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Immune responses against a peptide derived from the MUC1 extracellular domain are inhibited 

in mice which transgenically express the human tumor antigen MUC1 (MUC1.Tg mice). One of 

the hallmarks of this tolerance is an inability to generate robust CD4 T cell responses. However, 

this tolerance is not due to a lack of MUC1 specific effector T cells in these animals, as it is 

evident even after naïve MUC1 specific CD4 T cells have been adoptively transferred in prior to 

vaccination. Here we show that immediately following intravenous MUC1 vaccination in 

MUC1.Tg mice, splenic dendritic cell (DC) activation is suppressed. This is measureable both by 

reduced levels, compared to DC from vaccinated WT mice, of MHC Class II, CD40, and CD86 

on the surface of these DC, as well as by the level of a new marker of DC activation: expression 

of traditional pancreatic enzymes. These enzymes, exemplified by trypsin 1 and 

carboxypeptidase B1, are up-regulated in splenic DC following MUC1 vaccination in WT, but 

not MUC1.Tg mice. Their suppression in MUC1.Tg mice requires the activity of both regulatory 

T cells and IL-10. IL-10’s role in this system appears to be antigen specific as it is produced in 

the spleens of MUC1 vaccinated MUC1.Tg mice at higher levels than in the spleens of similarly 

treated WT animals. Furthermore, removal of IL-10 signaling from the system by pretreating 

animals with an antibody against the IL-10 receptor prior to MUC1 vaccination increases the 

MUC1 specific CD4 T cell response in MUC1.Tg, but not WT mice. The cellular source of this 

IL-10 was identified by flow cytometry as being natural killer (NK) cells. In addition to 

producing IL-10, NK cells from the spleens of MUC1.Tg mice post MUC1 vaccination are more 

cytotoxic and poorer at maturing DC in co-culture than NK cells from similarly treated WT 

mice. Depletion of these NK cells improves the quality of the MUC1 specific CD4 response in 

MUC1.Tg mice. Together, this data identifies a number of previously unidentified early factors 
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which are responsible for the observed inability of MUC1.tg mice to generate robust MUC1 

specific CD4 T cell responses. 
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1.0  INTRODUCTION 

 

1.1 THE IMMUNE RESPONSE TO CANCER 

The power of the immune system to combat cancer has been recognized for over a century now. 

In 1891, William Coley conducted what could be considered one of the first trials designed to 

boost the immune response against cancer, in which Streptococcus Pyogenes and Serratia 

marcescens were injected intratumoraly. The work, which was attempting to reproduce a 

phenomenon observed when some sarcoma patients would undergo spontaneous remission 

following certain Streptococcus infections, showed sporadic efficacy despite little understanding 

of the underlying mechanism. (1, 2) We now have a much stronger grasp on how the immune 

system and cancer interact, and how tumors can be targeted for successful eradication by the 

immune system. 

1.1.1 Antigen Specific Targeting of Tumors 

The specific targeting of cancer cells by the immune system represents a unique challenge when 

compared to pathogens (e.g. bacteria and viruses). Tumors can be classified into two broad 

categories on the basis of antigenicity. The first category is tumors that express a foreign antigen, 

not encoded in the host organism’s DNA. Cancers expressing antigens of this type are typically 
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virally induced. Human examples include human papilloma virus associated cancers, 

predominately of the cervix and head and neck (3, 4), Merkel cell polyomavirus associated 

Merkel cell carcinomas (5), Hepatitis B associated hepatocellular carcinoma (6), and Epstein-

Barr induced nasopharyngeal carcinoma (7), Specific targeting of these cancers is possible via 

viral specific proteins expressed by the cancer cells. For instance, HPV associated tumors may be 

targeted via the viral proteins E6 and E7 (8). These viral products are both specific to the virus 

and necessary to maintain the transformed phenotype of the tumor cells (9). 

The second category with regards to antigenicity is tumors that do not express a foreign 

antigen. In these tumors, all cellular proteins are encoded by the host organism’s DNA. The 

initial assumption was that these tumors could not be eliminated via specific immune 

recognition. However, the advent of inbred rodent strains demonstrated that protection from 

genetically identical transplanted tumors was feasible through vaccination (10-12). Antigens of 

this type typically derive from proteins that have undergone significant alterations in comparison 

to their expression in normal cells. These changes include increases in quantity, post-

translational abnormalities, germ mutations, and re-expression of proteins not typically expressed 

in adult tissue, such as cancer testis anitgens and oncofetal proteins, which are normally 

expressed only in the germline cells of the adult testis or during fetal development, respectively, 

but which are expressed in a number of tumors (13). The specificity of targeting these different 

types via the immune system and the level of unwanted off-target reactivity varies amongst 

subtype (Table 1). 

Overexpressed tumor antigens, of which Her2/neu and EGFR are examples, can be 

targeted because their level of expression surpasses the threshold required for T cell activation 

(14-16), whereas it does not in normal, non-transformed, cells. However, the expression of these 
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antigens in normal tissue does raise two important issues. There is still a chance of vaccine or 

immunotherapy related autoimmunity and the presence of these antigens on normal tissues 

serves to tolerize the immune system against them (17). 

Post translational changes include changes in glycosylation (18). The ability to target 

these, as well as a prominent example of an antigen possessing such alterations is discussed in 

detail in the “MUC 1” section of this dissertation. 

Mutated genes, of which p53 and β-catenin are common examples, are targetable based 

on their unique mutations creating new epitopes which are no longer seen as self proteins. The 

drawback with antigens of this type is that their uniqueness requires that immunotherapies 

against them be patient- and tumor-specific, although there are a number of common mutations 

against which vaccination is possible. For instance, EGFRvIII is a common mutation of the 

EGFR gene, in which exons 2-7 are deleted. (19) It is constitutively active and contributes to the 

growth and survival of cancer cells through activation of the MAPK pathway and up-regulation 

of BCL-XL, respectively (20). Vaccination with a unique peptide generated by this mutation 

(PEP-3) has shown efficacy in rejecting tumors containing this mutation (19, 21). 

Oncofetal and Cancer testis antigen are distinct, but will be considered together here 

because they share several important qualities. Both can be targeted based on tumor specificity. 

Oncofetal proteins are specific to tumors as they are not expressed in adult tissues. Cancer testis 

antigens include MAGE-1, the first gene identified to encode a tumor specific protein that can be 

recognized by T cells (22). These antigens are expressed in spermatocytes/spermatogonia in the 

testis (23), tissues that do not express MHC Class I molecules (24), thereby making these 

antigens “tumor-specific” with regards to how the immune system perceives them. 
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A final category of antigens not yet mentioned are lineage restricted antigens. Prominent 

examples include the melanoma antigen tyrosinase and prostatic acid phosphatase (PAP), against 

which the first active immunotherapy was recently approved (25). Lineage-restricted antigens are 

present in normal tissues, but their expression is limited to certain tissues. Immune reactions 

against antigens of this type commonly affect normal tissues, but are considered acceptable in 

light of the benefit provided by the immune response. For example, vitiligo, caused by 

autoimmune destruction of normal melanocytes, is a common and manageable side effect of 

successful melanoma vaccines against lineage restricted proteins such as tyrosinase and its 

related proteins, gp100, and MART-1, and is a positive prognostic marker (26, 27). 

Table 1: Cancer antigen categorization  

Antigen 
category Examples Tumor 

Specificity Expression in Normal Cells 

Viral E6, E7 +++ N/A 

Overexpressed Her2/neu, 
Cylcin B1 - On a wide variety of tissues, 

however at lower levels 

Post-translational 
abnormality MUC1 + Low to none 

Mutated β-catenin, 
p53 +++ N/A 

Oncofetal/Cancer 
Testis 

CEA, 
MAGE, 
NY-ESO-1 

+/- 
Expression during fetal 
development/in the testis (which 
lack MHC Class I) 

Lineage 
Restricted 

Tyrosinase, 
PAP - Lineage restricted expression in 

normal tissue 

Ref (17, 23) 
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1.1.2 Active Immunotherapy/Vaccination 

Aside from proper antigen targeting, successful active tumor immunity also requires engagement 

of the cellular immune response. In its most basic form, this requires the acquisition of tumor 

antigen from tumor site by dendritic cells (DC), their activation and migration to the draining 

lymph node, priming of tumor specific T cells in the draining lymph node, and finally the 

migration of these activated T cells to the tumor site, where they can directly lyse the tumor and 

support its destruction through innate activation (1). Tumor antigen acquisition by DCs is usually 

facilitated through necrotic or apoptotic cell death (28-31). Tumor antigen can also be provided 

exogenously in a therapeutic setting. Defined tumor antigens or lysates from the tumor can be 

provided via immunization in order to boost the immune response. The major challenge in these 

vaccinations is providing the antigen in such a way that it is immunogenic and which allows 

antigen uptake by maturing dendritic cells, as they are necessary for the initiations of a strong 

cellular response (32). 

Exogenous antigens can be delivered in several ways. The easiest is through 

administration of immunogenic peptide. The advantage of this method is that it is cheap, stable, 

and the immunodominant epitopes can be selectively administered. However, peptide binding to 

MHC molecules is allele-specific, so the utility of a given peptide is highly variable in a large 

patient population (33). Additionally, providing CD8 T cell epitopes alone can actually induce 

tolerance and promote tumor outgrowth (34, 35). Longer peptides are preferable because the 

uptake and processing required for their presentation allows these peptides to be presented 

almost exclusively on dendritic cells, and not on less immunogenic T and B cells (36, 37). Full-

length proteins are another option for immunization. Unlike vaccination with peptide, full-length 

protein includes multiple epitopes that could bind a wider range of MHC molecules. However, 



 6 

full-length proteins are expensive to produce and require targeting to DC to optimize T cell 

responses. This can be achieved by conjugating the protein to an antibody against the DC 

endocytosis receptor DEC-205. Such a strategy results in improved CD4 and CD8 T cell 

responses and improved tumor protection that outperforms non-conjugated vaccines containing a 

1000 fold higher dose of antigen (38, 39). Similar strategies have been explored utilizing CD11c, 

DC-associated C-type lectin-1, mannose receptor, CD36, and DC-SIGN as targets for delivering 

antigen to DC (40-45). Viral expression vectors are another strategy to provide antigen for tumor 

vaccination. These methods take advantage of natural immune activation in response to viral 

infection. A major advantage of this system is the ability to include immunomodulatory 

molecules in the vaccine vector, such as GM-CSF, IFNγ, costimulatory molecules like 4-1BBL 

and CD80/86, etc., all which can greatly increase antitumor immune responses (46, 47). A major 

concern with viral vectors is that the vectors themselves are so immunogenic and in some cases 

natural exposure is so common (48) that vaccine responses against the vector will preclude 

immunity against the inserted tumor antigen. (46) Hence, the most straightforward way to ensure 

proper delivery of antigen to dendritic cells is to load them directly ex vivo. 

Preloading DCs requires production of autologous DC from CD34+ hematopoietic 

progenitors or from peripheral blood monocytes from the patient to be vaccinated (49, 50). DC 

are then loaded with antigen and matured ex vivo and transferred back into the patient for 

vaccination. This method allows for exquisite control over DC loading and maturation, creating 

DC capable of priming distinct immune responses. For instance DC matured in the presence of 

type I interferon are highly capable of inducing TH1 cell differentiation and proliferation (51-54) 

while IL-15 leads to more efficient CTL responses and confers DC with a qualities associated 

with Langerhans Cells (55). The ability to control the activation status of the DC presenting the 
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antigen is a great advantage of using in vitro-expanded, matured and activated DC for vaccine 

delivery. Presenting antigen on improperly activated DC is detrimental to vaccine efficacy, as 

will be discussed in detail in the “Peripheral Tolerance” section below. The main drawback of 

DC vaccination is that it is labor intensive, expensive, and patient specific. 

Once antigen has been acquired by DC and the DC have been properly matured, either in 

vitro or through inclusion of a vaccine adjuvant, they must traffic to lymph nodes and activate 

CD8 and CD4 T cells. Because of their natural ability to lyse target cells, CD8 T cells have been 

the focus of many immunotherapeutic efforts. Tumor-specific CD8 T cells recognize tumor-

antigen derived peptides presented on MHC Class I. They can then directly lyse the tumor cells 

through perforin/granzyme and FasL mediated induction of apoptosis (56, 57) and can increase 

the immunogenicity of the tumor microenvironment. This can be achieved through secretion of 

IFNγ, which can further activate CTL function (58, 59), activate macrophages (60), up-regulate 

DC MHC Class II and costimulatory molecule expression (61-63), activate NK cells (64), and 

up-regulate MHC Class I expression while inhibiting growth of the tumor (65). Tumor cell lysis 

by CD8 T cells further promotes tumor immunity by increasing the pool of tumor antigens 

available for immune priming, while DC activation induced by IFNγ secretion provides an 

immunostimulatory environment that propagates proper immune activation. Furthermore, both 

macrophages and NK cells are capable of contributing to tumor immunity by directly lysing 

tumor cells. Macrophages and NK cells can also produce TNFα, IFNγ (66), and IL-12 (67), 

which polarize type I helper responses (68) and recruit NK cells (69). 

Although often overlooked due to their relative inability to directly lyse tumor cells and 

concerns raised about the potential induction of regulatory T cells, CD4 T cells are also required 

for optimal anti-tumor immunity. CD4 T cells can directly lyse tumor cells in some models (70) 
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and they are required for CD8 T cell priming (71, 72) and formation (73-75) and maintenance of 

memory (76). Therefore optimal CD8 T cell activation, which can reject tumors, requires 

concomitant CD4 help. One mechanism involved in this help is CD40:CD40L initiated 

activation of dendritic cells, which “licenses” them to prime optimal CD8 T cell responses (77-

79). CD40-matured dendritic cells will also prime responses against antigens acquired in the 

tumor microenvironment. CD40 priming can also activate macrophages, which when activated 

via CD40:CD40L ligation, can control cancer growth even in the absence of T cells (80). Indeed 

the cytotoxic activities of macrophages have been shown in multiple systems to be an integral 

part of CD4 induced tumor immunity, especially by directly killing tumor cells via nitric oxide 

and superoxide (81, 82). It should be noted as well that all functions associated with CD8-

produced IFNγ are also mediated by CD4 T cells, which are likewise capable of making this 

cytokine. 

1.1.3 Passive Immunotherapy 

The type of immunotherapy that is not predicated on de novo generation of tumor-specific 

immune responses is passive immunotherapy. The prime example is administration of 

monoclonal antibodies against surface expression of multiple tumor antigens. Typically, these 

antibodies are humanized and directed against antigens overexpressed in cancer, such as 

Her2/neu (Trastuzumab) and EGFR (Cetuximab) (83, 84). Originally, there was some 

controversy over how these antibodies worked in controlling tumor growth. As a number are 

against growth receptors with function in cell proliferation, direct inhibition oft downstream 

signaling was proposed as a mechanism (85, 86). However, mice deficient in Fc receptor 

expression fail to show significant protection in response to monoclonal antibody treatment and 
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mice lacking the inhibitory receptor FcγRIIB show improved responses (87). Analysis of clinical 

trial participants treated with Trastuzumab showed that patients with a FcγIIIa polymorphism 

that allows for tighter binding of IgG1 (88, 89) had improvements in response rate and 

progression free survival, compared to similarly treated patients without this allele. (90) Similar 

results were seen with Cetuximab (91) and Rituximab (92, 93). These finding implicated NK-

mediated ADCC as an important mechanism of action for monoclonal antibody therapies, 

specifically through lysis of antibody tagged tumor cells (94). Complement mediated killing has 

likewise been implicated both directly in preclinical models (95, 96) and correlatively through an 

association between C1qA polymorphisms and clinical response to rituximab (97). 

 Passive immunotherapy is not completely passive however. Once again, the introduction 

of tumor lysate improves the pool of available tumor antigens for processing and presentation by 

dendritic cells, and the production of activating cytokines such as IFNγ and TNFα from NK cells 

creates an immunogenic environment capable of priming macrophages, DC, and through DC 

CD4 and CD8 T cells specific for tumor antigens. Furthermore, antibody coated tumor antigens 

allow for efficient antigen uptake, IL-12 production, and cross-priming by dendritic cells (98-

100). Together, these effects contribute to a vaccine like effect caused by treatment with 

monoclonal antibodies that takes months to reach maximal effect (101). 

1.1.4 Immune Evasion and Suppression 

Early studies indicated that elimination of solid tumors by the immune system was feasible, but 

objective clinical successes of therapies that depend on the immune system have been few. This 

is largely attributed to the process of cancer immunoediting, which occurs in solid tumors prior 

to their clinical diagnosis (102). Fundamentally, the development of solid tumors is dependent on 
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and shaped by the immune system. Therefore, in most cases, attempts to induce an immune 

response post cancer diagnosis are limited by mechanisms that these tumors have necessarily 

acquired in order to evade immune destruction. A striking observation in support of this theory 

comes from the fact that carcinogen-induced tumors grown in RAG-/- mice, which lack adaptive 

immunity, grow progressively when transplanted to RAG-/- hosts, but are largely rejected in WT 

hosts. In contrast, tumors induced in WT mice are not rejected, owing to the fact that they have 

acquired resistance to immune destruction in the first immunocompetent host (103) Similar 

results were also seen using the immunocompromised nude and SCID mouse models in similar 

experiments (104, 105). Tumor immune suppression and escape involves many other factors in 

addition to the intrinsic resistance of the tumor itself. By the time the tumor has established itself 

in the host, the whole tumor microenvironment facilitates its survival and progression, including 

the recruitment of a number of immunosuppressive cells.  

1.1.4.1 Intrinsic mechanisms of immune evasion 

 

One of the hallmarks of cancer is the ability of tumor cells to avoid detection and elimination by 

the immune system (106). Tumors develop resistance to IFNγ signaling (107), and can 

downregulate expression of MHC class I itself (108-113), as well as MHC class I peptide 

processing machinery (TAP1, tapasin, LMP2, β2m, etc.) (109, 114), in order to avoid recognition 

and lysis by CD8 T cells. Depending on the necessity of the target antigen to tumor function, 

antigenic loss can also prevent CD8 T cell mediated lysis (115-117). Normally, loss of MHC 

Class I expression would trigger recognition and removal by NK cells (118). However, tumors 

may resist to killing by NK and CD8 T cells by gaining resistance to killing mediated by TRAIL 

(119), perforin/Granzyme B (120), and FasL (121, 122). Tumors can also directly alter the 
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cytotoxic capacity of NK cells by secreting soluble ligands for NKG2D. NKG2D, normally 

responsible for activating and directing NK mediated killing, is down-regulated upon constitutive 

activation as is the case here. Tumors can also activate killer inhibitory receptors (KIR) (123, 

124). 

 In addition to direct resistance to immune mediated recognition and cytotoxicity, tumors 

are also able to modulate their microenvironment to prevent immune rejection. Some tumors 

constitutively express indoleamine 2,3-dioxygenase (IDO), which metabolizes tryptophan and 

suppresses T cell responses (125, 126). Tumors can secrete VEGF, which inhibits T cell 

responses by stimulating endothelial cells to produce IL-10 and PGE2 (127, 128). Tumors can 

also secrete TGFβ. TGFβ inhibits T cell growth and IL-2 production (129, 130), skews CD4 T 

cells to induce the generation of regulatory T cells (131-133), and inhibits CTL effector 

generation and function (134, 135). It is also capable of reducing NK cell IFNγ, GM-CSF, and 

TNFα production and killer activity (136-138), and can lower MHC Class II expression and IL-

12 production in response to TLR mediated DC maturation (139). Tumors also mitigate immune 

destruction by creating a physical barrier against immune cell migration and can down-regulate 

the expression of T cell attracting cytokines to prevent homing of T cells to the tumor site (140), 

or induce post-translational modifications on said cytokines to the same end (141). Tumor 

vasculature is less conducive to T cell adhesion and migration (142-144) and often expresses 

molecules like Tim-3, PD-L1, and FasL (145, 146), which actively suppress infiltrating T cells. 

1.1.4.2 Extrinsic mechanisms of immune evasion 

 

The ability of tumor cells to prevent immune recognition and destruction is not all mediated by 

the tumor and its environmental restrictions. Perhaps the most effective and versatile arm of 
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tumor immune evasion is the rich tapestry of immune suppressor cells which are induced in, or 

recruited to, the tumor microenvironment. 

Dendritic cells 

Dendritic cells are well known as the most important cell type for presenting antigen to T 

cells and for initiating strong effector and memory T cell responses (32). However, in the tumor 

microenvironment, DC take on a regulatory role, preventing proper immune effecter generation 

and function (147). DC from tumor sites or those treated with tumor supernatents display lower 

MHC Class II expression, reduced B7 family expression, and a reduced capacity for generating 

tumor specific CTL responses (148, 149), but an increased ability to induce T cell anergy (150). 

