine release.

Cytokine (pg/ml) Mock/Room air RSV/Room air Mock/Smoke RSV/Smoke

IL-1a 2.0760.36 30.1169.63* 1.1160.25 74.3568.62#

IL-1b 59.0966.20 78.7565.32* 55.7363.76 75.6068.40

IL-3 27.9160.83 22.7760.98* 24.8260.91* 21.7660.80

IL-5 4.6860.09 4.0760.20* 4.1660.13* 4.3760.36

IL-6 3.7860.44 9.63163.81* 4.56860.38 9.14762.75

IL-10 61.4369.92 76.45612.60* 35.4962.98* 59.78618.34

IL-13 48.4162.44 29.6163.50* 40.2361.77 33.5962.65#

IL-17 43.6665.06 64.1766.72* 81.62610.70* 122.4067.52#

IFN-c 12.1560.72 35.47611.26* 15.4961.30 80.15612.02#

RANTES 12.4160.84 107.30611.7* 12.3861.03 129.1611.73

TNF-a 524.90641.34 438.80655.48 609.10629.10* 508.4658.42#

MIP-2 10.5160.27 9.1060.18* 9.3160.29* 9.5360.34

GM-CSF 39.7262.99 30.4961.30* 35.0062.00 33.8862.64

CXCL1/KC 6.7961.34 18.9462.13 12.8361.85 21.5961.82

Values are represented as mean 6 S.E.M., where each measurement was performed 3 times on 12 animals/group. Bold numbers denoted by *represents a p value less
than 0.05 compared to mock and room air treated mice.
#denotes a p value less than 0.05 compared to either smoke or RSV treated mice.
doi:10.1371/journal.pone.0090567.t002

Table 3. RSV infections alter cigarette smoke induced airway
cytokine gene expressions.

Stimuli

Target
Mock/
Room air

RSV/
Room air

Mock/
Smoke

RSV/
Smoke

IL-1b 1.0060.08 2.9260.30* 2.0460.18 2.89060.43

IL-6 1.0060.25 3.0860.64* 2.0060.14 2.4360.09

IL-10 1.0060.37 3.4260.68* 2.1260.63 2.0060.34

IL-13 1.0060.43 6.5761.55* 14.0162.71* 17.1763.70#

IL-17 1.0060.28 3.6160.66* 2.6960.40* 6.6961.45#

IL-27 1.0060.21 2.6660.53* 1.4160.21 3.9561.42#

CXCL1/KC 1.0060.14 1.8560.24* 2.6160.23* 3.4260.31#

CXCL9 1.0060.29 14.4761.01* 5.6961.43* 17.7562.35#

CXCL10 1.0060.42 4.8860.62* 2.6560.24* 2.8660.22

CXCL11 1.0060.09 6.6461.35* 3.4760.88* 4.2561.22

RANTES/
CCL5

1.0060.19 13.4462.59* 2.9961.02* 19.0465.40#

MIF 1.0060.14 0.4960.04* 0.8760.08 1.4360.05#

GM-CSF 1.0060.11 1.6060.20 1.5960.30 2.4460.36#

G-CSF 1.0060.40 2.1160.65* 1.2060.53 1.0760.19

IFN-a 1.0060.25 3.8160.91* 4.1561.05* 2.8761.17

IFN-b 1.0060.15 4.7160.83* 2.3360.38* 2.8860.65

IFN-c 1.0560.30 14.6162.23* 2.6460.62* 20.1063.61#

Values are represented as mean 6 S.E.M., where each measurement was
performed 3 times on 12 animals/group. Bold numbers denoted by *represents
a p value less than 0.05 compared to mock and room air treated mice.
#denotes a p value less than 0.05 compared to either smoke or RSV treated
mice.
doi:10.1371/journal.pone.0090567.t003
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Increased gene expressions of IL-13, CXCL9, CXCL10,

CXCL11, RANTES, IFN-a, IFN-b and IFN-c were observed

after 6 months of smoke exposure (Table 3). Combined smoke and

RSV infection lead to an enhanced induction of IL-1a, IL-17,
IFN-c and KC in the BALF and IL-13, IL-27, CXCL9,

RANTES, MIF and GM-CSF by qPCR (Table 2 and Table 3).

