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Abstract 

The bacterial chromosome has to be condensed to fit inside the cell, forming a compact 

structure called the nucleoid, which is confined to a particular region of the cell without 

constriction by a membrane. Originally, the nucleoid was thought to be packed into the cell in 

a disordered way, unlike the highly organised chromatin of eukaryotic cells. More recently, 

the bacterial nucleoid has been shown to be far more structured than previously thought, with 

DNA present in topologically distinct loops, which are then arranged into macrodomains. 

Some of the proteins involved in structuring the E. coli chromosome are also known to have 

important roles in regulating transcription, and at least one transcription factor is known to 

cause distant DNA sites to cluster upon binding. These factors lead to the idea that 

chromosome structure could be affected by local gene expression. 

 

To investigate the possible link between chromosome structure and gene expression, 

Fluorescent Reporter/Operator Systems (FROS) were used to study the positions of different 

inducible promoters, with and without induction. The FROS method was adapted to use a 

smaller insert, therefore causing less disruption to the chromosome structure. The 

transcription factor MalI was also developed as a novel FROS reporter. Of the five promoters 

studied, only araFGH showed any movement upon induction, moving away from the cell 

pole. In cells at the point of division, induction of the araFGH promoter caused segregation 

of sister chromatids adjacent to araFGH. These results suggest that induction of promoters 

can cause a change in local chromosome structure, although this is not seen at all promoters. 

The diffusion of fluorescently tagged transcription factors, used as reporters in FROS, can 

also be studied using super resolution microscopy methods. 
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1.1 Escherichia coli 

Bacteria are prokaryotic organisms, usually between 1 and 20 μm in size, that are found in 

diverse environments almost anywhere on earth. Many bacteria have adapted to live inside 

other organisms, including humans, where they far outnumber human cells. Some bacteria 

enter other organisms as pathogens, but many are commensal and actually benefit the host. 

Escherichia coli is a member of the Enterobacteriaceae family of enteric bacteria. This is a 

large family of rod shaped Gram-negative bacteria, many of which are found in the 

gastrointestinal tracts of mammals. Although many are harmless, there are several pathogenic 

members of this family including E. coli, Salmonella and Shigella (Murray et al., 2009). 

Although E. coli can cause disease in humans, the majority of its strains are non-pathogenic 

and have in fact proved beneficial to humans as model organisms. 

 

E. coli cells are about 2 μm in length and 0.5 μm in diameter and have a volume of 0.6-

0.7 μm
3 

(Murray et al., 2009). The cell is surrounded by a cell envelope consisting of an inner 

membrane, periplasmic space containing peptidoglycan and outer membrane, as with all 

Enterobacteriaceae. The outer membrane largely consists of lipopolysaccharide (LPS), which 

is heat stable, on the outer leaflet and phospholipid on the inner leaflet. The inner membrane 

consists of a phospholipid bilayer. Both the inner and outer membrane have a variety of 

proteins inserted into them, with the proteins found in the outer membrane being of particular 

interest as they can be involved in virulence and drug resistance (Knowles et al., 2009). 

Sometimes a capsule is also present on the surface of E. coli formed of polysaccharides. This 

helps to protect the cell from phagocytosis and prevents antibodies from binding to the outer 

membrane and is therefore a virulence factor (Whitfield, 2006). Many E. coli are motile and 

possess flagella, which also helps in colonisation for pathogenesis (Murray et al., 2009). 
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Virulent strains of E. coli can affect the host in several ways with some causing gastroenteritis 

and others causing extraintestinal infections. There are five major groups of E. coli that cause 

gastroenteritis: enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), 

enteroaggregative E. coli (EAEC), enterohemorrhagic E. coli (EHEC) and enteroinvasive E. 

coli (EIEC) (Croxen and Finlay, 2009, Kaper et al., 2004). These groups vary between 

colonising the small and large intestine, symptoms and also in the way the infection spreads. 

This can be from contaminated water, uncooked food or, in some cases when the infectious 

dose is low, person-to-person contact. Most of these infections lead to diarrhoea and in some 

cases vomiting and fever (Croxen and Finlay, 2009). Of the extraintestinal infections caused 

by E. coli, urinary tract infections (UTI) are seen when uropathogenic E. coli (UPEC) from 

the colon infect the urethra and bladder and, in some cases, the kidneys (Russo and Johnson, 

2003). Neonatal meningitis E. coli (NMEC), along with group B streptococci, is one of the 

leading causes of neonatal meningitis (Croxen and Finlay, 2009). Finally, infections in the 

urinary tract and intestines can lead to septicaemia in rarer cases. Most of these strains have 

become pathogenic due to acquisition of virulence factors often on plasmids, pathogenicity 

islands or bacteriophage DNA (Murray et al., 2009). 

 

Non-pathogenic E. coli strains are often used as model organisms for research, as results are 

often applicable to other bacteria. Lab cultivated strains often lose their virulence factors 

meaning they can be studied without any risk of infecting researchers. Strain K-12 is an 

example of this, and is one of the most widely used model organisms. Some of the 

characteristics of E. coli that make it desirable as a model organism are its fast growth and the 

comparative ease with which it can be cultured in laboratory conditions. The genome of E. 

coli K-12 strain MG1655 was sequenced and annotated in 1997 and revealed the genome to 
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contain 4,639,221 bp (Blattner et al., 1997). The availability of sequence data has allowed for 

the development of many gene manipulation techniques which, again, made E. coli K-12 a 

favourable choice for molecular microbiology experiments.  

 

Specific aspects of E. coli pathogenesis are often studied with a view to combating infection. 

However, more general aspects of how bacteria function are studied in E. coli K-12, for 

example promoter regulation, membrane structure, stress responses and chromosome 

structure. The findings can then be applied to other bacteria, particularly other 

Enterobacteriaceae, many of which are pathogens themselves.  

 

1.2 Chromosome Structure in Escherichia coli 

The E. coli K-12 MG1655 circular chromosome is around 4.6 Mb and contains 4489 genes. 

There is an origin of replication, oriC, located around position 3923 kb. Directly opposite this, 

at 1588 kb, is the dif site (deletion-induced filamentation) (Keseler et al., 2011). This site, and 

the surrounding area of the chromosome, are responsible for the termination of replication and 

the separation of daughter chromosomes. The chromosome translates to a physical length of 

1.6 mm in Watson-Crick structure, but a typical E. coli cell is just 2 μm in length, meaning 

the chromosome would need to be compacted by a factor of at least 1000 just to fit inside the 

cell (Holmes and Cozzarelli, 2000). The DNA in this tightly packed structure still needs to be 

accessible to proteins and other molecules involved in the processes of transcription, 

replication and DNA repair. As more research is being carried out into the structure of the 

bacterial chromosome, it is becoming clearer that a structure that can accommodate all of 

these needs must be very complex. 
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1.2.1 The Nucleoid 

Unlike its eukaryotic counterpart a bacterial chromosome is not divided from the cytoplasm 

by a membrane, instead forming a compact structure called the nucleoid. Despite not being 

membrane bound, the nucleoid is confined to a particular area of the cell which has been 

suggested to be as low as 15% of the cellular volume (Reyes-Lamothe et al., 2008b). 

However, while the bacterial chromosome has traditionally been represented as being 

unstructured and disorganised, evidence was found to suggest this was not the case over 30 

years ago. Kavenoff and Bowen, who visualised the E. coli nucleoid using electron 

microscopy, saw that the nucleoid actually consisted of loops of supercoiled DNA arranged 

around a central region (Kavenoff and Bowen, 1976) (see figure 1.1). Further work showed 

that a single loop could be relaxed with a nick of the DNA while the rest remained 

supercoiled (Worcel and Burgi, 1972). This suggests that the loops of supercoiled DNA are 

independent of each other, and there is some kind of barrier to supercoiling, meaning the 

loops are topologically distinct. These loops are now known as domains. Estimates of the size 

and number of domains in the E. coli chromosome has varied greatly over the years but recent 

estimates believe there are around 500 domains with an average length of approximately 10 

kb although there is a large range of sizes (Postow et al., 2004). These domains are further 

organised into larger macrodomains (see section 1.2.2). Fluorescent microscopy and atomic 

force microscopy (AFM) have shown that the compaction of the nucleoid varies throughout 

cell cycle, with the nucleoid appearing more loosely packed in log phase than in stationary 

phase (Kim et al., 2004). It has also been shown that the protein composition of the nucleoid 

changes depending on growth phase (Ali Azam et al., 1999), indicating that the nucleoid is a 

dynamic structure, which can be modified to suit the needs of the cell. Presumably this allows 
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Figure 1.1: The E. coli nucleoid visualised by electron microscope  

Membrane-free folded chromosomes from E. coli were visualised by electron 

microscopy, revealing loops of DNA spreading out from a core. (Kavenoff and 

Bowen 1976). Scale bar represents 1 μm. 
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bacteria to have structured chromosomes that are still accessible for processes like DNA 

replication and transcription. 

 

By mass, only about 3% of the nucleoid is DNA (Reyes-Lamothe et al., 2008b) suggesting 

there are other factors bound to DNA which may have a structural role. There exists a class of 

12 proteins in E. coli with functions involving architecture of the chromosome, known as 

nucleoid associated proteins or NAPs. The functions of NAPs are diverse, with some 

responsible for DNA compaction and some for maintaining chromosome structure, and many 

have other functions, for example, transcription regulation. Some NAPs are found in abundant 

concentrations in E. coli and are well studied while others are found at lower concentrations 

and are less well understood (Azam and Ishihama, 1999). There are also NAPs whose 

concentrations fluctuate depending on the phase of the cell cycle. Although bacteria do not 

have histone proteins, several of the NAPs have been classed as “histone-like”, despite having 

no structural similarity to eukaryotic histones (Salerno et al., 2009). Many NAPs have an 

important role in chromosome compaction and are reviewed in section 1.2.3. Dps, a NAP 

known to have another function protecting cells from oxidative damage (Almiron et al., 

1992), is very abundant during stationary phase, making it the main protein component of the 

nucleoid, in non-growing cells. Dps causes the nucleoid to become a much more compact 

structure (Kim et al., 2004). It has also been shown that in stress situations, Dps in E. coli can 

bind to DNA and form a crystalline structure, protecting the DNA from damage (Wolf et al., 

1999). Another group of proteins called structural maintenance of chromosome proteins 

(SMC), homologous to SMC proteins found in eukaryotes, play a role in chromosome 

structure in bacteria. This is the MukBEF complex in E. coli (Soppa, 2001). Although many 

proteins are involved in maintaining chromosome structure in bacteria, no single protein 
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seems be essential or responsible for the whole process, suggesting that the bacterial nucleoid 

is a combined effect of many proteins. 

 

It has been observed that, in bacteria, ribosomes are excluded from the nucleoid (Hobot et al., 

1985, Li and Jensen, 2009). It has long been thought that bacterial transcription and 

translation are linked (Miller et al., 1970), unlike eukaryotic cells where the nuclear 

membrane separates the two processes in space and time. If transcription and translation are 

spatially and temporally linked, this suggests that RNA polymerase and the gene being 

transcribed need to be in the same place as the ribosome, at the edge of the nucleoid. 

Fluorescently tagged RNAP has been shown to be predominantly in the nucleoid, sometimes 

forming foci in rapidly growing cells (Lewis et al., 2000, Cabrera and Jin, 2003). However, 

much of the RNA synthesis in bacteria is making stable RNA that will not be translated, for 

example rRNA and tRNA. 60% of transcription in a cell is at the rRNA genes (Schneider et 

al., 2003). The absence of ribosomes from the nucleoid suggests that chromosome structure 

may need to be rearranged for transcription and translation to take place.   

 

1.2.2 Macrodomains 

As well as the chromosome being organised into the domains described above, the domains 

themselves are then further arranged into larger structures known as macrodomains. Valens et 

al. 2004 first described this organisation and identified six macrodomains, defined by the 

ability of sites across the chromosome to interact with each other. They found that sites within 

the same macrodomain could readily interact with each other, but interacted very little with 

sites in other macrodomains. Two large macrodomains, of around 1 Mb, were identified 

around the replication origin and replication terminus named Ori and Ter respectively. Either 
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side of the Ter macrodomains are two regions of 0.7 Mb called the Right and Left domains 

(see figure 1.2). The final two macrodomains are found flanking the Ori domain and are less 

structured than the others. These are called Non-structured Left (NSL) and Non-structured 

Right (NSR) (Valens et al., 2004). Loci in these macrodomains were able to interact with loci 

in other domains across long distances. To visualise the positions of the macrodomains in the 

cell, parS sites at various locations of interest on the chromosome, and a ParB::GFP fusion 

protein was used to follow these locations using time-lapse fluorescent microscopy.These 

experiments revealed “home” positions, where sites within the individual macrodomains 

occupy certain areas in the cell. This area is two to four times smaller for the structured 

macrodomains than for the two non-structured domains. This study also revealed some 

information about the dynamics of the macrodomains. Loci in the non-structured regions were 

shown to be highly mobile whereas loci in the structured domains were also mobile but 

restrained within a specific region of the cell. Sites in the non-structured macrodomains are 

more likely to be able to interact with sites in other macrodomains, presumably because they 

are less restrained (Espéli et al., 2008). Little is known about the factors responsible for 

structuring most of the macrodomains, but it is known that a protein called MatP has a role in 

structuring the Ter macrodomain. MatP binds to a 13 bp motif called matS. There are 23 matS 

sites in the Ter macrodomain, compared to just four other sites found on the rest of the E. coli 

chromosome, with 2 each in the Left and Right macrodomains. A MatP::GFP fusion showed 

that MatP accumulates in the cell as a focus that colocalises with the Ter domain, and MatP 

inactivation resulted in a less compaction of DNA. (Mercier et al., 2008). MatP binds to matS 

as a dimer but can interact by a coiled-coil domain to tetramerise, linking distant matS sites 

(Dupaigne et al., 2012). All of these results suggested that MatP could be the main factor in 

organising the Ter macrodomain. 
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Figure 1.2: Positions of the macrodomains on the E. coli chromosome 

The positions of the 6 macrodomains of the E. coli chromosome are shown as well as 

the oriC and dif as defined by Kesler et al., 2011. The macrodomain containing oriC 

is called Ori which is flanked by two non-structured domains, Non-Structured Left 

(NSL) and Non-Structured Right (NSR). The macrodomain containing the dif is 

called Ter and is flanked by the Left and Right macrodomains (Valens et al., 2004).  
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1.2.3 Compaction of DNA 

As previously described, the E. coli chromosome needs to be compacted by 1000 to 10,000 

fold to fit inside the cell. This compaction is comparable to that of a chromosome in a 

eukaryotic cell, but in E. coli is achieved without histone proteins (Sherratt, 2003). The 

mechanisms of compaction also need to allow the chromosome to remain functional, and have 

been the subject of many studies.  

 

One of the factors important in compaction of DNA is supercoiling. In the Watson-Crick 

structure of DNA, there is a helical turn every 10.6 bp. If turns are introduced to or removed 

from the DNA it will become over- or under-wound, or supercoiled. The DNA of the nucleoid 

is anchored by various structural proteins so the supercoils cannot diffuse and the DNA twists 

to accommodate the extra turns. These twists mean that supercoiled DNA is much more 

compact form of DNA than Watson-Crick structure, and so supercoiling is a useful tool for 

packing DNA into the nucleoid. It is thought that approximately 4% of the helical turns in the 

E. coli chromosome are removed, compared to the relaxed structure of DNA (Trun and 

Marko, 1998). In E. coli, topoisomerases cause DNA to be underwound resulting in the 

formation of supercoils (Thanbichler and Shapiro, 2006). These enzymes function by cutting 

DNA, rotating it and religating (Liu et al., 1980). Cell processes, such as DNA replication, 

that involve unwinding of the DNA helix cause the superhelicity of the local area to change. 

These processes often involve large protein complexes which, instead of following the helical 

twist of the DNA, cause the DNA to rotate. This results in a region of positive supercoiling 

ahead of the complex and negative supercoiling behind. Topoisomerases I and II (Topo I and 

gyrase) are responsible for maintaining the level of supercoiling in the E. coli chromosome 

with Topoisomerase IV (Topo IV) also playing a role, with a balance of the three needed for 

normal supercoiling (Zechiedrich et al., 2000). Gyrase is essential in E. coli (Levine et al., 



12 

 

1998) and is the only topoisomerase able to insert negative supercoils. Other topoisomerases 

help to maintain the overall underwound state by removing positive supercoils. Cells lacking 

Topo I can grow but only in the presence of gyrase mutations (Dinardo et al., 1982). Topo I 

and Topo IV both work by removing positive supercoils, with Topo I having a much faster 

rate but only on very negatively supercoiled DNA. Topo IV works slower but is able to 

completely relax DNA (Zechiedrich et al., 2000). Supercoiling also alters the twist of the 

DNA to create a more open complex required for many processes including replication, 

transcription and DNA repair (Peter et al., 2004). It has also been suggested that these 

processes, in turn, may have a role in compaction of DNA as they involve many proteins 

binding to the DNA (Bendich, 2001). Although supercoiling has an essential role in the 

compaction of DNA, it alone cannot compact the DNA to the extent required, therefore, there 

must be other factors involved (Reyes-Lamothe et al., 2008b). 

 

Another important factor in the compaction of the nucleoid are the NAPs.  Several of these 

have functions that involve bending or bridging of the DNA which could be used to structure 

the nucleoid. One well studied NAP is Fis (factor for inversion stimulation), a homodimeric 

protein which causes bending of DNA between 50º and 90º when it binds (Pan et al., 1996). 

Its concentration in the cell fluctuates, peaking at 60,000 during exponential growth and 

reducing to less than 100 molecules per cell in stationary phase (Ali Azam et al., 1999). Fis is 

known to preferentially bind AT rich sequences and a 15 bp consensus sequence for a 

binding, GNTCAAATTTTGANC, was identified (Finkel and Johnson, 1992). However, 

studies using this consensus sequence to predict Fis binding sites generate varying results. 

More recently, an improved consensus sequence has been identified using Fis binding sites 

that had been confirmed using ChIP-chip (Cho et al., 2008). Electron microscopy and AFM 
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have shown that Fis is able to cause DNA branching, condensing and organising the nucleoid 

(Schneider et al., 2001). Another NAP known to compact DNA by bending is IHF 

(Integration host factor), a heterodimeric protein that wraps DNA around itself, introducing a 

bend of around 160º (Rice et al., 1996). IHF is most abundant in early stationary phase, where 

it is thought to number around 55,000 monomers per cell (Ali Azam et al., 1999). A 

consensus sequence has been identified for IHF, but the surrounding sequence is also 

important (Friedman, 1988). Another way that NAPs can contribute to chromosome 

condensation is by bridging DNA. One protein that works this way is H-NS (Histone-like 

nucleoid structuring protein), which preferentially binds curved DNA, but also has a 

consensus sequence (Lang et al., 2007). The C-terminal domain of H-NS is the DNA binding 

domain and the N-terminus is responsible for dimerisation, allowing the possibility of higher-

order structures of H-NS (Esposito et al., 2002). As with other NAPs, AFM has been used to 

show the effect of binding on DNA. It was observed that H-NS could bring distant regions of 

DNA close together by bridging, and therefore condensing the DNA (Dame et al., 2000). A 

hns mutation results in cells with a reduced number of origins. Evidence suggests that this 

reduction is an indirect effect of H-NS, indicating that it may have an important role in 

chromosome replication and possibly structure (Atlung and Hansen, 2002). However, it has 

been shown that deletion of some of the NAPs does not result in a less compact nucleoid, 

suggesting that their role may not be as important as first thought (Zimmerman, 2006)  

 

DNA is also compacted by an effect called macromolecular crowding. This effect was first 

noticed in 1971 when it was observed that DNA collapsed into a compact structure when 

placed in a solution with high concentrations of polymers and salts (Lerman, 1971). The 

concentration of total protein and RNA in the E. coli cytoplasm is 340 mg/ml, which means it 
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is packed with proteins and macromolecules (Zimmerman and Trach, 1991). This high 

concentration could apply force on the nucleoid and contribute to compaction. It may also 

make it more energetically favourable for other factors to bind the DNA which may in turn 

stabilise the structure of the nucleoid (Murphy and Zimmerman, 1995). Although molecular 

crowding, supercoiling and NAPs are all important factors involved in the compaction of the 

chromosome none of them alone are sufficient to achieve the level of compaction required. 

Instead, it is likely that the combination of these factors, along with others, are responsible for 

chromosome compaction. Throughout the cell cycle they compact the nucleoid in a way that 

also allows it to be dynamic and fit with other processes, such as DNA replication, repair and 

transcription.  

 

1.3 DNA replication and chromosome segregation in Escherichia coli 

1.3.1 DNA replication 

E. coli has a circular chromosome, which is replicated bidirectionally from a single origin of 

replication, oriC. The two halves of the chromosome are referred to as replichores, with one 

either side of oriC (Wang et al., 2006). Each replichore is replicated by one replisome, a 

complex of replication machinery. Once the whole chromosome has been replicated, the cell 

will divide to make two daughter cells. As with many bacteria, multiple cycles of DNA 

replication can be underway in the same cell, due to the fact that replication of an entire 

chromosome takes longer than the time for a cell to grow and divide. If growing conditions 

are good, replication will be initiated again, before the previous cycle has finished, at both 

copies of the origin of replication. This results in there being 4 copies of the region 

surrounding the origin of replication, and when the cell divides to make two daughter cells, 

chromosome replication is already well underway in both.  
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The system for initiating replication in E. coli is not entirely understood, but it involves the 

replication initiation protein, DnaA, being activated by ATP. DnaA-ATP binds oriC in a 

stepwise manner which opens the DNA helix. This allows DnaC, the helicase loader, to load 

DnaB, the replicative helicase, leading to the formation of a complex of proteins, called the 

replisome. One replisome, consisting of around 13 proteins, associates with one strand of 

DNA, making a replication fork, which continues around the circular chromosome until it 

reaches the terminus region, approximately opposite oriC on a circular chromosome map. 

Unlike some other bacteria, E. coli has one polymerase which replicates both the leading and 

lagging strand (Dervyn et al., 2001).  

 

Replication initiation is regulated in several ways to ensure that replication is not initiated 

prematurely and to coordinate DNA replication with cell division. The concentration of 

DnaA-ATP is kept at a low level by HdaA, which hydrolyses the ATP to make DnaA-ADP. 

HdaA is bound to the β sliding clamp in the replisome (Reyes-Lamothe et al., 2012, 

Katayama et al., 2010). Replication can be initiated where there are low levels of replication, 

where the sliding clamp is far away, allowing DnaA-ATP to accumulate. This is combined 

with the action of little understood mechanisms that generate DnaA-ATP. The build up of 

DnaA-ATP causes replication to be initiated at all oriC sequences in the cell. DnaA-ATP is 

not hydrolysed during initiation of replication but a second mechanism prevents multiple 

initiation events. SeqA sequesters hemimethylated GATC sites to prevent binding by Dam 

methylase or DnaA. It is known that there is a cluster of GATC sites at oriC in E. coli, which 

will be hemimethylated immediately after replication (Henaut et al., 1996). Fluorescently 

tagged SeqA has been shown to form a focus, presumably due to association with newly 

replicated DNA (Brendler et al., 2000).  
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Every helical turn in the chromosome needs to be removed during replication. In the 4.6 Mb 

E. coli chromosome this is 4.6 x 10
5
 links, and any links not removed will result in interlinked 

chromosomes called catenanes (Ip et al., 2003). DNA gyrase, a member of the type II 

toposiomerase family, is responsible for removing these supercoils to maintain the overall 

balance of supercoiling in the nucleoid. The movement of the replisome along the DNA helix 

and unwinding of the helix for replication causes an accumulation of positive supercoiling 

ahead of the replication fork which cannot diffuse as the chromosome is a closed circular 

structure. This can cause rotation of DNA at the replication fork leading to the two newly 

replicated chromosomes being intertwined, known as precatenanes (Bermejo et al., 2008).  

These structures have to be removed to allow the sister chromatids to be segregated. If they 

are not removed before the replication process is complete, the new chromosomes will be 

catenated. Topoisomerase IV (Topo IV) is responsible for both the removal of precatenanes 

and the separation of catenated chromosomes. Topo IV has two subunits, ParC, which 

interacts with the replisome, and ParE, which associates with FtsK, a component of the 

septum. Topoisomerase III (Topo III) is also capable of decatenating chromosomes (Nurse et 

al., 2003). 

 

Dividing cells were observed to have replicated sister chromatids in opposite halves of the 

cell, where they had, presumably, been segregated. It was originally thought that both 

replisomes were anchored at mid-cell, between the sister chromatids, and DNA to be 

replicated was pulled through the replicative machinery and pushed out of the other side. This 

idea, known as “replication factories”, was disproved by Reyes-Lamonthe et al. by following 

fluorescently tagged replication proteins. This revealed that although the replisomes 

assembled at oriC, usually around mid-cell, the two replication forks separated around 5 
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minutes after initation and moved independently along the DNA in opposite halves of the cell. 

Towards termination, the replication forks were then seen to move back towards mid-cell 

(Reyes-Lamothe et al., 2008a). Fluorescent Reporter/Operator System (FROS, see section 

3.1.1) experiments also showed that the newly replicated sister chromatids were localised to 

opposite cell halves, so one copy of the chromosome was in each future daughter cell.  

 

Termination of replication occurs in the terminus region of the chromosome. As previously 

mentioned, high levels of positive supercoiling are found ahead of the replication fork, which 

are usually removed by the activity of topoisomerases. However, as the two replication forks 

near each other and the terminus region, the accessibility of the DNA by gyrase is restricted 

and the positive supercoiling accumulates. This accumulation of supercoiling can cause the 

replication forks to stall (Sherratt, 2003). Progress of replication forks is stopped by a DNA 

binding protein, Tus, which blocks the replicative helicase, DnaB. Tus binds to 10 Ter sites 

on the E. coli chromosome, including two primary sites, TerA and TerB. TerA and TerB are 

350 kb apart, and create what is known as a “replication fork trap” (Hill et al., 1988a). The 

sites are 23 bp long and are not palindromic. The tus gene is immediately downstream of the 

TerB site, which overlaps the tus ribosome binding site and -10 region. Tus has been shown to 

self-regulate by binding to TerB and repressing tus expression (Natarajan et al., 1991). The 10 

Ter sites are found in two sets of 5, with all 5 sites in the same orientation. The replication 

fork is able to pass the sites only in one direction, so they can enter the replication fork trap 

but cannot progress beyond the other side (Hill et al., 1988b). When a replication fork 

approaches a Ter site from the non-permissive direction, Tus interacts with DnaB, the 

replicative helicase, and forms a stalled complex (Mulcair et al., 2006, Mulugu et al., 2001). 

When both replication forks are stalled at Ter sites, DnaB separates a few nucleotides of 
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duplex DNA, dissociating Tus and allowing the replication forks to continue and replicate the 

final section of the chromosome (Mulcair et al., 2006).   

 

Studies on DNA replication observed that, in cells with a single chromosome, the left and 

right replichores are located in opposite halves of the cell, with oriC in the centre. Replication 

begins at oriC, in the centre of the cell, and then the replication fork moves outwards towards 

opposite cell poles. As replication progresses, replicated DNA is segregated to opposite cell 

halves and the replication forks return to the centre of the cell, where the remaining 

unreplicated DNA is located. When the chromosome has been replicated, each half of the cell 

has one copy of each replichore, and in the majority of cells, the arrangement along the length 

of the cell is left, oriC, right, left, oriC, right. This asymmetric organisation suggests that the 

segregation of sister chromatids is not random and may influence chromosome structure 

further down the line (Wang et al., 2006, Nielsen et al., 2006) (see figure 1.3).  

 

1.3.2 Chromosome Segregation 

E. coli replicates by dividing at mid-cell to give two daughter cells, each with a copy of the 

chromosome. For this to happen, the replicated chromosome first needs to be segregated. 

Unlike eukaryotic cells, where chromosomes are completely replicated before being separated 

by mitotic spindles, the segregation of bacterial chromosomes occurs alongside DNA 

replication. Some bacteria, such as Bacillus subtilis, encode a ParA/B system, similar to that 

used to segregate plasmids, to segregate chromosomes. This system is not present in 

eubacteria, including E. coli, suggesting other mechanisms must be present (Autret and 

Errington, 2003). It seems that many different processes contribute to the segregation of 

newly replicated chromosomes prior to cell division but the whole picture is not clear yet. It is 
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Figure 1.3: Diagram of the segregation of the left and right replichores during 

chromosome replication  

A model of a bacterial cell throughout the cell cycle showing the segregation of the 

left and right replichores into future daughter cells. Also shown are the approximate 

positions of oriC, dif and the replisome.Arrows show the approximate direction of 

movement of replisomes, away from the centre of the cell into opposite cell halves 

and then back towards the cell centre again. Figure adapted from Nielsen et al., 2006 

and Reyes-Lamonthe et al., 2008b. 
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known that early in the replication process, the sister chromatids begin to segregate to 

opposite halves of the cell, and the rest of the chromosome follows at various rates after it is 

replicated. Newly replicated Ori macrodomains localise to positions of one quarter and three 

quarters relative to cell length. It has been suggested that the reason for this positioning is that 

after cell division, the one quarter and three quarter positions will become mid-cell in each of 

the new daughter cells. If oriC is at this position it is in the correct place for replication to 

initiate and, later in the cell cycle, the septum to form (Sherratt, 2003).  The rate at which 

regions of the chromosome segregate seems to be related to their macrodomain. In general, 

the non-structured macrodomains segregate quicker than structured macrodomains (Espéli et 

al., 2008). After DNA is replicated there may be a cohesion step, of varying length depending 

on chromosomal position, before segregation. 

 

The Ori macrodomain is first to be replicated but it is thought the region immediately adjacent 

to oriC remains colocalised for around 14 minutes (Bates and Kleckner, 2005), although 

estimates of periods of chromosome cohesion vary between studies. The Ori macrodomain is 

flanked by two non-structured macrodomains. Once the sister chromatid segregation begins in 

the Ori macrodomain, the two non-structured domains follow in quick succession. The Left 

and Right macrodomains have a window of chromosome cohesion before separating in the 

same order as replication. The Ter macrodomain has the longest period of chromosomal 

cohesion, with many estimates being over 60 minutes (Espéli et al., 2008, Bates and 

Kleckner, 2005). It has been suggested that the MatP, responsible for organisation of the Ter 

macrodomain, could also be involved in the delay in segregation. MatP has been shown to 

interact with ZapB, a cell division factor associated with the FtsZ ring, which anchors the Ter 

macrodomain at mid-cell. Espéli et al. demonstrated that MatP associated to ZapB could hold 
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together distance sites in the Ter macrodomain, even when these are not physically linked, in 

a linear chromosome. They go on to suggest that segregation of the Ter macrodomain could 

be caused by ZapB dissociating from the FtsZ ring (Espéli et al., 2012). Two sites have also 

been identified that flank the Ter domain and are thought to delay segregation. The 12 bp sites 

are called tidL and tidR, located just outside the Ter, 50 kb into the Left macrodomain and 130 

kb into the right macrodomain respectively. They are bound by a protein called YfbV and, 

when bound, are thought to insulate the rest of the chromosome from the effects of proteins 

such as MatP, which restrict the segregation of Ter (Thiel et al., 2012).   

 

After the newly replicated DNA has been segregated to its new “home” position in the cell, 

the structural features that were present in the chromosome before replication need to be 

restored. The structural maintenance of chromosomes (SMC) family of proteins are involved 

in condensing the sister chromatids after segregation (Sherratt et al., 2001). One member of 

this family, the MukBEF complex, has an important role in condensing sister chromatids, 

with MukB being required for normal chromosome partitioning (Niki et al., 1991). In the 

absence of MukB, sister chromatids do not separate into opposite halves of the cell, 

suggesting that MukB may be responsible for this arrangement in wild type cells (Danilova et 

al., 2007). GFP tagged MukB was shown to form at least one focus within the nucleoid, 

dependent on the presence of MukE and MukF, mostly at the one quarter and three quarter 

positions of the cell (Ohsumi et al., 2001). These foci were later shown to colocalise with 

oriC in the majority of cells (Danilova et al., 2007). 

 

As well as segregating new chromosomes, it is important that the cell divides at mid-cell to 

give daughter cells of approximately equal size, each containing a full chromosome. An 
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important factor in this process is FtsZ, a tubulin-like protein that forms a ring shaped septum 

(Löwe and Amos, 1998). Formation of the FtsZ ring is then followed by recruitment of other 

cell division machinery, so correct positioning and timing of FtsZ ring formation is essential. 