Tumor-derived IL-10, TGFβ, and PGE2 all contribute to the regulatory properties of tumor 

infiltrating DC, such as inducing low expression of MHC Class I and II, low costimulatory 

molecule expression, and low IL-12p70 production (150-154). In addition to their low 

stimulatory capacity, regulatory DC also actively contribute to immune suppression via 

production of IL-10, TGFβ, IDO, and COX-2 (155). 

Regulatory T cells 

Increases in the number of regulatory T cells (Treg) are seen in patients with a number of 

different cancers (156-160) and their presence in the tumor microenvironment is correlated with 

a reduction in overall survival (161). The presence of regulatory T cells in tumors is caused by an 

increase in regulatory T cell recruitment through local production of CCL22 (161), and through 

de novo generation of new regulatory T cells by priming naïve T cells with DC whose 

maturation has been inhibited by the presence of anti- inflammatory cytokines (i.e. IL-10 and 

TGFβ) at the tumor site (162, 163). Treg inhibition in tumor sites can be mediated by IL-10, 
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TGFβ, CTLA-4, and IL-2 deprivation. IL-10, produced by Tr1 cells and intratumoral Foxp3+ 

Tregs, can inhibit MHC Class II expression on and IL-12 secretion by DC, as well as expression 

of the costimulatory molecules CD80, CD86 and CD40 (164-167), therefore stimulating the 

generation of new Treg. TGFβ can inhibit killing by both CTL and NK cells at the tumor site. 

(168, 169) CTLA-4 interacts with B7 molecules on DC surfaces, induces the production of IDO 

(170), and has been shown to physically remove costimulatory molecules from the surface of DC 

(171). IL-2 deprivation occurs through high expression of CD25 on Treg surfaces and has 

recently been shown to inhibit NK cell activation in vivo (172-174). 

Myeloid derived suppressor cells 

Myeloid derived suppressor cells (MDSCs) are identified as CD11b+MHC II-

/lowLy6C+Ly6G- and CD11b+MHC II-/lowLy6ClovLy6G+ cells in mice and 

CD11b+CD14+CD15-HLA-DR-/low and CD11b+CD14lowCD15+HLA-DR-/low cells in 

humans. The two different lineages represent monocytic-MDSC (Mo-MDSC) and granulocytic-

MDSC (PMN-MDSC) respectively (175). The level of circulating MDSCs in cancer patients is 

directly correlated with tumor burden and stage (176) and is associated with less effective 

immune responses (177-179). MDSCs are induced in vivo by tumor derived factors such as 

VEGF, PGE2, GM-CSF, IL-1β, and IL-6 (180-182) and are recruited to tumors sites by CCL2. 

(183) MDSCs directly inhibit T cells through the production of reactive oxygen species (ROS) 

and NO (184), by IL-10 (185), by depletion of L-arginine via high expression of arginase (186, 

187), and by inducing the differentiation of suppressive regulatory T cells (188, 189). 

Tumor associated macrophages 
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Macrophages are recruited to tumor sites by CCL2, M-CSF, and VEGF produced in the 

tumor (190-193). Once at the tumor site, macrophages encounter locally produced IL-10, TGFβ, 

PGE2, and IL-4, which skews macrophages towards an M2 like phenotype (194, 195) 

characterized by IL-10 and IL-1β production (196). Tumor associated macrophages (TAM) then 

suppress immune responses through secretion of their own IL-10, TGFβ, PGE2 and VEGF. (194, 

195, 197, 198) TAMs also play a role in the angiogenesis and tissue remodeling required for the 

sustained growth of large tumors by producing EGF, FGF family members, and VEGF (195, 

199) and by secreting proteases such as MMP-9 (200, 201). 

1.1.5 Prophylactic Vaccination 

In light of such extensive immune inhibition, certain considerations have to be made in the 

design of proper anti-cancer immunotherapies. The extensive network of immune suppression 

common to cancer represents a barrier between the idea and the practice of tumor immunology. 

There are at least two solutions to this problem. The first is to address the immune suppression 

during vaccination. For instance, given the role of regulatory T cells in tumor immune 

suppression, some studies have explored depleting this population of cells or blocking its effector 

functions, either alone or concurrent with immunotherapy, in an attempt to boost responses. This 

approach has shown both preclinical and early clinical success (202-206). Examples of similar 

strategies are being applied to many aspects of the suppressed and diminished immune response 

against established tumors (207). 

Another solution, and the one favored by our group, is to avoid immune suppression by 

vaccinating in the pre-malignant stage or even earlier, boosting the immune response against 

developing tumors which have not yet acquired the ability to escape it. The precedent for such 



 15 

treatment has been established. Somewhat recently, approval was granted to Gardasil®, a 

quadrivalent human papilloma virus-specific vaccination intended to prevent cervical cancer in 

women (208-210). Along with the success of the HBV vaccine, which has, through prevention of 

hepatitis B infection, reduced the incidence of hepatocellular carcinoma (211), this emphasizes 

the impact that cancer prevention through vaccination can have. 

The difference between a true prophylactic cancer vaccination and the two mentioned 

above is that the latter are not truly targeting tumors, but instead viruses with well-known 

tumorigenic properties. Vaccines against true cancer antigens as discussed above have yet to be 

approved, although preclinical success is certainly promising and spontaneous tumors can be 

prevented using multiple antigen systems (212). A major consideration moving forward with 

tumor vaccines is that the antigen must be carefully selected in order to optimize cancer 

prevention while limiting autoimmunity (213). An ideal vaccine antigen should be fairly 

ubiquitous in its expression on multiple tumor types. Immune responses against the antigen must 

be able to mediate rejection. Ideally, the vaccine would also target an antigen that drives, or is in 

some way necessary, for tumor growth to limit the possibility of the tumor escaping immune 

recognition by deleting or mutating said antigen. Most importantly for regulatory approval, 

immune responses against the antigen must not be associated with autoimmunity, as a healthy 

population is to be vaccinated and such events will not be as tolerated when they are not weighed 

against the risk of active cancer. 
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1.2 MUC1 

MUC1 satisfies all of the criteria described above for an ideal prophylactic cancer vaccine 

antigenic target. Recent attempts to prioritize cancer vaccine antigens based on their therapeutic 

effect, immunogenicity, oncogenicity, specificity, expression level, stem cell expression, number 

of patients with antigen-positive cancers, number of epitopes, and cellular localization identified 

MUC1 as a high priority vaccine antigen (214). These qualities, as well as recent clinical and 

preclinical findings regarding MUC1 vaccination are discussed below. 

1.2.1 MUC1 Biology 

Epithelial mucins, of which MUC1 is a family member, serve as a protective barrier between 

epithelial cells and the harsh environment of the aerodigestive tract. They protect against 

mechanical distress, diffusion of low pH solutions towards epithelial barriers (215-217), 

microbial colonization, and they serve to lubricate and hydrate the epithelial layer (218-220). All 

mucins are characterized by a variable number tandem repeat (VNTR) motif which contain 

between 5 and 100 O-gylcosylation sites (serine, threonine, and proline residues), with the 

number of domain repeats falling somewhere between 5 and 500 (218). Mucins come in two 

variations: secreted and non-secreted. Secreted mucins are released from cells and form a 

complex matrix that contributes to the gel barrier functions listed above. Non-secreted mucins 

extend from the cell surface, sometime reaching lengths of 100nm or more, and contribute to this 

same barrier (219). In addition to the secreted and/or extracellular domain whose characteristics 

and function are described above, mucins also contain a transmembrane C-terminal domain that 

is responsible for addition cellular functions. Cleavage of the C-terminal domain and the large 
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glycosylated N terminal domain is achieved via the auto-proteolytic SEA domain in most mucins 

(221), followed by non-covalent re-association (222). Depending on the family member, the C 

terminal domain may also play a significant role in cell signaling and survival, inflammation, and 

cancer (218, 219). 

MUC1 belongs the membrane-bound family of mucins. However, shedding of the 

extracellular domain is common and mediated by intracellular proteases, as MUC1 is highly 

resistant to cleavage by extracellular protease addition (223-225). Despite the fact that MUC1 

appears to have evolved from the secreted mucin MUC5B, MUC1 shares very little sequence 

homology with other mucins, aside from the presence of a SEA domain. However, in MUC1 this 

domain is unique in that it evolved from the heparin sulfate proteoglycan of basement membrane 

(HSPG2), which is a known tumor driver which activates the Sonic Hedgehog pathway (226-

228). 

The C terminal domain of MUC1 (MUC1-C) possesses a number of functions in addition 

to formation of the extracellular mucinous barrier by the N terminal domain. MUC1-C can 

induce the expression of galectin-3, which subsequently acts as a bridge for the interaction of 

MUC1 with EGFR, which mediates increased nuclear localization and chromatin binding of the 

latter (229, 230). EGFR can phosphorylate MUC1-C, increasing its interactions with both c-Src 

and β-catenin (231). Interactions with MUC1-C can subsequently block phosphorylation of β-

catenin by GSK3β and prevent its degradation (232). Furthermore, MUC1-C/β-catenin 

heterodimers can translocate to the nucleus and directly activate Wnt pathway genes (233). 

MUC1 can interact with p53 in such a way that cell cycle arrest functions are maintained but 

apoptotic induction of BAX is inhibited (234). MUC1 can also transcriptionally repress p53 by 

recruiting HDAC1 and HDAC3 directly to the p53 promoter region (235). MUC1 can bind 



 18 

directly to BAX to prevent its dimerization and localization to the mitochondria (236). MUC1 

can also bind to the DNA binding domain of ERα and enhance transcription of ERα target genes 

(237). Both MUC1-C and the VNTR region have been shown to function in NF-κB signaling by 

directly interacting with p65 and by activating IKKβ (238-240). Overall, MUC1 has a diverse 

signaling profile. Given the role of many of these pathways in cell survival and in oncogenesis, it 

is easy to see why aberrant MUC1 expression is such a common feature in cancer. 

1.2.2 MUC1 as a Tumor Antigen 

MUC1 is estimated to be aberrantly expressed on about two thirds of the cancers diagnosed in 

the US each year (219). MUC1 expressing tumors encompass a wide variety of cancer types, 

including most carcinomas and a number of haematological malignancies. The level of 

circulating MUC1 acts as a prognostic indicator for treatment responsiveness. MUC1 and β-

catenin co-expression at the invading edge of colorectal cancer is associated with reduced 

survival (241). Increases in MUC1 correlate with progressive cancers whereas decreases in 

MUC1 indicate treatment-responsive disease in breast and a number of other cancers (242, 243). 

MUC1 expression in thyroid cancers is correlated with decrease in 5 year relapse free survival 

(244). Gene signatures and lipid metabolism signatures identified in MUC1 transfected 3Y1 cells 

predict poor prognosis in breast and lung cancer and increases in death and distant metastasis in 

breast cancer, respectively (245, 246). 

The prognostic value of MUC1 is likely due to its extensive activity as a driver of tumor 

development and survival. In support of this, a mouse model of spontaneous pancreatic cancer 

shows greatly reduced tumor burden and metastasis in MUC1-/- mice with concurrent increases 

in survival (247). Transfection of 3Y1 cells with a MUC1 expressing vector is sufficient to allow 
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anchorage-independent cell growth and enhancement of tumorogenicity in nude mice (248). This 

effect is mediated in part by β-catenin as mutation of the serine rich motif required for 

association of these two molecules attenuates this effect (232, 249). MUC1 activation of the β-

catenin pathway, known to be important in cancer development (250-252), has also been shown 

to promote epithelial to mesechymal transition (EMT) in pancreatic dunctal adenocarcinoma, 

characterized by up-regulation of Snai1 and Slug, which transcriptionally repress E-cadherin 

expression (253).   β-catenin activation by MUC1 also affects E-cadherin mediated adhesion by 

disrupting the β-catenin-α-catenin-E-cadherin complex, which is also affected by steric inhibition 

by MUC1 of E-cadherin junctions in a manner which is dependent on the size of the VNTR 

domain (254, 255). Disruption of these junctions is important for the loss of polarity and 

epithelial cell integrity associated with MUC1 associated tumors. Additionally, MUC1 

interactions with HIF-1α were shown in some models to up-regulate PGDFA, a poor prognostic 

marker in pancreatic ductal adenocarcinoma. MUC1 can also up-regulate prolyl hydroxylase 3 

(PHD3) and promote HIF-1α degradation, thereby decreasing hypoxia induced apoptosis (256, 

257). In fact nearly all of the pathways with which MUC1 interacts (detailed in the “MUC1 

Biology” section) are known to be co-opted by cancers. 

Given the diverse functions MUC1 can play in tumor development and the association of 

its overexpression with poor clinical prognosis, it is a promising target for immunotherapy. 

Indeed, detectable MUC1-specific immune responses are associated with good clinical prognosis 

in a number of different malignancies. In pancreatic cancer, serum MUC1 specific IgG levels 

were significantly correlated with survival time (258). In breast cancer anti-MUC1 antibodies 

were associated with reduced incidence, increased time to metastasis, and increased disease 

specific survival with predominantly local recurrences (259, 260). In ovarian cancer, elevated 
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anti-MUC1 antibody levels and increases in insults known to raise the levels of such antibodies, 

are associated with lower overall risk of occurrence (261, 262). In gastric cancer, IgG antibodies 

against MUC1 or the MUC1 related TF glycotype were both associated with increased survival 

(263). All of these studies suggest that a MUC1 specific immune response may improve survival 

in cancer patients, and perhaps prevent cancer in healthy individuals or those with preclinical 

disease. 

MUC1 specific CTLs have been found in the tumor draining lymph nodes of patients 

with pancreatic, breast, and ovarian cancer (264-266). The immunodominant region to which this 

reactivity is directed is the VNTR region of the extracellular portion of MUC1. The heavily 

repeated nature of this domain, and its crucial role in tumorogenesis and survival (reviewed 

above), make the likelihood of mutational escape to avoid immune detection low. In addition to 

being the immunodominant region of MUC1, this region allows for tumor-specific targeting. 

Changes in glycosylation allow binding of tumor MUC1 specific antibodies and lysis by CTL 

specific for the tumor associated glycoform (265, 267). Of interest, processing and presentation 

of this region is blocked in healthy cells. The heavily glycosylated nature of the antigen hinders 

its ability to prime CD4 and CD8 T cells (268, 269). The mechanism behind this is a block in 

intracellular processing caused by high avidity interactions with the mannose receptor on 

dendritic cells, which causes the antigen to recycle back to the cell surface instead of trafficking 

to the late endosome (270). This mechanism is highly dependent on the level of glycosylation, 

which is greatly reduced in the tumor form of MUC1. Another level of tumor specificity is 

evident in the finding that tumor-specific glycosylation motifs are not necessarily removed 

during antigen processing. This allows both for their presentation on the antigen presenting cell 

surface, and for the priming of CD4 T cells that specifically recognize the tumor glycosylated 



 21 

species (271, 272). These glycoforms are seen as foreign and can break tolerance to MUC1 in 

preclinical models (272-274). 

1.2.2.1 Clinical Trials of MUC1 Vaccines 

MUC1 based immunotherapy has been used in clinical trials for nearly two decades and has been 

tested in breast, lung, pancreatic, prostate, ovarian, kidney, and colorectal cancer. A recent 

review of the outcome of these trials has highlighted several promising findings. The first of 

these is that MUC1 vaccination is well tolerated. As would be expected by the tumor specific 

nature of MUC1 targeting, no overt autoimmunity has been observed (220). Importantly, this is 

true even when MUC1 specific CTL are cultured ex vivo and transferred into patients, indicating 

that the lack of autoimmunity is not due to failure to generate a MUC1 specific response (275-

277). Of the trials where clinical outcomes were measured, several showed signs of improvement 

with MUC1 vaccination. Stage II breast cancer patients had a significant reduction in relapse at 5 

and a half years (27% in the control group versus 0% in the treated group) after vaccination with 

MUC1 conjugated to oxidized mannan. Additionally, 9 out of 13 people patients in the 

vaccinated group had MUC1 specific IgG and 4 out of 10 had MUC1 specific T cells, whereas 

neither of these was present in the unvaccinated group (278). One of the adoptive therapies 

mentioned above was able to induce a complete response in a stage IV pancreatic cancer patient 

with lung metastases and stable disease in 25% of the trial group (277). A liposomal based 

MUC1 vaccine was shown to increase median survival time by 4.2 months and 3 year survival 

rates from 17% in the control group to 31% in the treated group. The effect was more 

pronounced in patients who only had loco-regional disease, as the median survival increased by 

17.3 months with a 3 year survival rate of 49%, compared to 27% in the control group (279). 

Two studies conducted by our lab, involving the vaccination of pancreatic cancer patients post 
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resection with either MUC1 peptide admixed with SB-AS2 adjuvant or with MUC1-loaded 

autologous DC, yielded 2 out of 15 and 4 out of 12 patients with long term, recurrence-free 

survival, respectively (280, 281). 

 As a whole, MUC1-specific immune responses show potential in controlling and 

eradicating disease, but these responses are rare in trials. Often only a fraction of the patients 

assayed have detectable MUC1 specific immunity (220). Limitations on our ability to assay such 

immunity may play some role in this low rate of responsiveness (281). However, the advanced 

nature of the disease in clinical trials and the known immune-suppressive effects of tumors 

(reviewed above) are also likely responsible. In support of this, a recent trial conducted by our 

group in which patients with advanced adenoma of the colon were vaccinated with MUC1 

peptide admixed with poly-ICLC showed measureable MUC1-specific IgG in 43.6% of 

vaccinated individuals. However, a majority of the non-responding population had high levels of 

circulating CD33+/lowCD11b+HLA-DR− MDSCs in their peripheral blood, whereas the 

responding individuals did not, indicating that in the absence of active immunosuppression, 

MUC1 vaccination is highly immunogenic (179). This study is the first of its kind, examining the 

ability of MUC1 specific immune responses to prevent cancer in the premalignant stage. 

Although the efficacy of the vaccine for its intended purpose cannot yet be measured, it does 

highlight the high immunogenicity of a MUC1 based vaccine in the absence of immune 

suppression and suggests a brighter future for MUC1 based immunotherapies in preventing 

disease. 

1.2.2.2 Preclinical Data on MUC1 Immunity in MUC1 Transgenic Mice 

While MUC1 has shown demonstrable immunogenicity in clinical trials, animal models, 

specifically the MUC1.Tg mouse, which expresses full length human MUC1 under the control of 
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its natural promoter (282, 283), suggest that immune responses against the peptide backbone of 

the VNTR region of MUC1 are limited. MUC1 positive tumors grow faster in these mice when 

compared to WT mice, and those tumors that do grow in WT mice are more likely to lose MUC1 

expression (283, 284). Of interest, MUC1 specific CTLs can be generated in these mice with 

similar frequency to what is seen in WT mice. This has been shown both in the context of 

spontaneous CTL generation in response to a MUC1 positive tumor (284), and in response to DC 

vaccination (285). However, in both cases, MUC1 specific CD4 T cell generation is limited and 

despite being functionally competent (286), CD8 T cells generated in MUC1.Tg hosts in the 

absence of properly activated CD4 T cells are unable to prevent the growth of MUC1 expressing 

tumors (287). 

MUC1 specific CD4 T cells are rarely detected in patients. One of the proposed reasons 

for their absence was the observed block in MUC1 processing and presentation on MHC Class II 

molecules (269, 270). However, animal models show that spontaneous CD4 responses are 

possible in WT mice exposed to MUC1 positive tumors (284), suggesting that their absence is 

not solely attributable to a block in antigen processing. The absence of a CD4 T cell response is 

also not the result of absolute deletional tolerance as they can be boosted with certain vaccine 

preparations (288-290). Further supporting this, when irradiated MUC1.Tg mice are 

reconstituted with bone marrow from MUC1 specific CD4 TCR transgenic mice, these CD4 T 

cells reach the periphery in equal number and with similar phenotype to the same cells in WT 

mice (291). The most likely explanation is that CD4 T cells responses are limited by an increased 

number of MUC1 specific CD4 regulatory T cells in MUC1.Tg mice, compared to WT animals 

(292). In support of this, increasing the ratio of effector to regulatory T cells through adoptive 

transfer increases the magnitude of the MUC1 specific IgG response to vaccination (293). 
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Given the crucial role of CD4 T cells in optimal CD8 T cell activation and memory CD8 

T cell formation and maintenance (76, 77, 294), several strategies have shown promise in 

improving CD4 T cell responses. The inclusion of a non-MUC1 helper epitope to activate non-

self CD4 T cells which can support the immune response has shown promise in controlling 

MUC1 positive tumor growth (295), as has using genetically engineered B cells that express both 

a MUC1-epitope and a non-self helper epitope, which increases CD4 helper cell cooperation and 

activation (288). Another strategy is to vaccinate with a MUC1 specific helper epitope which is 

more foreign and not subject to self-tolerance. The hypogylcosylated form of MUC1, which is 

most often seen in tumors and not normal tissue (18, 296), has been shown to meet these 

qualifications and can boost immune responses to the naked MUC1 peptide backbone in mouse 

models (272, 291). 