Therefore, combined exposure to cigarette smoke and RSV can

synergistically enhance certain immune responses. Equally, trend

decreases in several BALF cytokines were observed following dual

stimulation of smoke and RSV infection, such as IL-2, IL-3, IL-5,

Figure 6. RSV infections enhance cigarette smoke induced airway cell death. (A) TUNEL analysis was performed on lung tissue from mice
exposed to cigarette smoke and RSV for 6 months and their corresponding controls. Graph represented as mean 6 S.E.M., where each measurement
was performed on 12 animals/group. p values shown, comparing both treatments connected by a line. (B) Representative images of TUNEL staining
of mice lungs from each group are presented here (scale bar = 50 mM).
doi:10.1371/journal.pone.0090567.g006
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IL-7, IL-9, IL-10, IL-12p70, IL-13, TNF-a, VEGF, MIP1a, and
MIP1b (Tables 2 and S2). Altered cytokine levels were probably

not dependent on AP-1 or NF-kB activation, as dual exposure did

not enhance activity of either transcription factor (Figure S2).

However, additional studies are required to fully confirm this

observation.

RSV Infections Enhance Cigarette Smoke Induced Airway
Cell Death
Studies were undertaken to evaluate the impact of RSV and

smoke exposure on cell death responses in the mouse lung. In cell

culture, cigarette smoke causes necrosis rather than virus-induced

apoptosis [38]. Our in vivo analysis demonstrated that administra-

tion of either smoke or RSV to mice caused significant increases in

the number of cells that were undergoing apoptosis (Figure 6).

RSV caused significant increase in the number of TUNEL positive

cells. Smoke alone induced a modest induction of TUNEL positive

cells within the lung. However, the combined exposure to smoke

and RSV induced the most impressive changes with the detection

of many TUNEL positive cells (Figure 6). An increase in the

number of TUNEL-positive cells was seen in the bronchial airways

of smoke exposed mice that were treated with RSV (Figure 6B).

RSV Infection Subdued PTP1B and PP2A Expressions and
Activities
Chronic cigarette smoke exposure subdues the PTP1B and

PP2A anti-inflammation response [35,39] and viruses can prevent

PP2A activity [40]. Therefore, we investigated whether dual

exposure to smoke and RSV infections could enhance inflamma-

tion by preventing the inductions of airway PTP1B and PP2A. As

observed before [35,39], chronic smoke exposure did not induce

PTP1B and PP2A activity (Figure 7). RSV inhibited PP2A and

PTP1B activities, which was further enhanced by smoke exposure

(Figure 7). Exposure to both smoke and RSV significantly reduced

gene expression of both phosphatases (Figure 7).

Discussion

An exacerbation is a seminal event in the life of a COPD patient

that frequently marks the transition from relative stability to a

more rapid decline in lung function. Given the importance of

exacerbations in the severity and progression of the disease, it is

critical to establish the mechanisms by which an exacerbation

leads to a decline in lung function. It has long been observed that

RSV infections are frequently detected in the lungs of COPD

patients during an exacerbation [16]. Moreover, RSV is known to

persist in the lung even after an exacerbation has appeared to

resolve [17]. What this study shows is that the presence of RSV

infection exacerbates the underlying inflammatory, proteolytic and

apoptotic responses triggered by cigarette smoke exposure in the

lung. Indeed, RSV exposure significantly enhanced lung tissue

destruction in smoke exposed mice. This study is also the first

study to examine the impact of repeat viral infections in animals

actively exposed to smoke throughout the study and suggests that

inhibition of phosphatase activities may contribute to the

inflammation observed in COPD viral exacerbations. Further-

more, these results indicate the specific strategies aimed at

preventing and treating RSV infection would have a significant

impact on COPD development.