If this is assembled too soon it can lead to the cell dividing when there is still unsegregated 

DNA at mid-cell and the chromosome is cut. Formation of the FtsZ ring near a cell pole 

results in small, nucleoid-free cells. There are two processes known to regulate FtsZ ring 

formation in E. coli, the Min system and nucleoid occlusion. The Min system, consisting of 

MinC, MinD and MinE, prevents the FtsZ ring from forming too close to cell poles. MinD 

oscillates from one cell pole to the other, changing pole approximately every 40 seconds 

(Huang et al., 2003), indicating the position of mid-cell (Raskin and de Boer, 1999). MinD 

recruits MinC, which also oscillates. MinC has been shown to interact with FtsZ and prevent 

polymerisation, therefore preventing the formation of the FtsZ ring (Hu et al., 1999). MinC is 

found at the highest concentration close to cell poles, so prevents the FtsZ ring from forming 

at this undesirable location. MinE forms a ring at the edge of the area occupied by MinD, 

which will be at around mid-cell. MinE causes ATP bound by MinD to be hydrolysed, which 

leads to MinD:ADP returning to the cytoplasm (Huang et al., 2003). The MinE ring inhibits 

MinC function and allows FtsZ filaments to form the FtsZ ring. The MinE ring is independent 

of FtsZ, but ensures that its formation is in the correct place (Raskin and de Boer, 1999).  

 

A second process called nucleoid occlusion works with the Min system by preventing the 

formation of the divisome in the immediate surroundings of the nucleoid. Fluorescent tagging 

has shown that arcs of FtsZ begin to form between segregated nucleoids, not over the 

nucleoid, indicating the presence of a nucleoid occlusion mechanism in E. coli (Zaritsky and 

Woldringh, 2003). A DNA binding protein called SlmA, which binds to specific DNA 
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sequences, has been shown to colocalise with the E. coli nucleoid, and was required for 

nucleoid occlusion (Bernhardt and De Boer, 2005). To play this role, SlmA binds, and 

prevents FtsZ polymerisation, an effect that is amplified when SlmA is bound to DNA (Cho et 

al., 2011). The 50 SlmA DNA sites on the E. coli chromosome are not distributed evenly 

across the macrodomains, with a lower frequency in the Left and Right macrodomains, and 

they are completely absent from the Ter macrodomain (Dame et al., 2011). It is thought that 

free SlmA would not be able to inhibit FtsZ polymerisation at the concentrations present in 

the cell, so only DNA-bound SlmA will have an effect (Cho et al., 2011). This suggests that 

SlmA prevents FtsZ ring formation over the Ori and non-structured macrodomains but allows 

it to form around the Ter domain towards the end of chromosome replication, which would 

locate it at mid-cell (Männik et al., 2012). A slmA mutation is not lethal in cells where the 

Min system is still functional, but a double mutant is lethal, due to incorrect positioning of the 

FtsZ ring (Bernhardt and De Boer, 2005). 

 

The formation of the FtsZ ring leads to the recruitment of other cell division proteins, 

including FtsK, which has an important role in coordinating DNA segregation and cell 

division. FtsK is a DNA translocase which is capable of travelling at up to 5kb per second in 

vitro (Pease et al., 2005). In vivo it is attached to the septum, so is immobilised, and hence it is 

DNA that moves. The N terminus of FtsK is essential for cell viability and is involved in 

septum formation and closure (Draper et al., 1998). The C terminus of FtsK is the DNA 

translocase and has 3 domains, α, β and γ (Sivanathan et al., 2006). The DNA translocase 

activity of FtsK has several important roles in the facilitating the segregation of newly 

replicated chromosomes. Firstly Topo IV interacts with FtsK to decatenate chromosomes, 

probably with an interaction between ParC of Topo IV and domain 3 of FtsK (Espéli et al., 
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2003). Before the cell divides, FtsK moves any DNA in the cell division site to one of the 

future daughter cells (Thanbichler and Shapiro, 2006).  

 

The DNA translocase activity of FtsK also helps solve another issue that affects the 

segregation of sister chromatids, the presence of chromosome dimers. These are caused by 

homologous recombination between the sister chromatids. The period of sister chromatid 

cohesion, explained previously, may be to allow homologous recombination to correct any 

errors made during replication. Chromosome dimers, observed in about 14% of cells, need to 

be resolved before the final chromosome segregation and cell division (Pérals et al., 2001). In 

E. coli, tyrosine recombinases XerCD resolve chromosome dimers at a specific site called dif, 

located approximately opposite oriC on a circular map of the chromosome. Resolution of 

chromosome dimers occurs after the end of chromosome replication, and relies on the 

presence of the FtsK C terminal to align dif sites on the sister chromatids (Pérals et al., 2001). 

The FtsK C terminal activates the XerCD recombinase (Aussel et al., 2002), before the DNA 

translocase activity is used to move the DNA to the correct position for chromosome dimer 

resolution. FtsK is a bidirectional motor, but direction is determined by 8 bp DNA sites, FtsK 

orientating polar sequences (KOPS). The γ subunit of FtsK recognises KOPS and allows 

translocation in one direction only. These are arranged mostly on the leading strand of DNA 

and act to direct FtsK towards dif (Sivanathan et al., 2006). 

 

One candidate for the driving force of chromosome segregation is transcription. This idea is 

enforced by the observations that nucleoids appear to be more dispersed in cells grown in 

minimal media compared to those grown in rich medium. In rich media, much transcription is 

of ribosomal RNA, whereas in minimal media, when growth is slower, transcription is spread 
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across a range of genes, suggesting RNA polymerase has some effect on nucleoid structure 

(Reyes-Lamothe et al., 2012). Inhibiting both transcription and translation, using rifampicin 

and chloramphenicol respectively, caused the nucleoid to appear more condensed (Zusman et 

al., 1973), but the addition of rifampicin did not affect the rate of DNA segregation (Reyes-

Lamothe et al., 2008b). RNA polymerase is one of the strongest molecular motors in the cell, 

able to move DNA with a force of 30 pN, making it a good candidate for moving DNA in 

chromosome segregation (Wang et al., 1998). One popular theory about chromosome 

segregation is that the transcription of membrane proteins could provide the driving force. It 

has been proposed that when membrane proteins are expressed a section of DNA containing 

the gene moves to the membrane and the gene is transcribed and translated, and the protein is 

inserted into the membrane sequentially, a process called transertion. This attachment to the 

membrane would move the DNA away from the replication machinery and towards the two 

daughter cells (Woldringh, 2002).  However, since inhibition of transcription and translation 

did not disrupt chromosome segregation, it is likely that transertion is not the sole or main 

driving force of chromosome segregation (Reyes-Lamothe et al., 2008b). 

 

1.4 Regulation of transcription in Escherichia coli 

1.4.1 Bacterial RNA polymerase 

Unlike eukaryotes, most bacteria have one RNA polymerase responsible for all RNA 

synthesis (Ebright, 2000). This multi-subunit enzyme is found in two forms, the core enzyme 

and the holoenzyme. The core enzyme is able to catalyse RNA synthesis but cannot recognise 

promoter sequences and initiate transcription. The core enzyme consists of two α subunits, β 

and β’ subunits and an ω subunit. RNAP has been crystallised, including recently the E. coli 

enzyme (Zuo et al., 2013), and the structure has been described as a “crab-claw structure”, 
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with the end of the β and β’ subunits forming one arm of the claw each. Between the large β 

and β’ subunits is a channel, containing the active site and one essential Mg
2+

 ion (Darst et al., 

1989, Zhang et al., 1999). This active site has very high structural homology to the yeast 

RNAP II (Ebright, 2000). The α subunit dimer associates with the β and β’ subunits, 

triggering assembly of the core enzyme. The N-terminal domains of the α subunits are 

responsible for dimerisation and construction of the multi-subunit enzyme (Hayward et al., 

1991). The  function of the ω subunit is not clear, but it is thought it may act as a chaperone in 

the folding of the β’ subunit (Mukherjee et al., 1999, Ghosh et al., 2001).  

 

Although the core enzyme is catalytically active and can bind to DNA non-specifically, it 

cannot recognise the promoter sequences that signal the point for RNAP to bind and begin 

transcription. This function is added to the core enzyme by interaction with a σ factor to make 

the holoenzyme. The σ factor not only recognises the promoter sequence but by binding to it, 

ensures that the holoenzyme is correctly positioned to initiate transcription. Once the 

holoenzyme is positioned at the promoter sequence, the σ factor facilitates the unwinding of 

DNA at the transcription start site to allow transcription to advance (Murakami et al., 2002). 

The σ subunit from Thermus aquaticus has been crystallised revealing three domains σ2, σ3 

and σ4 joined by flexible linkers (Campbell et al., 2002). There are different families of σ 

factors which allow RNAP to recognise different sets of promoters. Under normal conditions, 

most promoters in E. coli are recognised by the “housekeeping” σ factor σ
70

, a member of the 

σ
70

 family of σ factors. In response to stresses experienced by the cell, other σ factors will 

start to accumulate and compete with σ
70

 for binding to RNAP (Maeda et al., 2000). These σ 

factors will recognise different promoter elements to σ
70

 and direct RNAP to transcribe genes, 

whose products will help the cell to deal with the stress.  
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Most bacteria have multiple σ factors each recognising different sets of promoters, with E. 

coli containing 7 σ factors (Maeda et al., 2000). For example, in E. coli, σ
38

 is responsible for 

transcribing genes required in the stationary phase of growth (Hengge-Aronis, 1993). There 

are around 2000 molecules of RNAP per cell, of which around 700 are free for binding for 

transcription (Ishihama, 2000). However there are around 1200 molecules of the various σ 

factors so there is competition for binding to RNAP. In most conditions σ
70

 is found at the 

highest concentration and it has 16 fold higher affinity for RNA polymerase than σ
38

 (Maeda 

et al., 2000). σ
70

 factors have 4 domains, σ1, σ2, σ3 and σ4. σ1 has important roles in preventing 

free σ factor from recognising promoters and also in open complex formation. The other 

domains are highly conserved and have roles in recognising promoter elements or interacting 

with RNAP (Murakami and Darst, 2003).  

 

1.4.2 Promoter recognition 

The regulation of gene expression is essential to ensure that gene products are available when 

they are needed, but energy is not wasted making unnecessary proteins. The expression of 

genes is controlled by promoters and their interaction with the holoenzyme. There are around 

4000 genes in E. coli competing for a limited supply of RNAP (Ishihama, 2000). The 

recognition of promoter sequence is an important factor in defining how highly a gene is 

expressed. There are four elements of a promoter sequence that can be recognised by the 

RNAP holoenzyme.  The two main elements of the promoter are the -10 and -35 hexamers, 

with consensus sequences of 5’-TATAAT-3’ and 5’-TTGACA-3’ respectively. As well as the 

sequences of these elements the spacing between them is also important. Promoters with good 

matches to these two consensus sequences can function, but if the -10 and -35 elements are 

further from the consensus sequence there are other promoter elements that can strengthen the 

promoter. The extended -10 sequence is a TGn motif found immediately upstream of the -10 
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sequence and UP element is with an AT rich region of around 20 bp located upstream of the 

-35 sequence (Browning and Busby, 2004). Promoters are often referred to as “strong” or 

“weak”, with the strongest sequences giving highest gene expression and often having 

promoter elements close to the consensus sequence for a given σ factor. The sequence of the 

promoter outside of the -10 and -35 elements can also have some effect, by stabilising the 

formation of the open complex and changing binding affinity.  

   

As previously mentioned, the σ factor is essential for recognition of these promoter elements 

by the holoenzyme. The -10 sequence is recognised by region 2.4 of σ2 and the -35 element 

by region 4.2 of σ4 (Murakami et al., 2002) (see figure 1.4).  The extended -10 sequence is 

recognised by regions 2.4 and 3.0 of the σ factor (Sanderson et al., 2003). Finally, the α 

subunit C-terminal domains of the holoenzyme sometimes interact with the UP element (Ross 

et al., 1993). The similarity of these elements to consensus sequence helps to suggest the 

strength of the promoter although there are other factors involved. Part of the role of the 

promoter elements is to ensure RNAP is positioned at the correct place to initiate 

transcription. Once the RNAP holoenzyme is bound in the correct position for initiation of 

transcription it forms the open complex of DNA where the two strands have started to 

unwind. Once the DNA is melted, the -10 element can be recognised by σ and RNAP 

interacts with downstream DNA up to position +2 (Zhang et al., 2012). Aromatic amino acid 

residues in region 2.3 of σ contact the base at position -12 and stabilise the open complex. The 

single stranded DNA is inserted into the channel of RNAP containing the active site 

(Murakami et al., 2002). This process may be repeated several times due to abortive initiation, 

when a transcript of about 12 nt has been made, RNAP can escape from the promoter. Once 

RNAP has entered the elongation phase of transcription, σ is no longer needed, is released and 
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Figure 1.4: Structure of RNA Polymerase and its interactions with promoter 

elements 

The RNA polymerase subunits α, β, β’, and σ are shown with the four domains of σ 

labelled. Also shown are the transcription start site and promoter elements with 

consensus sequences for the -10 and -35 elements 

Adapted from Browning and Busby, 2004. 
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 the core enzyme completes the transcript (Browning and Busby, 2004, Murakami and Darst, 

2003) . 

 

1.4.3 Transcription factors 

The activity of many promoters is regulated by transcription factors which can act as 

activators or repressors. They also link the activity of the promoter to signals relevant to the 

gene being regulated. There are 300 genes for predicted transcription factors in E. coli, 

equating to 8% of the genes (Pérez-Rueda and Collado-Vides, 2000). Most of these 

transcription factors have consensus sequences they recognise and bind to, directing them to a 

specific promoter or set of promoters. This binding can affect transcription by activating or 

repressing. Activators make the promoter more efficient by increasing its affinity for RNAP. 

 

There are three common methods by which a single transcription factor can activate 

transcription. In the first, Class I activation, the transcription factor binds to a site located 

upstream of the -35 element and contacts the CTD of the α subunit of the holoenzyme (see 

figure 1.5a) (Ebright, 1993). As the linker between the α CTD and NTD is flexible, the exact 

location of this binding site can vary. Class II activation involves a binding site that overlaps 

the -35 element. The transcription factor then binds to this site and contacts domain 4 of the σ 

factor (see figure 1.5b) (Dove et al., 2003). In both of these cases, binding of the transcription 

factor helps to recruit RNAP to the promoter. In a third mechanism the transcription factor 

binds between the -10 and -35 elements and aligns the promoter elements for binding by the 

holoenzyme (see figure 1.5c) (Browning and Busby, 2004). This mechanism is particularly 

seen in promoters where the spacing between the -10 and -35 elements is not optimal. 
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Figure 1.5: Activation at simple promoters 

a) Class I activation – The activator binds to an upstream site and contacts the α CTD of 

RNA polymerase recruiting the polymerase to the promoter. 

b) Class II activation – The activator binds to a target that is adjacent to the promoter -35 

element and interacts with domain 4 of σ
70

  

c) Activation by conformational change – The activator binds at or near to the promoter 

elements and realigns the -10 and -35 elements so that RNA polymerase can bind to 

the promoter. 

Adapted from Browning and Busby (2004).  
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There are also three common mechanisms for repression of promoters by transcription factors. 

One mechanism involves steric hindrance where the transcription factor binds over or near to 

the promoter elements preventing the holoenzyme from binding (see figure 1.6a) (Hudson and 

Fried, 1990). Another method involves two sets of binding sites present in the promoter which 

can both be bound by repressor proteins. The two sets of repressor proteins can then interact 

causing the DNA to loop and again preventing the holoenzyme from binding the promoter 

(see figure 1.6b) (Semsey et al., 2002). Lastly, the repressor can bind to an activator and 

prevent it from performing its function, therefore preventing the promoter from being 

activated (see figure 1.6c) (Shin et al., 2001, Browning and Busby, 2004).   

 

The number of promoters controlled by any transcription factor differs from case to case, with 

20% of transcription factors regulating two or less promoters. In contrast, 51% of genes in E. 

coli are directly regulated by at least one of a group of seven transcription factors (Martínez-

Antonio and Collado-Vides, 2003). All seven of these had previously been identified as 

controlling a particularly large number of genes, due to regulating other transcription factors 

and thereby increasing the number of genes they indirectly control. These factors, called 

global transcription regulators, includes ArcA, FNR, FIS, CRP, IHF, LRP and H-NS 

(Martínez-Antonio and Collado-Vides, 2003). CRP was identified as the most important of 

these global regulators as it regulated 197 promoters, 22 of which were for other transcription 

factors. CRP senses the levels of cAMP in the cell (Busby and Ebright, 1999) thereby linking 

gene expression to the energetic status of the cell.  

 

Almost half of all E. coli promoters are controlled by more than one transcription factor 

allowing for multiple signals to influence gene expression. There are 47 transcription factors  
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Figure 1.6: Mechanisms of repression 

a) Repression by steric hindrance – The repressor binding site overlaps core promoter 

elements and blocks recognition of the promoter by RNA polymerase 

b) Repression by looping – Repressors bind to distal sites and interact by looping, 

repressing the promoter. 

c) Repression by modulation of an activator – The repressor binds to an activator and 

prevents the activator from functioning by blocking promoter recognition by RNA 

polymerase. 

Adapted from Browning and Busby (2004).  
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known to regulate genes also regulated by CRP. In many cases a global regulator co-regulates 

with a more specific transcription factor which “fine-tunes” the response reacting to a precise 

signal (Martínez-Antonio and Collado-Vides, 2003). For example, the araBAD operon, 

encoding genes responsible for the metabolism of arabinose, is co-regulated by CRP and 

AraC. CRP senses high cellular cAMP levels, signalling low glucose levels, and AraC is 

activated by binding to arabinose. In combination, these two transcription factors ensure that 

araBAD is only expressed in the presence of arabinose but the absence of glucose, the exact 

conditions when the cell would want to be metabolising arabinose (Miyada et al., 1984) (See 

section 4.1.3 for more detail). The combination of global and local transcription factors make 

a regulatory network allowing the E. coli cell to respond to small changes in the environment 

and link the regulation of genes with a related function.  

 

1.4.4 Link between nucleoid structure and transcription regulation 

As described previously, NAPs have an important role in compacting DNA and holding the 

nucleoid structure in place. Many of them also have another important role in the cell in the 

regulation of transcription. Out of the seven “global regulators” mentioned in section 1.4.3, 

three are also NAPs with clear links to modifying chromosome structure. These are Fis, IHF 

and H-NS (Martínez-Antonio and Collado-Vides, 2003). Fis alone is thought to cause at least 

a slight change in transcription in around 21% of currently annotated E. coli genes, either 

activating or repressing, directly or indirectly (Cho et al., 2008). Chromatin 

immunoprecipitation analysis also showed that targets bound by Fis and H-NS are also 

associated with RNA polymerase. All three of these NAPs preferentially bind to AT rich 

sequences which suggests a possible link to promoter sequences (Grainger et al., 2006). The 

theory of the process of transertion suggests that transcription of membrane proteins may 



35 

 

involve rearrangement of the chromosome to position the gene at the membrane, further 

evidence of a link between gene expression and chromosome structure (Woldringh et al., 

1995). 

 

 It is possible that the transcription of any protein encoding gene may involve some 

chromosome remodelling, due to the coupling of transcription and translation and the absence 

of ribosomes from the nucleoid (Miller et al., 1970, Hobot et al., 1985). It is also possible that 

instead of the processes of chromosome folding and transcription occurring side by side in the 

cell they actually work together with some factors taking on two roles simultaneously and 

helping towards both of these processes. 

 

1.5 Aims of the project 

The overall aim of this work is to attempt to establish if there is a link between chromosome 

structure and the regulation of transcription in bacteria. Both areas have been studied 

previously and there are indications that they could influence each other but there is little 

known about this possible link. The binding of the GalR repressor has been shown to have an 

effect on chromosome structure, as well as its previously known function of repressing 

transcription (Qian et al., 2012). In particular, the ability of GalR to bring together binding 

sites at distant locations on the chromosome suggests at least some transcription factors may 

be able to influence chromosome structure (see section 4.1.1 for more detail). Epifluorescence 

microscopy was exploited to observe the structure of the chromosome and behaviour of 

transcription factors in the cell. Epifluorescent microscopy was chosen over confocal 

microscopy for these experiements as the level of fluorescence is relatively low and 

fluorescent foci are prone to photobleaching. In epifluorescent microscopy, light is collected 
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from the whole sample, in contrast to confocal microscopy where the whole cell is illuminated 

but light is only collected from one focal plane. Exposure times are also longer for confocal 

imaging. 

 

A position on the chromosome can be tagged using a DNA binding protein fused to a 

fluorescent protein targeted to the site of interest, a technique known as fluorescent reporter 

operator systems (FROS, see section 3.1.1). The initial aim of this work was to develop a new 

FROS method to give the most reliable results with the least disruption to the chromosome, 

Also, a second FROS system was developed using the transcription factor MalI as a FROS 

reporter, as this has been well studied and is known to have some similarities to LacI. This 

provides an alternative to using TetR as a FROS reporter in combination with LacI (Chapter 

3). This method was used to study inducible promoters in the presence and absence of their 

inducer. Sites adjacent to promoters were tagged with a fluorescent protein and followed by 

microscopy to establish whether the position of the promoter within the cell changes when 

transcription is taking place. Promoters controlled by the AraC and MntR transcription factors 

were chosen for study as they are well studied and promoters can be easily induced. The same 

method was used to investigate whether promoters regulated by the same transcription factor 

colocalise in the cell, despite being found at distant locations on the circular chromosome, 

which would indicate a possible role in chromosome organisation for transcription factors. 

Again, members of the AraC and MntR regulons were studied in the presence and absence of 

inducers. The effect of inducing transcription on the chromosome structure in cells that were 

at the point of division was also studied (Chapter 4). 
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Finally, photoactivated localisation microscopy (PALM) was used to investigate the diffusion 

of LacI on a single molecule level. This gives information about motility of individual 

molecules under different conditions. The method had previously been used to study DNA 

repair by visualising individual DNA polymerase molecules, and preliminary experiments in 

Chapter 5 show its suitability for studying transcription factors. 

 

In combination, these results aim to uncover a potential link between transcription regulation 

and chromosome structure in bacteria. Although FROS has been used previously, it has not 

been used to study the effects of transcription. This study aims to achieve this and adapt the 

FROS method to cause less disruption to chromosome structure.  
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2. Materials and Methods 
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2.1 Buffers, Solutions and Reagents 

All solutions to be used for bacterial growth or DNA manipulations were autoclaved at 120°C 

and 15 psi for 20 minutes. All chemicals were purchased from Sigma-Aldrich or Fisher 

Scientific unless stated otherwise. All solutions were made up with distilled and deionised 

water (resistivity 18.2 MΩcm ).  All solutions with concentrations expressed as a percentage 

are w/v. 

 

2.2 Growth Media 

All liquid media was autoclaved at 120°C and 15 psi for 20 minutes, and stored at room 

temperature. Solid media was also autoclaved 120°C and 15 psi for 20 minutes.  

  

2.2.1 Solid Media 

Nutrient Agar: 23 g nutrient agar (Difco) in 1 L ddH2O  

MacConkey Agar: 40 g MacConkey agar base (Difco) in 1 L ddH2O  

Solid media was made up in distilled and deionised water (ddH2O) as above, then autoclaved 

at 120°C and 15 psi for 20 minutes and cooled before any supplements were added. Molten 

agar was then poured into sterile petri dishes under sterile conditions and stored at 4°C. An 

appropriate carbon source was added to MacConkey agar before autoclaving to give the 

required final concentration.  

 

2.2.2 Liquid Media 

Lennox broth: 20 g Tryptone, 10 g Yeast Extract, 10 g NaCl in 1 L ddH2O 

M9 Minimal Media 10 x Salts: 60 g Na2HPO4, 30 g KH2PO4,5 g NaCl,10 g NH4Cl in 1 L 

ddH2O 
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M9 minimal media: 10 ml 10 X M9 Salts, 90 ml Sterile ddH2O, 200 µl 1 M MgSO4,100 µl 

0.1 M CaCl2, 500 μl 20% w/v Casamino acids, 1.5 ml 20% w/v Carbon source.  

All components were autoclaved separately before use and fresh media was made up on day 

of use.. Antibiotics and other supplements were added at time of use. 

 

M9 minimal media for PALM: 10 ml 10 x M9 salts, 90 ml sterile ddH2O, 200 µl 1 M 

MgSO4,100 µl 0.1 M CaCl2,, MEM amino acids + proline, MEM vitamins, 0.2% glycerol 

 

2.2.3 Antibiotics and other supplements 

Ampicillin: Solution of 40 mg/ml in sterile ddH2O, stored at -20°C. Used at a final 

concentration of 100-200 µg/ml. 

Chloramphenicol: Solution of 35 mg/ml in ethanol, stored at -20°C. Used at a final 

concentration of 35 µg/ml. 

Kanamycin: Solution of 50 mg/ml in sterile ddH2O, stored at -20°C. Used at a final 

concentration of 50 µg/ml. 

Tetracycline: Solution of 10 mg/ml in ethanol, stored at -20ºC. Used at a final concentration 

of 35 μg/ml. 

Rifampicin: Solution of 12.5 mg/ml in ethanol, stored at -20ºC. Used at a final concentration 

of 50 μg/ml. 

IPTG: Solution of 100 mM in sterile ddH2O, stored at -20°C. Diluted as required. 

X-Gal: Solution of 50 mg/ml in dimethyl sulfoxide and stored at -20°C. Used at a final 

concentration of 40 µg/ml. 

Arabinose: Solution of 20% w/v in sterile ddH2O. Used at a final concentration of 0.3% 
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Fructose: Solution of 20% w/v in sterile ddH2O. Used at a final concentration of 0.3% 

Glucose: Solution of 20% w/v in sterile ddH2O. Used at a final concentration of 0.3% 

 

All stock solutions were made up as above and sterilised using a 0.2 μm syringe filter. To 

supplement solid media, agar was cooled to approximately 50ºC before the supplement was 

added to give the final concentration required and mixed well by shaking.  

 

2.3 Bacterial Strains 

Strains were stored as glycerol stocks at -80°C. Before use the strain was restreaked onto 

nutrient agar plates and incubated overnight at 37°C. Overnight cultures were grown by 

inoculating a single colony in 5 ml LB or M9 minimal media, with antibiotics if required, and 

incubating overnight at 37°C, or lower temperature if necessary, with orbital shaking at 

250 rpm in non-baffled flasks, unless specified otherwise. To monitor growth of bacterial 

cultures, optical density at 650 nm was measured using a Helios Gamma spectrophotometer. 

Strains used in this study are listed in Table 2.1. 

 

2.4 Plasmids 

All plasmids used in this study are listed in table 2.2. Plasmids maps are shown in figures 2.1 

to 2.13 
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Table 2.1 E.coli K-12 strains used in this study (continued on next page) 

Strain Description Origin 

RLG221 recA56 araD139 (ara-leu)7697 lacX74 galU galK hsdR 

strA 

R. Gourse 

MG1655 F- λ- ilvG rfb-50 rph-1 (Cherepanov and 

Wackernagel, 

1995) 

C2925 Ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 

mcrA dcm-6 hisG4 rfbD1 R(zgb210::Tn10) Tet
s 

endA1 

rspL136 (Str
R
) dam13::Tn9 (Cam

R
) xylA-5 mtl-1 thi-1 

mcrB1 hsdR2 

New England 

Biolabs 

ΔaraC 83 araC derivative of BW25113 (Baba et al., 

2006) 

KH000 lacI derivative of MG1655 Hollands 

(unpublished) 

KH001 Derivative of KH000 in which the lacZ promoter has 

been removed 

Hollands 

(unpublished) 

DL01 Derivative of MG1655 in which LacI has been tagged 

with GFP on the chromosome and the lacZ promoter has 

been removed 

(Lee et al., 2009) 

DL02 Derivative of DL01 from which the kan cassette has been 

removed 

This study 

LR04 Derivative of KH001 in which 22 copies of the LacI 

DNA sites inserted adjacent to araBAD 

This study 

MSR02 Derivative of LR04 in which LacI has been tagged with 

GFP on the chromosome with the lacZ promoter removed 

M. Sánchez-

Romero 

(Unpublished) 

LR06 Derivative of MSR02 from which the kan cassette has 

been removed 

This study 

LR15 Derivative of DL02 in which 6 copies of the LacI DNA 

sites inserted adjacent to araBAD 

This study 

LR16 Derivative of MG1655 in which 20 copies of the MalI 

DNA site have been inserted adjacent to araBAD 

This study 

LR17 Derivative of LR16 from which the kan cassette has been 

removed 

This study 

LR18 Derivative of LR15 from which the kan cassette has been 

removed 

This study 
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Table 2.1 E. coli K-12 strains used in this study (continued on next page) 

Strain Description Origin 

LR19 Derivative of LR06 in which 20 copies of the MalI DNA 

site have been inserted adjacent to araJ 

This study 

LR20 Derivative of MG1655 in which 20 copies of the MalI 

DNA site have been inserted adjacent to araF  

This study 

LR22 Derivative of DL02 in which 22 LacI DNA sites have 

been inserted adjacent to araJ 

This study 

LR29 Derivative of MG1655 in which LacI has been tagged 

with PAmCherry on the chromosome and the lacZ 

promoter has been removed 

This study 

LR30 Derivative of LR18 in which LacI has been tagged with 

PAmCherry on the chromosome and the lacZ promoter 

has been removed 

This study 

LR31 Derivative of LR19 from which the kan cassette has been 

removed  

This study 

LR35 Derivative of LR29 from which the kan cassette has been 

removed 

This study 

LR37 Derivative of LR30 from which the kan cassette has been 

removed 

This study 

LR38 Derivative of LR20 from which the kan cassette has been 

removed 

This study 

LR39 Derivative of LR22 from which the kan cassette has been 

removed 

This study 

LR40 Derivative of LR06 in which 20 MalI DNA sites have 

been inserted adjacent to mntH 

This study 

LR42 Derivative of LR40 from which the kan cassette has been 

removed 

This study 

LR44 ΔaraC derivative of LR38 This study 

LR45 Derivative of SXB4 in which 20 MalI DNA sites have 

been inserted adjacent to mntH 

This study 

LR46 Derivative of LR06 in which 20 MalI DNA sites have 

been inserted adjacent to araFGH 

This study 

LR47 Derivative of LR45 from which the kan cassette has been 

deleted 

This study 

LR48 Derivative of LR46 from which the kan cassette has been 

deleted 

This study 
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Table 2.1 E. coli K-12 strains used in this study (continued) 

Strain Description Origin 

SXB1 Derivative of MG1655 in which 20 copies of the MalI 

DNA site have been inserted adjacent to mntH  

S. Bevan 

(unpublished) 

SXB2 Derivative of MG1655 LacI::GFP in which 22 copies of 

the LacI DNA site have been inserted adjacent to dps 

S. Bevan 

(unpublished) 

SXB3 Derivative of SXB1 from which the kan cassette has been 

removed 

S. Bevan 

(unpublished) 

SXB4 Derivative of SXB2 from which the kan cassette has been 

removed 

S. Bevan 

(unpublished) 
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Table 2.2 Plasmids used in this study (continued on next page) 

Plasmid Description Origin 

pDOC-C Donor plasmid for gene goctoring with sacB gene 

for counter selection (Amp
R
 sacB) (figure 2.1) 

(Lee et al., 2009) 

pDOC-G Donor plasmid for gene doctoring used for making 

GFP fusions on Chromosome (Kan
R
 Amp

R 
sacB) 

(Lee et al., 2009) 

pACBSR Mutagenesis plasmid containing λ red proteins 

and SceI under control of an arabinose inducible 

promoter for use in gene doctoring (Cm
R
) (figure 

2.2) 

Scarab Genomics 

pPM301 pUC19 derivative containing 22 LacI DNA site 

repeats (Amp
R
) 

P.McGlynn 

(unpublished) 

pPM461 pUC19 derivative containing 6 LacI DNA site 

repeats (Amp
R
) 

P.McGlynn 

(unpublished) 

pJB10 Donor plasmid for gene doctoring used for 

inserting plac GFP onto the chromosome at ara 

locus (Kan
R
 Amp

R
) (figure 2.3) 

J.Bryant 

(unpublished) 

pJB32 Donor plasmid for gene doctoring used for 

inserting plac GFP onto the chromosome at rcsB 

locus. Contains sacB counter selection (Kan
R
 

Amp
R
 sacB) (figure 2.4) 

J.Bryant 

(unpublished) 

pCP20 Temperature sensitive plasmid encoding FLP 

recombinase (Amp
R
 Cm

R
) 

(Cherepanov and 

Wackernagel, 1995) 

pUC19 Coloning vector (Amp
R
) (figure 2.5)  

pUCMal20 pUC19 containing 20 repeats of the MalI DNA 

site (Amp
R
) 

This Study 

pET20b Protein expression vector (Amp
R
) Novagen 

pET22b Protein expression vector containing constitutively 

expressed LacI (Amp
R
) 

Novagen 

pACYC184 Cloning vector (Tet
R
 Cm

R
) (figure 2.6) (Chang and Cohen, 

1978) 

pACYCΔHN Cloning vector with tetR deletion (Cm
R
) C. Webster 

(unpublished) 

pmCherry-N1 Plasmid carrying mCherry suitable for N terminal 

fusions 

ClonTec 

pJW15Δ100 Plasmid for fusing genes to the melR promoter 

(Amp
R
) (figure 2.7) 

(Kahramanoglou et 

al., 2006) 
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Table 2.2 Plasmids used in this study (continued on next page) 

Plasmid Description Origin 

pLR1 Derivative of pJB10. Donor plasmids for inserting 

6 LacI DNA sites adjacent to araBAD (Amp
R
) 

This study 

pLR2 Derivative of pJB10. Donor plasmids for inserting 

22 LacI DNA sites adjacent to araBAD (Amp
R
) 

This study 

pLR5 Derivative of pLR1. Donor plasmid for inserting 6 

LacI DNA sites adjacent to araBAD with kan 

cassette (Kan
R
 Amp

R
) 

This study 

pLR6 Derivative of pLR2. Donor plasmid for inserting 

22 LacI DNA sites adjacent to araBAD with kan 

cassette (Kan
R
 Amp

R
) 

This study 

pLR7 Derivative of pLR5 with pDOC-C backbone. 