The focus of this project to better understand the mechanism of tolerance towards 

MUC1-specific CD4 T cells. Previous studies have identified an early immune inhibition 

following vaccination that is present regardless of the MUC1-specific CD4 T cell precursor 

frequency (291). Our goal is to identify the early immune regulation responsible for this 

inhibition and if appropriate, identify avenues for intervention which may improve vaccine 

responses. 
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1.3 IMMUNE REGULATION 

1.3.1 Central Tolerance 

Central T cell tolerance occurs in the thymus. Circulating T cell precursors home to the thymus 

and undergo a multi stage maturation process before returning to the periphery. TCR 

rearrangement is the first stage of this process. Focusing on αβ T cells, the α and β chains of the 

TCR undergo random rearrangement to produce T cell receptors (TCR) with diverse 

specificities. Before reaching the periphery, these cells must first undergo two rounds of 

selection (297). The first of these is positive selection, which occurs in the thymic cortex during 

a phase in which developing T cells express both the CD4 and CD8 co-receptors. T cells with no 

affinity for self MHC molecules die by neglect, while those with low-to-medium affinity survive. 

Although this is not the primary site of negative selection, T cells with high affinity can be 

deleted at this point. This is seen in transgenic TCR models where the TCR recognizes a 

ubiquitous self antigen (298, 299). At this point, either the CD4 or CD8 co-receptor is down-

regulated to form single positive T cells, which undergo negative selection in the medulla of the 

thymus. 

The medulla of the thymus contains two distinct cell populations which are responsible 

for mediating negative selection: medullary thymic epithelial cells (mTEC) and dendritic cells. 

mTECS are unique in that they express a protein called autoimmune regulator (AIRE), which 

promotes the expression of a wide array of tissue specific antigens (300, 301). The expression of 

these antigens on mTECs and their cross-presentation on medullary DC allows for the negative 

selection of T cells which bear specificities against tissue specific self-antigens. Patients with 

mutations in AIRE or mouse models in which AIRE expression is absent or deficient show 
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multi-organ autoimmune disorders (302-304). T cells in the medullary thymus typically undergo 

one of four distinct fates. If the T cells possess low-to-moderate reactivity against the locally 

presented self-antigens, they fully mature and traffic to the periphery as naïve T cells. Those that 

do have strong reactivity are either deleted through induced apoptosis, are made anergic, or 

undergo phenotypic skewing to become regulatory T cells. The mechanism by which the fate of 

self-reactive T cells is determined is not completely understood, although the strength of TCR 

signaling appears to be a factor, with stronger signals favoring deletion (305, 306). This does not 

however mean that low affinity TCRs are favored, as high affinity TCRs are more efficiently 

skewed towards Treg induction. (307). TGFβ and IL-2 are necessary for Treg induction and 

TGFβ appears to promote the survival of these cells, as Tregs in mice deficient in TGFβ show 

up-regultion of the pro-apoptotic proteins Bim, Bax, and Bak (308, 309). 

1.3.2 Peripheral Tolerance 

T cell tolerance acquired in the thymus is not a sufficient safeguard against self-reactive T cells. 

Such T cells do escape into the periphery (311), and T cells specific for innocuous foreign 

antigens, such as food antigens, are also present in the mature T cell repertoire. The expansion 

and auto-reactivity of these T cells must be controlled to maintain the health and longevity of an 

organism. In the periphery, the primary cell type responsible for this action is the dendritic cell. 

Although primarily thought of for their powerful role in inducing T cell responses (32), DC can 

also cause T cell deletion and anergy, and they are capable of both expanding existing Tregs and 

inducing new ones from naïve precursors. 
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1.3.2.1 Dendritic cells 

 

DC normally act as immune sentinels. They are located throughout the body and constitutively 

acquire and process antigens for presentation on MHC I and II molecules at their surface. Upon 

exposure to microbial products, host-derived ‘danger signals’, or certain immune modulators, 

DC’s up-regulate surface expression of MHC (32). Antigen uptake and presentation undergo a 

short burst of activity and are then suspended to maintain presentation of antigens acquired at the 

site of activation (312-315). This is accompanied by surface up-regulation of co-stimulatory 

molecules such as CD40, CD80, CD86, and CD83. These DC then traffic to T-cell rich areas of 

the draining lymph nodes, where cognate interactions between the TCR and MHC molecules 

containing acquired antigen allow the expansion of antigen specific T cells. The outcome of this 

process is dependent both on the level and origin of the antigen presented and on the activation 

state of the dendritic cell presenting it. 

 Stimulation of T cells through TCR-cognate antigen:MHC in the absence of co-

stimulatory signaling leads to T cell anergy. This mechanism prevents antigens acquired under 

steady state conditions from activating potentially dangerous T cell responses and prevents recall 

responses against innocuous antigens. On a molecular level, this is controlled in part via the level 

of mTOR activation. TCR signaling, in conjunction with CD28, promotes up-regulation of IL-2 

expression which then fully activates mTOR (316). Without this signal, is the case with sub 

optimally activated DC, which do not express costimulatory ligands, insufficient activation leads 

to upregulation of factors responsible for inhibiting T cell activation. These negative regulators 

include Deltex1 and GRAIL, which ubiquinates CD3ζ, preventing TCR derived signals (317, 

318). 
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 DC can also induce tolerance through secretion of immunoregulatory factors, such as 

IDO, whose function in suppressing T cell responses has been discussed, retinoic acid, and IL-10 

(319). In addition to IL-10’s previously described effect on DC, IL-10 can directly induce an 

anergic state on CD4 T cells stimulated in its presence, but in the absence of DC (320). IL-10 

also appears to be necessary to stabilize Foxp3 expression in Tregs (321). IL-10 does not, 

however, appear to affect CD8 T cell responses in the same manner, with some studies even 

showing greater expansion and cytotoxicity in the presence of IL-10 (322). The impact of this on 

long term immunity is not well understood, however, as optimal CD8 T cell responses also 

require CD4 help and DC maturation, which are both inhibited in the presence of IL-10 (71-75, 

164). And retinoic acid can directly induce regulatory T cell induction over effector generation 

(323, 324). 

1.3.2.2 Regulatory T cells 

 

In addition to their induction from T cells undergoing central tolerance, regulatory T cells can 

also be induced in the periphery. Similar to the induction of peripheral T cell anergy, regulatory 

T cell induction is dependent largely on the level of signaling through mTOR. Rapamycin, which 

inhibits mTOR, promotes the generation of regulatory T cells in the presence of antigen (325, 

326). The mTOR complex mTORC2 is specifically important as T cells deficient in it, but not 

mTORC1, undergo conversion into regulatory T cells after TCR stimulation even in the presence 

of polarizing cytokines like IFNγ (327). This is caused by phosphorylation and inhibition of the 

transcription factors FOXO1 and FOXO3a, as downstream targets of mTORC2 which are 

necessary to promote the expression of the Treg specific transcription factor, Foxp3 (328). 

Extracellular factors responsible for the induction of regulatory T cells include low costimulatory 
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ligand interactions and exposure, during priming, to TGFβ (329), which signals through Smad3 

and cooperates with NFAT to promote Foxp3 expression (330). Low density of cognate antigen 

is also an important factor in maintaining low mTOR activity and promoting Treg generation 

(331). 

 Once generated, regulatory T cells can suppress immune activation through a number of 

different mechanisms, many of which have already been discussed. Tregs produce the anti-

inflammatory cytokines IL-10, TGFβ, and IL-35. Treg production of IL-10 is essential for 

preventing inflammation at environmental surface such as the lungs and intestines (332, 333) and 

is an important component in tumor resident Treg activity (334). Mice deificient in TGFβ show 

similar pathology, such as enhanced IBD and failure to control islet reactive CD8 T cells in 

experimental diabetes models (335, 336). Although a much more recent discovery, IL-35 is 

similarly necessary for homeostatic Treg functions and directly inhibits T cell proliferation 

(337). Tregs also have a number of contact-dependent functions, including direct cytolysis of 

target cells (338, 339). They express CTLA-4, which can induce IDO expression in DC (340), as 

well as LAG-3 and LFA-1, the latter of which permits their preferential aggregation on DCs 

which promotes the down-regulation of co-stimulatory molecules (341, 342). Regulatory T cells 

can also indirectly suppress T cell activation by acting as an IL-2 “sink”. The express much 

higher levels of the IL-2Rα chain CD25, allowing them to bind and internalize large amounts of 

IL-2. This has been recently reported as an important mechanism in preventing NK activation 

(172-174) and can induce apoptosis in effector CD4 T cells (343). 

1.3.2.3 NK cells 
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A large amount of research has been dedicated to the ability of natural killer (NK) cells to lyse 

diseased or infected cells and to produce large amounts of IFNγ and TNFα, however NKs are 

also capable of negatively regulating immune responses. For instance, NK cells can alleviate 

diabetes in NOD mice in a TGFβ-dependent manner (344) and their absence in models of 

transferred colitis and experimental autoimmune encephalitis actually accelerates disease 

progression (345, 346). Two mechanisms predominate in the literature. The first is direct lysis of 

immune cells. This may include either effector T cells (347, 348) or dendritic cells (349, 350). 

NK cells show specificity for lysis of activated T cells specifically (348). Furthermore, under 

some conditions, specifically IL-10 exposure, DC can gain unique susceptibility to NK-mediated 

lysis such that immature DC are protected while mature DC are lysed (351). Therefore, NK cells 

would not only be able to limit the ongoing immune response, but could shape the immune 

response in a way that promotes T cell anergy and Treg generation, thereby affecting long term 

immune memory. 

 The second way that NK cell can inhibit immunity is through secretion of IL-10 and 

TGFβ. The importance of TGFβ in some models has been mentioned (344), but IL-10 secretion 

by NK cells is widely recognized as one of the most common and potent mechanisms by which 

NK cells can control immune responses. A number of cytokines can induce IL-10 production by 

NK cells, including, IL-12, IL-2, IL-15, and IL-27 (352-354). In addition, “regulatory’ NK cells, 

identified by and functionally dependent on IL-10 secretion, inhibit CD4 T cells responses in 

vitro (355) and can decrease systemic IL-12 levels in vivo (356). 
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1.4 INTRODUCTION TO THE PROJECT 

MUC1-specific immunotherapy holds promise for the treatment and prevention of cancer and 

could impact a wide variety of tumor types (219). Early clinical trials have yielded promising, if 

not yet consistent, results. Several factors likely contribute to this inconsistency, the largest at 

this point being the overall immunosuppressive environment created by the late stage tumors that 

have been the target of most trials up until this point (220). However, a recently initiated study 

using MUC1 vaccination as a preventative therapy (179) represents an interesting and new 

future, not just for MUC1 specific therapies, but for cancer immunotherapy at large. 

It is likely that this new direction for the field will yield as many obstacles as it removes 

at first. Successful immunotherapy is largely defined by clinical outcome. This will have to be 

changed, as patients receiving prophylactic immunotherapy may never develop clinically 

identifiable disease. We will therefore need reliable early biomarkers that predict robust, 

protective immune responses that will be functional years later. We will also need to fully 

understand the limitations associated with self- and altered self-antigen vaccinations in the 

absence of tumor mediated suppression, as these will need to be overcome in order for long-

lasting immunity to be generated. Such long lasting immunity will be necessary for effective 

responses against cancer, a disease which may appear decades after vaccination and one in which 

the incidence increases with age. 

These issues were explored in this thesis aiming to define one or more of the mechanisms 

controlling immune responses to a vaccine based on the tumor associated antigen MUC1. Using 

the MUC1.Tg mouse, which has well documented tolerance to certain MUC1 vaccines (283, 

291, 293), I elucidated early events following vaccination which distinguish low level responses 

generated in these mice from the more robust responses generated in their wild type counterparts. 
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These studies will help identify early predictors of successful anti-tumor vaccinations and will 

pinpoint potential avenues for concurrent interventions aimed at improving immune responses 

against tumor antigens derived from self-antigens. This work will also add to our understanding 

of peripheral tolerance to self-antigens in the face of immunologic insult, especially where 

central tolerance is incomplete (291). 
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2.0  ANTIGEN CHOICE DETERMINES VACCINE-INDUCED GENERATION OF 

IMMUNOGENIC VERSUS TOLEROGENIC DC THAT ARE MARKED BY 

DIFFERENTIAL EXPRESSION OF PANCREATIC ENZYMES 

Chapter 2 is adapted from “Antigen choice determines vaccine-induced generation of 

immunogenic versus tolerogenic dendritic cells that are marked by differential expression of 

pancreatic enzymes”. Farkas, AM*, Marvel DM*, and Finn, OJ. J Immunol. 2013 Apr 

1;190(7):3319-27. doi: 10.4049/jimmunol.1203321. Copyright 2013. The American Association 

of Immunologists, Inc. Copyright permission is kept on file with Douglas M. Marvel. 

 

*These authors contributed equally to the manuscript. 
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2.1 ABSTRACT 

Dendritic cells (DC) elicit immunity to pathogens and tumors while simultaneously preserving 

tolerance to self. Efficacious cancer vaccines have been a challenge to develop because they are 

based on tumor antigens, some of which are self-antigens and thus subject to self-tolerance. One 

such antigen is the tumor-associated mucin MUC1.  Preclinical testing of MUC1 vaccines 

revealed existence of peripheral tolerance to MUC1 that compromises their efficacy.  To identify 

mechanisms that act early post-vaccination and might predict vaccine outcome, we immunized 

human MUC1 transgenic mice (MUC1.Tg) i.v. with a MUC1 peptide vaccine against which the 

mice usually generate weak immunity, and WT mice that respond strongly to the same peptide. 

We analyzed differences in splenic DC phenotype and function between the two mouse strains at 

24 and 72 hours post-vaccination, and also performed unbiased total gene expression analysis of 

the spleen. Compared to WT, MUC1.Tg spleens had significantly fewer DC and all of them 

exhibited significantly lower expression of co-stimulatory molecules, decreased motility and 

preferential priming of antigen-specific Foxp3+ regulatory T cells (Treg).  This tolerogenic DC 

phenotype and function was marked by a new putative biomarker revealed by the microarray: a 

cohort of pancreatic enzymes (trypsin, carboxypeptidase, elastase and others) not previously 

reported in DC.  These enzymes were strongly upregulated in splenic DC from vaccinated WT 

mice and suppressed in all splenic DC of vaccinated MUC1.Tg mice.  Suppression of the 

enzymes was dependent on Treg and on signaling through the IL-10 receptor and correlated with 

global down-regulation of DC immunostimulatory phenotype and function. 
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2.2 INTRODUCTION 

Dendritic cells (DC) are potent inducers of antigen-specific T cell responses and are the major 

cell type responsible for priming naïve T cells (32, 357). As such, they have been central to 

vaccination strategies aimed at inducing immunity to both pathogens and tumors (358, 359). 

However, DC are also important in the maintenance of homeostatic tolerance to self-antigens 

(Ag) (360). A large body of literature has established the ability of DC to actively induce 

immunological tolerance against self-Ag, and those closely related to self, thus preventing 

autoimmunity but also compromising effective anti-tumor immune responses (163, 361). DC 

utilize diverse mechanisms to mediate T cell tolerance including low expression of costimulatory 

molecules (362), expression of SOCS1/3 (363, 364), activation of regulatory T cells (Treg) (365), 

and production of immunosuppressive factors such as IL-10, TGFβ, IDO and retinoic acid (366-

369). Significant effort has been devoted to manipulating the phenotype and function of in vitro 

cultured DC used for vaccination (370), as well as to targeting Ag in vivo to specific DC 

populations (371). However, modulating and evaluating the ability of a vaccine to alter the 

phenotype of endogenous DC populations and the type of immune response they prime is still a 

significant challenge. Specifically, little data exist regarding the influence of the choice of 

vaccine Ag on the phenotype and function of endogenous DC. It has been well established that 

exogenous DC used for immunization are generally short-lived in the host after transfer (372), 

and that transfer of Ag from vaccine DC to endogenous DC is necessary for optimal CD4+ and 

CD8+ T cell responses (373, 374).  Therefore, understanding the impact of the choice of Ag, 

specifically the importance of its relative similarity to antigens against which the host is already 

tolerized, on endogenous DC warrants further study. Additionally, because gauging a vaccine’s 

efficacy often requires waiting several weeks to determine resultant antibody titers and vaccine-
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induced T cell function, reliable, early signatures or biomarkers of both the endogenous DC 

response and the ensuing immune response would be of utility. 

We and others have previously shown that a long peptide (MUC1p) corresponding to five 

tandem repeats in the human tumor antigen MUC1 variable number of tandem repeats region is 

seen as a self-antigen by the human MUC1 transgenic mouse (MUC1.Tg), and that MUC1p 

vaccination results in hypo-responsiveness compared to a strong immune response in WT mice 

where MUC1p is a foreign antigen (273, 284, 293). Now we show that the outcome of the 

MUC1p vaccine that currently requires several weeks after immunization to be evaluated can be 

predicted as early as 24h-72h post-vaccination by the change in expression levels in DC of a 

group of catabolic enzymes, including trypsin, amylase, elastase, and carboxypeptidase B1, 

previously thought to be pancreas-restricted in expression.  These enzymes are significantly up-

regulated in the splenic DC of WT mice following i.v. administration of the MUC1p vaccine, but 

not in MUC1.Tg mice. Failure to up-regulate pancreatic enzyme expression was seen in the 

entire splenic DC population and was correlated with low co-stimulatory molecule expression, a 

decreased number of DC in the spleen, preferential priming of Foxp3+ Treg over IFNγ+ CD4+ T 

cells and impaired motility. Mechanistically, this DC phenotype was regulated by Treg and IL-

10. The unexpected expression of pancreatic enzymes in DC and correlation with DC 

immunogenicity or tolerogenicity following vaccination provides a new early biomarker of 

vaccine efficacy. 
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2.3 MATERIALS AND METHODS 

2.3.1 Mice 

C57BL/6, RIP.OVA, and OT-II mice were purchased from the Jackson Laboratory. MUC1.Tg 

mice were purchased from Dr. Sandra Gendler (Mayo Clinic) (282) and/or bred in the University 

of Pittsburgh animal facility. VFT mice were generated at the University of Pittsburgh 

Transgenic Mouse Facility. All colonies were subsequently bred and maintained at the 

University of Pittsburgh under specific pathogen free conditions. Experiments were approved by 

the Institutional Animal Care and Use Committee of the University of Pittsburgh.  

2.3.2 Peptides 

A 100mer MUC1 peptide (MUC1p) represents 5 repeats of the 20- amino-acid sequence 

HGVTSAPDTRPAPGSTAPPA from the MUC1 VNTR region. It was synthesized as described 

previously (375) by the University of Pittsburgh Genomics and Proteomics Core Laboratories. 

OVA323-339 peptide and ovalbumin protein were purchased from Sigma. 

2.3.3 DC culture and vaccines 

BMDC were generated according to established protocol (376). Briefly, female C57BL/6 mice 

(Jackson) were sacrificed and their femurs and tibiae removed. Marrow was extracted using a 

25G needle and flushed with RPMI (2% FCS, 1% Penn-Strep and 2-ME). Cells were passed 

through a 70μM strainer and pelleted before RBC lysis using ACK buffer. Cells were 
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resuspended in AIM-V (Gibco), counted and plated at 1.5-2×106/mL in AIM-V containing 10-

20ng/mL GM-CSF (Miltenyi). On d3 and d5 half the media was replaced with fresh AIM-V and 

GM-CSF. On d6 of culture, DC were harvested with 2mM EDTA, counted and (when indicated) 

loaded with either 30ug/mL MUC1 100mer or 100μg/mL ovalbumin and matured with 25ug/mL 

of Poly-ICLC (Hiltonol), a generous gift from Oncovir, overnight. On d7, cells were harvested as 

above. For immunizations, d7 DC were washed and resuspended in sterile PBS. Mice were 

immunized i.v. via the lateral tail vein with .5-1×106 DC. Soluble peptide immunizations 

consisted 100ug of MUC1 100mer peptide or ovalbumin and 50ug of Poly-ICLC in 100uL of 

PBS.  

2.3.4 Microarray 

Whole spleen from WT and MUC1.Tg mice (n=3/group) was obtained at 24h and 72h post-

immunization with DC loaded with MUC1 100mer peptide. RNA extraction was performed 

using Trizol (Invitrogen). RNA from mice within groups was pooled followed by hybridization 

onto Illumina WG6 arrays. Data analysis was conducted by the University of Pittsburgh GPCL 

Bioinformatics Core facility using the Efficiency Analysis method of identifying differentially 

expressed genes (377). 