RSV exposure exacerbated the protease/anti-protease imbal-

ance in the lungs of the smoke-exposed mice. This finding was not

altogether surprising as RSV induces MMP-3 and -10 expression

Figure 7. Smoke enhances RSV inhibition of PTP1B and PP2A activities. Lung tissue from C57BL/6J mice was examined for gene expression
and phosphatase activity for (A) PP2A and (B) PTP1B. Graphs are represented as mean 6 S.E.M., where each measurement was performed on 12
animals/group. p values shown, comparing both treatments connected by a line.
doi:10.1371/journal.pone.0090567.g007
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in nasal epithelial cells [41,42], MMP-9 expression in human

bronchial epithelial cells [43,44] and MMP-9 and -2 in a BALB/c

mouse model [45]. However, the diversity of proteases that were

regulated by RSV was impressive and this likely has a wide-

ranging biological impact on the lung. Certainly, the role of

proteases in emphysema is well established [46,47] and RSV

induced emphysematous changes in mice that were further

exacerbated by cigarette smoke exposure. It is conceivable that

the proteolytic response may mediate the clearance of RSV

infections from the lung. Indeed, collagen and elastin peptides

exert chemotactic effects that draw in inflammatory cells that are

needed for the elimination of viral infections in the lung [48].

However, it is also possible that proteases may delay viral

clearance by degrading proteins that bind RSV and eliminate it

from the lung. In fact, proteases degrade surfactant protein A [49],

which clears RSV from the lung [50], as well as secretory

leukoprotease inhibitor (SLPI), elafin and SerpinB1, which have

been reported to exert antiviral effects [51,52]. Whether all of the

proteases identified in this study are present in human viral

exacerbations or contribute to disease progression or viral

clearance is yet to be determined but the role of each protease

in COPD progression represents many potential future topics of

interest. The mechanism by which RSV enhances smoke induced

proteases also represents an important area for future investiga-

tion. Smoke and RSV have several common targets that could

impact on protease production, such as TLR4 [53,54], TLR9

[53], RIG-I [21]. We have previously observed increased protease

induction in the absence of PP2A [39] and PTP1B [35]

expression. Loss of phosphatase responses could play a major

part on the proteases expressed in this study. Equally, phospha-

tases can regulate cytokine production, which may also contribute

to the protease production observed in this study.

The induction of cytokines is necessary to clear viral infections

like RSV that contribute to lung injury and disease progression.

Many of the cytokines induced by RSV exposure in our model

have also been linked with apoptosis, protease expression, mucus

metaplasia and lung tissue destruction in COPD [55,56]. Virus-

associated exacerbations have greater loss in lung function and

increased CCL5, CXCL10, and CXCL11 [57], which were also

observed in our mouse model. COPD patients have increased

IFN-c in BALF fluid [32], possibly from smoke induced CD8+ T

cells that are a key regulator of the inflammation response in

COPD [58]. IFN-c primes cytotoxic T cell responses against RSV

infection that are important for eliminating the virus from the

lung. However, persistent or repeated viral infections, as occurred

in our model, leads to chronic upregulation of IFN-c in the lung,

which induces protease expression, apoptosis and emphysema in

mice [55] and is associated with disease severity in humans. Loss of

PTP1B expression leads to increased smoke induced IFN-c and

IL-17 in the lungs of mice [35]. IL-17, which was induced in our

model, modulates airway hyperreactivity and emphysema forma-

tion in mice [59]; however, the expression of IL-17 is required for

the clearance of bacterial and viral infections in the lung. Indeed,

there is some data to suggest that deficient cytokine responses

could impair viral clearance from the lung [60], which based on

our findings would exacerbate inflammatory and emphysematous

changes in the lung. NF-kB and interferon stimulatory response

element (ISRE) have been associated with smoke enhanced RSV

stimulated cytokines [61]. We do not see a synergistic enhance-

ment of NF-kB activation but we specifically examined animals at

the end of the infection. Perhaps smoke may alter NF-kB earlier

during the infection. This and the role of ISREs in viral and smoke

responses will be an area of future investigation.