Donor plasmid for inserting 6 LacI DNA sites 

adjacent to araBAD (Kan
R
 Amp

R
 sacB) 

This study 

pLR8 Derivative of pLR6 with pDOC-C backbone. 

Donor plasmid for inserting 22 LacI DNA sites 

adjacent to araBAD(Kan
R
 Amp

R
 sacB)(figure 2.8) 

This study 

pLR11 Derivative of pJB32. Donor plasmid containing 20 

copies of the MalI DNA site (Kan
R
 Amp

R
 

sacB)(figure 2.9) 

This study 

pLR15 Derivative of pJB32. Donor plasmid containing 

ftnB homology region upstream of the kan cassette 

(Kan
R
 Amp

R
 sacB) 

This study 

pLR16 Derivative of pLR15. Donor plasmid containing 

yecJ homology region downstream of placZGFP 

(Kan
R
 Amp

R
 sacB) 

This study 

pLR17 Derivative of pLR16. Donor plasmid for inserting 

20 copies of the MalI DNA site adjacent to 

araFGH (Kan
R
 Amp

R
 sacB) (figure 2.9) 

This study 

pLR19 Derivative of pLR8. Donor plasmid for inserting 

20 copies of the MalI DNA site adjacent to 

araBAD (Kan
R
 Amp

R
 sacB) (figure 2.9) 

This study 

pLR20 Derivative of pLR17. Donor plasmid for inserting 

22 LacI DNA sites adjacent to araFGH (Kan
R
 

Amp
R
 sacB) (figure 2.8)  

This study 

pLR22 Derivative of pJB32 Donor plasmid containing 

araJ homology region upstream of the kan 

cassette (Kan
R
 Amp

R
 sacB) 

This study 
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Table 2.2 Plasmids used in this study (continued on next page) 

Plasmid Description Origin 

pLR23 Derivative of pLR22. Donor plasmid containing 

mak homology region downstream of placZGFP 

(Kan
R
 Amp

R
 sacB) 

This study 

pLR24 Derivative of pLR23. Donor plasmid for inserting 

20 copies of the MalI DNA site adjacent to araJ 

(Kan
R
 Amp

R
 sacB) (figure 2.9) 

This study 

pLR25 Derivative of pLR24. Donor plasmid for inserting 

22 copies of the LacI DNA site adjacent to araJ 

(Kan
R
 Amp

R
 sacB) (figure 2.8) 

This study 

pSB1 Derivative of pJB32. Donor plasmid containing 

ypeC homology region upstream of the kan 

cassette (Kan
R
 Amp

R
 sacB) 

S. Bevan 

(unpublished) 

pSB2 Derivative of pJB32. Donor plasmid containing 

dps homology region downstream of placZGFP 

(Kan
R
 Amp

R
 sacB) 

S. Bevan 

(unpublished) 

pSB3 Derivative of pSB1. Donor plasmid containing 

mntH homology region downstream of placZGFP 

(Kan
R
 Amp

R
 sacB) 

S. Bevan 

(unpublished) 

pSB4 Derivative of pSB2. Donor plasmid containing 

rhtA homology region upstream of the kan 

cassette (Kan
R
 Amp

R
 sacB) 

S. Bevan 

(unpublished) 

pSB5 Derivative of pSB3. Donor plasmid for inserting 

20 copies of the MalI DNA site adjacent to mntH 

(Kan
R
 Amp

R
 sacB) (figure 2.9) 

S. Bevan 

(unpublished) 

pSB6 Derivative of pSB4. Donor plasmid for inserting 

22 copies of the LacI DNA site adjacent to  dps 

(Kan
R
 Amp

R
 sacB) (figure 2.8) 

S. Bevan 

(unpublished) 

pLER101 Derivative of pACYC184 containing LacI fused to 

GFP under the control of the lacI promoter (Cm
R
) 

(figure 2.10) 

This study 

pLER104 Derivative of pLER101 containing MalI fused to 

mCherry  under the control of the malI promoter 

(Cm
R
) (figure 2.11) 

This study 

pLER105 Derivative of pJW15 containing MalI::mCherry 

fused to melR promoter (Cm
R
) (figure 2.12) 

This study 
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Table 2.2 Plasmids used in this study (continued) 

Plasmid Description Origin 

pLER107 Derivative of pLER101 containing LacI fused to 

FLAG tag under the control of the lacI promoter 

(Cm
R
) 

This study 

pLER108 Derivative of pLER105 containing MalI fused to 

mCherry under the control of the melR promoter 

(Cm
R
) (figure 2.13) 

This study 

pRW901 Derivative of pRW50 containing the lacZ gene 

without a promoter for use as a negative control in 

β-galactosidase assays (Tet
R
) 

(Butala et al., 2009) 

pBAD Derivative of pRW901 containing the lacZ gene 

under the control of the araBAD promoter (Tet
R
) 

M. Sánchez-Romero 

pBAD-HisB-

PAmCherry 

Plasmid encoding PAmCherry Clontech 

pDOC-PAM-

lac 

Derivative of pDOC-G (Lee et al., 2009) 

containing PAmCherry and homology regions to 

tag AraC with PAmCherry (Kan
R
 Amp

R
 sacB) 

(figure 2.14) 

This study 
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ampR

pMBIori

sacB

oriT

pDOC-C

5.9 kb

SceISceI

Figure 2.1: Plasmid map of pDOC-C  

pDOC-C is used for making gene doctoring donor plasmids. SceI sites are shown 

flanking a cloning region. Also shown are the ampicillin resistance gene (amp
R
), the 

origins of replication (oriT and pMBIori) and the sucrose sensitivity gene (sacB). 
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sce-I

araC

pACBSR

7.35 kb

λ red 

para

cmR

ori

Figure 2.2: Plasmid map of pACBSR  

pACBSR is a mutagenesis plasmid used in gene doctoring. It encodes the λ Red 

recombination proteins and the SceI yeast meganuclease, both under the control of the 

araBAD promoter (para). The araC gene is included to provide the activator for the 

araBAD promoter. Also shown are the chloramphenicol resistance gene (cm
R
) and origin 

of replication (ori). 
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plac

SceI                     KpnI        BglII                BglII HindIII                  NheI    SpeI                 SceI

FLP                          FLP
thiQ HR                        kanR GFP yabI HR

MfeI        XmaI   AgeI XhoI EcoRI SalI                  BsiGI                 SacI 

pJB10

7.2 kb

Figure 2.3: Plasmid map of pJB10 

pJB10 is a gene gorging plasmid for inserting placZ gfp adjacent to the araBAD 

promoter. It carries 500 bp of homology to the 3’ end of thiQ flanked by MfeI and XmaI 

restriction sites. Also carried is 500 bp of homology to the 3’ end of yabI flanked by NheI 

and SacI restriction sites. Between the two homology regions are a kanamycin resistance 

cassette (kan
R
) and the lacZ promoter fused to gfp. Also shown are the ampicillin 

resistance gene (bla), the origin of replication (ori) and the plasmid replication gene 

(rop).  
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plac

SceI                     KpnI        BglII                BglII HindIII                  NheI    SpeI                 SceI

FLP                          FLP
rcsB HR                        kanR GFP rcsC HR

MfeI        XmaI   AgeI XhoI EcoRI SalI                  BsiGI                 SacI 

pJB32

9.2 kb

ampR

pMBIori

sacB

oriT

Figure 2.4: Plasmid map of pJB32 

pJB32 is a gene doctoring plasmid for inserting placZ gfp adjacent to the araBAD 

promoter. It carries 500 bp of homology to the 3’ end of thiQ flanked by MfeI and XmaI 

restriction sites. Also carried is 500 bp of homology to the 3’ end of yabI flanked by NheI 

and SacI restriction sites. Between the two homology regions are a kanamycin resistance 

cassette (kan
R
) and the lacZ promoter fused to gfp. Also shown are the ampicillin 

resistance gene (amp
R
), the origins of replication (oriT and pMBIori) and the sucrose 

sensitivity gene (sacB). 
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pUC19

2.9 kbAmpR

rep(pMB1)

lacZ

Multiple 

cloning site

Figure 2.5: Plasmid map of pUC19 

pUC19 is a cloning vector encoding lacZ with a multiple cloning site within the gene. 

Successful inserts into this multiple cloning site can be selected for by blue-white 

selection on X-gal plates. Also shown are the ampicillin resistance gene (Amp
R
) and 

origin of replication (rep(pMB1)). 
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CmR

rep(p15A)

pACYC184

4.25 kb

TetR

HindIII

(1524)
BclI

(3542)

SalI

(2146)

Figure 2.6: Plasmid map of pACYC184 

pACYC184 is a small, medium copy number E. coli plasmid. It contains the replicon rep 

for replication of the plasmid, a tetracycline resistance gene (tet
R
) and a chloramphenicol 

resistance gene (cm
R
). Also shown are the positions or restriction sites for HindIII, BclI 

and SacI.  
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AmpR

galK

pJW15 Δ100

4.7 kb

ori

EcoRI

HindIII

pmelR

NsiI

melR Δ100

SD

Figure 2.7: Plasmid map of pJW15 Δ100 

pJW15 Δ100 is a multicopy plasmid carrying the melR promoter. NsiI and HindIII 

restriction sites flank a truncated version of the melR gene. Genes of interest can be 

cloned into the plasmid to place the gene under the control of the melR promoter. The 

ATG of the gene is removed and the NsiI site (ATGCAT) provides the translation start 

codon. Also shown are the ampicillin resistance gene (Amp
R
), the galK gene, the origin 

of replication (ori) and Shine-Dalgarno sequence (SD). 
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SceI                     KpnI        BglII                BglII                                          NheI                SceI
FLP                          FLP

MfeI        XmaI   AgeI SacI 

ampR

pMBIori

sacB

oriT

HR 1                          kanR 22x LacI DS             HR2

22 x LacI DS insert 

donor plasmid 

9.1 kb

Figure 2.8: Plasmid map of donor plasmids used for inserting 22 copies of the LacI 

DNA site onto the chromosome 

Gene doctoring donor plasmids for inserting 22 LacI DNA site onto the chromosome 

have the same basic structure shown. They carry 500 bp of homology to gene upstream of 

the insertion site flanked by MfeI and XmaI restriction sites. Also carried is 500 bp of 

homology to the gene downstream of the insertion site flanked by NheI and SacI 

restriction sites. Between the two homology regions are a kanamycin resistance cassette 

(kan
R
) and 22 copies of the LacI DNA site (LacI DS). Also shown are the ampicillin 

resistance gene (amp
R
), the origins of replication (oriT and pMBIori) and the sucrose 

sensitivity gene (sacB). 
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SceI                                                                     EcoRI                                 NheI          SceI
FLP                          FLP

MfeI                 AgeI XhoI BamHI                                               

ampR

pMBIori

sacB

oriT

HR 1                          kanR 20x MalI DS              HR2

20 x MalI DNA site 

insert donor plasmid 

8.9 kb

Figure 2.9: Plasmid map of donor plasmid used inserting 20 copies of the MalI DNA 

site onto the chromsome  

Gene doctoring donor plasmids for inserting 20 MalI DNA sites onto the chromosome 

have the same basic structure shown. They carry 500 bp of homology to gene upstream of 

the insertion site flanked by MfeI and XmaI restriction sites. Also carried is 500 bp of 

homology to the gene downstream of the insertion site flanked by NheI and SacI 

restriction sites. Between the two homology regions are a kanamycin resistance cassette 

(kan
R
) and 20 copies of the MalI DNA site (MalI DS). Also shown are the ampicillin 

resistance gene (amp
R
), the origins of replication (oriT and pMBIori) and the sucrose 

sensitivity gene (sacB). 
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CmR

rep(p15A)

HindIII KpnI AgeI BclI/EcoRI

MfeI

pLER101

4.5 kb

lacI GFP

placI

Figure 2.10: Plasmid map of pLER101 

pLER101 is a pACYC184 derivative encoding LacI::GFP under the control of the lacI 

promoter (placI). Also shown are the origin of replication (rep(p15A)) and 

chloramphenicol resistance gene (Cm
R
). 
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CmR

rep(p15A)

HindIII KpnI AgeI BclI/EcoRI

MfeI

pLER104

4.2 kb

malI mCherry

pmalI

Figure 2.11: Plasmid map of pLER104 

pLER104 encodes MalI::mCherry under the control of the malI promoter (pmalI). Also 

shown are the origin of replication (rep(p15A)), chloramphenicol resistance gene (Cm
R
) 

and MalI binding sites.  
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AmpR

galK

pLER105

4.7 kb

ori

EcoRI KpnI AgeI HindIII

MfeI

malI mCherry

pmelR

BamHI NsiI

Figure 2.12: Plasmid map of pLER105 

pLER105 encodes MalI::mCherry under the control of the melR promoter. Also shown 

are the origin of replication (ori), ampicillin resistance gene (Amp
R
) and galK. 
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CmR

rep(p15A)

HindIII KpnI AgeI

MfeI

pLER108

4.2 kb

malI mCherry

pmelR

Figure 2.13: Plasmid map of pLER108 

pLER108 encodes MalI::mCherry under the control of the melR promoter. Also shown 

are the origin of replication (rep(p15A)) and chloramphenicol resistance gene (Cm
R
).  
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ampR

pMBIori

sacB

oriTDonor plasmid for 

tagging transcription 

factors with 

fluorescent proteins

SceI                     KpnI            AgeI                                      XhoI               SacI  SceI
FLP                          FLP

EcoRI                                       MfeI NheI     SpeI

HR 1     GFP/mCherry KanR HR2

Figure 2.14: Plasmid map of donor plasmids used for tagging transcription factors 

with fluorescent proteins on the chromosome 

Gene doctoring donor plasmids for tagging transcription factors with fluorescent proteins 

on the chromosome have the same basic structure shown. They carry a region of 

homology to gene upstream of the insertion site flanked by EcoRI and KpnI restriction 

sites. Also carried is a region of homology to the gene downstream of the insertion site 

flanked by XhoI and NheI restriction sites. Between the two homology regions are a 

kanamycin resistance cassette (kan
R
) and a fluorescent protein gene, flanked by KpnI and 

AgeI restriction sites. Also shown are the ampicillin resistance gene (amp
R
), the origins of 

replication (oriT and pMBIori) and the sucrose sensitivity gene (sacB). 

 

 



63 

 

2.5 Gel electrophoresis of DNA 

2.5.1 Agarose gel electrophoresis 

DNA loading dye: 0.025 % Bromophenol Blue, 0.025 % Xylene Cyanol F, 20% glycerol, 10 

mM TRIS, 1 mM EDTA 

DNA Markers: 100 bp and 1 kb DNA ladders (NEB) 

Ethidium Bromide: 10 mg/ml (Biorad) 

SYBR Safe: (Invitrogen)  

40 x TAE Buffer:  2 M Tris acetate, 100 mM Na2EDTA (National Diagnositics). Diluted to 1 

x for use as running buffer. 

0.8% Agarose solution: 0.8g agarose dissolved in 100 ml 1x TAE buffer.  

 

Agarose gels were used to analyse and purify DNA fragments of more than 200 bp in length. 

0.8% agarose solution was heated in a microwave to dissolve agarose before bring cooled to 

around 50°C and poured into a gel casting tray with a comb. DNA samples were mixed with 

loading dye in a ratio of 5:1 and loaded into the wells. The gel was run at 100 V in TAE 

buffer for 30-45 minutes. Gels were stained in a solution of 0.5mg/ml ethidium bromide 

solution or SYBR Safe, diluted approximately 100 fold from concentrate, for 30 minutes and 

then visualised using a UV transilluminator. For gel extractions, gels were stained with SYBR 

Safe and visualised using a blue light box and orange filter to avoid UV damage to DNA to be 

used in downstream processes. 
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2.5.2 Polyacrylamide gel electrophoresis 

5 x TBE Buffer: 0.44 M Tris borate pH8.3, 10 mM Na2EDTA (National Diagnositics). 

Diluted to 1 x for use as running buffer. 

Stock acrylamide solution: 30% (w/v) acrylamide, 0.8% bisacrylamide solution (Protogel, 

National Diagnostics) 

7.5% acrylamide solution: 125 ml acrylamide stock solution, 100ml 5x TBE, 20 ml glycerol, 

made up to 500 ml with ddH2O  

 

Polyacrylamide gels were used for analysis of small fragments of DNA or to differentiate 

between two bands when the size difference was very small. For a small gel containing 9 

wells 10 ml working solution was used. This was polymerised by adding 100 µl 10% APS 

and 15 µl TEMED (N,N,N',N'-tetramethylethane-1,2-diamine). DNA samples were mixed 

with DNA loading dye and loaded into the wells. Gels were run in 1 x TBE buffer at 30-

40 mA constant current for 30 minutes to 1 hour, stained in ethidium bromide solution and 

visualised using a UV transilluminator. 

 

2.6 Extraction and purification of nucleic acids 

2.6.1 Purification of DNA using QIAquick PCR purification kit 

Purification of PCR products or DNA from a restriction digest was carried out using a 

QIAquick PCR purification kit (QIAgen) or ISOLATE PCR and Gel kit (Bioline) following 

manufacturer’s instructions. Purified DNA was eluted in 50 µl elution buffer provided in the 

kit or 50 μl ddH2O. 
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2.6.2 Extraction of DNA from agarose gels 

DNA samples were run on a 0.8% agarose gel as described previously. The gels were then 

stained in SYBRSafe for 30 minutes and a blue light box was used to visualise the DNA in 

combination with an orange filter. The required bands were then excised and DNA fragments 

were purified using the QIAquick gel extraction kit (QIAgen) or ISOLATE PCR and Gel kit 

(Bioline) following the manufacturer’s instructions. Samples were eluted into 50 µl elution 

buffer provided in the kit or 50 μl ddH2O. 

 

2.6.3 Preparation of plasmid DNA  

A fresh colony of a strain carrying the required plasmid was used to inoculate an overnight 

culture in LB medium supplemented with the appropriate antibiotic. Plasmid DNA was 

extracted from the culture using a QIAprep Spin Miniprep Kit (QIAgen) or ISOLATE 

Plasmid Mini Kit (Bioline) following manufacturer’s instructions. Plasmid DNA was eluted 

into 50 µl elution buffer provided in the kit or 50 μl ddH2O. 

 

2.7 Transformations 

2.7.1 Preparation of competent cells using the calcium chloride method 

Calcium chloride: 0.1 M 

The strain to be made competent was streaked out to provide fresh, single colonies. One 

colony was used to inoculate an overnight culture in LB media. The following day, 1 ml of 

overnight culture was used to inoculate 50 ml LB media and the culture was incubated at 

37ºC until OD650 reached around 0.3-0.5, mid-exponential phase. The culture was decanted 

into a sterile centrifuge tube and incubated on ice for 10 minutes, before the cells were 

harvested by centrifugation for 10 minutes at 3400 x g and 4ºC. The supernatant was removed 
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and the pellet resuspended in 25 ml ice cold 0.1 M CaCl2. The cells were incubated on ice for 

20 minutes before being harvested by centrifugation for 10 minutes at 3400 x g and 4ºC. The 

pellet was resuspended in 3.3 ml ice cold 0.1 M CaCl2 with 15% glycerol and incubated on 

ice for at least 2 hours or overnight prior to use. Cells were stored as aliquots at -80ºC. 

 

2.7.2 Transformation 

Approximately 100 ng DNA of plasmid were added to 100 µl competent cells and incubated 

on ice for 30 minutes. Cells were then heat shocked at 42°C for 90 seconds and incubated on 

ice for a further 5 minutes. 500 µl LB was added to the cells and they were incubated at 37°C 

for 1 hour with shaking. Cells were harvested by centrifugation at 18,000 x g and resuspended 

in approximately 100 μl LB, before being plated out onto nutrient agar plates, supplemented 

with the appropriate antibiotic. Plates were incubated overnight at 37°C or an appropriate 

temperature. 

 

2.8 DNA Manipulations 

All primers used in this study are shown in table 2.3  

 

2.8.1 Standard PCR 

Phusion polymerase (NEB) was used for most standard PCR reactions using the buffer 

supplied. Template DNA was either approximately 1 ng genomic DNA or approximately 1 ng 

plasmid DNA from a miniprep, diluted 1 in 100 in sterile ddH2O. dNTPs (Bioline) were 

present at a final concentration of 1 μM each. Primers (Alta Biosciences) were used at a final 

concentration of 0.5 µM each. PCR reactions were made up to 50 µl in sterile ddH2O. 0.5 μl 

of enzyme was used (2 units). A typical PCR cycle used is shown in figure 2.15 
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Table 2.3 DNA oligonucleotides used in this study (continued on next page) 

Name Sequence (5’→3’) Use 

Oligonucleotides used for gene doctoring donor plasmids - General 

D58793  GGATGTGCTGCAAGG 

Sequencing primer to check homology 

regions inserted between NheI and SacI. 

Binds downstream of SceI site 

D58794  TATGCTTCCGGCTCG 

Sequencing primer to check homology 

regions inserted between MfeI and XmaI. 

Binds downstream of SceI site 

D76207 CCTTTAGCAGCCCTTGCGCC 

Sequencing primer to check homology 

regions inserted between MfeI and XmaI. 

Binds upstream of Kan
R
  

D69988 
TCAAGATCTGATCAAGAGAC

AGGATGAGG 

Primer for amplifying Kan
R 

cassette. Binds 

upstream of Kan
R
 cassette over BglII site 

D68556 TTTACGTCGCCGTCCAG 
Primer for amplifying Kan

R 
from pJB10. 

Binds in GFP downstream of lacZ promoter 

Oligonucleotides used for gene doctoring donor plasmids – Insert adjacent to araBAD  

D69231 
GCCGCAATTGCCGGGATTGA

AACTGAACG 

Upstream primer for amplification of the 

thiQ homology region. Carries MfeI site. 

D69232 
GCCGCCCGGGCGACGCTTGC

CGCGTCTTATC 

Downstream primer for amplification of the 

thiQ homology region. Carries XmaI site. 

D69234 

 

GCCGGCTAGCCATCAGGCAA

CCCCGCAC  

Upstream primer for amplification of the 

yabI homology region. Carries NheI site. 

D69233 

 

GCCGGAGCTCCTGAACATGC

GTTGCATCAAC 

Upstream primer for amplification of the 

yabI homology region. Carries SacI site. 

D69747 GTCGCACAGAACATCGG 
Upstream primer for checking inserts 

adjacent to araBAD 

D69748 TCGCTGGTCATTTCTGAAG 
Downstream primer for checking inserts 

adjacent to araBAD 

Oligonucleotides used for gene doctoring donor plasmids – Insert adjacent to araFGH  

D74949 
CGGCAATTGCTCTCAAATGA

ACCGCGA 

Upstream primer for amplification of the 

ftnB homology region. Carries MfeI site. 

D74950 
TAACCCGGGCAGATGAGGC

AGCGG 

Downstream primer for amplification of the 

ftnB homology region. Carries XmaI site. 

D74951 
CAAGCTAGCTGTTTGAAGCA

GCGG 

Upstream primer for amplification of the 

ypeC homology region. Carries NheI site. 
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Table 2.3 DNA oligonucleotides used in this study (continued on next page) 

Name Sequence (5’→3’) Use 

D74952 
GTCGAGCTCTGTCATATTAT

AAGCGC 

Upstream primer for amplification of the 

ypeC homology region. Carries SacI site. 

D75296 AGGTATGGCAACCGCTGG 
Upstream primer for checking inserts 

adjacent to araFGH 

D75297 TGCTGCGACAATGGCCG 
Downstream primer for checking inserts 

adjacent to araFGH 

Oligonucleotides used for gene doctoring donor plasmids – Insert adjacent to araJ  

D75738 
GCTCAATTGTGCGCGGGATT

ATTTGCC 

Upstream primer for amplification of the 

araJ homology region. Carries MfeI site. 

D75739 
GCTCCCGGGATCATGCCTGA

TGCGACG 

Downstream primer for amplification of the 

araJ homology region. Carries XmaI site. 

D75740 
GCTGCTAGCGCGCCAATTGC

CTACGTT 

Upstream primer for amplification of the 

mak homology region. Carries NheI site. 

D75741 
GCTGAGCTCATCGGCACGGG

ATGCG 

Downstream primer for amplification of the 

mak homology region. Carries SacI site. 

D76827 
TTCACCACTGCGCATTGCAG

C 

Upstream primer for checking inserts 

adjacent to araJ 

D76828 
TTCAGAAGCAGTAGATGGCG

CG 

Downstream primer for checking inserts 

adjacent to araJ 

Oligonucleotides used for gene doctoring donor plasmids – Insert adjacent to dps  

D75742 
GCTCAATTGTGTGGTTCCTG

CTACCG 

Upstream primer for amplification of the 

rhtA homology region. Carries MfeI site. 

D75743 
GCTCCCGGGGAGAAATTCTG

CATGGTTATGC 

Downstream primer for amplification of the 

rhtA homology region. Carries XmaI site. 

D75744 
GCTGCTAGCGCTACTTTTCC

TCTACACCG 

Upstream primer for amplification of the 

dps homology region. Carries NheI site. 

D75745 
GCTGAGCTCCCCCAGAGCTA

CACCG 

Downstream primer for amplification of the 

dps homology region. Carries SacI site. 

D76491 
TTTCGTCTGGGTTGTGCTGG

C 

Upstream primer for checking inserts 

adjacent to dps 

D76492 CGTTGTGGATGTCCAGCG 
Downstream primer for checking inserts 

adjacent to dps 
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Table 2.3 DNA oligonucleotides used in this study (continued on next page) 

Name Sequence (5’→3’) Use 

Oligonucleotides used for gene doctoring donor plasmids – Insert adjacent to mntH  

D75746 
GCTCAATTGATGAGGCTTAT

CTGACGC 

Upstream primer for amplification of the 

mntH homology region. Carries MfeI site. 

D75747 
GCTCCCGGGGCCAATGGAGC

ACAATGC 

Downstream primer for amplification of the 

mntH homology region. Carries XmaI site. 

D75748 
GCTGCTAGCGGACGCGTTTA

ATGGCG 

Upstream primer for amplification of the 

ypeC homology region. Carries NheI site. 

D75749 
GCTGAGCTCGTGCTGGTGGT

AACACG 

Downstream primer for amplification of the 

ypeC homology region. Carries SacI site. 

D76493 GCTACAGCTGCGGCGGC 
Upstream primer for checking inserts 

adjacent to mntH 

D76494 
GCGGCAATAACCGTTTCTTG

CG 

Downstream primer for checking inserts 

adjacent to mntH 

Oligonucleotides used for gene doctoring donor plasmids – Tagging lacI  

D59400 
GCTGAATTCCAAACAGGATT

TTCGCCTGC 

Upstream primer for amplification of the 

lacI homology region for tagging lacI. 

Carries EcoRI site. 

D59401 
GCTGGTACCCTGCCCGCTTT

CCAGTC 

Downstream primer for amplification of the 

lacI homology region for tagging lacI. 

Carries KpnI site. 

D59402 
GCTCTCGAGGTTGATGAAAG

CTGGCTAC 

Upstream primer for amplification of the 

lacZ homology region for tagging lacI. 

Carries XhoI site. 

D59403 
GTAGCTAGCTCCGCCACATA

TCCTG 

Downstream primer for amplification of the 

lacZ homology region for tagging lacI. 

Carries NheI site. 

D61347 CGTTGGTGCGGATATCTCGG 
Upstream primter for checking inserts at the 

3’ end of lacI 

D73820 
GCGGGATCCATGGTGAGCA

AGGGCGAG 

Upstream primer for amplifying 

PAmCherry. Carries a KpnI site 

D75378 
GTCACCGGTGTTTTATCAGA

CCGCTTC 

Downstream primer for amplifying 

PAmCherry. Carries a AgeI site 
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 Table 2.3 DNA oligonucleotides used in this study (continued on next page) 

Name Sequence (5’→3’) Use 

Oligonucleotides used for checking araC deletion 

D76717 
CTGGCATGAATGGCTTAACT

GGCCG 

Upstream primer for checking inserts at the 

3’ end of araC 

D76718 CGGCCACAGCAGGCAGCCG 
Downstream primer for checking inserts at 

the 3’ end of araC 

Oligonucleotides used for cloning repressor protein::fluorescent protein tags into plasmids  

D63048 
CTCTTCAAATGTAGCACCTG

AAG 

Sequencing primer which binds upstream 

of the HindIII site in pACYC184 derived 

plasmids 

D69688 
GCCAAGCTTTGGCACGGGAA

CC 

Upstream primer for amplifying lacI::gfp 

from the chromosome of strain MG1655 

LacI::GFP. Carries a HindIII site 

D69689 
GCCGGATCCTCTTGAAGTTC

CT 

Downstream primer for amplifying 

lacI::gfp from the chromosome of strain 

MG1655 LacI::GFP. Carries a BamHI site 

D71000 
CTGGGTACCATGGTGAGCAA

GGG 

Upstream primer for amplifying mCherry 

from plasmid pmCherry-N1. Carries a KpnI 

site 

D71001 
CTGCAATTGCTAGAGTCGCG

GCC 

Downstream primer for amplifying 

mCherry from plasmid pmCherry-N1. 

Carries a MfeI site 

D63433 
CGATAAGCTTCAAAACGTTT

TATCAAATTTTAGTG 

Upstream primer for amplifying malI from 

pACYCMalI. Carries a HindIII site 

D71192 
TTAGGTACCTTTCGCTGCAA

TGAGCC 

Downstream primer for amplifying malI 

from pACYCMalI. Carries a KpnI site 

D72022 
CATGATGCATGCTACCGCCA

AAAAAATAACC 

Upstream primer for amplifying 

malI::mCherry from pLER104 without the 

malI promoter. Carries a NsiI site 

D71850 
CATAAAGCTTCAATTGCTAG

AGTCGCGG 

Downstream primer for amplifying 

malI::mCherry from pLER104 without the 

malI promoter. Carries a NsiI site 

D77566 
GTGAAGCTTCCGGGGATCCC

GGGAAGA 

Upstream primer for amplifying 

malI::mCherry under the control of the 

melR promoter from pLER105. Carries a 

HindIII site 
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Table 2.3 DNA oligonucleotides used in this study (continued on next page) 

Name Sequence (5’→3’) Use 

D77567 
GTGCAATTGCTAGAGTCGCG

GCCGCTA 

Downstream primer for amplifying 

malI::mCherry under the control of the 

melR promoter from pLER105. Carries a 

MfeI site 

Oligonucleotides used for generating a multiple MalI DNA site array  

D71689 

CGAGTCGACACGTGATAAA

ACGTTTTATCAGGACTCTA

GAGGATCCCCGGG 

Primer for amplifying pUC19 introducing a 

MalI DNA site (bold) and SalI site (boxed). 

Carries a XbaI site (underlined) 

D71690 

CGACTCGAGCATGGATAAA

ACGTTTTATCGCTAGCTGCA

AGCTTGGCGTAATCATGGTC 

Primer for amplifying pUC19 introducing a 

MalI DNA site (bold), XhoI site (boxed) 

and NheI site (italics). Carries a HindIII site 

(underlined) 

D71587 
GGTGTGAAATACCGCACAG

ATGC 

Check primer used to check the size of the 

insert in the multiple cloning site of pUC19. 

Anneals upstream of lacZα in pUC19  

D71588 
GCGAGTCAGTGAGCGAGGA

AG 

Check primer used to check the size of the 

insert in the multiple cloning site of pUC19. 