2.3.5 PCR and qRT-PCR 

RNA was isolated from splenic tissue or CD11c+ bead isolated (Miltenyi) splenocytes using 

either an RNeasy mini kit (Qiagen) or Trizol (Invitrogen) according to manufacturer’s protocol). 

RT-PCR was performed using Oligo(dT) primers and  SuperScript III reverse transcriptase 
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(Invitrogen). cDNA was amplified using the following primers: trypsin (forward 1: 5’-

GGCCCTTGTGGGAGCTGCTG-3’; reverse 1: 5’-GCAGGTGCACAGGAGCTGGG-3’; 

forward 2: 5’-GCTCTGCCCAGCTCCTGTGCACCT-3’; reverse 2: 5’- 

TCAGCCTGAGGCAGCAGTGGGGCAT-3’), CPB1 (forward 1: 5’-

TGGTGAGTGTGGCCCTGGCT-3’; reverse 1: 5’-TCCACTTGCACGGGTGTGGC-3’ forward 

2: 5’- GCCCTGGTGAAAGGTGCAGCAAAGG -3’; reverse 2: 5’- 

AGCCCAGTCGTCAGATCCCCCAGCA -3’), Elastase (forward: 5’-

TTCCGGAAACTGACGCCCGC-3’; reverse: 5’-TGGGCCAGCTCCCCATTGGT-3’), GAPDH 

( forward 1: 5’-TTGGCCGTATTGGGCGCCTG-3’; reverse 2: 5’-

TCTCCAGGCGGCACGTCAGA-3’; forward 2: 5’- AGACGGCCGCATCTTCTTGTGCAGT-

3’; reverse 2: 5’- TGGTGACCAGGCGCCCAATACGGC-3’), and IL-10 (forward: 5’- 

CTTCCCAGTCGGCCAGAGCCA-3’; reverse: 5’- CTCAGCCGCATCCTGAGGGTCT-3’). 

qPCR was done using a QuantiTect SYBR Green PCR kit (Qiagen) according to the 

manufacturer’s protocol. Reactions were run on a StepOne Plus instrument (Applied Biosystems) 

and data was generated using the ΔCT method.  

2.3.6 Western blotting 

Cells were lysed and run on a 10% Tris-HCL Mini-PROTEAN TGX precast gel (BioRad), 

followed by transfer onto a PVDF membrane. After blocking for 1hr in 5% milk, the membrane 

was incubated with one of the following antibodies: Rb X-CPB1 (M-134), Rb X-trypsin (M-60) 

(both Santa Cruz) or β-Actin (AC-74, Sigma). Blots were then incubated with the appropriate 

HRP-conjugated secondary antibodies (Santa Cruz) and developed using SuperSignal West 

chemiluminescent substrate (Pierce) before imaging on a Kodak Image Station 4000MM. 
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2.3.7 DC/T cell co-cultures 

CD4 effector and regulatory T cells were isolated from C57Bl/6 mouse splenocytes using the 

CD4+CD25+ Regulatory T cell Isolation Kit (Miltenyi) and preactivated overnight with 1µg/ml 

plate-bound anti-CD3 and .5µg/ml soluble anti CD28.  Bone marrow derived dendritic cells 

(BMDC) were generated using above described procedure used to culture vaccine DC. On day 

six, semi-adherent cells, which represent semi-mature dendritic cells, were removed by gentle 

agitation. DC were added to preexisting T cell cultures at DC:T cell ratios of 2: 5, except when 

both regulatory and effector T cells were added, in which case the ratio was 2:5:5. Where 

indicated, LPS was added to the culture along with the DC at a final concentration of 1ng/ml. At 

24 hours post co-culture, DC were isolated based on plate adherence and RNA was extracted and 

analyzed as described. 

2.3.8 Depleting and/or blocking antibody experiments 

All antibodies were purchased from Bio-X-Cell.  Mice received an i.p. injection containing 

200µg of an anti CD25 antibody (clone PC-61.5.3) to deplete CD4+ regulatory T cell. 6 days 

following this treatment, mice were vaccinated as described and sacrificed 24 hours following 

vaccination. In the case of IL-10R blockade, mice were given 250µg of on an anti IL-10R 

antibody (clone 1B1.3A), IP. These mice were then vaccinated as described at 48-72 hours post 

antibody treatment along with an additional dose of 250µg of anti IL-10R antibody. Mice were 

sacrificed 24 hours following vaccination and second antibody dosing. An equal concentration 

and volume of Rat IgG1 specific for horseradish peroxidase (HRPN) was injected as a control 

for the depleting/blocking antibodies where indicated. 
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2.3.9 Flow cytometry 

Anti-CD11c-PacificBlue, anti-CD80-FITC, anti-CD3-PerCP, anti-CD25-PE  (BD Bioscience), 

anti-I-Ab-PeCy7, anti-CD40-APC, anti-CD86-PerCP, anti-Foxp3-PacificBlue (BioLegend), anti-

IFNγ-APC, and anti-CD4-FITC (eBioscience) antibodies were used. Cells were analyzed on an 

LSR II (BD) and data were analyzed using FacsDiva software (BD).  

2.3.10 Ex vivo motility assay 

Pooled splenocytes were recovered from MUC1p- immunized WT and MUC1.Tg mice 48h post-

immunization (n=2/group). DC were isolated with CD11c beads (Miltenyi) and plated at 2×105 

cells into Poly-D-Lysine coated 35mm dishes (MatTek). Cells were labeled according to 

protocol with Cell Tracker Red (Invitrogen) and imaged at 10X in DIC and TRITC channels on a 

Nikon Eclipse live cell system at 5min intervals for 24h. Motility was analyzed using the Imaris 

Track algorithm in Imaris (Bitplane). 

2.3.11 Statistics 

Data show mean ± the standard error of the mean (SEM). Statistical significance between groups 

was defined as p≤.05 using an unpaired, 2-tailed Student’s t test (GraphPad Prism). 
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2.4 RESULTS:  

2.4.1 DC from MUC1p-immunized MUC1.Tg mice exhibit decreased expression of co-

stimulatory molecules, preferentially induce Foxp3+ Treg cells and have reduced motility  

Multiple factors contribute to or limit the ability of DC to prime T cells. These include the 

number of antigen-loaded DC (378), expression of co-stimulatory molecules on DC and 

production of stimulatory or suppressive cytokines (362), and the ability of DC to move to T cell 

areas within lymphoid tissue (379). We found that immunization of MUC1.Tg mice with 

MUC1p resulted in a decrease in the absolute number of CD11c+ cells in the spleen at 24h, while 

the same protocol in WT mice resulted in an increase in DC number (Fig. 1A). The same 

immunization also resulted in differential expression of co-stimulatory molecules, with 

significantly fewer DC from MUC1.Tg mice expressing CD40 and MHC II (Figs. 1B and 1C), as 

well as a reduction in the amount of CD86 expressed by those DC (Fig. 1D), relative to 

immunized WT mice.  

To examine the ability of DC that have been exposed to a self Ag induced environment to 

prime naïve CD4+ T cells, we again immunized WT and MUC1.Tg mice with MUC1p and 

isolated total splenic DC 24h post-immunization. The DC were immediately loaded with OVA 

and co-cultured with naïve, CFSE-labeled OT-II CD4+
 T cells that recognize an I-Ab-restricted 

OVA peptide. After 7 days, T cells from those co-cultures were analyzed by flow cytometry. DC 

recovered from immunized MUC1.Tg mice primed a significantly higher percentage of Foxp3+ 

(Fig. 1E) and fewer IFNγ producing OT-II T cells compared to DC recovered from immunized 

WT mice (Fig. 1F). DC can induce antigen-specific Treg proliferation (380) so we examined the 

relative proliferation of CD4+Foxp3+ Tregs. DC recovered from MUC1p vaccinated MUC1.Tg  
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Figure 1: Immunization of MUC1.Tg mice with MUC1p results in decreased splenic DC number and 

costimulatory molecule expression and preferential priming of Foxp3+ Treg. 

(A) WT and MUC1.Tg mice were immunized with unloaded DC (Ctrl) or DC loaded with MUC1p. Twenty-four 

hours postimmunization, total splenic DC numbers were analyzed. Each symbol represents one mouse, with bars 

showing mean ± SEM from three pooled independent experiments and each experiment including two to four mice 

per group. (B–D) WT and MUC1.Tg mice were immunized as in (A). Forty-eight hours postimmunization, bulk 

splenocytes were stained for FACS analysis. Data represent percentage of positive cells within the CD11c+ gate (B, 

C) or the mean fluorescence intensity (MFI) of cells within the CD11c+ gate (D). Symbols represent individual mice, 

with bars showing mean ± SEM, and are representative of two independent experiments. (E–H) WT and MUC1.Tg 
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mice were immunized as in (A). Twenty-four hours later, splenic DC were bead isolated, loaded with OVA, and 

cocultured with OT-II CD4 T cells for 7 d. On day 7, OT-II cells were treated with PMA/ionomycin and analyzed 

by FACS. Each symbol represents an individual mouse, with bars depicting mean ± SEM. Data are pooled from two 

independent experiments. (G) OT-II CD4+ T cells were labeled with CFSE and cultured as in (E)–(H). On day 7, 

CFSE dilution was assessed in CD4+Foxp3+ cells. Representative dot plots from MUC1p-vaccinated WT and 

MUC1.Tg mice are shown (G). (H) Bars represent mean percentage proliferation ± SEM of OT-II CD4+Foxp3+ 

cells. Data are representative of two independent experiments. *p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001. 

 

 

 

Figure 2: Immunization of MUC1.Tg mice with MUC1p results in decreased DC motility. 

(A) WT and MUC1.Tg mice were vaccinated i.v. with DC loaded with MUC1p. RNA was extracted from pooled 

splenic DC 72 h postvaccination for qRT-PCR. Bars represent mean ± SEM. Data are representative of three 

independent experiments. (B and C) WT and MUC1.Tg mice were vaccinated as in (A). At 72 h postimmunization, 

splenic DC were bead isolated for live cell imaging. The track length (B) and displacement (C) were analyzed after 

20 h in culture. Each dot represents a single DC, and bars depict mean ± SEM. Data are from two mice comparing 6 

× 103 DC/group. ***p ≤ 0.0001 
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mice induced higher OT-II Treg proliferation compared to DC from MUC1p vaccinated WT 

animals (Figs. 1G and 1H).  

While costimulatory molecule expression was decreased in DC recovered from mice that 

received immunization with self peptide, we found that immunization of MUC1.Tg mice with 

MUC1p surprisingly resulted in increased expression of CD74 (the MHC II invariant chain) in 

DC at 72h, compared to DC from MUC1p immunized WT mice (Fig. 2A). Previous studies have 

shown that expression of CD74 is inversely correlated to in vivo motility of DC (381). We 

purified splenic CD11c+
 cells from WT and MUC1.Tg mice 72h post-MUC1p immunization and 

analyzed them immediately ex vivo using live cell microscopy. DC isolated from MUC1.Tg mice 

traveled shorter distances (Fig. 2B) and had smaller net displacements (Fig. 2C) than DC from 

WT mice.  

2.4.2 Differential expression in vivo of pancreatic enzymes in DC in response to 

vaccination with a foreign versus a self-antigen 

We were interested in comparing early (24h-72h) post-immunization events in the spleens of WT 

versus MUC1.Tg mice that might reveal one or more new mechanisms induced by the presence 

of a self-antigen that could mediate antigen-specific peripheral tolerance.  Accordingly, we 

immunized i.v. WT and MUC1.Tg mice with DC loaded with MUC1p as previously and 

conducted whole transcriptome analysis of total splenic RNA at 24h and 72h post-immunization.  

We identified 189 genes differentially expressed at both time points, with the most 

unexpected being a group of seven pancreatic catabolic enzymes and several of their isoforms 

that had not previously been reported to be expressed in lymphoid tissue (Table I). Significantly  
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Table 2: Pancreatic enzymes are expressed at a significantly lower level in the spleens of MUC1p-

vaccinatedMUC1.Tg mice compared to MUC1p-vaccinated WT mice 

Gene Accession Number Fold Change (24h) Fold Change (72h) 

Trypsin 1 XM_001477976.1 -9.736 -20.824 

Elastase 1 NM_033612.1 -11.531 -27.754 

Carboxypeptidas 

B1 
NM_029706.1 -14.302 -30.478 

Trypsin 10 NM_001038996.1 -24.006 -36.193 

Trypsin 4 NM_011646.5 -32.199 -48.856 

Elastase 2A NM_007919.2 -44.824 -81.952 

Amylase 2 NM_001042711.2 -85.541 -88.073 

WT and MUC1.Tg mice (n=3/group) were immunized i.v. with DC loaded with MUC1p. At 24h and 72h, 

spleens were harvested, total splenic RNA isolated, pooled within groups, and whole transcriptome analysis 

was conducted. A cohort of catabolic enzymes with previously characterized pancreatic expression were 

significantly under-expressed in the spleens of immunized MUC1.Tg mice, relative to immunized WT mice. 

Data reflect expression of genes in immunized MUC1.Tg mice relative to immunized WT mice. 
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lower levels (between 10-80 fold) of transcripts for these enzymes were found in the total splenic 

RNA from MUC1p-vaccinated MUC1.Tg mice relative to WT mice 

Since the expression of each of these enzymes mimicked the entire cohort, we used 

trypsin 1 and carboxypeptidase B1 (CPB1) as representatives for more detailed analysis. qPCR 

analysis of total splenic RNA recapitulated the microarray data, showing a lack of up-regulation 

of trypsin and CPB1 transcript in spleens from MUC1.Tg mice post immunization with MUC1p 

relative to significant up-regulation in WT mice (Fig. 3A). Because there was little information 

about pancreatic enzymes in hematopoietic cells, we analyzed their baseline expression in 

different WT spleen cell populations: purified CD11c+ DC, T cells, bone marrow-derived 

macrophages (BMDM) and CD11c-depleted bulk splenocytes which included, among other cell 

types, B cells. CD11c+ DC expressed trypsin and CPB1 (Fig. 3B) as well as all the other 

enzymes identified in the gene array (not shown). BMDM expressed CPB1 but not trypsin, while 

purified T cells and CD11c depleted spleen cells were negative for both. Further dissection of the 

DC compartment into plasmacytoid DC, CD8α+ DC and CD8α- DC revealed that all DC 

subpopulations express these enzymes post vaccination while CD11c- cells do not (Fig. 4). 

Furthermore we show that these same pancreatic enzymes found in murine DC are also found in 

human monocyte-derived DC (Fig. 5).  

To confirm that the enzyme’s expression profiles observed in the whole spleen after 

immunization of WT and MUC1.Tg mice with MUC1p reflected primarily what was occurring 

in CD11c+ DC, we repeated the immunizations and 24 hours later examined changes in trypsin 

and CPB1 expression in purified DC. The failure to up-regulate expression post-immunization 

was recapitulated in DC recovered from MUC1.Tg mice, while DC isolated from immunized 

WT mice dramatically increased these transcripts (Fig. 3C).  This was also observed at the  
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Figure 3: Immunization of WT but not MUC1.Tg mice with MUC1p results in upregulation of pancreatic 

enzymes in splenic DC. 

(A) WT and MUC1.Tg mice were injected i.v. with unloaded BMDC (Ctrl) or BMDC loaded with MUC1p. 

Twenty-four hours later, spleens were harvested, pooled according to group, and RNA extracted for qRT-

PCR. Arbitrary units were normalized to WT mice given the Ctrl vaccine. Bars represent mean ± SEM. Data 

are representative of two independent experiments. (B) Splenic DC from unvaccinated mice were isolated 

with CD11c+ beads (n = 3), total splenic T cells were isolated using negative selection via MACS depletion of 

CD3− cells, and BMDM (MΦ) were cultured for 8 d in the presence of L-cell supernatant as a source of M-

CSF. RNA was isolated from all populations for qRT-PCR analysis. Units were normalized to expression 

levels in CD11c+ cells. Bars represent mean ± SEM. Data representative of two independent experiments. (C) 

WT and MUC1.Tg mice were immunized as in (A). At 24 h, splenic DC were isolated using CD11c+ beads for 
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analysis by qRT-PCR or Western blotting for trypsin and CPB1 (D). Bars represent mean ± SEM after 

normalization to control vaccination. Data are representative of two (C) and three (D) independent 

experiments. (E) Mice were immunized i.v. with PBS (Ctrl), Poly-ICLC (Adj.), or soluble MUC1p admixed 

with Poly-ICLC (MUC1p+Adj.). Twenty-four hours later, spleens were harvested for qRT-PCR analysis. 

Bars represent mean ± SEM normalized to PBS control and are representative of four independent 

experiments. 

 

Figure 4: All major DC subpopulations express higher levels of pancreatic enzymes than CD11c- splenocytes 

WT mice (n=3) were give 100µg of MUC1p admixed with 50µg poly:I-C in a total volume of 100µL PBS via 

tail vein. 24 hours post injection, spleens were removed, pooled, and total splenic DC were bead isolated. DC 

were further separated via FACS into CD8α+ DC (CD11c+CD8α+B220-), CD8α- DC (CD11c+CD8α-B220-) 

and pDC (CD11c+ B220+). mRNA was extracted from these purified populations as well and DC depleted 

whole splenocytes and analyzed via qRT-PCR for trypsin and CPB1 expression. Bars represent mean ± SEM 

Data are representative of two independent experiments. 
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Figure 5: Human monocyte-derived DC up-regulate pancreatic enzyme expression upon TLR3 stimulation 

Peripheral blood mononuclear cells (PBMC) obtained from the leukopaks of healthy donors were cultured 

for 5 days in the presence of 100U/mL of GM-CSF and 200U/mL IL-4. On d5, immature DC were harvested, 

RNA extracted and qPCR conducted for CPB1 and Elastase. Remaining DC were matured overnight with 

30ug/mL of Poly-I:C, and CPB1 and Elastase levels examined the following day to query differences in mDC. 

 

protein level by Western blotting of whole cell lysates from DC purified from MUC1p-

immunized WT and MUC1.Tg mice. CD11c-depleted splenocytes were negative confirming that 

DC are the main cell population that expresses these enzymes (Fig. 3D).  

Finally, we show that immunization with soluble MUC1p admixed with Poly-ICLC 

adjuvant (a TLR3 agonist) also led to up-regulation of trypsin and CPB1 in WT mice but not in 

MUC1.Tg mice (Fig. 3E). Adjuvant alone had no effect on these enzymes in either mouse strain. 

Thus the process is antigen dependent rather than delivery system or adjuvant dependent and it is 

regulated in all DC rather than only in the exogenous DC delivering the antigen.  

To show that differential regulation of these enzymes in WT and MUC1.Tg mice was 

driven by exposure to foreign versus self Ag rather than by a physiologic difference between WT  
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Figure 6: Failure of DC to upregulate pancreatic enzymes following immunization with MUC1p as a self-Ag 

is recapitulated in the OVA model of self-tolerance. 

(A) MUC1.Tg mice were immunized i.v. with PBS (Ctrl), soluble MUC1p, or OVA (Ovalbumin) admixed 

with Poly-ICLC. Spleens were harvested at 24 h postimmunization and pooled for qRT-PCR analysis. Bars 

represent mean ± SEM normalized to PBS control. Data are representative of three independent experiments. 

(B) MUC1.Tg mice were immunized i.v. with unloaded DC (Ctrl) or DC loaded with OVA. Twenty-four 

hours postimmunization, splenic DC were MACS purified for qRT-PCR analysis. Bars represent mean ± 

SEM normalized to Ctrl. Data are representative of three independent experiments. (C) RIP.OVA mice were 

immunized and processed as in (B). Bars represent mean ± SEM normalized to Ctrl vaccination. Data are 

representative of two independent experiments. 

 

and MUC1.Tg mice, we immunized MUC1.Tg mice with OVA, a foreign Ag in that mouse 

strain, and examined total and DC-specific splenic RNA 24h later. In contrast to MUC1p and 

control immunized mice, we found up-regulation of enzymes in the total splenic RNA and DC 

RNA of OVA immunized MUC1.Tg mice (Figs. 6A and 6B).   

We also wanted to show this regulation by a self Ag in another model of self-tolerance to 

be certain that it was not unique to the MUC1.Tg strain or MUC1p as Ag. We immunized 
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RIP.OVA mice, which express the ovalbumin gene under transcriptional control of the rat insulin 

promoter and are tolerant to OVA protein (382), with DC loaded with OVA.  The DC recovered 

from these mice also failed to up-regulate trypsin and CPB1 (Fig. 6C). 