Large increases in TUNEL positive epithelial cells were

detected in our RSV infected mice and this increase was further

enhanced by smoke exposure. This is significant as there have

been conflicting reports about the role of RSV in airway epithelial

cell death and survival. One group showed that RSV inhibits

apoptosis and prolongs survival by downregulating p53 or

stimulating epidermal growth factor receptor (EGFR) and

phosphatidylinositol 3-kinase (PI3K) signaling in lung epithelial

cells [62,63,64]. On the other hand, others have reported that

RSV sensitizes the epithelium to apoptosis by strongly upregulat-

ing the expression of tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) [65] or CD95 (fas) [66,67]. Emphyse-

matous airways are extremely sensitivity to TRAIL-mediated

apoptosis [68], which may account for the increased apoptosis

observed in our study following smoke and RSV exposures.

TRAIL receptors are overexpressed in human emphysema

patients [69] and their expression is sensitive to oxidative stress

such as H2O2 stimulation. RSV infections coincide with increased

soluble TRAIL levels in the BALF of respiratory failure patients

[70]. Equally, RSV has been shown to reduce NRF2 in animal

models [71]. NRF2 regulates numerous cell survival genes [72]

and anti-oxidants [71] that are key players in mediating

inflammation [35,73]. PTP1B and PP2A activities are sensitive

to oxidation [35] and inhibition of PP2A increases sensitivity to

TRAIL signaling [74]. It is interesting to note that the intense

apoptotic responses in the airways in this study were accompanied

by significant airway inflammation and fibrosis. Thus, determining

how epithelial cell death leads to airway fibrosis would shed

important insights in the pathophysiologic changes that occur in

this disease.

Little clinical data is available on RSV susceptibility and

inflammatory markers in COPD patients. However other viruses

can give us a potential depiction of the human airway responses to

RSV. Experimental rhinovirus studies in humans confirm that

viral load correlates strongly with inflammatory markers [60].

BALF cells from COPD patients infected ex vivo with rhinovirus

have deficient IFN-b induction, which coincides with reduced

IFN-stimulated gene CXCL10 [60]. However, others have

reported enhanced inflammation in tracheobronchial cells from

COPD patients compared to healthy donor cells [75]. Our in vivo

model observed enhanced inflammation from BALF and lung

tissue after RSV infection. Future clinical studies will be required

to determine how RSV infection impacts on the inflammatory

responses in COPD.

The role of RSV in the progression of COPD has been debated

as the virus is detected in up to a third of stable COPD subjects

[17]. However, our findings affirm that RSV is not merely a

colonizer of the lung but rather a key etiologic factor driving

cytokine, protease and apoptotic responses that lead to air space

enlargement and airway fibrosis. In fact, RSV exposure by itself

induced biological and structural changes that were at least as

severe as cigarette smoke exposure. Whether smoke exposure is

enhancing RSV inflammation synergistically or accumulatively

still remains to be determined but our data suggests that synergistic

inhibition of phosphatase activities may be playing a major role in

COPD exacerbations. These results provide a clear rationale for

developing better RSV prevention and treatment strategies as a

means of countering the progression and severity of this disease.

This data indicates that the detecting RSV may help identify those

subjects who are likely to experience a clinical deterioration over

time.

RSV Augments Smoke Induced Airway Remodeling

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e90567



Supporting Information

Figure S1 RSV infections and cigarette smoke had no impact on

MMP-3 BALF levels. BALF MMP-3 levels were determined by

multiplex analysis in the BALF of mice exposed to cigarette smoke

and RSV for 6 months and their corresponding controls. Graph is

represented as mean 6 S.E.M., where each measurement was

performed 2 times on 12 animals/group.

(TIF)

Figure S2 AP-1 and NF-kB activities following RSV and smoke

stimuli. Transcription factor (AP-1 and NF-kB) activation was

examined in the lungs of mice exposed to cigarette smoke and

RSV for 6 months and their corresponding controls. Graphs are

represented as mean 6 S.E.M., where each measurement was

performed 2 times on 12 animals/group. p values shown,

comparing both treatments connected by a line.

(TIF)

Table S1 Protease gene responses in airways to RSV infections

and cigarette smoke exposure.

(PDF)

Table S2 Cytokine release in airways to RSV infections and

cigarette smoke exposure.

(PDF)

Table S3 Cytokine gene responses in airways to RSV infections

and cigarette smoke exposure.

(PDF)

Methods S1 NFB and AP1 activation.

(PDF)
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