Anneals downstream of lacZα in pUC19  

M13 

Forward 
GTAAAACGACGGCCAGT 

Sequencing primer used to check inserts in 

the multiple cloning in pUC19. Anneals 

upstream of XbaI in pUC19 
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Temperature  Time  Purpose  

98ºC  1m30 s “hot start” 

98ºC  10 s Melting 

TA 20 s             35 cycles Annealing 

72ºC X s Extension 

72ºC 5 mins Final extension 

Figure 2.15: Standard PCR cycle 

Table shows a typical PCR cycle for Phusion High-Fidelity DNA Polymerase. An 

annealing temperature (TA) of 3ºC higher than the melting temperature of the primer with 

the lower melting temperature. Extension time (X s) was calculated depending on the 

length of the product being made, allowing 15 s per kb. 
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2.8.2 Colony PCR 

Colony PCRs were used to amplify DNA from the chromosomes and to screen for 

chromosomal insertions or deletions. In cases where the PCR product was to be used in 

downstream processes such as cloning, Phusion polymerase (NEB) was used as described 

above, by smearing a small amount of a colony on the inside of the PCR tube before adding 

the rest of the reaction mix. The initial denaturation time was extended to 10 minutes to lyse 

the cells. Biomix red (Bioline) was used for colony PCRs for checking chromosomal inserts. 

A colony to be checked was picked and resuspended in 40 µl sterile ddH2O. 23 μl of this was 

added to 25 μl Biomix red (Bioline) and 1 μl each primer at a concentration of 10 μM to give 

a 50 µl reaction. A typical cycle is shown in figure 2.16. 

 

2.8.3 Restriction Digestion of DNA 

Purified DNA from PCR purification or plasmid miniprep (between 5 and 100 ng) was 

digested in a reaction with a total volume of 60 µl, also containing 2 µl enzyme (New 

England Biolabs, used as per manufacturers instructions), 6 μl of the appropriate 10x buffer as 

recommended by NEB and, if necessary, 1 μl BSA (final concentration, 100 μg/ml). Where 

possible, restriction digests involving two enzymes were done as a double digests using the 

compatible buffer but, if this was not possible, then two separate digests were carried out with 

a purification step in between. Restriction digests were incubated at 37°C in a heating block 

for 3 hours. Where capping of the vector was required to prevent re-ligaion of plasmid DNA, 

alkaline phosphatase was added to digested vector which removed the terminal 5’ phosphate. 

3 µl Calf Intestinal Phosphatase (CIP, NEB) and 6 μl buffer 3 were added to purified digested 

DNA with a final volume of 60 µl and incubated for 1 hour at 37°C 
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Temperature  Time  Purpose  

95ºC  10 mins “hot start” 

95ºC  10 s Melting 

TA 30 s             30 cycles Annealing 

71ºC X s Extension 

71ºC 10 mins Final extension 

Figure 2.16: Colony PCR cycle 

Table shows a typical PCR cycle for Taq DNA Polymerase in Biomix Red. An annealing 

temperature (TA) of the melting temperature of the primer with the lower melting 

temperature was used. Extension time (X s) was calculated depending on the length of the 

product being made, allowing 15-30 s per kb. 
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2.8.4 DNA Ligation 

The concentration of vector and insert DNA were estimated using gel electrophoresis and 

compared to a band of a similar size on a ladder with known concentrations of DNA in each 

band (Hyperladder I, Bioline). NEB recommends 50 ng of vector are used in each reaction, in 

a ratio of 3/1 insert/vector, with a total DNA concentration of between 1 and 10 μg/ml. 

Usingthese references, the optimum volumes of vector and insert DNA were calculated and 

added to 2 μl NEB T4 ligase buffer and 1 μl T4 ligase (400 units), made up to 20 μl with 

ddH2O. A control was also included containing vector, ligase and buffer, but no insert, to 

ensure there was no contamination from uncut vector. The reactions were incubated on ice for 

30 minutes and then at room temperature for at least 2 hours or at 16ºC overnight.  5 µl of 

each ligation were then transformed into 50 µl competent cells, as described previously, and 

transformants were selected for on nutrient agar plates supplemented with the appropriate 

antibiotics.  

 

2.8.5 DNA Sequencing 

All sequencing was carried out at the Functional Genomics and Proteomics Laboratory, 

University of Birmingham. For sequencing reactions, primers were diluted to 1 μM. For 

sequencing of plasmids, 6.8 µl plasmid and 3.2 µl primer were used. For sequencing of a PCR 

product, 5 µl purified PCR product, 3 µl primer and 2 µl sterile ddH2O were used.  

 

2.9 Gene Doctoring 

2.9.1 Using homologous recombination to make chromosomal modifications 

Several techniques have been developed using homologous recombination to make 

chromosomal modifications in E. coli. Most of these use the λ-Red genes to catalyse the 
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recombination and differ in the method of introducing DNA into the cell. The λ-Red proteins 

are used to integrate a sequence of DNA from a linear fragment onto the chromosome, at a 

position with homology to the regions flanking the insert sequence on the linear fragment. 

The specificity of this system for linear DNA should prevent unwanted recombination 

between similar sections of the E. coli chromosome or plasmids. The λ-Red system is made 

up of three proteins. One of these proteins, gam, protects single stranded DNA from 

degradation by the host RecBCD complex. Another, exo, generates single stranded overhangs 

on the linear DNA and the third, bet, catalyses recombination between homologous regions 

on the linear fragment and the same sequence on the chromosome, causing any sequence 

between these regions on the chromosome to be replaced by the sequence from the linear 

fragment.   

 

The well used method developed by Datsenko and Wanner (Datsenko and Wanner, 2000) 

introduces the linear fragment by electroporation of a PCR product. This often includes short 

homology regions to a target gene of 25-40 nucleotides flanking an antibiotic resistance 

cassette, which results in the replacement of the target gene by the cassette. Although this has 

been successfully used to make deletions, the relatively low efficiency of electroporation 

limits this method. To eliminate the need for electroporation and increase the number of linear 

DNA fragments in the cells, a second technique was developed called “gene gorging”(Herring 

et al., 2003). In this method the linear fragment is generated in vivo from a donor plasmid 

containing the homology regions, corresponding to the sequence either side of the target 

location on the chromosome, flanked by recognition sites for the yeast meganuclease SceI. 

The λ-Red genes are supplied on a second plasmid along with the gene for SceI, both under 

the control of an inducible promoter. When the promoter is induced SceI is expressed, 
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cleaving the donor plasmid and generating multiple copies of the linear fragment of DNA 

containing the homology regions, increasing the likelihood of a successful recombination 

event. This method was then further developed to add counter-selection to reduce the 

screening needed by allowing only true recombinants to grow in a method called “Gene 

Doctoring” (Lee et al., 2009). 

 

The donor plasmid for the gene doctoring method has two homology regions, usually about 

500 bp in length each. These flank a kanamycin resistance cassette and any insert that is 

wanted to be incorporated onto the chromosome in the recombination process. This entire 

region is itself flanked by SceI recognition sites to form the linear fragment required. The 

plasmid also contains an ampicillin resistance gene and sacB gene, which confers sucrose 

sensitivity (figure 2.17). Any strain containing this plasmid will have resistance to kanamycin 

and ampicillin but sensitivity to sucrose. However, a strain that has successfully gone through 

the recombination process and incorporated the insert onto its chromosome will no longer be 

resistant to ampicillin or sensitive to sucrose, but will have retained the kanamycin cassette. 

Selecting for strains that can grow on both kanamycin and sucrose should result in only true 

recombinants surviving. Gene gorging and gene doctoring also require a second plasmid 

called the mutagenesis plasmid, pACBSR. This encodes both the SceI meganuclease and the 

λ-Red proteins, both under the control of an arabinose inducible promoter. When this 

promoter is induced, SceI is expressed to cleave the donor plasmid and the λ-Red proteins are 

expressed which catalyse homologous recombination of the newly formed linear fragment 

with the chromosome.  
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Figure 2.17: Plasmids used in gene doctoring 

a) The DNA sequence to be recombined into the chromosome (insert) and antibiotic resistance 

cassette (kan
R
) are flanked by Homology regions and SceI sites in a high copy number vector. 

Also contains sacB gene for counter selection 

b) The mutagenesis plasmid pACBSR, encodes the sceI gene and λ-Red genes under the control 

of an arabinose inducible promoter. Also contains a chloramphenicol resistance marker. 
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2.9.2 Gene doctoring protocol 

The strain to be gene doctored was co-transformed with pACBSR and the donor plasmid to 

make the insert required and grown overnight on nutrient agar plates supplemented with 

kanamycin and chloramphenicol. Colonies were tested for maintenance of sacB on the donor 

plasmid by patching onto plates containing kanamycin and chloramphenicol, and plates 

containing kanamycin and 5% sucrose. A single sucrose sensitive colony was used to 

inoculate 0.5 ml LB supplemented with kanamycin and chloramphenicol and incubated at 

37ºC with shaking for 2-4 hours until the culture was turbid. Cells were harvested by 

centrifugation and washed with 0.1 X LB three times to remove any residual antibiotics. 0.3% 

Arabinose was then added 0.5 ml 0.1 X LB and used to resuspend the cells to induce the 

expression of the λ Red genes and SceI meganuclease. The culture was incubated at 37ºC with 

shaking for a further 2-3 hours. Cells were harvested by centrifugation and resuspended in 

approximately 200 μl 0.1 X LB. This volume was then evenly split between four nutrient agar 

plates supplemented with kanamycin and 5% sucrose. 100 μl of 1000 fold dilution of the 

culture, taken prior to induction and after incubation with arabinose, were plated out onto 

nutrient agar plates and nutrient agar supplemented with ampicillin, to compare numbers of 

cells containing the uncut donor plasmid pre- and post-induction. All plates were incubated at 

30ºC or room temperature until colonies were visible. 

 

2.9.3 Checking gene doctoring candidates 

Plates with the pre- and post-induction dilutions should show a significant reduction in the 

number of colonies on the ampicillin plates when compared to the nutrient agar plates to 

indicate that the process has been successful and the donor plasmid has been cleaved. 

Colonies grown on the plates containing kanamycin and sucrose were patched onto ampicillin 



80 

 

and kanamycin with sucrose to check for ampicillin sensitivity. Ampicillin sensitive 

candidates were then checked by colony PCR, as previously described, using primers 

annealing on the chromosome outside of the homology regions. PCR products showing the 

presence of the insert were confirmed by DNA sequencing and candidates were checked for 

chloramphenicol sensitivity to confirm that pACBSR had been lost from the cells.  

 

2.9.4 Removal of the kanamycin cassette from the chromosomal insert 

Candidates confirmed to have the chromosomal insert and have lost the pACBSR plasmid 

were made competent. Cells were transformed with pCP20 and incubated at 30ºC on nutrient 

plates supplemented with chloramphenicol or ampicillin. Colonies were streaked onto non-

selective nutrient agar plates and incubated at 37ºC to induce expression of the FLP 

recombinase. Colonies from the restreak were then patched onto nutrient agar plates, 

unsupplemented and supplemented with kanamycin and chloramphenicol. Candidates 

sensitive to both kanamycin and chloramphenicol were checked by colony PCR using the 

same primers used to check for the insert after gene doctoring. If the kanamycin cassette was 

successfully removed the PCR product is approximately 1.3 kb smaller than previously.  

 

2.10 P1 Transduction 

Calcium chloride: 1 M solution 

Glucose: 20% solution 

P1 salts solution: 10 mM CaCl2, 5 mM MgSO4 

Sodium Citrate: 1 M solution 

Chloroform 
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P1 transduction was used to transfer a mutation with a selective marker from one strain, the 

donor strain, to another, the recipient strain. Overnight cultures were grown in LB, with 

selection if necessary, at 37ºC. The recipient strain was diluted 50 fold into 5 ml LB and 

grown at 37ºC. The donor strain was diluted 100 fold the following morning into 5 ml LB 

supplemented with 25 μl CaCl2 and 50 μl 20% glucose. This was grown for 45 minutes at 

37ºC before 100 μl of a freshly prepared P1 stock was added to the culture. After 

approximately 3 hours further growth, the culture had become clearer with some debris 

floating. 100 μl chloroform was added to the culture to ensure all cells are lysed and the 

culture was shaken for 10 minutes. The whole culture was centrifuged at 4ºC for 10 minutes 

to remove any cell debris and the supernatant containing liquid phage was collected.  

 

Recipient strain cells were prepared by harvesting cells from 1.5 ml of the culture that had 

been grown for approximately 4 hours by centrifugation. Cells were resuspended in 750 μl P1 

salts solution. 100 μl aliquots of cells were added to glass bijou bottles with varying volumes 

of liquid phage, usually 1 μl, 10 μl and 100 μl. These were incubated at room temperature for 

30 minutes before 1 ml LB and 200 μl 1 M sodium citrate were added to each bottle. The cells 

were then incubated at 37ºC with shaking for 1 hour. Cells were harvested by centrifugation 

and resuspended in 100 μl LB, which was then plated out onto a nutrient agar plate 

supplemented with 5 mM sodium citrate and an appropriate concentration of the antibiotic the 

donor strain carries resistance to (Thomason and Costantino, 2007). Colonies were checked 

for the mutation by colony PCR as described in section 2.9.3. 
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2.11 Microscopy 

PBS Buffer: 140 mM NaCl, 2 mM KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4, to 1 L in sterile 

ddH2O. All components were autoclaved before use. 

poly-L-lysine: 10 mg/ml (Sigma) 

Hoechst 33258: 5 µg/ml Hoechst 33258 in PBS containing 40% glycerol (v/v) 

FM 4-64: 1 µg/ml FM 4-64 (molecular probes) in PBS containing 40% glycerol (v/v) 

 

2.11.1 Growth conditions 

A single colony from a freshly restreaked plate was used to inoculate a 5 ml culture of M9 

minimal media, supplemented with 0.2 % casamino acids and 0.3% fructose. Fructose was 

chosen as a carbon source as many of the experiments involve testing the effects of arabinose 

and induction by fructose does not involve CRP, unlike arabinose, so the pathways of 

induction by the two sugars are unconnected. When necessary the cultures were also 

supplemented with antibiotics at half of the usual working concentration to maintain any 

plasmids but not reduce growth rate. 5 ml cultures were inoculated with a single fresh colony 

and grown, with shaking, for 24 hours at 23ºC. Previous studies stated that LacI::GFP was 

seen to aggregate in cells grown at 37ºC so lower temperatures were preferred (Gordon et al., 

1997). Cultures were then diluted 1:50 into fresh media and grown with shaking for a further 

5-6 hours until OD650 reached approximately 0.1. For supplementation with sugars, 0.3% of 

the required sugar was added to the cultures for 1 minute before slides were prepared. For 

supplementation with manganese, 0.1 μM MnCl2  was added to the solution for the final 10 

minutes of growth (Waters et al., 2011).  
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2.11.2 Preparation of microscope slides  

Once cells reached the required OD650, cells were harvested by centrifugation from 1.5 ml of 

culture. Cells were then washed 3 times with PBS. Microscope slides were prepared by 

spreading 5 μl poly-L-lysine onto the centre of a slide and allowing it to dry. Cells were 

harvested by centrifugation and all supernatant was removed using a pipette. The pellet was 

resuspended in 5 μl Hoechst 33258 and 5 μl FM 4-64. For cells containing mCherry, the pellet 

was resuspended in 10 μl Hoechst 33258. Cells were incubated at room temperature for 5 

minutes before 5 μl was pipetted into the centre of the slide and a cover slip applied.  

 

2.11.3 Imaging and analysis 

Slides were imaged using a Nikon Eclipse 90i microscope, Nikon Intensilight C-HGFI lamp, 

Hamamatsu ORCA ER camera (1344x1024 pixels, pixel size 6.45 μm) and Nikon Plan Apo 

VC 100x Oil immersion lens (Numerical Aperture 1.4), with a final optical magnification of 

100x. A DAPI filter set was used for visualising the Hoechst 33258 stained nucleoid, FITC 

filter set for GFP, TRITC filter set for the FM 4-64 stained cell membrane and TxRed filter 

set for mCherry (see figures 2.18 for properties of filters and 2.19 for conditions used for 

imaging each fluorophore). Cells were also imaged using brightfield. Microscopy was carried 

out at room temperature, within 30 minutes of slides being prepared. 

 

Microscope images were analysed using Image J. For experiments looking at the position of 

foci in cells, the length of cells were measured using the measuring function on Image J 

giving an arbitrary measurement. The same tool was used to measure the distance from the 

pole of the cell to a focus giving a measurement in the same arbitrary units. For further 

analysis the position of the focus was presented relative to cell length where 1.0 is the full cell  
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Filter Set Excitation Filter Dichroic Mirror Barrier Filter 

FITC 465-495 nm 505 515-555 nm 

TRITC 540-580 nm 595 600-660 nm 

Tx Red 540-580 nm 595 600-660 nm 

DAPI 340-380 nm 400 435-485 nm 

Figure 2.18: Filter sets used for epifluorescent microscopy 

Excitation and emission wavelengths for filter sets used in epifluorescence microscopy. 
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Fluorophore Filter set Exposure time  Binning 

GFP FITC 1 s 2 x 2 

FM 4-64 TRITC 1 s No binning 

mCherry Tx Red 0.5 s 2 x 2 

Hoechst 33258 DAPI 90 ms No binning 

Figure 2.19: Conditions used to image different fluorophores 

Filter set, exposure times and binning for imaging GFP, FM 4-64, mCherry and Hoechst. 
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length and 0.5 is exactly equal distance between the two poles. This allows the results to be 

comparable between cells of varying lengths. For cells with a single focus, the distance from 

the focus to cell pole was measured to the nearest pole (figure 2.20a). For cells with 2 foci, the 

focus closest to a cell pole was designated “1
st
 of 2 foci” and the distance was measured from 

focus to the closest cell pole. The other focus was designated “2
nd

 of 2 foci” and its position 

was measured relative to the same cell pole (figure 2.20b). Data for cells with 2 foci were 

represented as a scatter plot, with the relative position of the “1
st
” focus on the x axis and 

relative position of the “2
nd

” focus on the y axis. Figure 2.20c shows approximate examples of 

cells represented by points falling in different areas of the graph. At least 100 cells were 

measured in each biological repeat, for each condition. To analyse colocalisation, the position 

of each focus was measured using NIS elements software (Nikon), which gave a measurement 

in μm. ANOVA or T-test were used in Microsoft Excel to determine whether results were 

significant. 

 

2.12 Photoactivated Localisation Microscopy 

All lab work and analysis carried out by Federico Garza de Leon under the supervision of 

Achillefs Kapanidis as described by Uphoff et al. 2013 

2.12.1 Growth conditions and preparation of microscope slides 

A single colony from a freshly restreaked plate was used to inoculate a culture in LB which 

was grown for 4-5 hours at 37ºC. This culture was then diluted 1:10,000 into M9 medium, 

supplemented with MEM amino acids and L- proline, MEM vitamins and 0.2% glycerol, and 

grown overnight at 37ºC. Cultures were then diluted to OD600 of approximately 0.025 in M9 

medium and grown at 37ºC for 2 hours, at which point OD600 was approximately 0.1. Once  
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Figure 2.20: Analysis of the relative positions of foci in cells with one or two foci 

a) Schematic of analysis of cells with a single focus to measure relative position of focus. 

b) Schematic of analysis of cells with a two foci to measure relative position of foci. 

c) Schematic of scatter graph of relative position of 1
st
 of 2 foci plotted against relative 

position of 2
nd

 of 2 foci. Arrows show the position on the graph where the points for 

example cells with different arrangements of foci would be plotted. 



88 

 

cells reached the required OD600, cells were harvested by centrifugation and immobilised on 

agarose pads (1% agarose, molecular grade, Biorad, prepared in M9 minimal medium) 

between two glass coverslips (Uphoff et al., 2013). 

 

If cells were to be induced, they were immobilised in 15 μl wells with 1% polyethylenimine 

(Uphoff et al., 2013) and images of uninduced cells were taken. Cells were induced by 

washing 3 times with M9 minimal media supplemented with 1 mM IPTG or 0.2% arabinose.  

 

2.12.2 Imaging and analysis 

A custom-built near TIRF (total internal reflection fluorescence) single-molecule fluorescence 

microscope was used to image a LacI::PAmCherry with 405 nm photoactivation laser (SLIM-

561 200 mW, Oxxius) and 561 nm excitation laser (MLL-III-405 100mW, CNI). The 

emission was filtered by a dichroic mirror (ZT405/473/561rpc, Chroma). A 100x oil 

immersion objective lens (NA 1.4 Olympus) was used and PALM movies were recorded at 

15.26 ms/frame for 7,500 or 10,000 frames using an EMCCD camera (Andor, iXon 897, 

512x512 pixels, 114.5 nm PER PIXEL) (Uphoff et al., 2013). The 405 nm laser was adjusted 

from 0 to 10 μW to control photoactivation of PAmCherry. The 561 nm laser was used at 3.5 

mW. Microscopy was carried out at room temperature. 

 

A custom-written MATLAB software was used to analyse images. For tracking experiments, 

the mean squared displacement (MSD) was calculated to analyse the diffusion of molecules. 

MSD is a measurement of the movement of a particle in time, taking into account the distance 

the particle moves in multiple time lags. The apparent diffusion coefficient (D*) was 

calculated to classify the diffusive behaviour of a single molecule in a single cell. As the 
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D∗ =
MSD

4x ∆t
−

σloc 2

∆t
 

bacterial cell is a confined space, diffusion is non-Brownian as molecules cannot diffuse 

completely freely. As diffusion is not linear, a true diffusion coefficient cannot be calculated 

for this system. a method was developed to calculate an apparent diffusion coefficient for 2D 

images using the following equation (Uphoff et al., 2013): 

 

 

 

Where D* = Apparent diffusion coefficient (μm
2
/s) 

 MSD = Mean square displacement 

 Δt = Time lag 

 σloc
2
 = localisation error 

 

One time lag is 15 ms in this case. Localisation error has been shown to introduce a positive 

offset to an MSD curve and therefore is subtracted in this investigation (Michalet, 2010). 

 

An experiment with fixed cells fixed in 2.5% paraformaldehyde (v/v) gave a definition of the 

apparent diffusion coefficient for an immobile LacI. Any LacI molecules with a D* equal to 

or less than this threshold value were classified as immobile, whereas any molecules with a 

D* over this value were classified as mobile. For LacI::PAmCherry, this threshold was 

0.1 μm
2
/s. 
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2.13 β-galactosidase assays 

Z-buffer : 75 g  KCl, 0.25 g MgSO4.7H2O, 8.53 g Na2HPO4, 4.87 g NaH2PO4.2H2O, 2.70 ml 

β-mercaptoethanol, in 1 L ddH2O.  270 μl β-mercaptoethanol (Sigma 14.3 M 99% pure liquid) 

was added per 100 ml after autoclaving, on day of use. 

ONPG: o-nitrophenol-β-D-galactopyranoside. 80 mg added to 100 ml Z-Buffer 

Sodium carbonate: 1 M solution  

 

The β-galactosidase enzyme is the product of the lacZ gene. The β-galactosidase assay 

(Miller, 1972) measures the activity of this enzyme in the cell, which corresponds to the 

activity of the lacZ promoter or another promoter fused to the lacZ gene, either on the 

chromosome or plasmid encoded. For each strain or plasmid to be tested, single colonies were 

used to inoculate 5 ml cultures with 3 biological repeats. Cultures were grown overnight with 

shaking at 37ºC. 100 μl of the overnight culture was used to inoculate 5 ml of the same media 

for each strain and condition, and the cultures were incubated at 37ºC until they reached 

exponential phase (OD650 0.3-0.6) and the OD650 recorded. Each culture was lysed with 2 

drops of toluene and 1% sodium deoxycholate and shaken for 20 minutes at 37ºC with the 

bung removed to allow the toluene to evaporate. The β-galactosidase activity was measured 

by adding 100 μl of the lysate to 2.5 ml of Z buffer prepared with β-mercaptomethanol and 2-

Nitrophenyl β-D-galactopyranoside (ONPG) and incubated at 37ºC until a yellow colour 

developed. The reaction was stopped with the addition of 1 ml of 1 M sodium carbonate and 

the time taken for the colour change was recorded. The OD420 was measured. β-galactosidase 

activity (Miller units) was measured using the formula: 
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β-gal activity =
1000×2.5×3.6×OD420nm

OD650nm×4.5×t×v
 nmol min-1mg bacterial mass-1 

 

Where: 

          2.5 = factor for conversion of OD650 into bacterial mass, based on OD650 of 1 

                   being equivalent to 0.4 mg/ml bacteria (dry weight).  

          3.6 = final assay volume (ml) 

          1000/4.5 = factor for conversion of OD420 into nmol o-nitrophenyl (ONP), based on 

                                    1 nmol ml
-1 

ONP having an OD420 of  0.0045 

          t = incubation time (min) 

          v = volume of lysate added (in ml)   

Each experiment was repeated three times and the average β-galactosidase activity and 

standard deviation calculated. 

 

2.14 Constructing repressor-protein::fluorescent protein fusions 

2.14.1 Construction of a plasmid encoding LacI::GFP 

The LacI::GFP fusion had been made on the E. coli MG1655 chromosome previously, in a 

strain called DL01 (Lee et al., 2009). To allow for more flexibility moving the fusion between 

strains and to increase the copy number of LacI::GFP in the cell, the fusion was moved onto a 

plasmid. The cloning vector pACYC184 was used to carry the fusion. Primer D69688 was 

designed to bind upstream of the lacI::gfp fusion on the chromosome of DL01 and introduce 

a HindIII site. As there is little information available about the position of the lacI promoter 

and its control, the primer was designed to anneal 300 bp upstream of the predicted position 

of the lacI promoter to ensure all elements of the promoter were included. Primer D69689 
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was designed to bind downstream of lacI::gfp and the FLP site on the chromosome and 

introduce a BamHI site. The resulting PCR product was digested with HindIII and BamHI 

and the 2.2 kb fragment was gel extracted. The vector was prepared by digesting pACYC184 

with BclI and HindIII, as BclI produces complementary cohesive ends to BamHI. As BclI is 

dam methylase sensitive, pACYC184 was extracted from dam- cells. Cutting pACYC184 

with BclI and HindIII results in a fragment of 2.2 kb containing the origin of replication and 

chloramphenicol resistance gene and a second fragment of 2 kb containing the tetracycline 

resistance gene. As these fragments are very similar in size they were further digested with 

SalI which will only cut the tet
R 

containing fragment, allowing for the required fragment to be 

gel extracted without any risk of contamination. This vector was then treated with CIP before 

being ligated with the lacI::gfp PCR product. The resulting plasmid was pLER101 encoding 

LacI::GFP under the control of the lacI promoter. The insert was confirmed by sequencing 

using primers D63048 and D68556. The amino acid linker sequence between LacI and GFP is 

a glycine and threonine. Glycine is often used in this position to break secondary structure and 

ensure that the individual proteins in the fusion are folded properly. 

 

2.14.2 Construction of a plasmid encoding MalI::mCherry 

pLER101 was used as the starting point for making a plasmid encoding MalI::mCherry. 

Initially GFP was exchanged for mCherry. Primers were designed to amplify mCherry from 

pmCherry-N1 with D71000 annealing upstream and introducing a KpnI site and D71001 

annealing downstream and introducing a MfeI site. The PCR product generated was digested 

with KpnI and MfeI and purified by gel extraction. pLER101 was digested with KpnI and 

MfeI, gel extracted and CIP treated before being ligated with the mCherry PCR. The resulting 

plasmid was pLER102 encoding LacI::mCherry under the control of the lacI promoter. The 

insert was confirmed by sequencing using primer D69689. 
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To exchange lacI  and the lacI promoter for malI  and its promoter, primers were designed to 

amplify malI from the plasmid pACYCMalI. Primer D63433 anneals upstream of malI and its 

promoter as defined by Lloyd et al. (Lloyd et al., 2010) and introduces a HindIII site. D71192 

anneals at the end of the malI gene introducing a KpnI site and omitting the final codon of 

malI, so transcription is not terminated and runs through to the mCherry gene. This PCR 

product is digested with HindIII and KpnI and purified by gel extraction. pLER102 was 

digested with HindIII and KpnI, treated with CIP and gel extracted before being ligated with 

the malI insert. The resulting plasmid was pLER104 encoding MalI::mCherry under the 

control of the malI promoter. The insert was confirmed using the primer D63048. However, 

this plasmid contains two MalI DNA sites in the malI promoter which is not ideal for the 

experiments planned.  

 

pJW15 Δ100 is a plasmid that can be used to fuse promoter-less genes to the melR promoter. 

Genes are cloned into the plasmid by removing the ATG of the gene and replacing it with an 

NsiI site. The ATG of the NsiI restriction site (ATGCAT) acts as a new start codon. Primer 

D72022 was designed to anneal after the ATG of malI::mCherry in pLER104 and introduce a 

NsiI site. Primer D71850 was designed to anneal downstream of malI::mCherry in pLER104 

and introduce a HindIII site. The PCR product was digested with NsiI and HindIII and 

purified by gel extraction. Vector was prepared from pJW15 Δ100 digested with NsiI and 

HindIII, gel extracted and treated with CIP. Vector and insert were then ligated and the 

resulting plasmid was pLER105 encoding MalI::mCherry under the control of the melR 

promoter. The insert was confirmed by sequencing using primer D71192.  
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To transfer the fusion into a lower copy number plasmid, which would give a better 

concentration of MalI::mCherry in the cell, the fusion was transferred back into pACYC184. 

Primer D77566 was designed to anneal upstream of the melR promoter fused to 

malI::mCherry in pLER105, and introduce a HindIII site. Primer D77567 was designed to 

anneal downstream of malI::mCherry and introduce a MfeI site. The PCR product was 

digested with HindIII and MfeI and purified by gel extraction to make the insert. pLER102 

was digested with HindIII and MfeI, gel extracted and treated with CIP before being ligated 

with the malI::mCherry insert. The resulting plasmid was pLER108 encoding MalI::mCherry 

under the control of the melR promoter. The insert was confirmed by sequencing using primer 

D63048. The amino acid linker sequence between LacI and GFP is a glycine and threonine. 

 

2.15 Constructing a multiple MalI DNA site array 

The method for constructing the multiple MalI DNA site array was based on the method used 

to create LacI DNA site repeats as described by (Lau et al., 2003). An overview of the 

construction of the plasmid containing the multiple DNA sites is shown in figure 2.21. pUC19 

was used for the construction, particularly the multiple cloning site of the plasmid. Primers 

were designed to anneal at the XbaI and HindIII sites in the multiple cloning site, facing in 

opposite directions so they would amplify the whole plasmid apart from the region between 

the XbaI and HindIII sites. At the 5’ end of the XbaI primer a SalI site was introduced and at 

the 5’ end of the HindIII primer an XhoI site was introduced. Between the restriction sites on 

each primer, a DNA site for MalI was introduced using the sequence of the DNA site in the 

malX promoter. Finally a NheI site was added to the HindIII primer between the HindIII site 

and MalI DNA site. The resulting spacing between MalI DNA sites was designed to be 

similar to that of the LacI DNA site array, which has been used previously. 
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Figure 2.21: Construction of a multiple MalI DNA site array 

a) Primers were used to make a linear PCR product which was digested with SalI and 

XhoI, then ligated to make a pUC19 derived plasmid with two MalI DNA sites.  

b) This plasmid was then used to make both the vector and the insert for the next cloning 

step, doubling the number of MalI DNA sites. This step was repeated until the required 

number of repeats was achieved.   
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These primers were used to amplify pUC19 by PCR. The linear product formed was digested 

with SalI and XhoI, which generate compatible cohesive ends, and ligated to create a new 

plasmid containing two MalI DNA sites with a hybrid SalI/XhoI site in between, a XbaI site 

on one side and NheI and HindIII sites on the other side. This plasmid was selected for by 

blue-white selection on X-gal plates.  

 

Once this plasmid has been made it is used to produce both vector and insert for the following 

step. To make the vector, the plasmid is digested with NheI and HindIII and treated with CIP. 

To make the insert, the plasmid is digested with XbaI and HindIII. As XbaI and NheI also 

create compatible cohesive ends the insert can be ligated into the vector creating a plasmid 

containing four MalI DNA sites with a NheI/XbaI hybrid site in between. This plasmid still 

has an XbaI site on one side of the MalI DNA sites and NheI and HindIII on the other, but the 

number of MalI DNA sites has doubled. This plasmid can then be used for a further cloning 

step. The method of construction can be repeated to double the number of MalI DNA site with 

each step. Successful transformants are selected for by colony PCR using primers that anneal 

outside of the lacZα gene on pUC19. PCR reactions were separated by agarose gel 

electrophoresis, and if the cloning step had been successful an increase in size was seen in the 

PCR products. This was repeated until an array of 20 MalI DNA sites had been produced. The 

sequence of the multiple MalI DNA site array is shown in figure 2.22 

 

2.16 Insertion of multiple LacI DNA sites adjacent to the araBAD promoter 

Gene doctoring donor plasmids were derivatives of pJB10 adapted by Jack Bryant 

(unpublished) from plasmid pKH3 (Kerry Hollands, unpublished). pJB10 carries a lacZ 

promoter fusion to GFP with a kan cassette upstream all flanked by homology regions to thiQ  
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Figure 2.22: Sequence of the multiple MalI DNA site array 

Sequence of the multiple MalI DNA site array, MalI DNA sites are shown in grey and 

numbered. Also shown are restriction sites that can be used for cloning. 