2.4.3 Regulation of expression of pancreatic enzymes in DC is dependent on CD4+ 

regulatory T cells 

Given the antigen specificity of Treg and their ability to modulate DC phenotype and function 

(171, 383), we hypothesized that the differential expression of pancreatic enzymes in DC might 

mark DC that had been acted upon by Treg. We cultured BMDC with bead isolated CD4+ Teff 

and/or Treg, polyclonally activated with anti-CD3 and anti-CD28 antibodies. After 24 hours of 

co-culture, we found that DC up-regulated trypsin and CPB1 in the presence of activated Teff, 

but not in the presence of Treg. Importantly, simultaneous culture of DC with Teff and Treg also 

resulted in low levels of trypsin and CPB1 in DC, demonstrating that Treg actively suppress the 

ability of Teff to induce enzyme up-regulation. LPS alone had no effect on enzyme levels. (Fig. 

7A) 

To determine if Treg played a similar role in vivo, MUC1.Tg mice were depleted of Treg 

by injection of anti-CD25 antibody and subsequently vaccinated with soluble MUC1p admixed  

with Poly-ICLC adjuvant. In control Treg competent mice, we observed the anticipated DC 

phenotype with suppressed enzyme expression, while DC from immunized Treg-depleted 

MUC1.Tg mice up-regulated the enzymes (Fig. 7B).  
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Figure 7: Interactions between DC and CD4 T cells regulate expression levels of pancreatic enzymes in DC. 

(A) DC were cultured alone (Ctrl), with LPS, or with polyclonally activated CD25−CD4+ T cells (Teff) and/or 

CD25+CD4+ T cells (Treg). After 24 h of coculture, DC were separated, and mRNA was extracted for qRT-

PCR analysis. Units were standardized against levels preculture (baseline). Bars represent mean ± SEM. Data 

are representative of two independent experiments. (B) MUC1.Tg mice were treated with an Ab against 

CD25 to deplete regulatory CD4 T cells (Anti-CD25) or with an isotype control (Ctrl). Two days following 

depletion, mice were vaccinated with soluble MUC1p plus Poly-ICLC i.v. Splenic RNA was extracted 24 h 

postvaccination for qRT-PCR analysis. Units were standardized against isotype control–treated mice. Bars 

represent mean ± SEM, respectively. Data are representative of three independent experiments.  
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2.4.4 IL-10 is required in vivo for suppression of pancreatic enzyme expression in DC 

One of the few transcripts in the gene array data that was dramatically higher at 24 hours post 

vaccination in MUC1.Tg mice compared to WT mice was IL-10 (not shown).  To confirm, we 

vaccinated mice with soluble MUC1p admixed with Poly-ICLC and saw a dramatic increase in 

IL-10 transcript levels (Fig. 8A). Given the known ability of IL-10 to modulate DC phenotype 

and function in the direction of tolerance versus immunogenicity (384), we hypothesized that it 

might also be participating in the suppression of DC pancreatic enzyme levels. Accordingly, we 

treated MUC1.Tg and WT mice with an antibody against the IL-10 receptor (IL-10R) prior to 

vaccination with MUC1p (Fig. 8B). Blockade of the IL-10R in vivo resulted in DCs that had 

equal levels of pancreatic enzymes in both WT and MUC1.Tg mice in response to MUC1p 

vaccination. 

 

Figure 8: IL-10 is required in vivo for regulation of pancreatic enzymes expression in DC. 

(A) MUC1.Tg mice were immunized with PBS (Ctrl) or a soluble MUC1p admixed with Poly-LCIC 

(MUC1p). IL-10 expression was measured by qRT-PCR on total splenic mRNA 24 h postvaccination. Bars 

represent mean ± SEM. Data are representative of at least four independent experiments. (B) WT and 

MUC1.tg mice were treated with an IL-10R blocking Ab followed by i.v. immunization with PBS (Ctrl) or 

MUC1p as in (A). Twenty-four hours postvaccination, splenic RNA was extracted for qRT-PCR analysis. 
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Units were normalized to WT Ctrl. Bars represent mean ± SEM. Data are representative of two independent 

experiments. 

2.5 DISCUSSION 

Our data reveal the presence of a new pancreatic enzymes signature in DC that may be predictive 

very early post vaccination, 24-72 hours, of downstream antigen-specific T cell responses. The 

enzymes comprising this signature (e.g. trypsin, CPB1, elastase) have well-characterized 

functions in the pancreas but have not been previously reported in DC. Differential expression of 

these enzymes in DC following immunization with a self or a foreign Ag was associated with 

dramatic changes in the immunogenicity of the total endogenous splenic DC compartment. A 

number of other peptidases utilized by DC, especially in the context of antigen processing and 

presentation, have been characterized (385) and an expanding repertoire of enzymes involved in 

generating MHCI-restricted peptides is beginning to be elucidated. None of them, however, fall 

into the category of pancreatic enzymes. Our interest in these enzymes was generated by the 

observation that their expression levels seen on the total spleen gene array were differentially 

regulated in response to immunization with a self versus a foreign antigen. They are up-regulated 

following exposure to a foreign antigen (e.g. OVA in MUC1.Tg mice and MUC1p in WT mice) 

and suppressed following exposure to a self-antigen (e.g. MUC1p in MUC1.Tg mice and OVA 

in RIP.OVA mice).  As early as 24h post vaccination and until at least 72h, the differential 

expression pattern of these enzymes was observed in the total CD11c+ splenic compartment.  

This was independent of whether antigen was presented on exogenous DC that had taken up and 

processed the peptide prior to immunization, or as soluble antigen plus adjuvant.  This showed 
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that both the initial DC presenting the antigen as well as all other DC in the spleen that either 

gained access to the antigen or were subject to microenvironmental changes, such as increased 

IL-10 initiated by the antigen, were suppressed presumably in order to not propagate anti-self 

responses. 

Our data suggest that a DC presenting a self-antigen is rapidly affected by interactions 

with pre-existing Treg specific for that antigen, as depletion of Treg restores antigen-specific up-

regulation of pancreatic enzymes. A large number and repertoire of MUC1p-specific Tregs could 

arise from thymic expression of MUC1 in MUC1.Tg mice (296), or through prior exposure to 

antigen in a sub-immunogenic setting. We also show that IL-10 is an important soluble 

regulatory mediator that is likely elicited either directly or indirectly by Treg upon encounter 

with self-antigen on DC and is involved in the suppression of pancreatic enzyme expression in 

addition to its well-characterized effects on DC stimulatory capacity and CD80/86 and MHCII 

expression (164-166)  

The most stimulating question is how are the vast majority of splenic DC (and potentially 

all) simultaneously either prevented from or stimulated to induce an immune response, the 

surrogate marker of which is up-regulation or lack of expression of pancreatic enzymes. At least 

two possibilities exist: 1) highly efficient Ag distribution throughout the spleen such that many 

DC are presenting self Ag and are therefore individually affected by the action of Treg or T 

effector cells, and/or 2) highly effective signal transduction to all other DC in the organ from a 

rare DC that is presenting the antigen and has been affected by Treg or T effector cell.  There is 

support in the literature for both mechanisms (386, 387). 

The term “infectious tolerance” has been applied to the process by which one population 

of leukocytes transfers tolerance to another. In most instances, this involves Treg suppression of 
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T effector cell generation either through a direct contact or through elaboration of regulatory 

factors (388). Tolerogenic DC have also been implicated because of their ability to promote the 

generation of iTreg (389, 390). Most of the studies showing these interactions have been 

performed in vitro and although similar regulation has been postulated in vivo, most data in 

support of it have been generated by pharmacologic manipulations of the system (391). We 

suggest that our results provide evidence that infectious tolerance occurs in vivo. We propose a 

two-step model of infectious tolerance. The first step is a signal to all DC in the lymphoid organ, 

and presumably other tissues where self-antigens can be processed and presented by DC, to 

prevent the up-regulation of pancreatic enzymes. This step is immediate and is initiated by the 

first encounter of a self-antigen-presenting DC and a Treg. The earliest time point we studied 

was 24h post-vaccination when expression of the enzyme cohort was already suppressed. 

However, we suspect that the signal is sent much earlier depending on the route of antigen 

delivery. With an exogenous DC-based vaccine, the antigen is already processed when the DC 

enters a lymphoid organ such as spleen, and the suppression signal from Treg may be very 

quickly generated and propagated.  In the case of a soluble antigen entering a lymphoid organ, 

there is likely a minor delay in suppression due to the time it takes for resident DC to take up, 

process and present the antigen. The second step is delayed and involves the conversion of the 

DC into a phenotypically and functionally tolerogenic cell that primarily supports generation of 

Treg. We show that DC recovered from spleens exposed to self Ag through vaccination 

expressed low levels of costimulatory molecules and had reduced motility, likely resulting in less 

efficient traffic into T cell zones, and primed the expansion of more Treg than Teff cells when 

cultured with antigen specific T cells. In vivo, this would assure that self-antigen specific Treg 

continue to be primed for the duration of antigen exposure, which would likely protect the host 
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from autoimmunity in non-pathologic conditions, but may also be responsible for preventing 

effective anti-tumor immunity.  

We are reporting a new observation that will require further studies to fully elucidate the 

exact mechanism involved, especially at the level of the regulated DC. We do not know the exact 

role of pancreatic enzymes in DC, whether it is in antigen processing or another DC-intrinsic 

function, nor can we yet postulate how their expression is coordinately regulated. However, the 

expression levels of trypsin and CPB1 provide an early readout of the effects of self or foreign 

Ag on the phenotype and function of endogenous splenic DC.  The microarray data did not 

reveal any candidate transcription factors that are differentially expressed in the regulated DC 

that could be responsible for this enzyme cohort’s transcriptional control. We expect that the 24-

hour time point may have been too late for identifying such factor(s). Now that our attention is 

focused specifically on these enzymes and DC, we will look at much earlier time points.  We 

also have not yet fully explored the role of IL-10 and the precise signals it provides to the DC 

and how those signals relate to enzyme suppression, or other effects on DC phenotype.  

Nevertheless, pancreatic enzyme expression in DC represents a new finding and suggests an 

easily accessible signature that can be used to assess almost immediately the effect of a particular 

immune manipulation designed to either induce tolerance or immunity. This can be particularly 

helpful in animal models where various immunotherapeutic approaches are being tested and 

multiple approaches compared.  Time could be saved and animals spared if the final outcome 

(e.g. tissue graft acceptance or a tumor rejection) were not the primary and to date the main 

endpoints by which the success of the immune manipulation could be evaluated.     

Our specific interest is the response to a tumor antigen vaccine and determining how best 

to evaluate and compare vaccine efficacy early after vaccination, other than waiting for the 
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results of a tumor challenge in an animal or tumor recurrence in a patient. Our previous studies 

have emphasized the importance of antigen selection, especially in the case of non-viral tumor 

associated antigens (392). This study confirms the importance of proper antigen selection that in 

some cases may outweigh the importance of adjuvants or delivery systems. Among the many 

tumor associated antigens that have been fully characterized (214), it should be possible to focus 

on those that are less self and more foreign due to many differences in their post-translational 

modifications between normal and tumor cells.  As we have shown previously, a tumor-specific 

sugar added to MUC1p to create MUC1.Tn results in strong immunogenicity rather than 

tolerance in immunized MUC1.Tg mice (376). The wrong antigen or the wrong epitope, on the 

other hand, leads to DC suppression, infectious tolerance, and further promotion of Treg 

generation that not only fails to achieve an effective antitumor immune response, but may 

actually promote tumor growth by selectively expanding tumor-antigen-specific Treg (393). 

Depletion of Treg with anti-CD25 antibodies or diphtheria toxin have shown a good deal of 

promise in preclinical models of cancer immunotherapy (394-398). IL-10R blockade has also 

been shown to improve overall vaccine responses in several models, while IL-10 production, 

specifically by CD4+CD25+ Treg is negatively correlated with vaccine success (399, 400). We 

propose that these treatments work because they prevent DC-propagated infectious tolerance. 
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3.0  GLOBAL INHIBITION OF DC PRIMING CAPACITY IN THE SPLEEN OF 

SELF-ANTIGEN VACCINATED MICE REQUIRES IL-10 

Chapter 2 is adapted from “Global inhibition of DC priming capacity in the spleen of self-

antigen vaccinated mice requires IL-10”. Marvel DM and Finn, OJ. Frontiers in Immunology 

2014 Feb 17;5:59. doi: 10.3389/fimmu.2014.00059. Copyright permission is retained by the 

authors. Detailed information can be found at http://creativecommons.org/licenses/by/3.0/ 

3.1 ABSTRACT 

DC in the spleen are highly activated following intravenous vaccination with a foreign antigen, 

promoting expansion of effector T cells, but remain phenotypically and functionally immature 

after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of 

pancreatic enzymes 24-72 hours post-vaccination can be used as a biomarker of stimulatory 

versus toleragenic DC, respectively. Here we show, using MUC1 transgenic mice (MUC1.Tg) 

and a vaccine based on the MUC1 peptide which these mice perceive as a self-antigen, that the 

difference in enzyme expression that predicts whether DC will promote immune response or 

immune tolerance, is seen as early as 4-8 hours following vaccination. We also identify early 

production of IL-10 as a predominant factor that both correlates with this early time point and 

controls DC function. Pre-treating mice with an antibody against the IL-10 receptor (IL-10R) 
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prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger 

IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination 

could improve responses to cancer vaccines that utilize self-tumor antigens. 

 

3.2 INTRODUCTION 

The impact of IL-10 on the cells of the immune system is well studied and varied. Originally 

identified as cytokine synthesis inhibitory factor, IL-10 can play a role in the development and 

maturation of almost all immune cells. (401, 402) Signaling through the IL-10 receptor (IL-10R) 

occurs through a STAT3 intermediate and is known to induce SOCS-3 expression, to suppress 

IFN signaling by blocking STAT1 phosphorylation, and to inhibit NF-κB signaling by 

preventing its nuclear translocation as well as inhibiting its binding to DNA. (167, 401) In 

dendritic cells (DC), known for being the most important professional antigen presenting cells, 

IL-10 can reduce expression of MHC Class II and the costimulatory molecules CD80/86 and 

CD40, as well as reduce IL-12 secretion. (164-167) This is true even for DC previously activated 

with IFNγ. IL-10 can also prevent monocyte differentiation into DC. (401) 

IL-10 has a profound effect on T cells as well. For example, reduced IL-12 production by 

DC affected by IL-10 antagonizes the development of T helper type I (TH1) responses while 

reduced MHC II levels on DC result in presentation of low density antigen that preferentially 

stimulates differentiation of regulatory CD4 T cells. (331, 403) IL-10 can also act directly on T 

cells to inhibit synthesis of cytokines like IL-2 and IFNγ in CD4 T cells or to inhibit their 
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proliferation. (167) The effect of IL-10 on CD8 T cells is less clear although some studies have 

shown that IL-10 can favor activation of CD8 T cells. (322, 404, 405)  

Recently, our group implicated IL-10 in controlling in part the function of dendritic cells 

post vaccination with antigens derived from self-proteins. We showed that 24 hours following 

vaccination, there is an IL-10 dependent suppression of DC activation that is detectable via 

suppression of expression of a newly discovered biomarker, a cohort of pancreatic enzymes. 

These enzymes, represented by trypsin 1 and carboxypeptidase B1, are up-regulated post 

vaccination with a foreign but not a self-antigen and identify a DC population that has higher 

MHC Class II, higher costimulatory molecule expression, and a higher T cell stimulatory 

capacity. (406)  

In this study we present new evidence of an important role for IL-10 in the suppression of 

splenic DC following intravenous vaccination with a self-antigen. We show an early (4-8hr) up-

regulation in IL-10 levels in spleens of self-antigen vaccinated mice that is not seen in mice that 

see that same antigen as foreign, that coincides with the time when we also see differences in 

biomarker enzyme expression. Furthermore, DC in the spleens of self-antigen vaccinated mice 

have an increased sensitivity to IL-10. When the effect of IL-10 is blocked by pre-vaccination 

treatment of mice with an anti-IL-10R blocking antibody, there is a significant increase in the 

activation level and stimulatory capacity of DC at 24 hours post vaccination and a significant 

increase in CD4 T cell responses 7 days post vaccination. These data implicate IL-10 in the 

regulation of antigen specific immunity versus tolerance at a previously underappreciated early 

time post vaccination, and suggest that manipulating its function at the time of vaccination might 

overcome tolerance and improve responses to cancer vaccines that utilize self-antigens.. 
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3.3 MATERIALS AND METHODS 

3.3.1 Mice 

Human MUC1.Tg mice (283) on the C57Bl/6 background were a generous gift from Dr. Sandra 

Gendler (Mayo Clinic) and were bred and maintained in the University of Pittsburgh Animal 

Facility. C57Bl/6 (WT) mice were purchased from The Jackson Laboratory. All experiments 

were approved by the Institutional Animal Care and Use Committee of the University of 

Pittsburgh. 

3.3.2 MUC1 Vaccination 

A 100-aa peptide containing of 5 repeats of the MUC1 VNTR motif, 

HGVTSAPDTRPAPGSTAPPA, was synthesized as previously described (407) by the 

University of Pittsburgh Genomics and Proteomics Core Laboratories. For soluble peptide 

vaccinations, 100µg of this 100mer peptide, admixed with 50µg polyinosinic-polycytidylic acid 

and poly-L-lysine (Poly-ICLC; Hiltonol) was brought up to 100µL with PBS and injected via tail 

vein. For DC based vaccinations, vaccine DC were prepared as previously described. (291) 

Briefly, RBC lysed bone marrow cells were put into culture for 6 days in AIM-V supplemented 

with 10ng/ml GM-CSF (Miltenyi), feeding once on day 3. On day 6, semi-adherent cells were 

collected by gentle agitation and put into culture overnight in AIM-V containing 33µg/mL 

MUC1 100mer peptide and 25µg/mL Poly-ICLC. The next day, mature DC were collected and 

resuspended in PBS at a final concentration of .5-1x106 cells/ml. 100µL of this solution was then 

injected intravenously via tail vein. 
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3.3.3 IL-10R Blockade 

Where indicated, mice were given 250μg of an antibody against the IL-10 receptor (Bio X Cell, 

Clone 1B1.3A) or an isotype matched control antibody (Bio X Cell, Clone HPRN), 

intraperitoneally. 24-48 hours following treatment, mice were vaccinated as described in MUC1 

Vaccination above and analyzed as described. 

3.3.4 Quantitative RT-PCR 

RNA was extracted from whole spleen using TRIzol (Invitrogen) according to the 

manufacturer’s protocol. Following extraction, cDNA was generated using oligo(dT) primers 

and SuperScript III reverse transcriptase (Invitrogen). qPCR was performed using QuantiTect 

SYBR Green PCR kit (Qiagen) according to the manufacturer’s protocol. Reactions were run on 

a StepOne Plus instrument (Applied Biosystems). The following primer pairs were used: Trypsin 

1 (forward: 5’-ACTGTGGCTCTGCCCAGCTC-3’; reverse: 5’-

AGCAGGTCTGGTTCAATGACTGT-3’), CPB-1 (forward: 5’-

GCCCTGGTGAAAGGTGCAGCAAAGG-3’; reverse: 5’-

AGCCCAGTCGTCAGATCCCCCAGCA-3’), IL-10 (forward: 5’- 

CTTCCCAGTCGGCCAGAGCCA-3’; reverse: 5’- CTCAGCCGCATCCTGAGGGTCT-3’), 

and HPRT (forward: 5’-TGAGCCATTGCTGAGGCGGCGA-3’; reverse: 5’-

CGGCTCGCGGCAAAAAGCGGTC-3’). 
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3.3.5 Intracellular Cytokine Staining/Flow Cytometry 

For ex vivo T cells assays, 7-9 days post MUC1 vaccination, mice were sacrificed and spleens 

were removed. Single cell suspensions were made by mashing the spleens through a 40µm filter. 

Total T cells were then bead isolated (Miltenyi) and cultured with day 6 MUC1 loaded BMDC 

(prepared as described in MUC1 Vaccination) for 4-6 hours in the presence of GolgiStop (BD 

biosciences). Cells were then stained with the indicated antibodies using the BD 

Cytofix/CytopermTM kit (BD Bioscience) according to the manufacturer’s protocol. All samples 

were run on a Fortessa (BD bioscience) flow cytometer and analyzed using FACSDiva (BD 

Bioscineces) and FlowJo software (Tree Star, Inc.). Antibodies used: CD3-PerCP, CD11c-

BV421, CD80-FITC, CD86-APC/Cy7, CD40-APC, CD3-PeCy5, CD4-V450, CD8-AF700, 

IFNγ-PeCy7, TNFα-PE, IL-2-APC, CD44-FITC, CD3 APC/Cy7, and CD8 PerCP. 

3.3.6 Phosphoflow 

24 hours following MUC1 vaccination, splenocytes were harvested as above. Post isolation, cells 

were put into AIM-V with or without 30ng/mL IL-10 (PeproTech) for 20 minutes. At the end of 

culture, cells were immediately fixed in 1.6% PFA for 10 minutes at room temperature. After ten 

minutes, four volumes of ice cold methanol were added and samples were stored at -80°C. At the 

time of staining cells were put at room temp for 10 minutes and then immediately spun down and 

resuspended in flow buffer (PBS containing 1%BSA, .02% sodium azide, and 2nM EDTA). 