 XhoI  EcoRI SacI  KpnI XmaI BamHI XbaI          1 
CTCGAGGAATTCGAGCTCGGTACCCGGGATCCTCTAGAGTCTGATAAACGTTTATCACGT 

        2      3 

GTCGAGCATGGATAAACGTTTATCGCTAGAGTCTGATAAAACGTTTTATCACGTGTCGAG 

       4      5 

CATGGATAAAACGTTTATCGCTAGAGTCTGATAAAACGTTTTATCACGTGTCGAGCATGG 

  6        7     

ATAAAACGTTTTATCGCTAGAGTCCTGATAAAACGTTTTATCACGTGTCGAGCATGGATA 

   8      9   

AAACGTTTTATCGCTAGAGTCCTGATAAAACGTTTTATCACGTGTCGAGCATGGATAAAA 

10       11        12 

CGTTTTATCGCTAGAGTCCTGATAAAACGTTTTATCACGTGTCGAGCATGGATAAAACGT 

        13         14 

TTTATCGCTAGAGTCCTGATAAAACGTTTTATCACGTGTCGAGCATGGATAAAACGTTTT 

     15       16 

ATCGCTAGAGTCCTGATAAAACGTTTTATCACGTGTCGAGCATGGATAAAACGTTTTATC 

      17        18 

GCTAGAGTCCTGATAAAACGTTTTATCACGTGTCGAGCATGGATAAAACGTTTTATCGCT 

   19      20     NheI 

AGAGTCCTGATAAAACGTTTTATCACGTGTCGAGCATGGATAAAACGTTTTATCGCTAGC 
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and yabI and restriction sites for SceI (see figure 2.3). The LacI DNA site repeat sequence 

(sequence shown in figure 2.23) was cloned into this plasmid to create a donor plasmid for 

gene gorging. Sections of derivatives of this plasmid, between the SceI restriction sites, were 

then cloned into pDOC-C to include the presence of the sacB gene and allow for sucrose 

counter selection in the gene doctoring protocol. The resulting plasmid was used to insert the 

multiple LacI DNA sites at the araBAD locus between the thiQ and yabI genes (see figure 

2.24). 

 

2.16.1 Construction of plasmids pLR7 and pLR8 

pLR1 was constructed by cloning a fragment containing six copies of the LacI DNA site from 

pPM461 into pJB10. pJB10 already contained the homology regions required for an insert 

adjacent to the araBAD locus (see figure 2.3) the sequence of which is shown in figure 2.25. 

However, it also contained a fusion of the lacZ promoter and GFP which needed to be 

replaced by multiple LacI DNA sites. Due to the repeating nature of the LacI DNA site 

repeats, using PCR to amplify the fragment would have a high risk of errors. There were 

several unique restriction sites flanking the repeat sequence so to create the insert required for 

cloning the fragment into the donor plasmid pPM461 was digested with BglII and NheI. The 

240 bp fragment containing six copies of the LacI DNA site was purified by gel extraction 

from a 0.8% agarose gel, using the QIAquick gel extraction kit, and cloned into pJB10 which 

had also been digested with BglII and NheI to create plasmid pLR1. The insert was confirmed 

by sequencing using primer D69233. 

 

Due to the presence of two BglII site in pJB10 (see figure 2.3) the kan cassette was removed 

from the plasmid in the cloning process. The ampicillin resistance cassette was used to select 
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Figure 2.23: Sequence of the multiple LacI DNA site array 

Sequence of the multiple LacI DNA site array, LacI DNA sites are shown in grey and 

numbered. Also shown are restriction sites that can be used for cloning. 

 BglII  SalI  XbaI    1     

AGATCTGTCGACTCTAGAGTCCTGCAATTGTTATCCACTCACAATTGTCTTTATTTAATT 

 2      3   

GTTATCCGCTCACAATTACCTTGTTTCAATTGTTACCGCTCACAATTAGCCATCTGTGCT 

        4      5 

AGAGCTCCTCCTCTAATTGTTATCCGCTCACAATTACCTCATCGCAATTGTTATCCGCTC 

     6 

ACAATTCCAGAGGTGCAATTGTTATCCGCTCACAATTTTCCTCCGTCTGCTAGAGCTTTC 

       7      8 

CCCCGAATTGTTATCCGCTCACGATTTTGTTTCTCCAATTGTTATCGCTCACAATTGGTT 

   9 

CTTACAAATTGTGATCCGCTCACAATTCCTTTTCCTATGCTAGAGATATTTCCCAAATTG 

 10         11 

TTATCCGCTCACAATTGTTTTGTCTTAATTGTTTTCTACTTCAATTGTTATCCGCTCACA 

        12 

ATTTGCTATTTTCTGCTAGAGTCTTGTGGCCAATTGTTATCCGCTCACAATCCTTAGTAA 

  13        14 

TCAATTGTTATCCGCTCACAATTTTCGCCACCAATTGTTATCCGCTCACAATTCGCTCG 

      15 

AACCTGCTAGAGGTTTTGTCCAAATTGTTATCCGCTCACAATTGTCCTATGCAAATTGTT 

 16 

ATCCGCTCACAATTTTATTTTAATTCACAATTCACCTTAACTTGCTAGAGTCCTGTCATT 

  17      18 

AATTGTTTCCGCTCACAATTTACCTGTTGTAATTGTTATCCGCTCACAATTTCTTGCGTG 

     19          

TAATTGTTATCCGCTCACAATTTTTTCTTCCCTGCTAGAGTATCCTACCCAATTGTTATC 

20      21 

CGCTCACAATTGTTTCGGTGTAATTGTTAACCGCTCACAATTATTTACTTCGAATTGTTA 

22      NheI 

TCCGCCACAATCGCTACGGTTTGCTAGC 
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Figure 2.24: Location of multiple LacI DNA sites inserted adjacent to the araBAD 

locus 

a) 22 copies of the LacI DNA site (LacI DS) were inserted onto the chromosome 

between convergent genes thiQ and yabI.  Adjacent to these genes is the AraC 

controlled araBAD promoter which will be followed using LacI::GFP bound to 

the multiple operators. Chromosomal position shown in bp as defined by Keseler 

et al., 2011. 

b) Position of the araBAD locus relative to oriC and macrodomains. 

 

a) 

b) 
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Figure 2.25: DNA sequence of the chromosomal region adjacent to araBAD showing 

the homology regions and primers used to make chromosomal insertions 

Intergenic regions are shown in lowercase, sequences of genes are in capitals. The start 

codons of genes are marked in red letters with the direction of the gene shown by an 

arrow. Homology region 1 (HR1) contains part of thiQ and is shown with dark blue 

shading. The sequence of the primers used to amplify homology region 1 are double 

underlined. Homology region 2 (HR2) contains part of yabI and is shown with light blue 

shading. The sequence of the primers used to amplify homology region 2 are boxed. The 

sequence of primers used to check gene doctoring candidates for insertions are single 

underlined.  
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CATcgtttcactccatccaaaaaaacgggtatggagaaacagtagagagttgcgataaaaagcgtcaggtaggat

ccgctaatcttatggataaaaatgctatggcatagcaaagtgtgacgccgtgcaaataatcaatgtggacttttc

tgccgtgattatagacacttttgttacgcgtttttgtcatggctttggtcccgctttgttacagaatgcttttaa

taagcggggttaccggttgggttagcgagaagagccagtaaaagacgcagtgacggcaatgtctgatgcaatatg

gacaattggtttcttctctgaatggtgggagtatgaaaagtATGGCTGAAGCGCAAAATGATCCCCTGCTGCCGG

GATACTCGTTTAACGCCCATCTGGTGGCGGGTTTAACGCCGATTGAGGCCAACGGTTATCTCGATTTTTTTATCG

ACCGACCGCTGGGAATGAAAGGTTATATTCTCAATCTCACCATTCGCGGTCAGGGGGTGGTGAAAAATCAGGGAC

GAGAATTTGTCTGCCGACCGGGTGATATTTTGCTGTTCCCGCCAGGAGAGATTCATCACTACGGTCGTCATCCGG

AGGCTCGCGAATGGTATCACCAGTGGGTTTACTTTCGTCCGCGCGCCTACTGGCATGAATGGCTTAACTGGCCGT

CAATATTTGCCAATACGGGTTTCTTTCGCCCGGATGAAGCGCACCAGCCGCATTTCAGCGACCTGTTTGGGCAAA

TCATTAACGCCGGGCAAGGGGAAGGGCGCTATTCGGAGCTGCTGGCGATAAATCTGCTTGAGCAATTGTTACTGC

GGCGCATGGAAGCGATTAACGAGTCGCTCCATCCACCGATGGATAATCGGGTACGCGAGGCTTGTCAGTACATCA

GCGATCACCTGGCAGACAGCAATTTTGATATCGCCAGCGTCGCACAGCATGTTTGCTTGTCGCCGTCGCGTCTGT

CACATCTTTTCCGCCAGCAGTTAGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGCATTAGTCAGGCGAAGC

TGCTTTTGAGCACTACCCGGATGCCTATCGCCACCGTCGGTCGCAATGTTGGTTTTGACGATCAACTCTATTTCT

CGCGAGTATTTAAAAAATGCACCGGGGCCAGCCCGAGCGAGTTTCGTGCCGGTTGTGAAGAAAAAGTGAATGATG

TAGCCGTCAAGTTGTCATAAttggtaacgaatcagacaattgacggcttgacggagtagcatagggtttgcagaa

tccctgcttcgtccatttgacaggcacatATGCAAGCATTGCTGGAACACTTTATTACCCAATCCACCGTGTATT

CATTGATGGCGGTGGTGTTGGTGGCCTTTCTGGAGTCGCTGGCGCTGGTCGGTTTGATTCTACCCGGTACGGTGC

TGATGGCGGGGCTGGGAGCGCTGATTGGCAGCGGCGAGTTAAGTTTCTGGCACGCCTGGCTGGCAGGGATTATTG

GCTGCTTGATGGGCGACTGGATTTCTTTCTGGCTGGGTTGGCGTTTTAAAAAGCCGTTGCATCGCTGGTCATTTC

TGAAGAAAAACAAAGCACTACTTGATAAAACTGAACATGCGTTGCATCAACACAGCATGTTCACCATTCTGGTCG

GTCGTTTTGTTGGCCCGACGCGTCCGCTGGTGCCAATGGTGGCGGGAATGCTGGATCTGCCGGTGGCTAAATTTA

TTACGCCGAATATTATCGGCTGCCTGCTGTGGCCGCCGTTTTACTTCCTGCCAGGGATTCTGGCGGGCGCGGCGA

TCGATATTCCTGCCGGAATGCAGAGCGGTGAGTTTAAATGGTTGCTGCTGGCAACAGCGGTGTTTTTGTGGGTTG

GTGGCTGGCTGTGCTGGCGGTTATGGCGCAGCGGTAAAGCGACTGACCGTTTGAGTCATTATTTGTCCCGCGGTC

GTTTGTTGTGGCTGACGCCGTTGATTTCTGCCATCGGCGTGGTGGCGCTGGTGGTGTTAATTCGCCACCCGTTGA

TGCCGGTGTATATCGATATTTTGCGTAAAGTGGTTGGGGTTTAGgagatagtcttgtgcgggttgcctgatgcga

cgcttgccgcgtcttatcaggcctacaaaacgcactacccgtaggtcggataaggcgttcacgccgcatccgaca

gtgcataCTAACCCGTAATCCCCAATAGTGCCGAAGCACTCGCCTTACCGCTCAACAACTCATTGGTCATACCCT

GCCAGGCGATGCGCCCGTCGGCGACTACTACCGAGCGCGTGGCGATCCGCGCCGCATCTTCCACGCTGTGCGACA

CCATCAATAGCGTCATTTTTTGCTGCTGGCAGCTCGTGCTCACCAGCGTCAACATCTCCTGACGTAACGCCGGAT

CGAGCGCAGAGAACGGTTCATCGAGCAATAAAATCGGCTGTTCGCGTACCAGACAACGCGCTAACGCCACTCGCT

GTCGCTGACCGCCGGAAAGCTCGCCCGGTAACCGCGCCATTAAATTATCAATCCCCATCTGGCGGGCGATAGCGT

GCATTTTCCCCTGCTGTACCGCGTTCAGTTTCAATCCCGGATTTAGCCCCAGCCCGATGTTCTGTGCGACCGTCA 

araC 

araB 

yabI 

thiQ 

D69748 

D69232 

D69234 

D69231 

D69747 

D69233 

HR1 

HR2 
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for successful transformants, but the kan cassette needed to be reinserted for when the plasmid 

is used in the gene doctoring process. Primers D69988 and D68556 were used to amplify the 

kan cassette from pJB10. D69988 anneals upstream of the kan cassette and includes one BglII 

site. The reverse primer, D68556, anneals to the start of the GFP gene and amplifies back over 

the second BglII site. The resulting product was digested with BglII and a small fragment of 

approximately 200 bp was lost. A larger fragment of approximately 1.1 Kb was cloned into 

pLR1, which had also been digested with BglII, resulting in plasmid pLR6. Only candidates  

containing the kan cassette in the correct orientation would be resistant to kanamycin as the 

upstream BglII site was found to be in the promoter for the kan cassette.This plasmid does not 

contain the sacB gene required for sucrose counter selection in gene doctoring. This is 

provided in pDOC-C along with amp
R
 flanked by SceI restriction sites. pLR6 was digested 

with SceI and the smaller fragment containing the two homology regions, kan cassette and 

multiple LacI DNA sites was purified by gel extraction from a 0.8% agarose gel using the 

QIAquick gel extraction kit. This was ligated with pDOC-C, which had also been digested 

with SceI and treated with CIP, to produce plasmid pLR7. Resulting colonies were checked 

for kanamycin and ampicillin resistance and sucrose sensitivity. 

 

pLR8 was constructed in the same way as pLR7, making intermediates pLR2 and pLR6, to 

produce a donor plasmid for inserting 22 copies of the LacI DNA sites at the araBAD locus. 

This is an insert of 800 bp.  

 

 2.16.2 Construction of strains LR06 and LR18, carrying LacI DNA sites adjacent to 

araBAD 

Strains LR06 and LR15 were constructed by inserting 22 and six repeats of the LacI DNA site 

respectively adjacent to the araBAD promoter. The strain modified was KH001, which has 
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had the lacZ promoter and the DNA binding domain of LacI deleted, meaning there would be 

no wild type LacI present in the cell and no LacI DNA sites other than the ones inserted by 

gene doctoring. KH001 was transformed with pACBSR and pLR8. Gene doctoring was used 

to insert 22 LacI DNA site repeats and the kan cassette onto the chromosome of KH001 at the 

araBAD locus as described in section 2.9.2. The insertion was confirmed by colony PCR 

using primers D69747 and D69748 and sequencing using primer D69233, resulting in strain 

LR04. The kan cassette was removed from the strain using FLP recombinase provided on the 

plasmid pCP20. 

 

To visualise the LacI DNA site repeats in LR04 LacI::GFP needs to be supplied. To express 

LacI::GFP at a low level a second chromosomal modification was made. Using P1 

transduction LacI::GFP was transferred from the MG1655 LacI::GFP strain into LR04 

(Maritoñi Sánchez Romero) to make strain MSR02. The kan cassette was then removed from 

this strain to make strain LR06.  

 

To insert six copies of the LacI DNA site onto the chromosome, DL02 was transformed with 

pACBSR and pLR7 and gene doctoring was used to insert six LacI DNA sites and the kan 

cassette onto the chromosome at the araBAD locus. The insert was confirmed by colony PCR 

using primers D69747 and D69748 and sequencing using primer D69233, resulting in strain 

LR15. The kan cassette was then removed from this strain to make LR18. 

 

Sequencing confirms that the correct number of DNA sites are inserted onto the chromosome 

at this stage. No instability of either the LacI or MalI DNA site arrays was observed after 

insertion onto the chromosome. Colony PCR at a later date never showed reduction in the size 
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of the insert and microscopy results did not indicate that the number of DNA sites had 

reduced. 

 

2.17 Insertion of Multiple MalI DNA sites adjacent to the araBAD promoter 

2.17.1 Construction of plasmid pLR19 

To insert multiple copies of the MalI DNA site onto the chromosome, the MalI DNA site 

array described in section 2.15 needs to be transferred into a gene doctoring donor plasmid. 

Due to the lack of unique restriction sites available upstream of the multiple LacI DNA sites 

in pLR8 (figure 2.8) the multiple MalI DNA sites could not be cloned directly into pLR8 to 

make a new donor plasmid. Instead pJB32 was used to make an intermediate plasmid. 

pUCMal20 was digested with EcoRI and NheI to make a fragment of approximately 600 bp 

which was purified by gel extraction. pJB32 was also digested with EcoRI and NheI, treated 

with CIP and the vector fragment purified by gel extraction. This vector was then ligated with 

the insert resulting in plasmid pLR11. In a second round of cloning, pLR11 was digested with 

NheI and AgeI cutting out the kan cassette and MalI DNA site array. This insert of 2 kb was 

purified by gel extraction. pLR8 was also digested with NheI and AgeI resulting in the loss of 

a fragment containing the kan cassette and multiple LacI DNA site array. The vector was 

treated with CIP and purified by gel extraction, before being ligated with the insert containing 

the kan cassette and multiple MalI DNA sites. The resulting plasmid was pLR19, containing 

20 copies of the MalI DNA site and homology regions for insertion adjacent to the araBAD 

promoter. 
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2.17.2 Construction of strain LR17, carrying 20 MalI DNA sites adjacent to the araBAD 

promoter 

Strain LR17 was constructed by inserting 20 copies of the MalI DNA site adjacent to the 

araBAD promoter. MG1655 was co-transformed with pACBSR and pLR19. Gene doctoring 

was used to insert 20 copies of the MalI DNA site and the kan cassette onto the chromosome 

adjacent to the araBAD promoter as described in section 2.9.2. The insertion was confirmed 

by colony PCR, using primers D69747 and D69748, and sequencing using primer D69233, 

resulting in strain LR16. The kan cassette was removed from the strain using FLP 

recombinase provided on the plasmid pCP20. The removal of the kan cassette was confirmed 

by colony PCR, using primers D69747 and D69748, and sequencing using primer D69233, 

resulting in strain LR17. The number of DNA sites inserted onto the chromosome was 

confirmed by sequencing using primer D69231. This strain was then transformed with 

pLER108 (figure 2.13) before the position of the insert in the cell was localised by 

fluorescence microscopy using FROS.  

 

2.18 Insertion of multiple MalI DNA sites adjacent to the araFGH promoter 

Due to the method of constructing the LacI DNA site or MalI DNA site repeats there are a 

high number of restriction sites present. This means donor plasmids containing the repeat 

sequences could not be used as a template for future donor plasmids for new target sites. 

Instead pJB32 was used, and three separate cloning steps carried out to make each finished 

donor plasmid (see figure 2.26).  

  

2.18.1 Construction of plasmid pLR17 

To reduce the chance of affecting expression of araF with the insertion onto the chromosome, 

the promoter region was avoided. Upstream of the araF promoter are convergent genes ftnB  
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Figure 2.26: General protocol for making donor plasmids for gene doctoring 

All donor plasmids for making an insert of multiple LacI or MalI DNA sites were made 

using the same basic protocol. 

1. Homology region corresponding to gene A is amplified and cloned into plasmid 

pJB using restriction enzymes MfeI and XmaI. 

2. Homology region corresponding to gene B is amplified and cloned into the same 

plasmid using restriction enzymes NheI and SacI. 

3. A plasmid already containing the multiple LacI or MalI DNA site array used to 

make the final insert. The plasmid was cut with KpnI and NheI to create a 

fragment containing the LacI DNA sites or MalI DNA sites and the kan cassette. 

This was then cloned into the plasmid containing the two new homology regions 

replacing placZ::gfp. 
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and yecJ, so the homology regions were designed to make the insert between them, where 

there would be less chance of affecting gene expression of any genes. This insert is 

approximately 1.3 kb from the araF promoter (see figure 2.27). Primers D74949 and D74950 

were used to amplify the region illustrated in figure 2.27 labelled homology region 1 (HR1, 

figure 2.28) giving a 500 bp PCR product. D74949 introduces a MfeI restriction site upstream 

of the homology region and D74950 introduces a XmaI site downstream. The PCR product 

and pJB32 were digested with MfeI and XmaI, gel extracted and the vector treated with CIP. 

They were then ligated to make plasmid pLR15, which was confirmed by sequencing with 

D58794. The second homology region (HR2, figure 2.28) was then amplified using primers 

D74951 and D74952 to give a 500 bp PCR product. D74951 introduces a NheI site upstream 

of the homology region and D74952 introduces a SacI site downstream. The PCR product and 

pLR15 were digested with NheI and SacI, gel extracted and the vector treated with CIP. They 

were then ligated to make plasmid pLR16 which was confirmed by DNA sequencing with 

D58793.  

 

pLR11 was used to make the insert for the final cloning step to avoid errors being introduced 

into the repeat sequence during PCR. pLR11 and pLR16 were both digested with AgeI and 

NheI. The 2 kb fragment containing the kan cassette and MalI DNA site repeats was purified 

by gel extraction from pLR11. From pLR16 the larger fragment of the vector was purified and 

treated with CIP. This was ligated with the insert from pLR11 to make plasmid pLR17, 

containing 20 copies of the MalI DNA site and homology regions for insertion adjacent to the 

araFGH promoter, which was confirmed by DNA sequencing with D74952.  
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Figure 2.27: Location of multiple MalI DNA sites inserted adjacent to the araFGH 

promoter 

a) 20 copies of the MalI DNA site (MalI DS) were inserted onto the chromosome 

between convergent genes ftnB and yecJ.  Adjacent to these genes is the AraC 

controlled araFGH promoter which will be followed using MalI::mCherry bound 

to the multiple operators. Chromosomal position shown in bp as defined by 

Keseler et al., 2011. 

b) Position of the araFGH locus relative to the oriC and macrodomains. 

 

a) 

 

 

 

 

 

b) 
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Figure 2.28: DNA sequence of the chromosomal region adjacent to araFGH showing 

the homology regions and primers used to make chromosomal insertions 

Intergenic regions are shown in lowercase, sequences of genes are in capitals. The start 

codons of genes are marked in red letters with the direction of the gene shown by an 

arrow. Homology region 1 (HR1) contains part of ftnB and is shown with dark blue 

shading. The sequence of the primers used to amplify homology region 1 are double 

underlined. Homology region 2 (HR2) contains part of yecJ and is shown with light blue 

shading. The sequence of the primers used to amplify homology region 2 are boxed. The 

sequence of primers used to check gene doctoring candidates for insertions are single 

underlined.  
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 AAAACCGAGCTTCAGGTTCTCCGCCATAGCGGATTGTGACATAACGGCTGCCAGACCAATGGCTGCCAGGGCTTT

AGTAAATTTGTGCATggttctctccagctttagtgtcgttttgtgtagggcaaaaacgaatgacattcgttaaat

taatcggaaaacaaagcattaccttttaactaaaagataagtgactgtgttgacatagttttagcgagaaattaa

ttctccataggagagcaatatcacatcgcagaattacagtgagaacgtgcataaatttagcgggaaaagacataa

gggaaagccaatttgtcagacaaattgtcgaatgcacagcagattaatccataagattagcctggaaatccttgt

tgtctttggtacccatgcgggatgtcttctttttaaccagtcaataggccgcattacctggcgttgagtttttga

aatggtgtaataaccgcaactcaaagatgtggaaaatgcacgtcattcatttcgtcattaattatcactgtgctc

attaattaacagaacacgtataatgagagccatctcgcaaaaatgaaaaaacgttttataaaatcatcacttcat

catgaattcaaattcattgattaatatcaacaagatacaaaaagcactatcattaaaattcattgcagttacatt

gatttcatcaatgaaatgtaaaaatatataaacttgatgatttaagcattttcttatacccgttcagacgttatt

cttatttcagatcatcgtcagaattgactccacgatcacatttcggaccggcagaaaggaattattctgcaaaca

gtaattatggtgttttgatttatcttgcacctctccacttctggatataaggatattaggtATGGCAACCGCTGG

AATGCTTCTCAAACTCAACTCTCAAATGAACCGCGAGTTTTACGCATCCAATCTCTACCTTCACCTGAGTAACTG

GTGTTCTGAACAGAGTCTGAACGGCACCGCCACTTTCCTTCGCGCCCAGGCACAGAGTAATGTGACCCAAATGAT

GCGCATGTTTAACTTTATGAAGAGTGTCGGCGCTACCCCCATCGTTAAAGCCATTGATGTTCCCGGTGAAAAACT

GAACTCTCTGGAAGAACTGTTCCAAAAAACGATGGAAGAATACGAGCAACGTTCTAGTACGTTGGCACAGTTAGC

CGATGAAGCGAAAGAACTGAATGATGATTCAACCGTCAATTTCCTGCGCGATCTGGAAAAAGAACAGCAGCATGA

TGGTCTGTTGCTGCAAACCATTCTTGATGAAGTGCGCAGTGCGAAACTTGCGGGTATGTGCCCTGTGCAGACCGA

CCAACATGTTCTGAATGTCGTGTCACACCAGCTGCATTGAtcatcatcggcgctaatgcattgcgccgatgaagg

ttttgagaaaccgctgcctcatctgtttgaagcagcggtttttTTAATGGGATTCACCCTGTGGGGTAAACTTGA

GTTCAATAAGCGCGATGGCTTTTTGGATTGCCCGCATGGTGACCGGGTCTGCGGCGGCGGGATGGTTAGTAAAGT

CGATATTCTTCAGCTGACTGGACATTTTTTCACGAACTTCAACGGGCGCGATTACATCGAGAACATCCAGAATTT

GTTTGATAACCAACTGGCAAGCAACCACATCAGAAACCAATTCCTGATCGGCATTCAGCGGCTGGGACATcgtaa

actcctgatagcattttgaaagccgttatagtagcgacttcacatcttcagcgatagtcacatccaccgtcatca

ggacacaaaaaaacctgccggagcaggttttttgttatcggaacatattgcctggcggtacgtctttgaacgtct

tgcaatagttattgaacatacttttcaggattttgcgcagtttcatcgcggcactccgaccatttgttatacagg

tgttattgtctttgcgcttataatatgacaaccatcacaaaaatcaatctttatgtgatacaaatcacataaata

cccctttaatgttataaaaatgataatcaaaaaacagcccccctatttctgacacctacagatggcaagaaatag

cgcctgccaggcgtcttttccggccattgtcgcagcactgtaacgcgtaaaatagtgctttctcttactcttctg 

D75296 

D74949 

D74951 

D74950 
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D74952 

yecJ 

ftnB 
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araF 



114 

 

2.18.2 Construction of strain LR38, carrying 20 MalI DNA sites adjacent to the araFGH 

promoter 

Strain MG1655 was co-transformed with pACBSR and pLR17. Gene doctoring was used to 

insert a kan cassette and 20 copies of the MalI DNA site at the araFGH locus. The insertion 

was confirmed using primers D75296 and D75297, which were designed to anneal to the 

chromosome outside of the homology regions, to prevent them from annealing to any 

remaining donor plasmid in the cell. Wild type cells give a PCR product of approximately 

1 kb whereas cells with the insert give a product of approximately 3 kb. The PCR product was 

sequenced with D74952 to check the number of MalI DNA sites that had been inserted onto 

the chromosome. This was strain LR20.  The kan cassette was removed from the strain using 

the FLP recombinase provided on the plasmid pCP20. The removal of the kan cassette was 

confirmed by colony PCR using primers D75296 and D75297 and sequencing with primer 

D74949. The resulting strain was LR38, carrying 20 MalI DNA sites adjacent to araFGH, 

which was then transformed with pLER108 to supply the cells with MalI::mCherry. 

 

2.19 Introduction of multiple LacI DNA sites and MalI DNA sites adjacent 

to the araJ promoter 

2.19.1 Construction of plasmids pLR24 and pLR25 

Gene doctoring donor plasmids for making chromosomal inserts adjacent to the araJ 

promoter were made using the same method described in figure 2.26. Again, the homology 

regions were chosen to avoid any promoter elements by having the insertion site between 

convergent genes. This should minimise the disruption caused to the local chromosome 

structure by the insert. Downstream of araJ is a gene arranged in a convergent orientation 

called mak. Homology regions were designed to make the chromosomal insert at this point 

which is approximately 1.4 kb from the araJ promoter (see figure 2.29).  
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Figure 2.29: Location of multiple LacI or MalI DNA sites inserted adjacent to the 

araJ promoter 

a) 22 copies of the LacI DNA site or 20 copies of the MalI DNA site (multiple DS) 

were inserted onto the chromosome between convergent genes araJ and mak.  

Adjacent to these genes is the AraC controlled araJ promoter which will be 

followed using LacI::GFP or MalI::mCherry bound to the multiple DNA sites. 

Chromosomal position shown in bp as defined by Keseler et al., 2011. 

b) Position of araJ relative to the oriC and macrodomains. 

 

a) 

 

 

 

 

 

 

b) 
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Primers D75738 and D75739 were used to amplify the region illustrated in figure 2.29 

labelled homology region 1 (HR1, figure 2.30), giving a 500 bp PCR product. D75738 

introduces a MfeI restriction site upstream of the homology region and D75739 introduces a 

XmaI site downstream. The PCR product and pJB32 were digested with MfeI and XmaI, gel  

extracted and the vector treated with CIP. They were then ligated to make plasmid pLR22, 

which was confirmed by sequencing with D58794. The second homology region (HR2, figure 

2.30) was then amplified using primers D75740 and D75741 to give a 500 bp PCR product. 

D75740 introduces a NheI site upstream of the homology region and D75741 introduces a 

SacI site downstream. The PCR product and pLR22 were digested with NheI and SacI, gel 

extracted and the vector treated with CIP. They were then ligated to make plasmid pLR23 

which was confirmed by DNA sequencing with D58793.pLR8 was used to make the multiple 

LacI DNA site insert for the final cloning step to avoid errors being introduced into the repeat 

sequence during PCR. pLR8 and pLR23 were both digested with KpnI and NheI. The 2 kb 

fragment containing the kan cassette and LacI DNA site repeats was purified by gel extraction 

from pLR8. From pLR23 the larger fragment of the vector was purified and treated with CIP. 

This was ligated with the insert from pLR8 to make plasmid pLR25 which was confirmed by 

DNA sequencing with D75741.  

 

To make the donor plasmid for inserting multiple MalI DNA sites adjacent to the araJ 

promoter pLR23 was again used to make the vector but the inset came from pLR11. pLR11 

and pLR23 were both digested with AgeI and NheI. The 2 kb fragment from pLR11 

containing the kan cassette and multiple MalI DNA sites was purified by gel extraction. The 

larger fragment from pLR23 was also purified by gel extraction before being treated with CIP 
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Figure 2.30: DNA sequence of the chromosomal region adjacent to araJ showing the 

homology regions and primers used to make chromosomal insertions 

Intergenic regions are shown in lowercase, sequences of genes are in capitals. The start 

codons of genes are marked in red letters with the direction of the gene shown by an 

arrow. Homology region 1 (HR1) contains part of araJ and is shown with dark blue 

shading. The sequence of the primers used to amplify homology region 1 are double 

underlined. Homology region 2 (HR2) contains part of mak and is shown with light blue 

shading. The sequence of the primers used to amplify homology region 2 are boxed. The 

sequence of primers used to check gene doctoring candidates for insertions are single 

underlined.  
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 ATGAAAAAAGTCATTTTATCTTTGGCTCTGGGCACGTTTGGTTTGGGGATGGCCGAATTTGGCATTATGGGCGTG

CTCACGGAGCTGGCGCATAACGTAGGAATTTCGATTCCTGCCGCCGGGCATATGATCTCGTATTATGCACTGGGG

GTGGTGGTCGGTGCGCCAATCATCGCACTCTTTTCCAGCCGCTACTCACTCAAACATATCTTGTTGTTTCTGGTG

GCGTTGTGCGTCATTGGCAACGCCATGTTCACGCTCTCTTCGTCTTACCTGATGCTCGCCATTGGTCGGCTGGTA

TCCGGCTTTCCGCATGGCGCATTTTTTGGCGTCGGAGCGATCGTGTTATCAAAAATTATCAAACCCGGAAAAGTC

ACCGCCGCCGTGGCGGGGATGGTTTCCGGGATGACAGTCGCCAATTTGCTGGGCATTCCGCTGGGAACGTATTTA

AGTCAGGAATTTAGCTGGCGTTACACCTTTTTATTGATCGCTGTTTTTAATATTGCGGTGATGGCATCGGTCTAT

TTTTGGGTGCCAGATATTCGCGACGAGGCGAAAGGAAATCTGCGCGAACAATTTCACTTTTTGCGCAGCCCGGCC

CCGTGGTTAATTTTCGCCGCCACGATGTTTGGCAACGCAGGTGTGTTTGCCTGGTTCAGCTACGTAAAGCCATAC

ATGATGTTTATTTCCGGTTTTTCGGAAACGGCGATGACCTTTATTATGATGTTAGTTGGGCTAGGGATGGTGCTG

GGAAATATGCTAAGTGGCAGGATTTCAGGACGTTATTCACCACTGCGCATTGCAGCAGTGACTGACTTTATAATT

GTACTGGCACTGCTGATGCTCTTTTTCTGCGGCGGCATGAAAACAACGTCGCTTATTTTTGCTTTTATTTGTTGC

GCGGGATTATTTGCCCTTTCAGCACCGCTACAAATATTGTTACTACAAAACGCCAAAGGCGGAGAGTTATTAGGT

GCCGCAGGTGGGCAAATAGCGTTTAACCTCGGTAGCGCCGTCGGCGCATATTGCGGAGGTATGATGCTGACGCTG

GGGCTGGCATATAATTACGTGGCGCTGCCTGCCGCCCTGCTTTCGTTTGCTGCGATGTCGTCGTTGCTGCTGTAT

GGTCGCTATAAGCGCCAGCAAGCGGCGGATACTCCGGTGCTGGCGAAACCACTGGGGTAGgttatagtctcggtg

ctcattacttattgccggatgcggcgtgaacgccttatccgccctacgcggttctggcacattttgcaggcctga

taagacgcggcaagcgtcgcatcaggcatcggagcacttattgccggatgcggcgtgaacgccttatccggccta

cggttctggcaccttttgtaggcctgataagacgcggcaagcgtcgcatcaggcatgatgcgccaattgcctacg

ttttTTACTCTTGTGGCCATAACCACGCAGCGCCGCGTACGCCGCTGGAATCACCGTGCTTCGCCTTACGCACCG

GCGTTTCACATTCGCCGCCGAAGACAAATTGTTTAATCAACTGCCCAACCGTTTGATATAAACGGTCTACATTGC

TCATCCCGCCCCCCAGGACAATCACATCCGGATCGAGAATATTCACGACATGTGCCAGCGATTTTGCCAGCCGCA

GCTCGTAGCGACGCAATGCCAGTTCCGCTACCGGATCGCTTTCTTCAACCAGGCGGATAATTTCACTGCCTTTCA

GCGCATGTCCGCTCAAACGACGATAATCCATCGCGAATCCCGTGCCCGAAATAAAGGTTTCAATACAACCTTGTT

TACCGCAATAACAAGGGACTTCCTCGCGATAACGCAGTTCGTCTTCGTCCATCCACGGTAGCGGATTGTGTCCCC

ACTCACCTGCCGTGCCATTGCCGCCGATATGCGCCCGCCCATTGAATGCCACGCCCGCGCCGCATCCCGTGCCGA

TAATCACGGCAAATACCGTCTGCGCTCCCGCTGCCGCGCCATCTACTGCTTCTGAAACCGCCAGACAGTTAGCGT

CATTTGCCAGCCGCACTTCCCGCTGCAACCTCGCGCTTAAGTCTTTATCGAATGGCTGACCGTTGAGCCAGGTTG

AATTGGCATTCTTCACCACACCGGTGTAAGGCGAAATTGAGCCAGGAATGCCCATACCTACCGTTCCGCGCTGCC

CCGTCGCCTGCTCCGCCATATCAACCAACGTGGCGATCGTTTCAATAGTCTGCCGGTAATCATCACGCGGCGTGG 
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 and ligated with the insert from pLR11. The resulting plasmid was pLR24 which was 

confirmed by sequencing with D75741.  

 

2.19.2 Construction of strain LR39, carrying 22 LacI DNA sites adjacent to the araJ 

promoter 

Strain MG1655 LacI::GFP was co-transformed with pACBSR and pLR25. The gene 

doctoring protocol described previously was used to insert a kan cassette and 22 copies of the 

LacI DNA site at the araJ locus. The insertion was confirmed using primers D76827 and 

D76828 which were designed to anneal to the chromosome outside of the homology regions 

to prevent them from annealing to any remaining donor plasmid in the cell. Wild type cells 

give a PCR product of approximately 1 kb, whereas cells with the insert give a product of 

approximately 3 kb. The PCR product was sequenced with D75741 to check the number of 

LacI DNA sites that had been inserted onto the chromosome. The resulting strain was strain 

LR22. The kan cassette was removed using the FLP recombinase provided by the plasmid 

pCP20. The removal of the kan cassette was confirmed by colony PCR using primers D76827 

and D76828 and sequenced using primer D75738. The new strain was, LR39, with 22 copies 

of the LacI DNA site adjacent to araJ.   

 

2.20 Introduction of multiple MalI DNA sites adjacent to the mntH 

promoter  

2.20.1 Construction of plasmid pSB5 

Gene doctoring donor plasmids for making inserts adjacent to the mntH promoter were made 

using the same basic method described in figure 2.26. To reduce the chance of any effects on 

expression of surrounding genes, the insertion site was between two convergent genes, mntH 

and ypeC (see figure 2.31). This insert is approximately 1.4 kb from the mntH promoter.
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Figure 2.31: Location of multiple MalI DNA sites inserted adjacent to the mntH 

promoter 

a) 20 copies of the MalI DNA site (MalI DS) were inserted onto the chromosome 

between convergent genes mntH and ypeC.  Adjacent to these genes is the MntR 

regulated mntH promoter which will be followed using MalI::mCherry bound to 

the multiple DNA sites. Chromosomal position shown in bp as defined by Keseler 

et al., 2011. 

b) Position of mntH relative to the oriC and macrodomains. 

 

a) 

 

 

 

 

 

 

b) 
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Primers D75746 and D75747 were used to amplify the region illustrated in figure 2.31 

labelled homology region 1 (HR1, figure 2.32), giving a 500 bp PCR product. D75746 

introduces a MfeI restriction site upstream of the homology region and D75747 introduces a 

XmaI site downstream. The PCR product and pJB32 were digested with MfeI and XmaI, gel 

extracted and the vector treated with CIP. They were then ligated to make plasmid pSB1, 

which was confirmed by sequencing with D58794. The second homology region (HR2, figure 

2.32) was then amplified using primers D75748 and D75749 to give a 500 bp PCR product. 

D75748 introduces a NheI site upstream of the homology region and D75749 introduces a 

SacI site downstream. The PCR product and pSB1 were digested with NheI and SacI, gel 

extracted and the vector treated with CIP. They were then ligated to make plasmid pSB3 

which was confirmed by DNA sequencing with D58793. 

 

pLR11 was used to make the multiple MalI DNA site insert for the final cloning step to avoid 

errors being introduced into the repeat sequence during PCR. pLR11 and pSB3 were both 

digested with AgeI and NheI. The 2 kb fragment from pLR11 containing the kan cassette and 

multiple MalI DNA sites was purified by gel extraction. The larger fragment from pSB3 was 

also purified by gel extraction before being treated with CIP and ligated with the insert from 

pLR11. The resulting plasmid was pSB5 which was confirmed by sequencing with D75749.  

 

 2.20.2 Construction of strain SXB3, carrying 20 MalI DNA sites adjacent to the mntH 

promoter 

Strain MG1655 was co-transformed with pACBSR and pSB5. The gene doctoring protocol 

described previously was used to insert a kan cassette and 20 copies of the MalI DNA site at 

the araJ locus. The insertion was confirmed using primers D76493 and D76494, which were 

designed to anneal to the chromosome outside of the homology regions to prevent them from 
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Figure 2.32: DNA sequence of the chromosomal region adjacent to mntH showing 

the homology regions and primers used to make chromosomal insertions 

Intergenic regions are shown in lowercase, sequences of genes are in capitals. The start 

codons of genes are marked in red letters with the direction of the gene shown by an 

arrow. Homology region 1 (HR1) contains part of mntH and is shown with dark blue 

shading. The sequence of the primers used to amplify homology region 1 are double 

underlined. Homology region 2 (HR2) contains part of ypeC and is shown with light blue 

shading. The sequence of the primers used to amplify homology region 2 are boxed. The 

sequence of primers used to check gene doctoring candidates for insertions are single 

underlined.  
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ATGACGAACTATCGCGTTGAGAGTAGCAGCGGACGGGCGGCGCGCAAGATGAGGCTCGCATTAATGGG

ACCTGCGTTCATTGCGGCGATTGGTTATATCGATCCCGGTAACTTTGCGACCAATATTCAGGCGGGTG

CTAGCTTCGGCTATCAGCTACTGTGGGTTGTCGTTTGGGCCAACCTGATGGCGATGCTGATTCAGATC

CTCTCTGCCAAACTAGGGATTGCCACCGGTAAAAATCTGGCGGAGCAGATTCGCGATCACTATCCGCG

TCCCGTAGTGTGGTTCTATTGGGTTCAGGCAGAAATTATTGCGATGGCAACCGACCTGGCGGAATTTA

TTGGTGCGGCGATCGGTTTTAAACTCATTCTTGGTGTTTCGTTGTTGCAGGGCGCGGTGCTGACGGGG

ATCGCGACTTTCCTGATTTTAATGCTGCAACGTCGCGGGCAAAAACCGCTGGAGAAAGTGATTGGCGG

GTTACTGTTGTTTGTTGCCGCGGCTTACATTGTCGAGTTGATTTTCTCCCAGCCTAACCTGGCGCAGC

TGGGTAAAGGAATGGTGATCCCGAGTTTACCTACTTCGGAAGCGGTCTTCCTGGCAGCAGGCGTGTTA

GGGGCGACGATTATGCCGCATGTGATTTATTTGCACTCCTCGCTCACTCAGCATTTACATGGCGGTTC

GCGTCAACAACGTTATTCCGCCACCAAATGGGATGTGGCTATCGCCATGACTATTGCCGGTTTTGTCA

ATCTGGCGATGATGGCTACAGCTGCGGCGGCGTTCCACTTTTCCGGTCATACTGGTGTTGCCGATCTT

GATGAGGCTTATCTGACGCTGCAACCGCTGTTAAGCCACGCTGCGGCAACGGTCTTTGGATTAAGCCT

GGTTGCTGCGGGGCTGTCTTCAACGGTGGTGGGGACACTGGCGGGGCAGGTGGTGATGCAGGGCTTCA

TTCGCTTTCATATCCCGCTGTGGGTGCGTCGTACAGTCACCATGTTGCCGTCATTTATTGTCATTCTG

ATGGGATTAGATCCGACACGGATTCTGGTTATGAGTCAGGTACTGTTAAGTTTTGGTATCGCTCTGGC

GCTGGTTCCACTGCTGATTTTCACCAGTGACAGCAAGTTGATGGGCGATCTGGTGAACAGCAAACGCG

TAAAACAGACAGGCTGGGTGATTGTGGTGCTGGTCGTGGCGCTGAATATCTGGTTGTTGGTGGGGACG

GCGCTGGGATTGTAGttgaatgagcgtcgcatctggcactattggcggatgcggcgtaaacgccttat

ccgccctacgcgttaaagagccggtttgtaggcctgataagacgcactagcgtcgcatcaggcattgt

gctccattggcggacgcgtTTAATGGCGGTGCCCATGACCCCGGCCTTTTCCGCGATGATCGTCACGA

TCGCGCCAGCCTTCACGATAGCCACGCTCATACGCTTTACGCTTATCCCAGCCACGGTGGTAGCCATT

ATCATGACGCCACCAACGGTTTTTGCGCCACTCATAATTGCGATGCCAGTAGTCACGGTCGCGCCAGT

GACCACCGTCCCAGTAATTACCGTAATGATCGCGATCGCCAATTTGTAATTTGATTGATGGCAGTAGG

GTGATTTCACCTGCGTTTGCTGCAAGCGGGGTAAATGCCATCAGGGCGGCCGCCAGAAACAGTGACCT

GAACATtgttattctccttcacgctcgaagccgtcagcggcctgttaacgcaatattacggggaggta

aagccccgtatcatcgccataactcttaaatcataaaggagagcattttttgCTAAACGTTATCGTGG

GGTGGCTGTTGCTTCGGACGATTGACCATCATCATCGGCTTACCTGCTAATAACAGCCATGCCGGAAG

CATGACGATACAGAGCAGCGGTAGCAATGTGGTATTGGGTACAACGACTGCCGCCATAAAAAGACTTA

ACCAGCCATCGCGTGTTACCACCAGCACGATGCCGAGAATAGCGCAAGAAACGGTTATTGCCGCTGGT

ACGGCGGGAACGTGCTCATGCAGCATCAACCCTAATGCCACGCCGACAAACACTGCCGGGAAGATTCG 
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annealing to any remaining donor plasmid in the cell. Wild type cells give a PCR product of 

approximately 1 kb, whereas cells with the insert give a product of approximately 3 kb. The 

PCR product was sequenced with D75749 to check the number of MalI DNA sites that had 

been inserted onto the chromosome. This was strain SXB1, which was transformed with 

pCP20 to remove the kan cassette, PCR checked and sequenced again with D75746. The new 

strain, SXB3, was then transformed with pLER108 to supply the cells with MalI::mCherry.  

 

2.21 Introduction of multiple LacI DNA sites adjacent to the dps promoter  

2.21.1 Construction of plasmid pSB6 

Gene doctoring donor plasmids for making inserts adjacent to the dps promoter were made 

using the same basic method described in figure 2.26. Due to the arrangement of the genes 

around dps it was not possible to insert close to the dps promoter between convergent genes, 

which would have been the best way to ensure the insert did not change expression of any 

genes. Instead an insertion site was chosen upstream of the dps promoter between dps and 

rhtA and great care was taken to avoid promoter elements (see figure 2.33). This insert is 

approximately 250 bp from the dps promoter.  

 

Primers D75744 and D75745 were used to amplify the region illustrated in figure 2.33 

labelled homology region 2 (HR2, figure 2.34) giving a 500 bp PCR product. D75744 

introduces a NheI restriction site upstream of the homology region and D75745 introduces a 

SacI site downstream. The PCR product and pJB32 were digested with NheI and SacI, gel 

extracted and the vector treated with CIP. They were then ligated to make plasmid pSB2, 

which was confirmed by sequencing with D58794. The second homology region (HR1, figure 

2.34) was then amplified using primers D75742 and D75743 to give a 500 bp PCR product.  
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Figure 2.33: Location of multiple LacI DNA sites adjacent to the dps promoter 

a) 22 copies of the LacI DNA sites (LacI DS) were inserted onto the chromosome 

between unidirectional genes rhtA and dps.  Adjacent to these genes is the MntR 

regulated dps promoter which will be followed using LacI::GFP bound to the 

LacI DNA sites. Chromosomal position shown in bp as defined by Keseler et al., 

2011. 

b) Position of dps  relative to the oriC and macrodomains. 
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Figure 2.34: DNA sequence of the chromosomal region adjacent to dps showing the 

homology regions and primers used to make chromosomal insertions 

Intergenic regions are shown in lowercase, sequences of genes are in capitals. The start 

codons of genes are marked in red letters with the direction of the gene shown by an 

arrow. Homology region 1 (HR1) contains part of rhtA and is shown with dark blue 

shading. The sequence of the primers used to amplify homology region 1 are double 

underlined. Homology region 2 (HR2) contains part of dps and is shown with light blue 

shading. The sequence of the primers used to amplify homology region 2 are boxed. The 

sequence of primers used to check gene doctoring candidates for insertions are single 

underlined.  
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ATGCCTGGTTCATTACGTAAAATGCCGGTCTGGTTACCAATAGTCATATTGCTCGTTGCCATGGCGTC

TATTCAGGGTGGAGCCTCGTTAGCTAAGTCACTTTTTCCTCTGGTGGGCGCACCGGGTGTCACTGCGC

TGCGTCTGGCATTAGGAACGCTGATCCTCATCGCGTTCTTTAAGCCATGGCGACTGCGCTTTGCCAAA

GAGCAACGGTTACCGCTGTTGTTTTACGGCGTTTCGCTGGGTGGGATGAATTATCTTTTTTATCTTTC

TATTCAGACAGTACCGCTGGGTATTGCGGTGGCGCTGGAGTTCACCGGACCACTGGCGGTGGCGCTGT

TCTCTTCTCGTCGCCCGGTAGATTTCGTCTGGGTTGTGCTGGCGGTTCTTGGTCTGTGGTTCCTGCTA

CCGCTGGGGCAAGACGTTTCCCATGTCGATTTAACCGGCTGTGCGCTGGCACTGGGGGCCGGGGCTTG

TTGGGCTATTTACATTTTAAGTGGGCAACGCGCAGGAGCGGAACATGGCCCTGCGACGGTGGCAATTG

GTTCGTTGATTGCAGCGTTAATTTTCGTGCCAATTGGAGCGCTTCAGGCTGGTGAAGCACTCTGGCAC

TGGTCGGTTATTCCATTGGGTCTGGCTGTCGCTATTCTCTCGACCGCTCTGCCTTATTCGCTGGAAAT

GATTGCCCTCACCCGTTTGCCAACACGGACATTTGGTACGCTGATGAGCATGGAACCGGCGCTGGCTG

CCGTTTCCGGGATGATTTTCCTCGGAGAAACACTGACACCCATACAGCTACTGGCGCTCGGCGCTATC

ATCGCCGCTTCAATGGGGTCTACGCTGACAGTACGCAAAGAGAGCAAAATAAAAGAATTAGACATTAA

TTAAatttacatttctgcatggttatgcataaccatgcagaatttctcgctacttttcctctacaccgtcttta

tatatcgaattatgcaaaagcatatttattccgaaaattcctggcgagcagataaataagaattgttcttatcaa

tatatctaactcattgaatctttattagttttgtttttcacgcttgttaccactattagtgtgataggaacagcc

agaatagcggaacacatagccggtgctatacttaatctcgttaattactgggacataacatcaagaggatatgaa

attATGAGTACCGCTAAATTAGTTAAATCAAAAGCGACCAATCTGCTTTATACCCGCAACGATGTCTCCGACAGC

GAGAAAAAAGCAACAGTAGAGTTGCTGAATCGCCAGGTTATCCAGTTTATTGATCTTTCTTTGATTACCAAACAA

GCGCACTGGAACATGCGCGGCGCTAACTTCATTGCCGTACATGAAATGCTGGATGGCTTCCGCACCGCACTGATC

GATCATCTGGATACCATGGCAGAACGTGCAGTGCAGCTGGGCGGTGTAGCTCTGGGGACCACTCAAGTTATCAA

CAGCAAAACCCCGCTGAAAAGTTACCCGCTGGACATCCACAACGTTCAGGATCACCTGAAAGAACTGGCTGACCG

TTACGCAATCGTCGCTAATGACGTACGCAAAGCGATTGGCGAAGCGAAAGATGACGACACCGCAGATATCCTGAC

CGCCGCGTCTCGCGACCTGGATAAATTCCTGTGGTTTATCGAGTCTAACATCGAATAAatccatcgctgatggtg

cagaactttagtacccgataaaagcggcttcctgacaggaggccgttttgttttgcagcccacctcaacgcactt

atttagtgcatccatctgctatctccagctgattaagtaaattttttgtatccacatcatcacacaatcgttaca

taaagattgttttttcatcaggttttacgctaaataatcactgtgttgagtgcacaattttagcgcaccagattg 
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D75742 introduces a MfeI site upstream of the homology region and D75743 introduces a 

XmaI site downstream. The PCR product and pSB2 were digested with MfeI and XmaI, gel 

extracted and the vector treated with CIP. They were then ligated to make plasmid pSB4 

which was confirmed by DNA sequencing with D58793.  

 

pLR8 was used to make the insert containing 22 copies of the LacI DNA site for the final 

cloning step, to avoid errors being introduced into the repeat sequence during PCR. pLR8 and 

pSB4 were both digested with KpnI and NheI. The 2 kb fragment from pLR8 containing the 

kan cassette and multiple LacI DNA sites was purified by gel extraction. The larger fragment 

from pSB4 was also purified by gel extraction before being treated with CIP and ligated with 

the insert from pLR8. The resulting plasmid was pSB6 which was confirmed by sequencing 

with D75745.  

 

2.21.2 Construction of strain SXB4, carrying 22 LacI DNA sites adjacent to dps 

Strain MG1655 LacI::GFP was co-transformed with pACBSR and pSB6. The gene doctoring 

protocol described previously was used to insert a kan cassette and 22 LacI DNA sites 

adjacent to dps. The insertion was confirmed using primers D76491 and D76492, which were 

designed to anneal to the chromosome outside of the homology regions to prevent them from 

annealing to any remaining donor plasmid in the cell. Wild type cells give a PCR product of 

approximately 1 kb, whereas cells with the insert give a product of approximately 3 kb. The 

PCR product was sequenced with D75745 to check the number of LacI DNA sites that had 

been inserted onto the chromosome. This was strain SXB2, which was transformed with 

pCP20 to remove the kan cassette, PCR checked and sequenced again with D75742. The 

resulting strain was SXB4, with 22 LacI DNA sites adjacent to dps. 
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2.22 Construction of strains with two FROS inserts 

To label two locations in the same cell, multiple LacI DNA sites and multiple MalI sites were 

inserted onto the chromosome in the same strain. Usually, P1 transduction was used to 

transfer multiple MalI DNA sites into a strain that already contain a multiple LacI DNA site 

insert and a chromosomal LacI::GFP fusion. Alternatively, MalI DNA sites were inserted into 

a strain carrying a LacI DNA site insert and a chromosomal LacI::GFP fusion using gene 

doctoring.  

 

2.22.1 Construction of strain LR31, carrying, 22 LacI DNA sites adjacent to araBAD 

and 20 MalI DNA sites adjacent to araJ. 

To compare the positions of the araBAD and araJ promoters both need to be tagged in the 

same strain using different colours. araBAD has already been tagged with LacI::GFP in LR06 

and the kan cassette has been removed. LR06 was transformed with pACBSR and pLR24 and 

the gene doctoring was used to insert 20 copies of the MalI DNA site adjacent to araJ. The 

insert was confirmed by colony PCR using primers D76827 and D76828 which give a product 

of around 1 kb in wild type cells, but 3 kb if the insert is present. The PCR product was 

sequenced with primer D75741 to check the number of DNA sites inserted onto the 

chromosome. The resulting strain was LR19. The kan cassette was removed using the FLP 

recombinase provided by the plasmid pCP20. The removal of the kan cassette was confirmed 

by colony PCR using primers D76827 and D76828 and sequenced using primer D75738. The 

new strain, LR31, was then transformed with pLER108 to supply the cells with 

MalI::mCherry. 
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2.22.2 Construction of strain LR42, carrying 22 LacI DNA sites adjacent to araBAD and 

20 MalI DNA sites adjacent to mntH 

The P1 transduction method described previously (section 2.10) was used to transfer an insert 

from the donor strain, SXB1, to the recipient strain, LR06. SXB1 has an insert of 20 MalI 

DNA sites and a kan cassette adjacent to mntH. Strain LR06 carries 22 LacI DNA sites 

adjacent to araBAD and a chromosomal LacI::GFP fusion. The insert of MalI DNA sites 

adjacent to mntH was confirmed by PCR using primers D76493 and D76494, and sequencing 

using primer D75749. The presence of the LacI DNA sites adjacent to araBAD was confirmed 

by PCR using primers D69747 and D69748 and sequencing using primer D69233. The 

resulting strain was LR40. The kan cassette was removed from strain LR40 using the FLP 

recombinase, encoded on plasmid pCP20. The removal of the kan cassette was confirmed by 

PCR using primers D76493 and D76494 and sequencing using primer D75746. The resulting 

strain was LR42, carrying 22 LacI DNA sites adjacent to araBAD, 20 MalI DNA sites 

adjacent to mntH and a chromosomal LacI::GFP fusion. This strain was then transformed with 

plasmid pLER108, encoding MalI::mCherry.  

 

2.22.3 Construction of strain LR47, carrying 22 LacI DNA sites adjacent to dps and 20 

MalI DNA sites adjacent to mntH 

The P1 transduction method described previously (section 2.10) was used to transfer an insert 

from the donor strain, SXB1, to the recipient strain, SXB4. SXB1 has an insert of 20 MalI 

DNA sites and a kan cassette adjacent to mntH. Strain SXB4 carries 22 LacI DNA sites 

adjacent to dps and a chromosomal LacI::GFP fusion. The insert of MalI DNA sites adjacent 

to mntH was confirmed by PCR using primers D76493 and D76494 and sequencing using 

primer D75749. The presence of the LacI DNA sites adjacent to dps was confirmed by PCR 

using primers D76491 and D76492 and sequencing using primer D75745. The resulting strain 
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was LR45. The kan cassette was removed from strain LR45 using the FLP recombinase, 

encoded on plasmid pCP20. The removal of the kan cassette was confirmed by PCR using 

primers D76493 and D76494 and sequencing using primer D75746. The resulting strain was 

LR47, carrying 22 LacI DNA sites adjacent to dps, 20 MalI DNA sites adjacent to mntH and a 

chromosomal LacI::GFP fusion. This strain was then transformed with plasmid pLER108, 

encoding MalI::mCherry.  

 

2.22.4 Construction of strain LR48, carrying 22 LacI DNA sites adjacent to araBAD and 

20 MalI DNA sites adjacent to araFGH 

The P1 transduction method described previously (section 2.10) was used to transfer an insert 

from the donor strain, LR20, to the recipient strain, LR06. LR20 has an insert of 20 MalI 

DNA sites and a kan cassette adjacent to araFGH. Strain LR06 carries 22 LacI DNA sites 

adjacent to araBAD and a chromosomal LacI::GFP fusion. The insert of MalI DNA sites 

adjacent to araFGH was confirmed by PCR using primers D75296 and D75297 and 

sequencing using primer D74952. The presence of the LacI DNA sites adjacent to araBAD 

was confirmed by PCR using primers D69747 and D69748, and sequencing using primer 

D69233. The resulting strain was LR46. The kan cassette was removed from strain LR46 

using the FLP recombinase, encoded on plasmid pCP20. The removal of the kan cassette was 

confirmed by PCR using primers D75296 and D75297, and sequencing using primer D74949. 

The resulting strain was LR48, carrying 22 LacI DNA sites adjacent to araBAD, 20 MalI 

DNA sites adjacent to mntH and a chromosomal LacI::GFP fusion. This strain was then 

transformed with plasmid pLER108, encoding MalI::mCherry.  
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2.23 AraC knockout in strain LR38 

P1 transduction (section 2.10) was used to transfer a ΔaraC mutation into strain LR38. Strain 

ΔaraC 83, which carries a kan cassette for selection, was used as the donor strain. The 

mutation was confirmed by PCR using primers D76717 and D76718, which give a product of 

around 1 kb in MG1655 and no product in ΔaraC 83. The mutation was further confirmed by 

streaking candidates onto MacConkey plates supplemented with arabinose. ΔaraC strains 

have white colonies. The resulting strain was LR44, with 20 MalI DNA sites adjacent to 

araFGH and a deletion in araC. 

 

2.24 Chromosomal fusion of LacI to PAmCherry 

2.24.1 Construction of plasmid pDOC-PAM-lac 

A new LacI fusion was needed with a fluorescent protein suitable for PALM super-resolution 

microscopy. A derivative of plasmid pDOC-G had already been made with homology regions 

for inserting a LacI::GFP fusion onto the chromosome using gene doctoring, pDOC-G-lac 

(Lee et al., 2009). This plasmid creates a C-terminal fusion and deletes the promoter and the 

first 400 bp of lacZ (figure 2.35). Homology region 1 contains 200 bp of lacI, excluding the 

stop codon. Homology region 2 contains 200 bp of lacZ, from around 400 bp into the gene 

(figure 2.36). The area between these two homology regions will be deleted during the gene 

doctoring process and replaced with the fluorescent protein. As this region contains all 3 of 

the LacI DNA sites, there will be no DNA sites for LacI on the chromosome in the resulting 

strain. A photoactivatable fluorescent protein is needed for PALM, so PAmCherry was 

amplified from plasmid pBAD-HisB-PAmcherry using primers D73820 and D75378, which 

introduced a KpnI immediately upstream of PAmCherry and an AgeI site downstream. The 

PCR product and pDOC-G-lac plasmid were both digested with KpnI and AgeI, before being  
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oriC

lacI

TER

 

 

Figure 2.35: Location of the chromosomal LacI::PAmCherry fusion 

a) PAmCherry was inserted onto the chromosome downstream of lacI.  The 

promoter of the adjacent gene, lacZ, is deleted. Chromosomal position shown in 

bp as defined by Keseler et al., 2011. 

b) Chromosome structure after PAmCherry has been inserted. 

c) Position of lacI  relative to the oriC and macrodomains. 
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Figure 2.36: DNA sequence of the chromosomal region adjacent to lacI showing the 

homology regions and primers used to make chromosomal LacI::GFP fusion 

Intergenic regions are shown in lowercase, sequences of genes are in capitals. The start 

codons of genes are marked in red letters with the direction of the gene shown by an 

arrow. Homology region 1 (HR1) contains part of lacI and is shown with dark blue 

shading. The sequence of the primers used to amplify homology region 1 are double 

underlined. Homology region 2 (HR2) contains part of lacZ and is shown with light blue 

shading. The sequence of the primers used to amplify homology region 2 are boxed. The 

sequence of primers used to check gene doctoring candidates for insertions are single 

underlined. The region between the two homology regions is lost during the gene 

doctoring process and, in this case, contains all 3 LacI DNA sites, shown in italics. 
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GTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAAC

CAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAAC

CGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCG

CCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAA

CGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAAC

TATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTC

TCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTC

GCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGC

TGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGT

TTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCG

CTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGAT

ACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGC

GTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAA

AGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCA

CGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAgcgcaacgcaattaatgtgagttagctcactcattaggcacc

ccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaa

cagctATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCC

AACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTT

CCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCT

GGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGC

CCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTT

ACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTAACT

CGGCGTTTCATCTGTGGTGCAACGGGCGCTGGGTCGGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACC

TGAGCGCATTTTTACGCGCCGGAGAAAACCGCCTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGG

AAGATCAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTCGTTGCTGCATAAACCGACTACACAAATCA 

 

lacI 

lacZ 

D59400 

D59401 

D59402 

D59403 

D61347 

HR1 

HR2 

O2 

O3 

O2 
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gel extracted and the vector being treated with CIP. They were then ligated to make plasmid 

pDOC-PAM-lac, which was confirmed by sequencing using primer D58794. 

 

2.24.2 Construction of strains LR35 and LR37, carrying a LacI::PAmCherry 

chromosomal fusion 

Strains MG1655 and LR18 were both co-transformed with pACBSR and pDOC-PAM-lac. 

The gene doctoring protocol described previously was used to insert a chromosomal fusion of 

LacI to PAmCherry and kan cassette into both strains. The insert was confirmed by PCR 

using primers D61347 and D59403, and sequencing using primer D59400. This resulted in 

strain LR29, derived from MG1655, carrying a LacI::PAmCherry fusion, and LR30, derived 

from LR18, carrying 6 LacI DNA sites adjacent to araBAD and a chromosomal 

LacI::PAmCherry fusion. Both strains were transformed with pCP20, encoding FLP 

recombinase, to remove the kan cassette. This was confirmed by PCR with D61347 and 

D59403 and sequencing using primer D59403. The resulting strains were LR35, carrying a 

LacI::PAmCherry fusion, and LR37, carrying 6 LacI DNA sites adjacent to araBAD and a 

LacI::PAmCherry fusion. 
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3. Repressor proteins as tools for tagging the E. coli chromosome  
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3.1 Introduction 

3.1.1 Use of repressor proteins to visualise chromosomal loci 

In order to understand more about how the E. coli chromosome is structured, tools are needed 

to follow the chromosome and study its dynamics. One commonly used technique is to use a 

fluorescently tagged repressor protein to tag chromosomes at a specific location. As 

mentioned previously, repressors are proteins that bind to a specific sequence in the promoter 

of a gene and regulate its transcription. One family of transcription factors whose members 

function in this way is the LacI/GalR family which has over 1000 members (Swint-Kruse and 

Matthews, 2009). Their biological function is to regulate their target genes, but these proteins 

are being put to a new use in visualising chromosome dynamics, where their properties of 

DNA recognition and binding of a consensus sequence are being exploited. An array of 

multiple DNA sites for a particular repressor protein is inserted at the position of interest on 

the chromosome. This is then visualised by tagging the repressor protein with a fluorescent 

protein, resulting in multiple copies of the fluorescent protein being brought together at the 

targeted location, forming a focus which can be followed by fluorescence microscopy. This is 

called a Fluorescent Repressor/Operator System (FROS). 