After ten minutes incubation at room temperature, cells were spun down and washed with flow 

buffer twice. Samples were then stained with antibodies against cell surface antigens CD11c, 

NK1.1 and CD3 and phospho-specific anti-pSAT3 antibody for 1hr at room temperature and 
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prepared for analysis via standard protocol and as described above. Antibodies used: CD11c-

Pacific Blue, pSTAT3-AF647, NK1.1-PE, and CD3-APC/Cy7. 

3.3.7 Ex vivo DC Stimulatory Capacity Analysis 

MUC1.Tg mice were pretreated with antibodies and vaccinated as in the “IL-10R Blockade” 

section. Post vaccination, DC were bead isolated (CD11c MicroBeads, Miltenyi) from the 

spleens of the vaccinated animals. These DC were put into culture with bead isolated (CD4 T 

cell Isolation Kit II, Miltenyi) CFSE stained MUC1 specific VFT CD4 T cells (Ryan et al., 2010) 

at a ratio of 1 DC to 5 VFT cells in complete DMEM. 24 hours after the start of culture half of 

the media was removed and saved for cytokine analysis. IL-2 was analysed by ELISA (BD 

OptEIA Mouse IL-2 ELISA set, BD) according to the manufacturer’s protocol. The media was 

replaced with fresh cDMEM and the cultures were allowed to incubate for three more days. T 

cell proliferation was then analyzed by CFSE dilution. 

 

3.3.8 ELISPOT 

Millipore MultiScreen® Filter Plates (Millipore) were pretreated according to the manufacturer’s 

instructions using the Mouse IFNg ELISPOT kit (Mabtech). Bead isolated CD4 and CD8 T cells 

(Miltenyi) were cultured as above (see Intracellular Cytokine Staining/Flow Cytometry) with 

MUC1 pulsed BMDC and analyzed according to the established protocol. DC alone, media alone 

and T cells alone were used to establish background cytokine production. 
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3.3.9 Statistical Analysis 

When appropriate, statistical significance was determined by performing an unpaired Student’s t-

test. * denotes a p value <.05 and ** denotes a p value of <.01. When indicated, to allow for 

pooling of data from multiple experiments, values have been transformed to account for minor 

variations in instrument settings and other potential sources of variation (i.e. minor batch to 

match variance in dendritic cell vaccine prep, etc.). Briefly, all experimental values were divided 

by the mean value of the control group from the experiment in which they were run. “Relative” 

values therefore represent a standardized deviance from control. 

3.4 RESULTS 

3.4.1 IL-10 expression in the spleen is increased 4-8 hours post vaccination with self-

antigen and correlates with DC suppression  

In order to determine how quickly post-vaccination with a self- versus a foreign antigen DC 

phenotype and function begin to diverge and obtain a more accurate picture of what factors 

might be responsible for supporting this divergence, we vaccinated intravenously WT and 

MUC1.Tg mice with the MUC1 100mer peptide (MUC1p) admixed with the Poly-ICLC 

adjuvant. MUC1.Tg mice express the human tumor antigen MUC1 under the control of its 

endogenous promoter and therefore MUC1p is seen as a self-antigen in these mice, whereas it is 

seen as a foreign antigen in WT animals. Mice were sacrificed 4, 6, 8, and 16 hours post 

vaccination and the spleens removed for mRNA isolation and analysis. As early as 4 hours post 
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vaccination, two newly discovered biomarkers of DC activation, trypsin 1 and carboxypeptidase 

B1 (CPB1)(406), were up-regulated in the spleens of WT mice but suppressed in MUC1.Tg mice 

(Figs. 9A-B). In addition to differences in the levels of these enzymes, which our previous study 

showed to be expressed only in DC, we also detected at this early time point higher levels of IL-

10 mRNA in the spleens of vaccinated MUC1.Tg mice compared to WT mice. At 24 hours post 

vaccination and later, IL-10 production was at equal levels in self- and foreign antigen 

vaccinated mice (Figure (9C and data not shown). 

 

Figure 9: Splenic DC activation is suppressed as early as 4-8 hours post vaccination with a self-, but not a 

foreign antigen and correlates with early IL-10 production in the spleens of these animals. 

WT (squares) and MUC1.Tg mice (triangles) were vaccinated with MUC1p plus Poly-ICLC via tail vein. 

Spleens were removed at indicated hours postvaccination and total splenic mRNA levels of trypsin 1 (A), 

carboxypeptidase B1 (CPB1, B), and IL-10 (C) were determined relative to the control gene HPRT. Values 

shown represent expression relative to the baseline expression in mice of that genotype (WT and MUC1.Tg) 

at 0 hours post vaccination. Data are representative of 3 pooled mice were group per timepoint shown. Data 

points show mean ±SEM of three technical replicates and are representative of two independent experiments. 
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Figure 10: DC from spleens of mice vaccinated with self-antigen have higher levels of phosphorylated STAT3 

after IL-10 treatment than DC from spleens of mice vaccinated with foreign antigen. 

WT (solid line) and MUC1.Tg (dashed line) mice were vaccinated with MUC1p via the tail vein. 24 hours post 

vaccination splenocytes were removed and treated with 30ng/mL of IL-10 for 20 minutes. Following 

incubation, cells were fixed and phospho-STAT3 expression in CD11c+NK1.1- splenocytes was analyzed via 

phoshpoflow. (A) A representative flow plot is shown. The shaded histogram represents the fluorescence level 

when cells are treated with standard surface markers and an isotype matched control instead of the 

phoshpospecific antibody. pSTAT3 positivity (B) and MFI (C) were analyzed. In (B) symbols correspond to 

individual animals and are representative of two independent experiments. (C) Values shown have been 

normalized to the expression level of the control group (WT) in order to allow for pooling of data from 

separate experiments run on multiple days. Bars are representative of 9 mice from 2 combined experiments 

and show the mean ±SEM. *indicates a p-value of <.05 
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3.4.2 DC from the spleens of self-antigen vaccinated mice are more sensitive to IL-10 than 

those from mice vaccinated with a foreign antigen 

The above data showing differences in IL-10 levels early post vaccination but no difference at 24 

hours and later would indicate a modest and transient effect by IL-10 on DC. This was, however, 

inconsistent with our previous observations that functional differences between DC post self-

antigen versus foreign-antigen vaccine were evident as late as 72 hours post vaccination. (406) 

We considered the possibility that the early action of IL-10 on DC, along with other factors, 

might increase their sensitivity to IL-10 at the later time points. To query this, DC were removed 

from the spleens of WT and MUC1.Tg mice 24 hours post MUC1p vaccination and exposed to 

IL-10. As signaling through the IL-10R is known to occur through a STAT3 intermediate, the 

sensitivity of DC to IL-10 was assessed by phosphoflow measuring phospho-STAT3 levels post 

ex vivo exposure to IL-10. As hypothesized, there was a significant increase in the number of DC 

showing STAT3 phosphorylation as well as higher levels of pSTAT3 in the spleens of MUC1p 

vaccinated MUC1.Tg mice (Fig. 10A-C), indicating that DC in the spleens of MUC1.Tg mice 

are not only exposed to more IL-10 early on, but are also more sensitive to it at the later time 

points.  

3.4.3 IL-10R blockade increases costimulaltory molecule expression on DC following 

vaccination with self-antigen 

Given the inverse correlation between IL-10 production and DC pancreatic enzyme expression in 

the first 24 hours following vaccination, and previously published data showing that IL-10 is 

necessary for suppression of the trypsin 1 and CPB1 following vaccination with a self-antigen 
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(406), we hypothesized that blocking IL-10 signaling in self-antigen vaccinated mice would 

improve DC activation and costimulatory molecule expression. We injected MUC1.Tg mice with 

an antibody against IL-10R and vaccinated intravenously 24-48 hours later with MUC1p plus 

Poly-ICLC. At 24 hours post vaccination, the surface phenotype of splenic DC was analyzed by 

flow cytometry. As hypothesized, there was an increase in the level of cell surface expression of 

CD40, CD80, and CD86 in DC from mice pretreated with the antibody to IL-10R, but not from 

mice treated with the isotype control antibody (Fig. 11A-C). Increases in CD40 and CD86 were 

statistically significant, which is of interest because these two molecules were shown previously 

to be specifically inhibited in mice vaccinated with a self- but not a foreign antigen. (406) There 

was also an increase in the number of splenic DC post vaccination (Fig. 12), which is again of 

interest as our previous study showed the number of splenic DC to be decrease post vaccination 

with a self-, but not a foreign antigen. In addition to being less active as measured by surface 

marker expression and in fewer numbers, these DC are also less capable of stimulating MUC1 

specific CD4 T cells in vitro. DC isolated from MUC1.Tg mice pretreated with an antibody 

against the IL-10 receptor prior to MUC1 vaccination and put into culture with MUC1 specific 

CD4 T cells induce higher levels of IL-2 (Fig. 13A) and a higher level of CD4 T cell 

proliferation (Fig. 13B-C), compared to DC from MUC1.Tg mice pretreated with an isotype 

matched control antibody. 
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Figure 11: Pretreatment with an antibody against the IL-10 receptor increases the level of costimulatory 

molecule expression on DC in the spleens of self-antigen vaccinated mice. 

MUC1.Tg mice were pretreated with an antibody against the IL-10 receptor (IL-10R, solid lines) or were 

given a nonspecific isotype control (iso, dashed lines). 1-2 days later they were vaccinated as in Figure 1 and 

24 hours post vaccination, splenocytes were removed and analyzed via flow cytometry. The expression level of 

CD40 (A), CD86 (B), and CD80 (C) on splenic DC (CD11C+, MHC-Class II+) was determined. Shaded 
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histograms represent fluorescence in samples stained with isotype alone. Bar graph values shown have been 

normalized to the expression level of the control group (iso) in order to allow for pooling of data from 

separate experiments run on multiple days. (A, C) Data are combined from two independent experiments and 

representative of 6 mice. (B) Data are combined from 3 independent experiments and are representative of 10 

mice. Bars represent mean ±SEM. P values are as stated unless designated by a *, which indicates a p-value of 

<.05. 

 

Figure 12: Blocking IL-10 prior to MUC1 vaccination increases the number of splenic DCs 24 hours post 

vaccination. 

MUC1.Tg mice were pretreated with an antibody against the IL-10 receptor (IL-10R, black bar) or were 

given a nonspecific isotype control (iso, grey bar). 1-2 days later they were vaccinated as in Figure 1 and 24 

hours post vaccination, splenocytes were removed and analyzed via flow cytometry. The percentage of 

CD11c+MHC Class II+NK1.1- cells was calculated. In order to allow for the pooling of multiple experiments, 

this percentage was normalized, with the percent in the control group being set to 1. Data are representative 

of at least 4 experiments. Bars represent mean ±SEM. ** indicates a p-value of <.005. 
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Figure 13: Blocking of the IL-10 receptor prior to intravenous MUC1 peptide vaccination increases the 

ability of splenic DC from MUC1.Tg mice to stimulate MUC1 specific CD4 T cells ex vivo 

MUC1.tg mice were treated as in Figure 3. 24 hours post MUC1 vaccination, splenocytes from 3-4 mice per 

treatment group were pooled and bead isolated DC from these pooled splenocytes were put into culture with 

CFSE labelled MUC1 specific CD4 T cells (VFT cells) at a ratio 1DC:5VFT. 24 hours after the start of 

culture, half of the culture media was removed and the concentration of IL-2 was measured by ELISA (A). 

Cultures were allowed to incubate 3 more days for a total of 4 and VFT proliferation was analyzed by CFSE 

dilution (B-C). (B) Bars represent the mean percentage of CD3+CD4+ T cells that had proliferated at 4 days 

of 3 technical replicates ±SEM. (C) A representative flow plot is shown. Data are representative of 2-3 

independent experiments. * indicates a p-value of <.05. 
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3.4.4 Blocking IL-10 signaling improves the CD4 T cell response to self-antigen 

vaccination without affecting the CD8 T cell response 

The increase of costimulatory molecule expression when IL-10 signaling was blocked just prior 

to vaccination suggested that there would be a resultant increase in the T cell response. To test 

this, we again pretreated mice with an anti-IL-10R antibody or an isotype matched control and 

injected with a vaccine composed of DC loaded with MUC1p. We chose the DC-based vaccine 

expecting that it will optimally stimulate both CD4 and CD8 T cells, as has been previously 

shown. (285) 7-9 days post vaccination, splenic T cells were isolated and their production of 

relevant cytokines analyzed by ELISPOT and intracellular flow cytometry. In MUC1.Tg mice 

treated with anti-IL-10R, there was a significant increase in MUC1p specific, IFNγ+ CD4 T cells 

when compared to mice treated with an isotype matched control antibody (Figs. 14A, C). The 

level of the response was equivalent to the response of WT mice pretreated with the isotype 

control antibody. (Fig. 14A.) There was no increase over the isotype control of the T cell 

response in WT mice pretreated with the anti-IL-10R antibody (Figs. 14A,C), indicating that the 

effect of IL-10 we saw in MUC1.Tg mice was specific for  controlling responses to self- but not 

foreign antigens. There was a small but not significant increase in the CD8 response that was 

detectable only by the more sensitive ELISPOT. (Figs. 14B,D) 
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Figure 14: Treatment with anti-IL-10R antibody at the time of vaccination increases the number of MUC1p 

specific, IFNγ+ CD4 T cells without an effect on CD8 T cells 

WT and MUC1.Tg mice were pretreated with an antibody against the IL-10 receptor (IL-10R, black bars) or 

a nonspecific isotype control (iso, grey bars). 1-2 days following antibody treatment, mice were vaccinated 

with DC loaded with MUC1p. 7-9 days post vaccination, spleens were removed and bead isolated CD4 (A, C) 

and CD8 T cells (B, D) were cultured with MUC1p loaded bone marrow derived DC overnight and analyzed 
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by ELISPOT (A-B), or were cultured for 6-8 hours in the presence of brefeldin-A and analyzed by 

intracellular flow cytometry (C-D). (A) Data are combined from two independent experiments with each spot 

indicating an individual animal. Data are representative of 3 independent experiments. (B) Bars indicate the 

average of 3 technical replicates pooled from 3 individual animals per group. Data are representative of two 

independent experiments. (C-D) Values shown are normalized to the response of mice of that genotype (WT 

vs. MUC1.Tg) given the control treatment (iso). Data are combined from 2 independent experiments and are 

representative of 5-6 mice per group. Bars represent mean ±SEM. * indicates a p-value of <.05. ** indicates a 

p-value of <.005. 

3.5 DISCUSSION 

Vaccines against cancer have garnered a lot of attention in recent years. Much of this was 

sparked by the relatively recent approval of Sipuleucel-T, the first vaccine to show survival 

benefit in a solid metastatic tumor. (25, 408) Implementation of Gardasil®, a quadrivalent 

human papilloma virus specific vaccination intended to prevent cervical cancer in women (208, 

209) has also sparked new efforts in designing prophylactic cancer vaccines not just for viral 

cancers but for many tumor types. (179, 220, 409, 410) Most non-viral tumor antigens fall into 

the category of self- or altered self-antigens. Mounting an effective immune response against 

them represents a unique challenge. One must design vaccines that overcome the natural 

tolerizing forces acting on responses to self-antigens, while minimizing adverse autoimmune 

effects. 

Our work with the MUC1 tumor antigen in the MUC1 transgenic mouse model system 

has shown that hyporesponsiveness to the MUC1 peptide vaccines in these mice is not due to the 

elimination of MUC1 peptide-specific T cells by central tolerance but rather by the control of 
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their activation in the periphery. (291) Most recently we showed that tolerization of DC in 

MUC1p vaccinated MUC1.Tg mice early post vaccination is responsible for this T cell 

hyporesponsiveness. (406) Here we show that this is likely due to the very early and exaggerated 

effect of IL-10 on these DC in the first 4-24 hours post vaccination. IL-10 is known to reduce 

MHC Class II and costimulatory molecule expression on DC (164-166), DC motility (411, 412) 

and overall T cell stimulatory capacity (413, 414), all of which are characteristics of DC in the 

spleens of MUC1p vaccinated MUC1.Tg mice. (406) 

The effects on IL-10 on vaccine outcome have been observed in several models.  In the 

therapeutic setting, IL-10R blockade alone or along with vaccination can improve Th1 responses 

and enhance pathogen clearance. (415-417) In a prophylactic setting, mice given the BCG 

vaccination for prevention of Mycobacterium tuberculosis show improved Th1 responses and 

enhanced resistance to pathogen challenge when IL-10R is blocked at the time of vaccination. 

(418) However, the role of IL-10 we describe in this paper is unique in its specificity for 

responses to self-antigen vaccines. Additionally, in these other studies IL-10 was produced in 

response to persistent or initial pathogen infection whereas in this case it was either produced 

specifically in response to the presence of a self-antigen or inhibited specifically in the presence 

of a foreign antigen. 

The role of IL-10 in this system is quite novel and supports IL-10 inhibition as a way of 

improving the efficacy of vaccines against self-antigens that are candidate tumor antigens. While 

our major success in this study was in improving CD4 T cell responses, we would hypothesize 

that CD8 T cell responses generated upon boosting would be improved as well in these animals 

as a consequence of generation of a larger population of helper CD4 T cells that are required for 

effective CD8 T cell memory differentiation. (75, 423) The concern remains that any 
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manipulation leading to enhanced responses to self/tumor antigens might cause adverse 

autoimmune reactions. However, current research has shown this concern can be addressed by 

proper antigen selection. For example, vaccines against self/tumor antigens MUC1 and α-

lactalbumin have shown clinical and preclinical efficacy with no induction of autoimmunity 

(179, 212, 424). And vitiligo, caused by successful anti-melanoma vaccines is an autoimmune 

event that can be easily tolerated. (26, 27, 425) Furthermore, while long term IL-10 deficiency 

can cause adverse autoimmune effects (426, 427), our data suggests that in order to improve the 

vaccine response, IL-10 would need to be blocked only transiently at the time of initial 

vaccination. 

It was next important to identify the cell type in the spleen that produced the IL-10 this 

early IL-10 production in self-antigen vaccinated mice and chapter 4.0 will deal with that topic. 

Every cell of the immune system can produce IL-10 given proper stimulation. However the 

kinetics and pattern of IL-10 production in MUC1p-vaccinated MUC1.Tg mice limits the 

possibilities considerably. The fact that IL-10 production was antigen dependent suggests a cell 

of the adaptive immune system. Regulatory T cells have previously been shown to be important 

in preventing MUC1p specific immune responses in MUC1.Tg mice. (292, 406) However, IL-10 

producing regulatory T cells were not detected in MUC1.Tg mice at rest or immediately 

following vaccination (data not shown). Given that regulatory T cells can modulate the function 

of a wide variety of innate cells, including NK cells (419, 420) and dendritic cells (421, 422), it 

is possible that through secretion of another cytokine or through direct interactions, they induce 

IL-10 production either directly or indirectly in another cell population.  
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4.0  IL-10 PRODUCING NATURAL KILLER (NK) CELLS ARE INDUCED AFTER 

VACCINATION WITH A SELF ANTIGEN AND ARE POLARIZED TOWARDS 

INHIBITION RATHER THAN SUPPORT OF THE ADAPTIVE IMMUNE RESPONSE 

4.1 ABSTRACT 

MUC1 specific vaccine responses are known to be inhibited in MUC1.Tg mice. Recent evidence 

has implicated early IL-10 production and reduced immunogenicity of dendritic cells in the 

spleens of these animals in response to MUC1 vaccination as initiating factors in this inhibition. 

They have not, however, addressed the source of this IL-10. Here we show that splenic NK cells 

make IL-10 in response to MUC1 vaccination in MUC1.Tg, but not WT mice. Compared to NK 

cells in spleens of MUC1-vacinated WT mice, NK cells in the spleens of MUC1.Tg mice have 

low CD127, CD25, and CD69 and are more cytotoxic. They are also less capable of promoting 

DC maturation in co-culture assays. Furthermore, in MUC1.Tg mice multi-functional CD4 T cell 

responses specific for the MUC1 peptide are improved by pre-vaccination depletion of NK cells. 

Together, these data suggest that NK cells, normally required for optimal Th1 responses, can 

actually inhibit such responses after vaccination with a self-antigen. 
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4.2 INTRODUCTION 

Prophylactic and therapeutic cancer vaccines face challenges that traditional vaccines are not 

subject to. In the case of therapeutic vaccines, tumor induced immune suppression and the 

advanced age of the target population remain the largest obstacles. (428) Prophylactic 

vaccinations, while capable of avoiding these pitfalls, are still limited by the nature of the 

vaccine antigen. With the exception of virally induced tumors, all tumor antigens are derived 

from self- or modified self-antigens. In most cases, T cells specific for self-antigens are either 

deleted or converted to regulatory T cells in the thymus. Those that escape central tolerance are 

often prevented from proliferating in the periphery, usually as a result of the action of regulatory 

cells produced in the thymus and bone marrow. (297, 429) Increasing antigen specific T cell 

precursor frequency can be done through adoptive T cell therapy and TCR gene therapy. 