 

This technique was first used in budding yeast in 1996 to study the separation of sister 

chromatids (Straight et al., 1996). Later that year, the same technique was used in Chinese 

hamster ovary cells (CHO) and budding yeast where it was used to investigate the fibres 

formed due to large scale organisation of chromatin (Robinett et al., 1996). Since then, the 

technique has been widely used to study chromosome dynamics in other types of cells 

including bacteria, C. elegans (Carmi et al., 1998), Drosophila (Gasser, 2002) and 

Arabidopsis thaliana (Kato and Lam, 2001). More recently, this technique was used in C. 
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elegans to show that three genes with tissue specific promoters were localised to different 

areas of the nucleus in differentiated cells depending on whether they were being expressed 

but had no preferential position in undifferentiated embryo cells (Meister et al., 2010). Many 

of these examples include a second chromosomal tag for comparison with the original locus. 

This involves using a second repressor protein tagged to a different colour fluorescent protein 

and inserting multiple copies of its DNA site onto the chromosome. The lac repressor, LacI is 

often used as the primary reporter, sometimes in combination with the tet repressor, TetR, at a 

reference locus (Lau et al., 2003). 

 

3.1.2 The LacI repressor 

In the original FROS experiments LacI, the E. coli lac repressor, was used as the reporter 

(Straight et al., 1996, Robinett et al., 1996). Its usual function is to negatively regulate the lac 

operon, consisting of lacZ, lacY and lacA, all involved in the transport and metabolism of the 

sugar, lactose. In the absence of allolactose, the inducer, LacI binds to the lac promoter and 

represses the lac operon. A 21 bp LacI binding site is known as the lac operator and appears 3 

times on the E. coli chromosome, at positions -82, +10 and +411, all respective to the lac 

transcription start site. Each binding site is recognised and bound by 2 LacI subunits. The site 

centred at position +10, known as O1, has been shown by site directional mutagenesis to be 

the most important in repression and has the sequence AATTGTGAGCGGATAACAATT, 

which is an inverted repeat (Oehler et al., 1990). Repression of the lac operon is thought to be 

achieved by two subunits of a LacI tetramer binding O1 and two subunits binding to one of 

the other two sites (O2 and O3) simultaneously, forming a loop in the DNA, which hinders the 

transcription machinery and therefore represses the gene. As the N terminus is responsible for 

DNA binding, LacI can be fused to GFP at its C terminus without affecting its DNA binding 

capabilities, and has been used this way in previous studies (Elf et al., 2007). This can then be 
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used to visualise the chromosome at a point of interest by putting multiple copies of the LacI 

DNA site at that point. Multiple copies of LacI then bind the chromosome at the position of 

interest and a focus of GFP can be seen using a microscope. Usually an array of 256 copies of 

the LacI DNA binding site is used with the LacI::GFP fusion being supplied by a multicopy 

plasmid (Lau et al., 2003).  

 

3.1.3 The MalI repressor  

In 1987, a mutant was discovered that had altered expression of genes involved in maltose 

metabolism and transport, specifically malK. The corresponding mutation was mapped and 

the gene was called MalI, thought to be responsible for regulating genes involved in maltose 

metabolism and transport (Ehrmann and Boos, 1987). However, further studies showed that 

MalI actually regulated an operon found immediately upstream of the malI gene, in a 

divergent orientation, containing two genes called malX and malY, The physiological function 

of the malX product is unknown, but it is thought it may catalyse facilitated diffusion of an 

unknown substrate (Reidl and Boos, 1991). The malY product has the enzymatic activity of a 

βC-S lyase using amino acids with a βC-S linkage as a substrate to make other biologically 

useful molecules, for example pyruvate (Zdych et al., 1995). It was shown that malK 

expression is affected by the malY gene product, possibly by removing an inducer. As malY is 

repressed by MalI, the effect of the malI mutation on malK expression seen by Ehrmann and 

Boos was in reality caused by a change in the level of the malY gene product, not a direct 

effect of MalI.  

 

A MalI DNA site was found at the malX and malI promoters which are both co-regulated by 

CRP. The malI promoter is active in the absence of CRP, probably to ensure the repressor is 
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present at all times to repress malX and malY (Lloyd et al., 2008). The DNA site for MalI is 

5’-GATAAAACGTTTTATC-3’ located from position -24 to -9 in the malX promoter and +3 

to +18 in the malI promoter (Lloyd et al., 2010). 

 

Like LacI, MalI is also a member of the LacI/GalR family of transcriptional regulators. It has 

24% sequence homology to LacI with particular similarities in the N-terminal region, thought 

to be responsible for DNA binding (Reidl et al., 1989). Although the role of MalI in the cell is 

unknown, it shares some properties with LacI that make it a good candidate for use as a 

chromosomal tag, for example DNA recognition and binding. As with LacI, multiple copies 

of the MalI DNA site could be used in combination with fluorescently tagged MalI protein to 

label a region of interest on the chromosome. 

 

3.2 Comparison of chromosomal and plasmid-encoded LacI::GFP 

All strains used for this study are derived from MG1655. Inserts for FROS experiments were 

introduced onto the chromosome by gene doctoring. Any insert into a chromosome risks 

disrupting the local chromosome structure. As FROS is often used to study chromosome 

structure this disruption needs to be minimised by reducing the size of the chromosomal insert 

as far as possible, making results collected more useful. The insert of 256 DNA sites used in 

most studies is around 10 kb, so a smaller insert would be preferable. This project aimed to 

modify FROS to be less disruptive to the chromosome. In previous studies with 256 LacI 

DNA sites inserted onto the chromosome, a multicopy plasmid is used to supply LacI::GFP to 

the cell giving a much higher concentration of LacI than is found in a wild type cell. This 

allows for maximum occupancy of the array of multiple LacI DNA sites by LacI::GFP. In this 

project, a smaller array of LacI DNA sites was used, meaning there were only 22 DNA sites 
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inserted at the chosen target for LacI::GFP to bind to. Due to this reduction in the number of 

available DNA sites, a lower cellular concentration of LacI::GFP should be needed.  

 

Strains LR04 and LR06, both carrying 22 copies of the LacI DNA site, adjacent to the 

araBAD promoter, were used to compare plasmid encoded and chromosomal encoded 

LacI::GFP. Strain LR04 was transformed with plasmid pLER101 encoding LacI::GFP under 

the control of the wild type lacI promoter, now referred to as LR04-pLER101. The plasmid 

was derived from pACYC184 which has a copy number of approximately 15-20 and, as a 

result, the concentration of LacI::GFP in the cell can be expected to be 15-20 times that of 

LacI in wild type cells. Strain LR06 has a LacI::GFP fusion inserted onto the chromosome at 

the wild type location and under the control of the wild type lacI promoter. Both strains had 

the lacZ promoter deleted removing all other LacI DNA sites from the chromosome. When 

visualised by microscopy, most of the cells with chromosomal LacI::GFP contained clear 

foci. In contrast, in the strain containing plasmid encoded LacI::GFP, foci were not observed. 

Due the copy number of the plasmid increasing the level of LacI::GFP, the number of 

LacI::GFP molecules exceeded the number of available binding sites. A large proportion of 

LacI::GFP was therefore unbound in the cell contributing to a very high level of background 

fluorescence. The molecules of LacI::GFP that were bound to the LacI DNA site array cannot 

be observed as a focus over this background. Although plasmid encoded LacI::GFP was 

necessary for experiments using larger repeats of LacI DNA sites, a chromosomal fusion is 

sufficient for a smaller insert. For all subsequent experiments LacI::GFP was provided as a 

chromosomal fusion. 
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3.3 Use of 6 and 22 lac operators to tag chromosomes 

To investigate the use of smaller arrays of DNA sites for FROS, arrays of 6 and 22 LacI DNA 

sites are inserted adjacent to the araBAD promoter in strains with LacI::GFP on the 

chromosome, strains LR18 and LR06 respectively. An array of 22 LacI DNA sites is a 

chromosomal insert of approximately 850 bp whereas 6 DNA sites is an insert of 

approximately 250 bp. These strains were checked for the presence of photostable foci. To 

view both strains simultaneously and compare the foci directly, strain LR06 was stained with 

Hoechst 33258 and LR18 was stained with FM 4-64. The cells were then washed with PBS to 

remove any residual stain before being mixed and transferred to a microscope slide to allow 

the GFP signal from both strains to be observed under the same conditions. Cells were imaged 

every 30 seconds to test the photostability of the foci. Strain LR06, with 22 DNA sites, had 

clear foci in most cells, which faded slightly over time but were still visible after being 

exposed to the lamp 8 times. In strain LR18, with 6 DNA sites, some cells had visible foci 

although these were not as clear as in LR06. The foci faded very quickly when exposed to the 

lamp more than once (see Figure 3.1). Although the 22 DNA site array is 500 bp larger, 

therefore potentially affecting the local architecture of the chromosome more than the 6 DNA 

site array, the appearance and photostability of the foci are greatly increased making this 

strain more likely to yield useful data. However, the data produced are likely to be more 

useful than data from a strain with a larger insert, for example the 10 kb insert widely used 

previously. 

 

3.4 Activity of LacI::GFP as a transcriptional repressor 

In order to function as a chromosomal tag LacI needs to retain its function as a DNA binding 

protein after it has been fused to GFP. The N-terminus of LacI is known to contain the DNA 
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binding domain (Daber et al., 2007) so a C-terminal GFP tag was used to reduce the 

possibility of the tag affecting DNA binding. To test the function of LacI::GFP as a functional 

repressor, it was used to complement a strain with a lacI deletion, KH000. In MG1655 the β-

galactosidase activity is high when induced with IPTG and low when uninduced, owing to the 

repression of lacZ by LacI in the absence of IPTG. In KH000, due to the absence of lac 

repressor, the β-galactosidase activity is high both with and without induction. The level of β-

galactosidase can be measured by a β-galactosidase assay (see section 2.13). A plasmid 

containing the LacI::GFP fusion, pLER101, was inserted into KH000 and the effect this had 

on the level of β-galactosidase was compared to that of a plasmid carrying non-tagged LacI, 

pET22b.  

 

When KH000 is transformed with plasmid pLER101, encoding LacI::GFP, the repression of 

lacZ is restored in the absence of IPTG induction, which is shown by the low level of β-

galactosidase activity (see figure 3.2). Repression was also restored when KH000 was 

transformed with pLER107, containing a LacI::FLAG fusion, or pET22b, which contains 

untagged LacI. pLER107 was included as the FLAG tag is much smaller than GFP therefore 

may have less affect on the properties of the protein. When the cultures were induced with 

IPTG, an increase in β-galactosidase activity was seen but for the strains containing plasmid 

encoded LacI with 3 different tags, this was only to around 50% of the level seen in MG1655 

(see figure 3.2). As all 3 plasmids gave very similar results, it is likely that the lower level of 

β-galactosidase activity seen was not due to the presence of a tag on the LacI protein, and 

perhaps the increased copy number of LacI protein in the cell. This concentration of IPTG 

may not be high enough to allow for the increased number of LacI molecules. All plasmid-

expressed LacI, with different tags, restored repression of lacZ in the absence of IPTG,
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Figure 3.2: Activity of LacI::GFP as a transcriptional repressor 

Strain KH000, a derivative of MG1655, has a deletion in the lacI gene meaning there 

is high β-galactosidase activity without induction by IPTG. This figure shows the 

repression in the absence of IPTG when LacI was added to the cell in plasmids. 

pLER101 contains LacI::GFP, pLER107 contains LacI::FLAG and pET22b contains 

wild type LacI. Strains were grown to mid-exponential phase (OD650 0.3-0.5) in M9 

salts medium supplemented with 0.3% fructose in the presence and absence of 0.1 

mM IPTG. Data shown are representative of results from three independent 

experiments and error bars indicate one standard deviation from the mean. A star 

above a bar represents data that is significantly different to unsupplemented cultures 

(* = 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) represents data that is not 

significantly different. n = 9. 
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demonstrating that tagged LacI functions as well as non-tagged LacI as a transcriptional 

repressor. The GFP tag has not affected the DNA binding abilities of LacI. 

 

3.5 Suppression of the formation of LacI::GFP foci 

3.5.1 Suppression by IPTG 

To confirm that the GFP foci seen in cells are due to multiple copies of LacI::GFP binding at 

the LacI DNA site array, an attempt was made to suppress the formation of foci by the 

addition of IPTG. IPTG is an inducer of lacZ so, in its presence, LacI should not bind its 

DNA sites. Strain LR06, with a chromosomal LacI::GFP fusion and 22 LacI DNA sites 

inserted adjacent to araBAD, was grown with varying concentrations of IPTG and the 

percentage of cells containing foci recorded. The addition of increasing concentrations of 

IPTG did not decrease the percentage of cells containing at least one focus (P > 0.05) (figure 

3.3). The percentage of cells containing foci was between 87% and 96% for concentrations up 

to 1000 μM. This agrees with the result in section 3.4, where cells containing plasmid 

encoded LacI did not show full induction in the presence of IPTG, and indicates that IPTG 

bound LacI will still bind to its DNA site. 

 

3.5.2 Suppression by non-tagged LacI 

As an alternative method for suppressing the formation of LacI::GFP foci, non-tagged LacI 

was introduced to the cells in excess to compete with LacI::GFP. Plasmid pET22b was used 

to provide non-tagged LacI in excess and was compared to a control plasmid, pET20b, not 

encoding LacI. Both were transformed into strain LR06, which has a chromosomal LacI::GFP 

fusion and 22 LacI DNA sites inserted adjacent to araBAD, and is known to have foci in the 
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Figure 3.3: Repression of LacI::GFP foci formation with increasing concentrations of 

IPTG 

Strain LR06, tagged with 22 LacI DNA sites adjacent to araBAD and carrying a 

chromosomal LacI::GFP fusion, was grown to an OD650 of approximately 0.1 in M9 salts 

medium supplemented with 0.3% fructose supplemented with varying concentrations of 

IPTG. The number of cells containing one or more foci was counted. A star above a bar 

represents data that is significantly different to unsupplemented cells (* = 0.05, ** = 0.01, 

*** = 0.001), NS (P > 0.05) represents data that is not significantly different, n = > 200 cells. 
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majority of cells viewed. Cells with an excess of non-tagged LacI were observed to fall into 3 

categories, uniform background, fuzzy foci and clearly defined foci (see figure 3.4). In the 

presence of non-tagged LacI, the number of cells containing a focus dropped from 93% to 

15%, of which 10% were fuzzy foci and 5% were clearly defined. The majority of cells had a 

uniform background (see figure 3.5). This suggests that LacI::GFP was not localised to any 

particular area of the cell, probably because non-tagged LacI was occupying the majority of 

the DNA sites. Freely diffusing LacI::GFP is then observed as a uniform background. Around 

5% of the cells had at least one sharp focus of GFP as typically seen in LR06, where 

LacI::GFP is still occupying the majority of the DNA sites. This is a considerable reduction 

from the 93% of cells containing foci when the control plasmid was present. The 10% of cells 

with fuzzy foci can be explained by the possibility of the LacI DNA site array being occupied 

by both LacI::GFP and non-tagged LacI. This would cause GFP molecules to accumulate but 

in a smaller number than usual, meaning the focus formed is not as clear and photobleaches 

faster. The remainder of LacI::GFP molecules are unbound in the cell contributing to the 

background fluorescence and making the focus less clear. This “accumulation of GFP” is 

similar to the focus formed when 6 LacI DNA sites were used (see figure 3.1). In conclusion, 

the reduction in the number of cells containing clear foci in the presence of an excess of non-

tagged LacI shows that the foci were due to binding of LacI::GFP to the multiple LacI DNA 

sites inserted onto the chromosome.  

 

3.6 Use of MalI as a chromosomal tag 

Often LacI::GFP is used in combination with another repressor protein fused to a different 

colour fluorescent protein to allow two points on the chromosome to be labelled in the same 

cell. In most previous studies, the tet repressor, TetR, was used in combination with multiple 
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Figure 3.4: Cells observed when LacI::GFP foci formation was repressed with an excess of 

non-tagged LacI 

LR06, carrying an insert of 22 LacI DNA site adjacent to araBAD and a chromosomal fusion of 

LacI::GFP, was transformed with either pET22b, carrying non-tagged LacI, or pET20b, empty 

vector. Cells were grown in M9 minimal media supplemented with 0.3% fructose, supplemented 

with 40 μg/ml ampicillin, at 23ºC until they reached an OD650 of approximately 0.1. Hoechst 

33258 was used to stain the nucleoid and FM 4-64 was used to stain the membrane. Cells 

observed fell into 3 categories:  

a) LR06 with pET20b showing clear foci. 

b) LR06 with pET22b showing a fuzzy focus. 

c) LR06 with pET22b showing a uniform background of GFP. 

 

Merged                        FM 4-64                          Hoechst 33258               GFP            

b) 

 

a) 

 

c) 
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Figure 3.5: Repression of LacI::GFP foci formation with an excess of non-tagged 

LacI::GFP 

Strain LR06, with an insert of 22 LacI DNA sites adjacent to araBAD and a chromosomal 

LacI::GFP fusion, transformed with pET22b, encoding non-tagged LacI, or pET20b, empty 

vector. Cells were grown to an OD650 of approximately 0.1 in M9 salts medium 

supplemented with 0.3% fructose supplemented with 40 μg/ml ampicillin and the 

distribution of GFP in cells was recorded. A star above a bar represents data that is 

significantly different to cultures with empty vector (* = 0.05, ** = 0.01, *** = 0.001), NS 

(P > 0.05) represents data that is not significantly different. n = > 500 
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copies of its DNA sites. As an alternative option for a repressor protein to be used as a 

chromosomal tag, a system was developed using MalI and multiple copies of the MalI DNA 

site.  

 

A MalI::mCherry fusion was created, to be used in combination with LacI::GFP. The fusion 

was under the control of the malI promoter and carried in a multicopy plasmid, pACYC184 

derivative pLER104, with a copy number of 10-15. This was introduced into strain MG1655 

to check that mCherry was fluorescent and whether MalI was evenly distributed across the 

cell, as any localisations would make this fusion unsuitable for use in tagging the 

chromosome. Although a uniform background was expected, this was not seen and mCherry 

appeared to be localising in one pole of each cell.  This strain contains the non-tagged malI 

gene on the chromosome, as well as 2 MalI DNA sites. It was thought that the presence of 

non-tagged MalI would not affect future experiments, as MalI::mCherry is encoded on a 

plasmid and therefore will be in excess over the non-tagged version. Also, as there are only 2 

MalI DNA sites on the chromosome this is unlikely to form a focus of mCherry that can be 

seen using fluorescence microscopy. As the MalI::mCherry fusion is under the control of the 

malI promoter there is one complete and one partial MalI binding site on the plasmid. There is 

evidence that plasmids containing an active promoter cluster to one pole of the cell, where it 

is suggested transcription may be favourable (Sánchez-Romero et al., 2012). Although 2 

copies of the DNA site would not be enough to form a focus under normal conditions, when 

15-20 copies of plasmid pLER104, each carrying 2 MalI DNA sites, are clustered at the pole 

of the cell, enough binding sites are in the same place to make a visible mCherry focus (see 

figure 3.6a).  
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Merged Brightfield Hoechst 33258              mCherry

a)

b)

Figure 3.6: Visualisation of MalI::mCherry  

a) MalI::mCherry under the control of the malI promoter expressed from plasmid pLER104, a 

pACYC184 derivative, in MG1655. Cells were grown in M9 minimal media supplemented 

with 0.3% fructose at 23ºC until they reached an OD650 of approximately 0.1. Hoechst 33258 

was used to stain the nucleoid. 

b) MalI::mCherry under the control of the melR promoter expressed from plasmid pLER108, a 

pACYC184 derivative, in MG1655. Cells were grown in M9 minimal media supplemented 

with 0.3% fructose at 23ºC until they reached an OD650 of approximately 0.1. Hoechst 33258 

was used to stain the nucleoid.  
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To resolve this issue, the MalI::mCherry fusion was placed under the control of the melR 

transcription initiation region in plasmid pJW15Δ100 to make plasmid pLER105. The melR 

promoter and malI::mCherry fusion were transferred back into pACYC184 to make plasmid 

pLER108. Figure 3.6b shows that when this plasmid was transformed into MG1655 and 

visualised by microscopy MalI::mCherry was distributed evenly across the cell. The presence 

of 2 MalI DNA sites on the chromosome should not be a problem for future experiments and 

this MalI::mCherry fusion should be suitable for use in FROS experiments. Before the 

MalI::mCherry fusion can be used for FROS experiments, it needs to be confirmed that the 

tag has not affected MalI function. This was done by comparing the repression of the malX 

promoter by  MalI::mCherry to that of  non-tagged MalI in a β-galactosidase assay, as 

previously tested by Lloyd et al. (Lloyd et al., 2010). A strain with lacZ deleted from the 

chromosome, KH001, was used for the β-galactosidase assay. It was co-transformed with 

plasmid pRW50malX100, containing a fragment of the malX promoter fused to lacZ, and a 

second plasmid either carrying MalI or empty vector. pACYCΔHN is empty vector and 

pACYCMalI carries non-tagged MalI. pLER104 was used to provide MalI::mCherry as it  

carries MalI::mCherry under the control of the malI promoter, giving the closest comparison 

to the levels of non-tagged MalI in the cell produced by pACYCMalI. On average non-tagged 

MalI represses the malX promoter by a factor of 24 and MalI::mCherry represses by a factor 

of 31 (see figure 3.7). These similar figures suggest that MalI::mCherry is able to behave in a 

similar way to non-tagged MalI. Repression of the malX promoter depends upon MalI binding 

to the DNA so the mCherry tag has not affected the DNA binding abilities of MalI. 
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Figure 3.7: Repression of malX promoter with different forms of MalI  

Β-galactosidase activity was measured from a fusion of a fragment of the malX promoter to 

lacZ in the plasmid pRW50 malX100. Strain KH001 was transformed with pRW50malX100 

and either pACYCΔHN, empty vector, pACYCMalI, encoding non-tagged MalI, or pLER104, 

encoding MalI::mCherry. Cultures were grown aerobically at 37ºC to mid-exponential phase 

(OD650 0.3-0.5) in minimal salts medium supplemented with 0.3% fructose. pACYCMalI 

carries the wild type MalI and pLER104 carries MalI tagged to mCherry. pACYCΔHN was 

included as a negative control. Data shown are representative of three independent 

experiments, and error bars indicate one standard deviation from the mean. A star above a bar 

represents data that is significantly different to cultures with empty vector (* = 0.05, ** = 0.01, 

*** = 0.001), NS (P > 0.05) represents data that is not significantly different. n = 9. 

 

                  *                      *** 
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3.7 Comparison of LacI and MalI as FROS reporters 

To compare the repressor proteins, LacI and MalI, as FROS reporters, 2 strains were studied 

which both had inserts at exactly the same location, adjacent to araBAD. LR06 has 22 LacI 

DNA sites as well as chromosomal fusion of LacI::GFP. Strain LR17 has 20 MalI DNA sites 

and is transformed with plasmid pLER108, carrying a MalI::mCherry fusion. LR17 carrying 

the plasmid is referred to as LR17-pLER108. The strains were grown as previously described 

and cells were visualised. Clear foci of either GFP or mCherry were seen in both strains. The 

number of foci seen per cell was counted for both strains (see figure 3.8a). The majority of the 

cells from both strains had one focus per cell, with around 30% having 2 foci and a small 

percentage each having 3 or no foci. The LacI::GFP and MalI::mCherry reporters gave very 

similar results suggesting that the repressor protein::fluorescent protein combination used in 

FROS does not affect the result.  

 

For the cells containing 1 or 2 foci the average position of foci was then calculated. For a 

single focus, the distance from the centre of the focus to the nearest cell pole was measured. If 

a cell contained two foci, the focus closest to a cell pole was measured first (“1
st
 of 2 foci”) 

and then the further away focus was measured from the same pole (“2
nd

 of 2 foci”). These 

measurements were then divided by the cell length to give a position in the cell for each focus 

relative to cell length. Although the positions of foci varied, the averages calculated for cells 

with 1 or 2 foci were very similar for the strains tagged with LacI::GFP and MalI::mCherry 

(see figure 3.8b). Since both tags were inserted at exactly the same place on the chromosome 

they should give the same result unless the tag itself has some affect on the cell or the 

chromosome structure. LacI and MalI as FROS reporters gave results with no significant 

difference (P >0.05) for both the number of foci per cell and the average position of foci
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Figure 3.8: Comparison of the number of foci seen in LR06 and LR17 cells 

22 copies of the LacI DNA site were inserted adjacent to the araBAD promoter in a strain also 

carrying a chromosomal fusion of LacI::GFP, strain LR06. 20 copies of the MalI DNA site were 

also inserted at the same location in a strain, LR17, which was then transformed with a plasmid 

encoding MalI::mCherry, pLER108. Cells were grown to an OD650 of approximately 0.1 in M9 

minimal medium supplemented with 0.3% fructose, supplemented with 17.5 μg/ml 

chloramphenicol for LR17- pLER108.  

a) A bar chart to show the percentage of cells containing different numbers of foci. 

b) A bar chart to show the distance from each focus to the nearest pole of the cell was 

measured and represented relative to cell length. For cells with 2 foci, an average 

position was calculated for the focus closest to a cell pole (“1
st
 of 2 foci”) and the further 

away focus (“2
nd

 of 2 foci”). 

Data shown are averages from 3 independent experiments and error bars show one standard 

deviation from the mean. A star above a bar represents data that is significantly different (* = 

0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) represents data that is not significantly different. n 

= > 400 cells. 
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This confirms that MalI, a novel FROS reporter, gives comparable results to LacI, and that 

LacI and MalI could be used in the same cell to tag different locations in future experiments. 

 

3.8 Effect on growth rate of inserting multiple repressor DNA sites at 

various positions on the chromosome 

3.8.1 Effect on growth rate of inserting multiple LacI DNA sites onto the chromosome 

To investigate whether inserting multiple LacI DNA sites, which will be occupied by 

LacI::GFP, onto the chromosome, has caused a growth defect, strains with inserts at various 

places were compared to MG1655. All strains are derivatives of MG1655 with inserts at 

various places. A strain with a chromosomal LacI::GFP fusion (DL02) was included to 

confirm that this modification does not affect growth rate. Strains studied have this 

chromosomal insert and 22 LacI DNA sites inserted adjacent to the promoters of araBAD 

(LR06), araJ (LR39), and dps (SXB4). Cultures were grown at 37ºC in M9 minimal media 

supplemented with 0.3% fructose. OD650 was measured every hour for 3 biological repeats of 

each strain until the cultures began to reach stationary phase. All 5 strains had a very similar 

growth rate (see figure 3.9) suggesting that neither the LacI::GFP fusion nor the 22 LacI DNA 

site array have a detrimental effect on growth rate when inserted at these sites on the 

chromosome.  

 

3.8.2 Effect on growth rate of inserting multiple MalI DNA sites onto the chromosome 

To investigate whether the insertion of multiple MalI DNA sites onto the chromosome has 

affected the growth of the strains, growth rates of strains with inserts at various positions were 

compared to that of MG1655. Strains with 20 MalI DNA sites inserted adjacent to araBAD 

(LR17), araFGH (LR38), and mntH (SXB3) were compared. Also included was a
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Figure 3.9: Growth rate of cells with inserts of 22 LacI DNA sites at various sites on the 

chromosome 

The growth rate of 4 strains with different chromosomal inserts was compared to that of wild 

type, MG1655. The strain DL02 has a fusion of LacI::GFP on the chromosome. This fusion 

is then combined with inserts of 22 LacI DNA sites adjacent to araBAD (LR06), araJ 

(LR39) and dps (SXB4). Cultures were grown at 37ºC in M9 minimal medium supplemented 

with 0.3% fructose. OD650 was measured every hour for 8 hours.  
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strain combining both FROS reporters, carrying 20 MalI DNA sites adjacent to araJ, 22 LacI 

DNA sites adjacent to araBAD and a chromosomal LacI::GFP fusion (LR31). All 5 strains 

were transformed with the plasmid pLER108, carrying a MalI::mCherry fusion. Strains 

transformed with the plasmid are referred to as the strain name-pLER108. Cultures were 

grown at 37ºC in M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml 

chloramphenicol. OD650 was measured every hour for 3 biological repeats of each strain until 

the cultures began to reach stationary phase. Strains LR17-pLER108, LR39-pLER108 and 

LR31-pLER108, tagged with MalI at araBAD, araFGH and araJ respectively, showed a 

slightly slower growth rate when compared to MG1655-pLER108 but the difference was 

small and the cultures still appeared to be growing normally (see figure 3.10). Strain SXB3-

pLER108, tagged at mntH, grew at a very similar rate to MG1655-pLER108. Overall, the 

reduction in growth rate in strains containing a chromosomal insert of multiple MalI DNA 

sites was small. This also shows that a strain with inserts of LacI and MalI DNA sites at 

separate locations, a chromosomal LacI::GFP fusion and a plasmid carrying MalI::mCherry, 

LR31-pLER108, grows at a normal rate allowing for the possibility of using the LacI and 

MalI FROS in the same cell to tag 2 different locations.   

 

3.9 Discussion 

3.9.1 Use of LacI as a FROS Reporter 

The use of Fluorescent Repressor/Operator Systems (FROS) for studying chromosome 

structure in eukaryotic and bacterial cells in several different model organisms is well 

established. Previous studies have used an array of 256 LacI DNA sites to tag a location of 

interest on chromosomes and a plasmid encoded LacI::GFP fusion to visualise it. As this 

project aims to study the effect of promoter induction on chromosome structure, disruption to 
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Figure 3.10: Growth rate of cells with inserts of 20 MalI DNA sites at various sites on 

the chromosome 

The growth rate of 4 strains with different chromosomal inserts was compared to that of wild 

type, MG1655. Inserts of 20 MalI DNA sites have been made adjacent to araBAD (LR17), 

araFGH (LR38) and mntH (SXB3). Strain LR31 has a chromosomal fusion of LacI::GFP as 

well as inserts of LacI and MalI DNA sites adjacent to araBAD and araJ respectively. All 

strains were transformed with plasmid pLER108, carrying MalI::mCherry. Cultures were 

grown at 37ºC in M9 minimal medium supplemented with 0.3% fructose and 17.5 μg/ml 

chloramphenicol. OD650 was measured every hour for 8 hours.  
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the chromosome needs to be as small as possible. An array of 256 LacI DNA sites is an insert 

of 10 kb, which is 10 times the average length of an E. coli open reading frame, 951 bp 

(Blattner et al., 1997). In addition to the DNA being inserted into the chromosome is the fact 

that it will be highly occupied by protein, LacI::GFP, which could further disrupt the 

chromosome. In this project, a smaller insert of 22 LacI DNA sites, around 1 kb, was used to 

tag positions of interest. The reduction in the number of DNA sites meant that less LacI::GFP 

molecules were needed to saturate the DNA sites. Plasmid encoded LacI::GFP is present at a 

much higher copy number due to the multiple copy number of the plasmid. Once the 22 LacI 

DNA sites are bound, any remaining LacI::GFP is freely diffusing, adding to background 

fluorescence. To reduce the copy number of LacI::GFP, the fusion was inserted onto the 

chromosome, under the control of the lacI promoter, where it would presumably be expressed 

at a similar level to non-tagged LacI. There are thought to be about 20 monomers of LacI per 

copy of the gene in a “normal” E. coli cell (Gilbert and Müller-Hill, 1966), which would bind 

to 10 DNA sites as dimers. It is not known whether it is possible for all 22 LacI DNA sites in 

the array to be bound simultaneously, due to steric hindrance, but it is likely that more of the 

10 LacI::GFP dimers will be bound to the array rather than freely diffusing. The reduction in 

the percentage of unbound LacI::GFP, and therefore the reduction in background 

fluorescence, makes the foci much clearer. Although a smaller chromosomal insert is 

preferable, an attempt to use 6 LacI DNA sites for FROS gave less clear foci that 

photobleached very quickly (figure 3.1). As a compromise, the array of 22 LacI DNA sites 

was selected for further study. However, this reduction in the number of DNA sites compared 

to the usual 256 meant that time lapse experiments were not possible due to increased 

photobleaching. 
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Several experiments showed that LacI::GFP did not have the expected response to IPTG. 