However, these treatments are limited by expense and are likely limited by a finite therapeutic 

window that still needs to be defined. (430) Limiting peripheral tolerance towards tumor specific 

T cells has equal potential with regards to efficacy, but much greater potential when considering 

scalability. However, a detailed and comprehensive understanding of peripheral tolerance, 

especially as it relates to self-antigen vaccination, is necessary in order to maximize the tumor 

specific effects while limiting effects unwanted autoimmunity. 

Work with MUC1.Tg mice, which express the human tumor antigen MUC1 under its 

endogenous promoter (283), has increased our understanding of how immune responses against 

foreign and self-antigens differ. It has been known for some time that these mice are 

hyporesponsive to vaccination with a MUC1 peptide (MUC1p) derived from the extracellular 

tandem repeat region. (431, 432) There are fewer MUC1p specific T cells induced by 

vaccination compared to WT mice that don’t have human MUC1, as well as lower amounts of 
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circulating MUC1 specific antibodies. (407)  Similar hyporesponsiveness to the vaccine is seen 

upon adoptive transfer of MUC1 specific CD4 T cells into MUC1.Tg versus WT mice, 

suggesting an immunosuppressive influence of the environment rather than an intrinsic defect in 

the MUC1-specific T cells. (291) As early as 24 hours post vaccination, as shown in Chapter 2, 

this tolerance is identifiable in splenic dendritic cells (DC). Specifically, when mice are 

vaccinated with a foreign antigen (MUC1p into WT mice) vs a self-antigen (MUC1p into 

MUC1.Tg mice) the DC have higher expression of costimulatory molecules, higher T cell 

stimulatory capacity, and higher motility. (406) 

The role of natural killer (NK) cells in this model has not been explored. NK cells and 

dendritic cells have a well-known system of reciprocal regulation that implicates NK cells as 

potential initiators/potentiators of the tolerized DC phenotype. NK cells secrete GM-CSF that 

can differentiate and activate DC. (433) DC can activate NK cells to produce IFNγ through IL-15 

production and trans-presentation via IL-15Rα (434), as well as through secreted IL-12 and IL-

18. (435, 436) IFNγ produced by NK cells can then activate DC to produce IL-12 and IL-27, and 

to upregulate surface expression of costimulatory molecules. (437) IL-2, produced by DC or DC 

activated CD4 T cells is known to activate NK cells as well. (438-440) IL-2 activated NK cells 

have been shown to induce the maturation of blood plasmacytoid DC (pDC). (441) Activated 

pDC produce large amounts of type I IFN that is known to activate NK cell cytotoxic functions. 

(442, 443) Activated NK cells can kill immature DC via a TRAIL dependent mechanism (444, 

445) to sculpt and in some cases limit downstream immune responses. (351) Additionally, both 

DC and NK cells are capable, upon activation, of producing a variety of chemokines to attract 

one another to the site of activation and encourage these reciprocal interactions. (446, 447) 
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In this chapter, we show that NK cells in the spleens of MUC1.Tg mice vaccinated 

intravenously with MUC1p have elevated IL-10 secretion when compared to those in WT mice 

given the same vaccination. This is of particular interest given the role of IL-10 in inhibiting DC 

activation in these mice, post MUC1p vaccination. (Described in Chapter 3) In addition to and 

perhaps because of the impact of this IL-10 secretion on NK cells themselves and on splenic 

dendritic cells, these NK cells are aberrantly activated, as measured by their cell surface 

phenotype and killing function. This contributes to reduced DC helper function, and inhibited 

CD4 T cell responses. These findings suggest that one of the earliest events in post vaccination 

peripheral self-tolerance is the inhibition of NK cell activation, which is a governing influence 

on the downstream immune response. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Mice 

MUC1.Tg mice, purchased from Dr. Sandra Gendler (Mayo Clinic), were bred and maintained in 

the University of Pittsburgh animal facility. C57BL/6 (WT) mice were purchased from The 

Jackson Laboratory. All experiments were approved by the Institutional Animal Care and Use 

Committee of the University of Pittsburgh. 
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4.3.2 MUC1 vaccination 

A 100-aa peptide consisting of 5 repeats of the MUC1 VNTR motif, 

HGVTSAPDTRPAPGSTAPPA, was synthesized as previously described by the University of 

Pittsburgh Genomics and Proteomics Core Laboratories. For DC vaccines, BMDC were 

generated as previously described. (291) Briefly, RBC lysed bone marrow from female C57Bl/6 

was put into culture at a density of 1-2x106 cells per mL of AIM-V supplemented with 10ng/mL 

GM-CSF (Miltenyi Biotech). On day 3, cultures were fed by replacing half the media with fresh 

AIM-V containing GM-CSF. At day 6, cultures were harvested by removing and discarding the 

non-adherent fraction, and harvesting the semi-adherent cells by agitation in 3mM EDTA. Cells 

were re-plated overnight in AIM-V containing 33µg/mL MUC1 100mer peptide and 25µg/mL 

polyinosinic-polycytidylic acid and poly-L-lysine (Poly-ICLC; Hiltonol). On the following day, 

the indicated mice received 5x104-3x105 MUC1 loaded DC in 100µL PBS via tail vein. For 

soluble vaccine, 100µg of MUC1 100mer peptide was admixed with 50µg of Poly-ICLC and the 

resultant solution was brought up to 100µL with PBS and given via tail vein. 

4.3.3 Quantitative RT-PCR 

RNA was extracted from whole spleen using TRIzol (Invitrogen) according to the 

manufacturer’s protocol. Following extraction, cDNA was generated using oligo(dT) primers 

and SuperScript III reverse transcriptase (Invitrogen). qPCR was performed using QuantiTect 

SYBR Green PCR kit (Qiagen) according to the manufacturer’s protocol. Reactions were run on 

a StepOne Plus instrument (Applied Biosystems). The following primer pairs was used: IL-15 
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(forward: 5’- AACAGCTCAGAGAGGTCAGGAAAGA-3’, reverse: 5’- 

GGACCTCACCAGCAAGGACCA-3’) 

4.3.4 In vivo antibody blockade/deletion 

Where indicated, mice were given 250μg of an antibody against the IL-10 receptor (Bio X Cell, 

Clone 1B1.3A) or an isotype matched control antibody (Bio X Cell, Clone HPRN), 

intraperitoneally. Likewise, NK cells were depleted by administration of 200μg of an antibody 

against the NK1.1 surface marker (Bio X Cell, Clone PK136). Control mice were mock depleted 

with 200μg of an isotype matched control (Bio X Cell, Clone C1.18.4).  24-48 hours following 

treatment, mice were vaccinated as described in MUC1 Vaccination above and analyzed as 

described. 

4.3.5 In vitro cytotoxicity 

Bead isolated, negatively selected Natural Killer (NK) cells (Miltenyi Biotech) were isolated and 

put into culture with YAC-1 cells for 4 hours. Cytotoxicity was measured via LDH release using 

the CytoTox 96® Non-Radioactive Cytotoxicity Assay Kit (Promega) according to the 

manufacturer’s suggested protocol. 

4.3.6 In vitro NK/DC culture 

NK cells were isolated as in the “In vitro cytotoxicity” section above. NK cells were then put 

into culture with naïve CD11c+, bead isolated (Miltenyi biotech) splenocytes and allowed to 
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incubate overnight at 37°C in complete RPMI. Cells were harvested by vigorous pipetting and 

stained for surface marker analysis by flow cytometry. 

4.3.7 Intracellular Cytokine Staining/Flow Cytometry 

All samples were run on an LSR II flow cytometer and analyzed using FACSDiva software (both 

BD bioscience). For analysis of unstimulated, ex vivo cytokine production post vaccination, 

spleens were harvested at the indicated timepoint directly into serum free RPMI containing BD 

GolgiPlug (BD Bioscience). Whole spleens were dissociated by mashing through a 70µm 

membrane and put into culture in complete DMEM containing BD GolgiPlug for 4-6 hrs. At the 

end of culture samples were staining for surface markers and intracellular cytokine production 

using the BD Cytofix/CytopermTM kit (BD Bioscience) according to the manufacturer’s protocol. 

For analysis of T cell responses, bead isolated (Miltenyi Biotech) CD4+ and CD8+ T cells were 

put into culture with MUC1 pulsed day 6 BMDC (prepared as in the MUC1 Vaccination section 

above) at a ratio of 5-10:1 T cells to DC for 4-6 hrs in complete DMEM supplemented with BD 

GolgiPlug and harvested as above. 



 87 

4.4 RESULTS AND DISCUSSION 

4.4.1 NK cells in the spleens of mice vaccinated with a self-antigen express higher 

amounts of IL-10 post vaccination than do the same NK cells in foreign-antigen vaccinated 

mice. 

As shown in chapter 3, IL-10 is up-regulated in the spleens of MUC1.Tg mice vaccinated 

intravenously with a MUC1 peptide based vaccine compared to WT mice given the same 

vaccination. Furthermore, IL-10 is involved in inhibiting proper DC maturation and in inhibiting 

downstream MUC1 peptide specific CD4 T cells responses in these mice. (406) Almost all 

immune cells are capable of producing IL-10 given proper stimulation, however its production 

inside of the 24 hour window suggested a previously unappreciated early role for IL-10 in 

inhibiting self-antigen specific responses. Accordingly, we were interested in what cell 

population(s) was producing it early, specifically what cell population(s) was producing it at 

higher levels in mice vaccinated with a self-antigen, compared to a foreign antigen, as that 

knowledge would likely clue us in to unique therapeutic targets/initiators of antigen specific 

peripheral tolerance. We vaccinated WT and MUC1.Tg mice with MUC1p plus adjuvant via tail 

vein. Six hours after vaccination, when IL-10 production is up and DC phenotype has begun to 

diverge (see Chapter 3), we removed the spleens from these mice and immediately dissociated 

them in media containing a golgi transport inhibitor. The cells were incubated for 6 additional 

hours to accumulate protein and analyzed via flow cytometry. Interestingly, not only were NK 

cells producing IL-10 in this timeframe, but NK cells from the spleens of MUC1.Tg mice were 

producing higher amounts of IL-10 than their WT counterparts. (Fig. 15A-C) This indicates that 
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Figure 15: NK cells in the spleens of MUC1.Tg mice produce more IL-10 post vaccination than do those from 

WT mice, post MUC1 peptide vaccination. 

WT and MUC1.Tg mice were vaccinated intravenously with 100μg MUC1 admixed with 50μg PolyICLC. 6-7 

hours post vaccination, splenocytes were harvested and immediately put into culture in media containing 

Brefeldin A. After 6 hours in culture, cells were analyzed via intracellular flow cytometry. IL-10 positivity (A) 

and MFI (B) were assessed in the CD3-NK1.1+ population. (C) A representative flow plot is shown. 

Percentages on the flow graphs represent the mean for that experimental group. * indicates a p value of <.05. 
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Figure 16: Depletion of NK cells prior to vaccination with MUC1p prevents vaccine induced early IL-10 

production in MUC1.Tg mice. 

MUC1.Tg mice were treated with 250μg of an antibody against the NK1.1 cell surface antigen (black bars) or 

were given an isotype matched control (grey bars). 48 hours after antibody treatment, mice were vaccinated 

with 100μg MUC1 peptide admixed with 50μg PolyICLC via tail vein. At the indicated timepoints, mice were 

sacrificed and their spleens removed for RNA isolation and subsequent analysis via qRT-PCR. mRNA 

amounts were normalized to the level in control (PBS) vaccinated mice treated the antibodies indicated. 
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Figure 17: IL-15 is up-regulated in response to MUC1 vaccination at similar levels in both WT and MUC1.Tg 

mice. 

WT (squares) and MUC1.Tg mice (triangles) were vaccinated with MUC1p admixed with Poly-ICLC via tail 

vein. Spleens were removed at indicated hours post vaccination and total splenic mRNA levels of IL-15  were 

determined relative to the control gene HPRT. Values shown represent expression relative to the baseline 

expression in mice of that genotype (WT and MUC1.Tg) at 0 hours post vaccination. Data are representative 

of 3 pooled mice per group per timepoint shown. Data points show mean ±SEM of three technical replicates. 

 

more IL-10 is produced by splenic NK cells in response to a self-antigen vaccine, as opposed to a 

foreign antigen vaccine. Furthermore, it appears that NK cells are responsible for the early IL-10 

sugre seen in MUC1.Tg mice previously (see Chapter 3) as depletion of NK cells prior to 

vaccination greatly reduces the amount of early IL-10 produced in these mice. (Fig. 16) Given 

the hypothesized importance of IL-10 in inhibiting self-antigen vaccine responses specifically, it 

also potentially puts NK cells center stage in controlling the downstream immune response. 

Interestingly, the kinetics of IL-10 production in MUC1.Tg mice, which appears to peak around 
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8 hours post vaccination, closely mirrors what is seen when NK cells are treated with IL-15 in 

vitro. (352) Although there are no observed differences in IL-15 expression between WT and 

MUC1.Tg mice post vaccination, IL-15 production is increased in the spleens of both groups 

(Fig. 17) and an undefined number of in vivo factors could be contributing to the differential 

impact of this cytokine post vaccination. 

4.4.2 NK cells in the spleens of self-antigen vaccinated mice are not activated to the extent 

that is seen in WT mice, but can be rescued via IL-10R blockade. 

NK cells and DC are well known to cross regulate each other. (446) In MUC1.Tg mice 

vaccinated with MUC1p, there is a reduction in the activation level of splenic DC post MUC1p 

vaccination, compared to WT mice. (406) However, prior to the discovery of IL-10 production in 

splenic NK cells, little was known about what effect vaccination with a self-antigen had on their 

phenotype. To query this, WT and MUC1.Tg mice were vaccinated with a MUC1p plus adjuvant 

and 24 hours post vaccination, NK cell phenotype was analyzed by flow cytometry. Compared to 

splenic NK cells from WT mice vaccinated with MUC1p, those from MUC1.Tg mice expressed 

lower levels of CD127, CD25, and CD69. They did, however, trend towards having higher levels 

of NKG2D on their surface. (Fig. 18A) When these NK cells were co-cultured with the NK 

sensitive YAC-1 mouse lymphoma cell line, NK cells from the MUC1.Tg mice were also shown 

to have a higher cytotoxic capacity than those from WT mice. (Fig. 18B) 

Decreases in CD69 and YAC-1 killing suggest a less traditionally activated phenotype in 

the splenic NK cells of self-antigen vaccinated mice. CD25 and CD127 are interesting because 

of recent insights into Treg/NK cells interactions. Acute depletion of regulatory T cells results in 

an accumulation of CD127+ NK cells in the spleen. These CD127+ NK cells had lower levels of 
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Granzyme B and IL-10, compared to CD127- NK cells and readily up-regulated CD25 

expression upon activation. (172) Lowers levels of Granzyme B and IL-10 fit in quite nicely with 

our current observations that NK cells in foreign antigen vaccinated mice express less IL-10 and 

show lower cytotoxicity against YAC-1 cells. And CD25 up-regulation suggests a mechanism of 

gaining resistance to Treg mediated suppression. Specifically, it was recently found that IL-2 

deprivation by regulatory T cells is an important, in vivo mechanism by which regulatory T cells 

control NK cell activation. (172-174) While future studies are needed to confirm a link between 

our observation and previous studies suggesting a larger precursor pool of MUC1p specific 

regulatory T cells in MUC1.Tg mice (292), the prospect is especially intriguing as direct, post 

vaccination control of NK cells by regulatory T cells has never been shown in an antigen specific 

manner. Finally, CD127+ NK cells express more IFNγ after IL-12/IL-18 stimulation, suggesting 

a higher capacity for DC help in NK cells from the spleens of foreign antigen vaccinated mice. 

Down-regulation of NKG2D is somewhat contradictory to what would be considered a 

classically activated NK cell. However, studies have shown that down-regulation can occur in 

some cases to prevent reactivity against normal cells while preserving cytotoxic capacity in an 

inflammatory setting (448), while others have suggested NKG2D mediated killing may be a 

means to dampen immune responses. (347, 348) NK mediated killing of DC in particular is an 

interesting prospect to consider as IL-10 treatment of DC has been shown in one model to 

increase the ability of NK cells to kill mature DC specifically. (351) This could explain the 

recently reported decrease in DC number following MUC1p vaccination of MUC1.Tg mice, and 

account for the overall decrease in the maturation level of the remaining population. (406) 

Given recent work by our group showing that IL-10 is a major factor in dampening self- 

but not foreign antigen specific vaccine responses (Chapter 3), and the current work showing  
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Figure 18: NK cells in the spleens of MUC1 vaccinated WT mice and MUC1.Tg mice treated with an IL-10R 

blocking antibody have a unique surface phenotype and a higher activity level when compared to untreated 

MUC1.Tg mice. 

(A-B) WT (grey bars, triangles) and MUC1.Tg (black bars, squares) mice were vaccinated as in Figure 1. (A) 

24 hours following vaccination, splenocytes were harvested and analyzed via flow cytometry. Values shown 

represent mean ± SEM for MFI (CD127, CD69, and NKG2D) or percent positive (CD25) and were 

normalized to the expression level in WT animals to allow for the pooling of data from multiple experiments. 

(B) 24 hours following vaccination, splenic NK cells from 3-4 mice per group were isolated and pooled, then 

put into culture with YAC-1 cells at the indicated ratios. Cytotoxicity was determined by LDH release. 

Samples were run in triplicate, points represent mean ±SEM of technical replicates. (C-D). 1-2 day prior to 
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vaccination, MUC1.Tg mice were treated I.P. with an antibody against IL-10R (white bars, diamonds) or 

with an isotype matched control (black bars, circles). Mice were then vaccinated and analyzed as in (A-B). (C) 

Values were normalized the level of MUC1.Tg mice treated with the isotype control. * indicates a p value of 

<.05. ** indicates a p value of <.01. 

 

splenic NK cells to be producing higher amounts of IL-10 in MUC1p vaccinated MUC1.Tg, 

relative to WT, we were interested in whether IL-10, likely produced by the NK cells 

themselves, had any effect on their post vaccination phenotype at 24 hours. Accordingly, we 

pretreated MUC1.Tg mice with an antibody against the IL-10R and analyzed splenic NK surface 

phenotype and killing capacity post MUC1p vaccination as before. On all measured parameters, 

the NK cell phenotype was reversed. NK cells in the spleens of mice treated with the IL-10 

receptor blocking antibody expressed higher CD127, CD25, and CD69, lower NKG2D, and a 

decreased capacity for killing YAC-1 cells, compared to isotype treated controls. (Fig. 18C-D) 

This suggests that IL-10 is responsible for the phenotypic skewing that is seen in NK cells post 

self-antigen vaccination. In support of this being a self-antigen specific induction and effect of 

IL-10, this pattern change in NK cell phenotype was not seen in similarly treated WT mice. (Fig. 

19) 

4.4.3 NK cells in the spleens of self-antigen vaccinated mice have a reduced capacity for 

DC help, relative to those from foreign antigen vaccinated mice, a trait which is likewise 

mediated by IL-10. 

Given that NK cells in the spleens of MUC1p vaccinated MUC1.Tg mice are phenotypically 

distinctive from those from similarly treated WT mice and produce higher amounts of the anti-  
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Figure 19: Phenotypic conversion of NK cells in response to IL-10 receptor blockade is specific to NK cells in 

mice vaccinated with a self-antigen. 

1-2 days prior to vaccination, WT mice were treated I.P. with an antibody against the IL-10R (IL-10R) or 

with an isotype matched control (iso). Mice were then vaccinated and probed for splenic NK surface markers 

as before. Values were normalized the expression level on NK cells from WT mice treated with the isotype 

control and vaccinated as described. 

 

inflammatory cytokine IL-10, we hypothesized that they are less capable of activating dendritic 

cells, and therefore likely contribute to differences seen in DC activation post vaccination. To 

examine this possibility, we depleted WT and MUC1.Tg mice of NK cells by treatment with an 

NK1.1 specific antibody prior to MUC1p vaccination.  Twenty four hours following vaccination 

we removed spleens and analyzed DC surface phenotype. In keeping with previous studies, the 

DC in the spleens of WT mice treated with a control antibody were significantly more mature 

than DC from the spleens of MUC1.Tg mice treated with a control antibody. This was evident by 

increases in surface levels of MHC Class II, CD40, and a trend towards higher CD80 (Figs. 20A-
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C) However, in the absence of NK cells, there was no significant difference in DC phenotype 

post vaccination. This suggests that differences seen in the phenotype of post vaccination splenic 

DC’s could be the result of suppressed NK cell activation in MUC1.Tg mice. In support of this 

theory, when NK cells were removed from WT and MUC1.Tg mice post vaccination, those from 

WT mice induced higher expression of MHC Class II, CD80, CD86, and CD40 on DC when co-

cultured overnight. (Figs. 20D-G) As one might predict based on the reversal that was seen with 

NK cell phenotype when MUC1.Tg mice were pretreated with an antibody against the IL-10 

receptor prior to vaccination, NK cells taken from these mice had an improved capacity for ex 

vivo DC help on all parameters tested, compared to mice given an isotype matched control 

antibody. (Figs. 20H-K) 

4.4.4 NK depletion improves MUC1p specific CD4 T cell responses in MUC1.Tg mice. 

Given the role of DC in initiating T cell responses, we were interested in what the inhibited NK 

cell phenotype may be having on downstream CD4 T cell responses. In previous studies, CD4 T 

cells, more so than CD8 T cells in MUC1.Tg mice, have been shown to be hyporesponsive to 

MUC1 vaccination, regardless of vaccine formulation. (284, 285) Given the importance of CD4 

T cell responses in the generation of memory CD8 T cells (74, 75), this represents a potential 

roadblock in the development of long term preventative MUC1p based vaccinations. Therefore, 

understanding the peripheral mechanisms underlying this CD4 hyporesponsiveness may have a 

significant role in the development of MUC1p based preventative therapies. The link between 

DC phenotype and the CD4 T cell response is well understood (32), as is the role of IL-10 in 

inhibiting these same responses. (164-167)  Therefore, despite traditionally being thought of as 

having a positive effect on the T cell response, we hypothesized that in self-antigen vaccinated  
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Figure 20: NK cells in the spleens of MUC1 vaccinated WT mice and MUC1.Tg mice treated with an IL-10R 

blocking antibody activate DC to a higher extent than do those from the spleens of untreated untreated 

MUC1.Tg mice. 

 (A-C) WT (grey bars) and MUC1.Tg (black bars) mice were treated with an anti-NK1.1 antibody or an 

isotype matched control (iso) I.P.. 2 days following antibody treatment, mice were vaccinated with MUC1 

peptide as in Figure 1. 24 hours following vaccination, expression of CD40 (A), MHC Class II (B), and CD80 

(C) was measured on CD11c+MHCII+ splenocytes. Values represent mean ±SEM and have been normalized 

to the level seen in WT animals treated with the isotpye control to allow for the pooling of multiple 

experiments. (D-G) WT and MUC1.Tg mice were vaccinated as in (A-C). After vaccination, NK cells were 

isolated from each group and pooled. Cells were then put into culture overnight with naïve bead isolated 

splenic DC at a 1:1 ratio. Surface expression of MHC Class II (D), CD80 (E), CD86 (F), and CD40 (G) were 

assessed in CD11c+MHCII+ cells post culture. (H-K) NK cells from MUC1 vaccinated MUC1.Tg mice 

pretreated with an antibody against the IL-10 receptor (IL-10R) or an isotype matched control (iso) were 

analyzed as in (D-G). Values are from three technical replicates and represent mean ±SEM. * indicates a p 

value of <.05. *** indicates a p value of <.001. 

 

mice, there may in fact be a deleterious role for NK cells in the CD4 T cell response. To test this 

we examined T cell responses in MUC1.Tg mice with and without NK cells at the time of initial 

MUC1p vaccination. In MUC1.Tg mice depleted of natural killer cells, there is a trend towards 

higher numbers of antigen specific IFNγ+ and IL-2+ CD4 T cells 8 days post vaccination. (Figs 

21A-4D) However, there is a significant increase in cells producing both of these cytokines. (Fig 

21D) Previous studies using unrelated vaccine and infection models have shown these dual 

producers to be enriched for early memory cells and correlated with optimal protective responses 

(449-451). This is confirmed in our model by the fact that these cells overwhelmingly are 

CD44HighCD62LLow (Fig21E). Therefore, there is a significant increase in the quality, if not the 

quantity of the CD4 response in the absence of NK cells. 
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Figure 21: Depletion of NK cells pre MUC1 peptide vaccination improved the MUC1 specific CD4 T cell 

response in MUC1.Tg mice. 

MUC1.Tg mice were injected I.P. with an antibody against NK1.1 or an isotype matched control. 2 days 

following antibody treatment, mice were vaccinated with .5-1x105 MUC1 peptide loaded dendritic cells (DC). 

7 days later, mice were sacrificed and their splenic CD4 T cells were cultured with MUC1 peptide loaded DC 

for 6 hours in the presence of brefeldin A. Cells were then analyzed via intracellular flow cytometry. 

Representative flow cytometry plots are shown (A). The percentage of CD4 T cells producing IFNγ (B), IL-2 

(C), and both (D) was assessed. Data points represent individual mice and have been normalized to the 

response in isotype control treated animals (E) The percentage of cells with each cytokine profile having high 

CD44 and low CD62L was assessed. Bars represent mean ±SEM. * indicates a p value of <.05. 
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4.4.5 Conclusions 

This data presents a new picture on the role of NK cells in vaccine generated responses. 

While it is clear that in most vaccine and infection scenarios, NK cells are a crucial part of 

generating an optimal TH1 response (452, 453), in the case of self-antigen vaccines, their role 

appears to be much less beneficial and is likely detrimental. This makes understanding how NK 

cell activation is affected by various vaccine formulations an interesting area for future research. 

Most of our understanding of this is currently focused around how adjuvants directly and 

indirectly activate these cells. Here we show that antigen choice may also be an important 

consideration. While there has been some recent work detailing memory NK cells populations, 

recognition seems to be hapten based and not peptide specific, as is the nature of the antigen used 

in this study. (454) It is likely that the NK reaction in our model is governed by an antigen 

specific intermediary. The most likely candidate is regulatory T cells, as they have been shown 

to be important in the maintenance of tolerance to MUC1p vaccination in MUC1.Tg mice. (292, 

293, 406) 

Treg/NK cells interactions have recently sparked a great deal of interest. Treg deficient 

scurfy mice and mice acutely ablated of Treg show increases in NK cell activation and 

proliferation in several models. (169, 455-457) IL-2 deprivation (172-174) and TGFβ (169, 458) 

have both been implicated in controlling NK activation. And although Treg inducing 

vaccinations have been shown to decrease NK cell function and increase the incidence of 

chemically induced tumors (459), there haven’t been any studies thus far indicating a role for 

regulatory T cells acutely regulating NK cells in response to vaccination, despite a theoretical 

potential. Our work represents the first step in identifying and understanding this potential. 

Future studies further elucidating the nature of this potential interaction will likely lead to a new 
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understanding of the complex network of inhibition initiated by regulatory T cells to restrain 

self–antigen specific immune responses and will identify new avenues for improving the 

response against these antigens. 
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5.0  OVERALL SUMMARY AND DISCUSSION 

Previous studies by our group and others have highlighted the reduced capacity for generating 

MUC1 specific CD4 T cell responses in MUC1.Tg mice. (284, 293) Recently, our understanding 

of this CD4 specific hyporesponsiveness has grown quite a bit. We know that it is not the result 

of deletional tolerance, as MUC1 specific CD4 T cells can develop in the thymus and reach the 

periphery with a normal phenotype. (273) Furthermore we can pinpoint the timing of the 

tolerance as an early post vaccination event that occurs in the periphery, as transferred MUC1 

specific CD4 T cells fail to proliferate at maximal capacity at early timepoints in MUC1.Tg 

mice, compared to WT mice. As these studies involved the transfer of large numbers of MUC1 

specific CD4 T cells, they also suggested an active mechanism of tolerance, as suboptimal 

immune activation due to reduced availability of MUC1 specific CD4 T cells in the periphery 

would not be a factor in experiments with such a high precursor frequencies. We are now able to 

appreciate several previously unidentified components of this active tolerance. 

The first is an inhibition of DC. This occurs early. By surface co-stimulatory marker 

expression, this can be detected as early as 24 hours post vaccination. (Figs. 1, 18)) Using the 

newly identified biomarker of pancreatic enzyme expression in DC, it can be detected as early as 

4 hours. (Fig. 9) We known this effect is dependent on the action of regulatory T cells and IL-10 

on some level as removal of either one of these components from the system alleviates this 

suppression. (Figs. 7, 8, 11) In the future it will be interesting to query the contribution of each of 
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these mediators in the processes of establishing and maintaining the suppressed DC phenotype. 

For now, the point and mechanism of first action remains to be elucidated. It is likely that MUC1 

specific regulatory T cells recognize the presence of their cognate antigen presented on dendritic 

cells and that this is the first step in the process of DC inhibition. There is support in the 

literature for an increased number of MUC1 specific Tregs in MUC1.Tg mice. (292) However, 

the exact mechanism of action is not yet clear. Direct action of regulatory T cells on dendritic 

cells is possible. However, the possibility that direct action accounts for all of the differences 

seen in DC phenotype is difficult to envision. 

Based on our data, we would hypothesize that Tregs likely mediate the bulk of their 

inhibitory functions through indirect mechanisms. This is supported by the fact that regulatory T 

cells from MUC1.Tg mice do not appear to make IL-10 in response to MUC1, but IL-10 seems 

to have an important role in the inhibition of the both the phenotype of dendritic cells and the 

overall immune response. (Figs. 8, 9-13) We hypothesize that the role of regulatory T cells is 

more likely to be in the establishment of a self-amplifying regulatory circuit. We further suggest 

that NK cells are likely to play large role in this inhibitory circuit, as they are shown to produce 

elevated levels of IL-10 post vaccination in MUC1 peptide vaccinated MUC1.Tg mice compared 

to similarly treated wild type mice and can directly inhibit CD4 T cell responses. 

This finding is quite novel. The function of NK cells in response to vaccination is 

typically thought of as predominantly positive, with these cells generally supporting Th1 cell 

generation through IFNγ secretion, which up-regulates the Th1 skewing cytokine IL-12 in 

dendritic cells. The idea of NK cells limiting immune responses in a self-antigen specific manner 

has not been observed before. Understanding what factors contribute to their optimal activation, 

and what prevents this in self-antigen vaccinated mice will add a new level to our understanding 
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of peripheral tolerance and will likely lead to the intelligent design of optimal vaccine concurrent 

immune modulation strategies to overcome this tolerance. 

We report of one such of these strategies here. Specifically, we show that blockade of IL-

10 not only converts the phenotype of post vaccination NK cells in MUC1.Tg mice to one that 

mimics what is observed in WT mice, it also improved downstream CD4 T cell responses. (Figs. 

16, 18-19) Though the improvement observed with IL-10R blockade is likely due to reducing the 

ability of this molecule to directly inhibit DC and CD4 T cell activation, it is intriguing to 

consider that its effect on NK cells may indeed me a major component of its ability to improve 

the vaccine responsiveness of these populations. For example, increases seen in DC number and 

phenotype post vaccination in IL-10R blocked, but not isotype treated MUC1.Tg mice (Fig. 12) 

could be due to decreased killing of these cells by NK cells, as NK cells from the IL-10R 

blocked group show a lower cytotoxic capacity. Unfortunately, this mechanism is not supported 

in the NK depletion model, where DC numbers remain equal between MUC1.Tg mice depleted 

of NK cells with an anti-NK1.1 antibody prior to vaccination, and those given a non-specific 

control antibody. (data not shown) One explanation for this disparity (i.e. why does IL-10 

blockade but not removal of the IL-10 producing population improve DC numbers) could be that 

NK cells in IL-10R blocked MUC1.Tg mice post vaccination actively recruit and encourage the 

differentiation of DC. However, this mechanism will need to be investigated further before any 

hard conclusion can be made. 

Linking the observed NK phenotype to the action of regulatory T cells will be an area of 

active investigation in the future. Several possibilities exist. The first is that activation of 

regulatory T cells by recognition of their cognate peptide allows them to exert direct control over 

NK cell function. This could be through the action of an anti-inflammatory intermediary such as 
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TGFβ; or their recognition of cognate peptide could sequester them at the DC surface and allow 

them to locally consume IL-2 produced by the DC and naïve cognate CD4 T cells recognizing 

antigen, reducing the availability of this molecule to activate NK cells. Another possibility is that 

Tregs exert direct inhibitory effects on DC, reducing their ability to activate NK cells. These 

suboptimally activated NK cells would then produce IL-10, further suppressing DC function and 

establishing a self-amplifying regulatory loop. We favor the latter mechanism as preliminary 

data appears to be in support of it. 

Cytokine profiling at the mRNA level of MUC1.Tg and WT mice post vaccination 

reveals that there is a decrease in the level of type I interferons produced in the MUC1.Tg mice. 

(Appendix B) Type I interferons are known to be produced by dendritic cells, particularly 

plamacytoid DC, however all populations are capable of making them. (446) It is interesting to 

hypothesize that regulatory T cells are able to prevent the up-regulation of type I interferons. 

This could potentially link Treg mediated inhibition and decreased NK cell immunogenicity as 

type I IFNs are well documented in their ability to activate NK cells. Determining the effect of 

removing type I IFN from the system on IL-10 production and vice versa will likely clarify the 

relative role of these two cytokines in the other’s production. 

In total, my data begin to identify the major players, some of which were not previously 

suspected, responsible for tolerance induction in response to a vaccine containing a self-peptide. 

In the model below we propose that the presence of a self peptide induces an anti-inflammatory 

cascade that is dependent largely on IL-10 and NK cells. The IL-10 acts by suppressing the 

activity of dendritic cells at early timepoints and CD4 T cells responses at later timepoints, 

possibly through a dendritic cell intermediate. The NK cells, who are large producers of IL-10, 

act in a similar fashion. Although the sum total of their effect on DC is not inhibitory, autocrine 
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IL-10 appears to hamper the ability of the NK cells to provide signals to DC that up-regulate 

their immunostimulatory phenotype. IL-10 also possibly activates the NK cells to directly kill 

DC. And although the exact mechanism has yet to be elucidated (i.e. direct vs. indirect 

mechanism), it is clear that NK cells inhibit the generation of robust CD4 T cell responses and 

have a previously unappreciated role in regulating self-antigen specific vaccine responses. 

 

 

Figure 22: Proposed model of early the immune events responsible for maintaining tolerance to MUC1 as a 

self-antigen in MUC1.Tg mice. 



 107 

APPENDIX A 

ABBREVIATIONS USED 

Abbreviation Meaning 

ADCC Antibody dependent cell mediated cytotoxicity 

AIRE Autoimmune regulator 

costim Costimulatory molecules, specifically CD80, C86, and 
CD40 

CPB1 Carboxypeptidase B1 

DC Dendritic cell 

EGFR Epidermal growth factor receptor 

HER2/neu Human epidermal growth factor receptor 2 

IBD Inflammatory bowel disease 

IDO Indoleamine 2,3-dioxygenase 

IL-10R IL-10 receptor 

MDSC Myeloid derived suppresor cell 

MHC I Major histocompatibility complex class I 

MHC II Major histocompatibility complex class II 

NK Natural Killer cell 

TCR T cell receptor 

Teff Effector CD4 T Cell 

Treg Regultory CD4 T cell 
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VNTR Variable number tandem repeat region of the MUC1 
extracellular domain 
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APPENDIX B 

EARLY CYTOKINE PROFILING IN WT AND MUC1.TG MICE POST MUC1 

VACCINATION 

B.1 INTRODUCTION 

We identified a subset of pancreatic enzymes which were differentially expressed between 

MUC1 peptide vaccinated WT and MUC1.Tg mice via gene array of the total spleen at 24 hours 

post intravenous vaccination. (Table. 1) We chose to query the nature of these enzymes and their 

implications of downstream immunity (Chapter 2) for several reasons. Firstly, the differences in 

the levels of expression of these enzymes were quite high between WT and MUC1.Tg mice. 

Secondly, there was no precedent for their expression in any cell of the immune system, let alone 

their differential expression as a result of activation status. However, the third reason was a 

relative paucity in the results of the gene array of traditional immune mediators which were 

differentially expressed. In fact almost no molecules were identified which could account for the 

observed differences in immunity. As our understanding of the early, post vaccination events 

grew, we came to understand that one explanation for the lack of traditional immune mediators 

was that these event came much earlier than 24 hours. DC enzymes began to diverge as early as 

4 hours post vaccination, as did expression of IL-10, a molecule that was not identified in the 
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original 24 hours gene array. (Fig. 9 and data not shown) This led us to hypothesize that in 

addition to IL-10, a number of other immune mediators may have been differentially expressed 

very early after vaccination (4-8 hours), but normalized by 24 hours when we originally queried 

the system. 

B.2 RESULTS 

In order to query the cytokine profile early post MUC1 vaccination, we vaccinated WT and 

MUC1.Tg mice intravenously with MUC1 peptide admixed with Poly-ICLC as an adjuvant. At 

4, 8, 16, and 24 hours post vaccination, the spleens of the animals were removed and their RNA 

content was analyzed via qRT-PCR. Interestingly, type I IFNs and IFNγ were up-regulated at 

early timepoints in WT mice, relative to MUC1.Tg mice. (Fig. 24) In accordance with these 

molecules not being identified as differentially expressed in the 24 hour gene array performed on 

the spleens of vaccinated WT and MUC1.Tg mice, their expression returns to baseline by the 

time. A number of other cytokines were profiled along with these molecules. Their expression at 

8 hours, which was representative in the experiment shown of the time when expression of these 

molecules was at its most divergent, is shown. (Fig. 25) 
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Figure 23: IFNα, IFNβ, and IFNγ are all up-regulated in the spleens of WT mice early post MUC1 

vaccination, but not MUC1.Tg mice. 

WT (squares) and MUC1.Tg mice (triangles) were vaccinated with MUC1p admixed with Poly-ICLC via tail 

vein. Spleens were removed at the indicated hours post vaccination and total splenic mRNA levels of IFNα (A, 

D), IFNβ (B, E), and IFNγ (C, F) were determined relative to the control gene HPRT. Two repeats are shown 

(A-C vs. E-F) Values shown represent expression relative to the baseline expression in mice of that genotype 

(WT and MUC1.Tg) at 0 hours post vaccination. Data are representative of 3 pooled mice per group per 

timepoint shown. Data points show mean ±SEM of three technical replicates. 
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Figure 24: Cytokine profile in the spleens of WT and MUC1.Tg mice vaccinated intravenously with MUC1 at 

8 hours post vaccination. 

WT (white bars) and MUC1.Tg mice (black bars) were vaccinated as in Figure 22. Spleens were removed at 8 

hours post vaccination and the total splenic mRNA levels of the indicated cytokines were determined relative 

to the control gene HPRT.  Values shown represent expression relative to the baseline expression in mice of 

that genotype (WT and MUC1.Tg) at 0 hours post vaccination. Data are representative of 3 pooled mice per 

group. Data points show mean ±SEM of three technical replicates. 
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Given the marked differences we observe in splenic NK cell activation between WT and 

MUC1.Tg mice vaccinated with MUC1p, the differential expression of type I interferons is quite 

an interesting results. Type I IFN is well documented in its ability to activate NK cell IFNγ and 
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cells in our system. Specifically, it supports the induction of IFNγ in the spleens of MUC1 

vaccinated WT mice, which we see concurrent with the increases in type I IFN, but it contradicts 

the decreases we see in the cytotoxicity of these NK cells, relative to those in MUC1 vaccinated 

MUC1.Tg mice. Further examination of what, if any role it plays on the post vaccination NK cell 

phenotype will be necessary to resolve this contradiction. It is likely that the combination of 

other factors present in the microenvironment and the tight window in which type I IFN is 

produced may be important factors in this consideration. 

These studies will be of particular interest as expression of type I IFN in the spleens of 

WT, but not MUC1.Tg mice post MUC1p vaccination could be responsible for a number of the 

other post vaccination differences characterized in this thesis as well. Type IFN can support the 

differentiation (53, 54) and migration (464) of DC, perhaps providing a mechanistic explanation 

for the increased DC number in WT, but not MUC1.Tg mice post MUC1 vaccination. Type I 

IFN supports the differentiation of IFNγ producing CD4, but not CD8 T cells, suggesting its 

absence in MUC1.Tg mice may be a contributing factor to the observed hyporesponsiveness of 

MUC1 specific CD4 T cells in these mice. (465) And finally, type I IFNs can up-regulate CD40, 

CD80, CD86, and MHC II expression on DC surfaces (466), perhaps implicating the differential 

levels of type I IFNs early post vaccination in the differential expression of these molecules later 

on. 

In conclusion, type I IFNs are powerful immune mediators capable modulating the 

adaptive immune response in a number of ways, and the effect of their differential expression 

following vaccination with a foreign vs. a self-antigen merits further investigation. 
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