When cells were induced with IPTG to suppress foci formation, no reduction in the number of 

cells with foci was seen (figure 3.3). Expression of lacZ is induced by the presence of IPTG, 

so LacI should not bind to its DNA site. This was also seen in the β-galactosidase assay 

comparing tagged and non-tagged LacI. In this case, plasmids encoding LacI::GFP, 

LacI::FLAG and non-tagged LacI returned repression to a lacI- strain in the absence of IPTG 

(figure 3.2). However, in IPTG induced cultures the β-galactosidase activity was around 50% 

lower than the level seen in wild type cultures for all 3 plasmids. This suggests that, even in 

the presence of IPTG, LacI::GFP does not fully release its DNA site. In this case, LacI::GFP 

was encoded on a multicopy plasmid, which will have increased its cellular concentration. 

Also, cells containing the plasmid encoding non-tagged LacI also gave a lower level of 

expression upon induction, suggesting that the discrepancy was not due to the GFP tag. 

Kinetic studies using equilibrium dialysis have shown that LacI releases its DNA site upon 

induction by IPTG, as the affinity of LacI for its DNA site is reduced 1000 fold (Barkley et 

al., 1975). This is thought to be because ITPG binding disrupts the intersubunit interactions 

which are required for binding to the operator (Falcon and Matthews, 1999). The IPTG 

binding site in LacI is in the centre of the molecule, while the GFP tag is at the C-terminus 

(Lewis et al., 1996) (see figure 3.11). Residues 340 to 357 of LacI, which are at the extreme 

C-terminus, form an α helix which associates with the α helix of another LacI monomer for 

dimerisation and then tetramerisation. In the LacI::GFP fusion, residues 359 to 361 have been 

removed and replaced with GFP (Lee et al., 2009). It is possible that the α helix could have 

been disrupted by the addition of GFP meaning LacI can no longer form dimers or tetramers. 

The presence of four GFP molecules at the site of tetramerisation is likely to hinder the 

formation of tetramers, but it is thought LacI::GFP can still dimerise, as it is still functional as 

a transcriptional repressor. The residues responsible for IPTG binding have been identified 
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Figure 3.11: Structure of the LacI tetramer bound to IPTG 

Each monomer of LacI is shown in a different colour. Residues 1-339 are shown in 

wireframe and residues 340-361 are shown as an α helix which associate to form the 

tetramer. IPTG is shown in its binding pocket as a stick and ball model. The DNA helix 

would be positioned at the bottom of figure b and the back of figure a.Figures a and b show 

the same structure with 90º rotation. Figure adapted from Lewis et al., 1996.  

 

a) 

b) 
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and none of the residues in the C-terminal α helix are involved (Daber et al., 2007), so there is 

no obvious reason why the addition of a GFP tag to LacI should change its response to IPTG. 

The tetramerisation of LacI::GFP could be tested using in vitro kinetics to measure DNA loop 

formation (Finzi and Gelles, 1995). An excess of non-tagged LacI could be used to suppress 

the formation of LacI::GFP foci. This reduced the percentage of cells containing at least one 

focus from 93% to 15%, showing that the foci are formed by LacI::GFP binding to the 

multiple DNA site array. Of the 15% of cells containing foci, only one third had a clear focus. 

The remainder of cells had foci that appeared fuzzy and fainter. It is thought that fuzzy foci 

are seen when the 22 LacI DNA site array is partially bound by LacI::GFP and partially 

bound by non-tagged LacI. This results in foci containing less molecules of GFP than usual.  

 

3.9.2 MalI as a FROS reporter 

LacI is often used as a FROS reporter in combination with a second repressor, fused to a 

different fluorescent protein, to allow two points in the same chromosome to be visualised at 

the same time. In the past this has been done using the tet repressor, TetR, and 240 copies of 

the TetR DNA site (Lau et al., 2003). As an alternative option, the transcription repressor 

MalI was used as a FROS reporter using a smaller insert of 20 MalI DNA sites. MalI was 

tagged to mCherry and supplied to the cell encoded on a multicopy plasmid. The malI 

promoter could not be used to express MalI::mCherry because MalI autoregulates and so 

binds to its own promoter. Plasmids with an active promoter have been shown to cluster at 

one pole of the cell (Sánchez-Romero et al., 2012), and since each plasmid is bound by one 

copy of MalI::mCherry, this results in an mCherry focus at one pole of most cells. This 

problem was avoided by putting the MalI::mCherry fusion under the control of the melR 

promoter in plasmid pJW15Δ100. Under the control of melR MalI::mCherry no longer formed 

foci at cell poles, but the cellular concentration was too high.  This gave too much background 
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fluorescence and foci could not be seen in strains with the multiple MalI DNA site array 

inserted. To reduce the level of MalI::mCherry in the cell, the fusion was transferred into a 

lower copy number plasmid, which would reduce the copy number of the gene. pJW15Δ100 

is a derivative of pBR322 which has a copy number of about 20. When the fusion under the 

control of the melR promoter was inserted into pACYC184, with a copy number of 10-15, 

foci were seen in strains with the MalI DNA site array. MalI::mCherry was shown to be able 

to repress the malX promoter, showing that the DNA binding abilities of MalI are unaffected 

by the mCherry tag. 

 

As MalI had not previously been used as a FROS reporter, LacI and MalI DNA sites were 

used to label the araBAD promoter on the E. coli chromosome, and the results compared. 

When the number of foci per cell was counted there was no significant difference between the 

two FROS reporters. The average position of foci in cells with one or two foci was also 

calculated, and there was no significant difference between the two reporters. This indicates 

that the reporter used for FROS experiments does not change the result, and therefore LacI 

and MalI can be used in the same experiments. This enables two locations to be studied in the 

same cell, one tagged with LacI::GFP and one with MalI::mCherry, and the positions 

compared.  

 

3.9.3 Asymmetry of two foci 

The position of foci representing the position of the araBAD promoter were analysed in cells 

with 2 foci. It was found that the positions of these foci were not symmetrical, averaging at 

0.2 and 0.6 compared to cell length. Logically, it may be expected the replicated araBAD 

locus would segregate equally, with the two halves of the cell as mirror images, but evidence 
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from studies of chromosome structure has shown that this is not the case (Nielsen et al., 2006, 

Wang et al., 2006). As the chromosome is replicated, the two newly replicated chromosomes 

are segregated into opposite halves of the cell. oriC is positioned approximately at the one 

quarter and three quarter positions and the left and right replichores are arranged along the 

cell length, left, right, left, right (section 1.3) (Wang et al., 2006, Reyes-Lamothe et al., 

2008b). As a result, the region surrounding the two copies of oriC is an equal distance from 

mid-cell into each half of the cell, but most other locations are not. araBAD is located in the 

Non-structured Right macrodomain, in the right replichore. If there are two foci in the cell the 

region of the chromosome containing araBAD must have been replicated, and the sister 

chromatids are known to segregate rapidly in the NSR macrodomain. One copy of araBAD 

will be located close to the cell pole, but the other will be nearer to mid-cell. Figure 3.12 

shows how the average positions of the araBAD promoter, measured using LacI and MalI 

FROS, fit with the expected arrangement of DNA in the cell.  
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Figure 3.12: A model of chromosome segregation in a bacterial cell compared to the 

average position of the araBAD promoter  

A model of a bacterial cell, with the majority of the chromosome replicated, showing the 

segregation of the left and right replichores into the future daughter cells. Arrows represent 

the average relative distance from cell pole to focus representing the araBAD promoter in 

cells with 2 foci. The focus closest to a cell pole was called “1
st
 of 2 foci” and distance was 

measured from this pole to the centre of the focus. The other focus was called “2
nd

 of 2 foci” 

and distance was measured from the same pole to the centre of the focus. All distances are 

represented relative to cell length. araBAD is located in the right replichore. Figure adapted 

from Nielsen et al. 2006. 
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4. Studies on E. coli promoters regulated by AraC and MntR 
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4.1 Introduction 

4.1.1 The role of transcription factors in chromosome structure 

Proteins categorised as NAPs clearly have a role in transcription regulation (Browning et al., 

2010). Similarly, it is possible that proteins categorised as transcription factors have an 

additional role in facilitating chromosome compaction and folding. Transcription factors work 

by binding to specific DNA sequences, usually in promoter regions of genes. Many 

transcription factors exist as multimers, with the opportunity to bind multiple DNA sites, 

often leading to looping of DNA. Whether these sites are close or distant on the chromosome, 

this could contribute to maintaining chromosome structure. Of the seven “global regulators”, 

that participate in the regulation of 51% of genes in E. coli between them, three are also 

nucleoid associated proteins known to modify and maintain chromosome structure.  

 

The link between chromosome structure and gene expression was recently investigated by 

Qian et al., studying the transcription factor GalR. GalR regulates 5 promoters found at 

different positions around the E. coli chromosome, with only two adjacent to each other. GalR 

was fused to a rapidly maturing YFP to study its distribution in vivo. The majority of cells 

analysed in stationary phase contained between 1 and 3 fluorescent foci, suggesting the 

distribution of GalR in the cell is not uniform. These foci were not seen in strains carrying a 

GalR mutant unable to multimerise, indicating that the foci may be formed by the 

colocalisation of GalR DNA sites when dimers at distant DNA sites tetramerise, supporting 

the idea that transcription factors fold the chromosome. Chromosome conformation capture 

(3C) was then used to study the physical position of GalR-regulated promoters in the cell 

compared to other locations. This involves cross-linking all the DNA and protein in the cell 

together before the DNA is digested and re-ligated. As the DNA is still held in the position it 
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is found in the nucleoid, this will result in ends of DNA ligating with other fragments of DNA 

it is close to in space and interacting with, and not necessarily adjacent to on the chromosome. 

The cross-links are then reversed and PCR carried out using primers complementary to known 

locations, both locations of interest and control locations. If a product is seen, then the DNA 

at the locations of the two primers must have been close at the point of cross-linking. The 

frequency of these two sites colocalising can be quantified by qPCR. Qian et al. showed that 

the galP, galR and mgl/gals loci frequently interacted with each other, as well as 6 of the 

control locations, not known to be GalR targets. When GalR was deleted, interactions 

between all members of the GalR regulon were removed as well as most between GalR-

regulated genes and the 6 new locations. The absence of GalR also prevented these 6 new 

sites from interacting with each other. It is suggested by the authors that there are unidentified 

GalR sites at each of these locations, and GalR DNA binding and multimerisation brings all 

of these sites together. Finally, the effect of GalR binding on mini DNA circles was studied 

using atomic force microscopy (AFM). The DNA circles contained 5 GalR DNA sites and in 

the presence of GalR were organised into loops of DNA. This was not seen with the mutant 

GalR, unable to multimerise, again suggesting that GalR brings together distant DNA sites by 

tetramerisation. All of these results indicate that GalR could be involved in chromosome 

structure as well as its known function as a transcription factor (Qian et al., 2012). A FROS 

experiment could have been used to further confirm the colocalisation of GalR-regulated 

promoters by tagging two promoters with different FROS reporters.  

 

This work aims to investigate promoters controlled by other transcription factors in E. coli. If 

promoters are colocalising upon induction the position of the promoter within the cell would 

change upon induction. Using fluorescent reporter/operator system (FROS), the positions of 
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two promoters regulated by the transcription factor MntR were investigated with and without 

induction by Mn
2+

, and the positions of 3 promoters regulated by AraC were investigated with 

and without induction by arabinose. 

 

4.1.2 The MntR regulon 

Manganese is an important trace nutrient for all cells. Although manganese and other metal 

ions are essential for growth, they are also toxic at higher concentrations, so the levels within 

the cell need to be carefully controlled. Bacterial cells regulate the level of metal ions by 

controlling their entry into the cell across the cell membrane, by use of a specific transporter 

(Jakubovics and Jenkinson, 2001).  

 

The presence of a manganese transporter was first detected in 1970, when it was identified as 

an active transport system that preferentially transported manganese over magnesium or 

calcium (Bhattacharyya, 1970). The gene encoding this transporter was confirmed as yfeP, 

which was renamed mntH. It was identified as being able to transport manganese, as well as 

iron, in a proton dependent manner, and having high similarity to the NRAMP (natural 

resistance-associated macrophage protein) proteins found in mammalian cells (Makui et al., 

2000). NRAMP  proteins are found in mammalian cells where they are known to be a divalent 

transition metal transporter which, when present in a macrophage, have the ability to control 

growth of several bacterial pathogens. Genomic studies have revealed that many bacteria also 

possess proteins from the NRAMP family, with around 35% sequence homology to the 

mammalian proteins. It is thought that these bacterial NRAMPs may have a role in 

pathogenesis (Kehres et al., 2000). mntH may have a role in pathogenesis as during infection, 

the host and pathogen compete for metal ions (Makui et al., 2000). Cells with mntH deleted 
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show no growth defects under normal growth conditions. However, if the cells are exposed to 

peroxide stress the mntH gene product is essential for survival. H2O2 in the cell can react with 

free Fe
2+

 to make hydroxyl radicals which causes damage to biomolecules. The import of 

manganese does not directly remove the peroxide, but protects the cell by activating 

metalloenzymes, including superoxide dismutases, which protect the cell against reactive 

oxygen species (Anjem et al., 2009). E. coli has two superoxide dismutases, one iron binding 

and one manganese binding. The iron bound enzyme is expressed constitutively and protects 

from oxidative damage by metabolic products. The manganese bound superoxide dismutase is 

only expressed in the presence of external oxidative stress when iron in the cell is in danger of 

becoming oxidised and the iron superoxide dismutase is unable to function (Geslin et al., 

2001). 

 

In 2001 a transcription factor named MntR was identified that binds to the mntH promoter. 

The mntH promoter is repressed in the presence of Mn
2+

 and Fe
2+

, but in a mntR mutant 

repression was reduced. A Mn
2+

-dependent MntR DNA site was identified in the mntH 

promoter by DNase I footprinting. Also in the mntH promoter is a DNA site for Fur, the ferric 

uptake regulator, which binds to its DNA sites in the presence of Fe
2+

. MntR was identified as 

being a member of the DtxR family
 
(Patzer and Hantke, 2001). The crystal structure of the E. 

coli MntR protein was determined, and the characteristic helix-turn-helix motif was present in 

the N-terminal domain for DNA binding, and a dimerisation domain in the central region of 

the protein. There was a non-homologous region in the N-terminal domain, but all of the 

residues involved in DNA binding were highly conserved (Tanaka et al., 2009). 
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Recently two studies have defined the MntR regulon and have revealed a small number of 

genes regulated by MntR. Chromatin immunoprecipitation was used to identify MntR binding 

targets across the E. coli chromosome, revealing four DNA sites. As expected, one of these 

was adjacent to mntH but DNA sites were also found adjacent to mntR itself, yebN and dps 

(Yamamoto et al., 2011). yebN has now been renamed mntP and encodes a putative efflux 

pump (Waters et al., 2011). dps is a stationary phase nucleoid associated protein that protects 

the cell from hydrogen peroxide damage (Almiron et al., 1992) and its expression is directly 

repressed by MntR bound to Mn
2+

. mntH, yebN and dps promoters are all also regulated by 

either Fur or OxyR, suggesting there is a link between levels of Mn
2+

 and Fe
2+

 in the cell and 

oxidative stress (Yamamoto et al., 2011). A second study later the same year compared 

whole-genome expression in wild type and ΔmntR cells to confirm the MntR regulon (Waters 

et al., 2011). This transcriptomics method also identified the mntH and yebN (mntP) 

promoters as DNA sites, with MntR upregulating mntP in the presence of manganese. The 

binding at the dps promoter was not detected in this study, probably because the experiment 

was carried out in exponentially growing cells. A 42 amino acid protein previously known as 

rybA was also identified and renamed mntS. This was previously thought to encode a sRNA 

(small RNA) but has been found to also encode a small protein required for full repression on 

mntH. It is now thought that MntS may function as a manganese chaperone and transport it to 

the cellular locations where it is required (Waters et al., 2011). mntS is found immediately 

upstream of mntR in a divergent orientation so the DNA site identified by chromatin 

immunoprecipitation in the mntR promoter may actually affect the mntS promoter.  

 

The members of the MntR regulon are found at various locations across the chromosome (see 

figure 4.1). mntR and mntS are adjacent to each other with dps 5 kb away, and all are found in  
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mntP

mntR/mntS

 

Figure 4.1: Schematic map of the E. coli chromosome showing locations of the MntR 

controlled genes 

The E. coli chromosome is represented by a circle with oriC marked and macrodomains as 

described by Valens et al. shown by coloured segments. MntR controls 4 promoters across 

the E. coli chromosome. mntR itself and mntS are located in the right macrodomain 

positioned at 852 kb. dps is also found in the right macrodomain at position 847 kb. mntP 

(formally yebN) is in the Ter macrodomain positioned at 1903 kb and mntH is in the left 

macrodomain positioned at 2510 kb. 
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the right macrodomain. mntP is further away in the Ter macrodomain and mntH in the Left 

macrodomain. The aim of this work is to investigate whether MntR binding has an effect on 

the cellular position of the promoters it controls, and has a similar effect on the E. coli 

chromosome as GalR. 

 

4.1.3 The AraC regulon 

Arabinose is a 5-carbon sugar that can be used by E. coli as an energy source. The E. coli 

genome includes several genes known to be involved in the uptake and metabolism of 

arabinose, and a transcription factor, AraC, which controls the expression of these genes. 

AraC co-regulates with CRP to control the promoters so they are induced in the presence of 

arabinose, but only in the absence of glucose so the cell will use the preferential carbon source 

when it is available. AraC binds as a dimeric protein to pairs of half sites. These can either be 

in direct repeat or inverted repeat organisation (Carra and Schleif, 1993). AraC is a member of 

the large AraC/XylS family of transcriptional regulators, now numbering more than 100 

transcription factors controlling genes with diverse functions. Almost all are positive 

regulators with a very small number, including AraC itself, acting as a repressor or 

functioning as both an activator and repressor (Gallegos et al., 1997). Family members are 

characterised by a 100 residue stretch of amino acids that folds to form a domain with two 

DNA-binding helix-turn-helix domains. Most members of the AraC/XylS family are insoluble 

when over-expressed, making structural experiments difficult.  

 

The best studied genes controlled by AraC are the araBAD operon, encoding ribulokinase, L-

arabinose isomerise and L-ribulose 5-phosphate 4-epimerase enzymes involved in the 

degradation of arabinose to make D-xylulose-5-phosphate, which can then be used by the cell 
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(Englesberg, 1961). The araBAD promoter is induced in the presence of arabinose, as well as 

being actively repressed in its absence, and upon induction with arabinose, the activity of the 

araBAD promoter increases 300 fold above basal levels (Schleif et al., 1973). Upstream of the 

araBAD promoter are two half sites for AraC called I1 and I2 which are each bound by a 

monomer of AraC in the presence of arabinose (see figure 4.2). The I2 site partially overlaps 

the -35 element meaning one AraC subunit can contact RNAP to activate transcription. In the 

absence of arabinose, AraC remains bound to the I1 DNA site but also binds another half site 

200 bp upstream called O2, causing looping of the DNA and repression of transcription. A 

previous study suggested that the presence of arabinose limits the extensibility of AraC, 

preventing it from binding to half sites separated by more than 21 bp. The result of this is that, 

in the presence of arabinose, AraC can no longer form the loop structure in the DNA to 

repress the araBAD promoter (Carra and Schleif, 1993). Directly upstream of the araBAD 

operon is the araC gene, arranged divergently, so the two promoter regions overlap. AraC self 

regulates by repressing expression of its gene in the absence of arabinose. This is partly 

achieved by the DNA loop structure in the araBAD promoter, but also by a second pair of half 

sites called O1 situated between the I1 and O2 sites (see figure 4.2) (Schleif, 2000). The O1 

DNA site partially overlaps the RNAP binding site for the araC promoter, preventing the 

initiation of transcription. Activity of the araC promoter increases 10 fold upon induction for 

around 15 minutes, before repression is restored (Ogden et al., 1980). When AraC is not 

bound at the O1 DNA site, CRP is able to bind its site to activate transcription of araBAD.  

 

AraC also controls genes encoding proteins involved in the transport of arabinose into E. coli. 

There are two independent transport systems for arabinose in E. coli. The lower affinity 

system, encoded by araE, has a Km for arabinose transport of 5 X 10
-5

 M. The higher affinity  
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araB AraC AraC CRP AraC AraC AraC araC

araBAD araC

I2 I1 O1 O2

Figure 4.2: Regulation of the araBAD and araC promoters by AraC  

In the presence of arabinose, AraC binds to half sites I2 and I1 to activate the araBAD 

promoter along with CRP. In the absence of arabinose AraC binds to the I1 half site and the 

O2 half site to repress both the araBAD and araC promoters. Large arrows represent the 

transcription start sites of araC and araBAD. AraC half sites are shown as coloured 

rectangles. Green rectangles represent activating sites, red, repressing sites, and orange, 

sites that are both activating and repressing. The direction of each half site is indicated by 

an arrow. Not to scale. 
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system is encoded by the operon araFGH and has a Km of 3 X 10
-6

 M (Kolodrubetz and 

Schleif, 1981).  The araE promoter has a similar structure to that of araBAD with a pair of 

AraC DNA sites overlapping the -35 sequence and a CRP site upstream. However, in the 

araFGH promoter, it is the CRP site that overlaps the -35 sequence and two pairs of AraC 

sites are found upstream (Hendrickson et al., 1990). All of the AraC DNA sites at araE and 

araFGH are activatory. The AraC DNA sites in the araE promoter are in the same orientation 

as in the araBAD promoter but in the araFGH promoter they are in the opposite orientation. It 

is thought that the different orientation of AraC DNA sites seen at araFGH is due to the fact 

that the CRP DNA site is in a different location to that seen at araBAD. This in turn appears 

to make the araFGH promoter more sensitive to the presence of glucose (Hendrickson et al., 

1990). The level of induction at araE and araFGH was found to be approximately 3 fold 

lower than that of araBAD. All 3 promoters reach their maximum level of expression 10 

minutes after being induced and the level then starts to fall (Johnson and Schleif, 1995).  

 

The promoter of a gene called araJ has also been reported to be activated by AraC and DNA 

sites of AraC have been identified (Hendrickson et al., 1990). However, the function of araJ 

is unknown and deletion of the gene shows it is not involved in transport of arabinose or 

arabinose regulation in the cell (Reeder and Schleif, 1991). ChIP-chip data has shown binding 

of AraC at all the promoters described as well as three novel regions although there is no 

information about its function when bound (J.T. Wade, personal communication). As with 

MntR, the promoters bound by AraC are spread throughout the whole chromosome, with 

araBAD and araJ found in the non-structured right macrodomain 350 kb apart, araFGH in 

the Ter macrodomain and araE in non-structured left (see figure 4.3). Despite the distance  
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TER

xylA/B

Figure 4.3: Schematic of the E. coli chromosome showing locations of AraC controlled 

genes 

The E. coli chromosome is represented by a circle with oriC marked and macrodomains as 

described by Valens et al. shown by coloured segments. AraC controls 5 promoters across 

the E. coli chromosome, including its own promoter. araBAD and araC are located in the 

non-structured right macrodomain positioned at approximately 70 kb. araJ is also in the 

non-structured right macrodomain at position 411kb. araFGH is found in the Ter 

macrodomain at position 1983 kb and araE is in the non-structured left macrodomain at 

position 2980 kb.  
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between these genes, this study sought to determine if they colocalise in the folded 

chromosome, due to the binding of their transcription factor, AraC. 

 

4.2 Studying MntR-regulated promoters 

As shown by Qian et al., binding by transcription factors can affect chromosome structure. 

Hence the positions of two promoters regulated by MntR were investigated with and without 

induction by Mn
2+ 

using fluorescent reporter/operator system (FROS). If MntR binding 

changes chromosome structure, the cellular position of the genes it regulates may change. 

 

Arrays of multiple DNA sites for LacI and MalI were inserted adjacent to two MntR 

controlled promoters. 20 MalI DNA sites are inserted adjacent to the mntH promoter in strain 

SXB3, which was then transformed with a plasmid encoding a MalI::mCherry fusion, 

pLER108. This strain containing the plasmid is referred to as SXB3-pLER108. 22 LacI DNA 

sites are inserted adjacent to the dps promoter in strain SXB4, which also has a chromosomal 

LacI::GFP fusion. Cultures were grown as previously described, with 0.1 μM MnCl2 added 

for the final 10 minutes of growth (Waters et al., 2011). Slides were prepared as previously 

described. The experiment was repeated 3 times with at least 100 cells analysed from each 

repeat. Only single cells were analysed, as cells at the point of division are thought to have a 

different chromosome structure which will be studied separately. Single cells were 

distinguished first by brightfield microscopy, and then DAPI was used to view the nucleoid. 

Although the nucleoid is often lobed in single cells, there is still a connection between the two 

halves. 
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4.2.1 Comparison of the number of foci per cell with and without induction by Mn
2+

 

The number of foci visible in each cell was counted to give the percentage of cells containing 

different numbers of foci. Strain SXB3-pLER108, with a tag adjacent to mntH, had one focus 

in the majority of cells, around 60% of cells, both with and without induction by Mn
2+

 (see 

figure 4.4a). Around 35% of cells had 2 foci with a small number of cells having 3, 4 or no 

foci. There was no significant difference (P > 0.05) between the number of foci per cell in 

cultures that had been grown with or without Mn
2+

. Strain SXB4, with a tag adjacent to dps, 

had one focus in around 65% of cells, 2 foci in 30% of cells and a small number of cells with 

3, 4 or no foci (see figure 4.4b). Again, there was no significant difference (P > 0.05) between 

the number of foci per cell when the cultures had been grown with or without Mn
2+

.  

 

When chromosome replication has passed the point of the chromosomal tag, two foci will be 

visible in the cell. E. coli can initiate multiple rounds of replication, so it is sometimes 

possible to see up to 4 foci in one cell. If there are 2 copies of the chromosome at the position 

tagged, but the sister chromatids are still close to each other, the microscope will not be able 

to distinguish two separate foci, due to the limits of diffraction, so only one focus will be 

observed. Due to the mechanism of chromosome replication in E. coli, cells with 3 foci were 

not expected. However, if there are 4 copies of the chromosome at the position of the insert 

and 2 are still close together, having recently been replicated, only 3 foci would be observed. 

There are slightly more cells with a single focus when the chromosome is tagged adjacent to 

dps because this gene is further from oriC than mntH, therefore will be replicated later in the 

cell cycle. The average number of foci per cell was calculated for strains tagged adjacent to 

araBAD, mntH and dps (strains LR06, SXB3-pLER108 and SXB4), grown in the presence 

and absence of Mn
2+

, and this number was plotted against the distance, in kb, from oriC to the 

tag (see figure 4.5). The resulting graph shows that the average number of foci per cell 
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Figure 4.4: Comparison of the number of foci representing MntR controlled 

promoters seen with and without induction by Mn
2+

 

Bar chart showing the percentage of cells containing different number of foci. 

a) Strain SXB3-pLER108, with an insert of 20 MalI DNA sites adjacent to the mntH 

promoter, was transformed with pLER108, carrying MalI::mCherry, grown with and 

without induction by Mn
2+

. 

b) Strain SXB4, with an insert of 22 LacI DNA sites adjacent to the dps promoter and 

a chromosomal LacI::GFP fusion, was grown with and without induction by Mn
2+

. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.1 μM MnCl2 added for the final 10 

minutes of growth. The number of foci per cell was recorded. A star above a bar 

represents data that is significantly different to unsupplemented cultures (* = 0.05, ** 

= 0.01, *** = 0.001), NS (P > 0.05) represents data that is not significantly different. n 

= > 350 cells. 
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Figure 4.5: Average number of foci per cell relative to distance from tag to oriC, 

in cells with and without Mn
2+

 

The average number of foci per cell was calculated for strains tagged adjacent to 

araBAD (LR06), mntH (SXB3-pLER108) and dps (SXB4). This number was plotted 

against the distance from each locus to oriC, 785 kb, 1415 kb and 1563 kb 

respectively. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.1μM MnCl2 added for the final 10 

minutes of growth. The number of foci per cell was recorded. 
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decreases with distance from oriC, and is not affected by the presence of Mn
2+

. Any variation 

in the number of foci per cell between strains tagged at different locations is due to the 

position of the tag relative to oriC. As there is no difference between the number of foci 

ininduced and uninduced cells, the addition of Mn
2+

 must not affect either the rate of DNA 

replication or the separation of sister chromatids at MntR controlled promoters. 

 

4.2.2 Comparison of the position of a single focus in cells tagged adjacent to MntR 

controlled promoters, with and without induction by Mn
2+

 

For each cell with a single focus, the length of the cell and the distance from the centre of the 

focus to the closest cell pole was measured. As the length of cells varied, the distance from 

the focus to cell pole was then divided by cell length to give a value representing the position 

of the focus relative to cell length. As the focus was measured to the closest pole, the furthest 

distance between a focus and the cell pole is half of cell length so values must be 0.5 or less. 

The percentage of cells containing a focus centred at each 0.02 of cell length between 0 and 

0.5 were calculated. Strain SXB3-pLER108, tagged adjacent to mntH, did not show any 

significant difference (P > 0.05) between cultures that had been grown with and without 

Mn
2+

, with the bars showing a very similar overall shape for both conditions (see figure 4.6a 

and b). There was also no significant difference between cultures of SXB4, tagged adjacent to 

dps, that had been grown with and without Mn
2+

 (see figure 4.6 a and c). This suggests that 

induction by Mn
2+

 does not cause MntR controlled promoters to move to a specific part of the 

cell. If there is a movement it is too small to be detected by this method.  
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Figure 4.6: Comparison of the position of foci representing MntR controlled promoters 

with and without induction by Mn
2+

 in cells with a single focus 

Bar charts showing the average position of foci or percentage of foci centred at each 0.02 of 

cell length in the absence and presence of Mn
2+

. 

a) Average relative position of foci in cells with a single focus tagged adjacent to mntH or 

dps. 

b) Strain SXB3-pLER108, with an insert of 20 MalI DNA sites adjacent to the mntH 

promoter, was transformed with pLER108, carrying MalI::mCherry, grown with and without 

induction by Mn
2+

. 

c) Strain SXB4, with an insert of 22 LacI DNA sites adjacent to the dps promoter and a 

chromosomal LacI::GFP fusion, was grown with and without induction by Mn
2+

. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml 

chloramphenicol if necessary. Cells were grown to an OD650 of approximately 0.1 and 

induced cultures had 0.1 μM added MnCl2 for the final 10 minutes of growth. The position of 

foci in cells with a single focus were measured relative to cell length. A star above a bar 

represents data that is significantly different to unsupplemented cultures (* = 0.05, ** = 0.01, 

*** = 0.001), NS (P > 0.05) represents data that is not significantly different. n = > 350. 
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4.2.3 Comparison of the positions of 2 foci from cells tagged adjacent to MntR controlled 

promoters, with and without induction by Mn
2+

 

For cells with 2 foci, the positions of foci were also measured relative to cell length. The 

focus closest to a cell pole was called “1
st
 of 2 foci” and the distance from the centre of this 

focus to the cell pole was measured. The position of the “2
nd

 of 2 foci” was then measured to 

the same cell pole. The position of the first focus, relative to cell length, was plotted on the x 

axis of a scatter plot against the position of the second focus on the y axis. If the points on the 

plot localise to a particular area it will indicate that the pair of foci are often found in a certain 

arrangement. For example, if the foci are mostly positioned at opposite ends of the cell close 

to the poles, the points will cluster towards the top left corner. If the foci are mostly located in 

the same half of the cell close together and close to a pole the points will be in the bottom left 

corner.  

 

SXB3-pLER108 cells, tagged at mntH, do not show a significant difference (P > 0.05) 

between supplemented and unsupplemented cultures, with the points covering a similar area 

of the plot (see figure 4.7a, b and c). SXB4 cells, tagged at dps, also do not show a significant 

difference in the positions of 2 foci with and without induction (P > 0.05) (see figure 4.7a, b 

and d). This confirms that the addition of Mn
2+

 does not cause MntR-regulated promoters to 

be repositioned within the cell. The pattern on the scatter plot is different depending on 

whether mntH or dps is tagged. In the mntH tagged strain, the points form a tight bunch in the 

centre of the graph, indicating the 2 foci are often positioned with one focus near the centre of 

the cell, around 0.6 – 0.7 relative to cell length, and the other focus closer to a cell pole, 

around 0.2 – 0.3 relative to cell length (see figure 2.20). In the dps tagged strain, the points are 

spread more evenly across the centre of the graph with no clear localisation. The differences 

between the two locations may be because they are located in different macrodomains. For  
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Figure 4.7: Comparison of the position of foci representing MntR controlled promoters seen 

with and without induction by Mn
2+ 

in cells with a two foci 

Bar chart showing the average relative position of the 1
st
 of 2 foci and 2

nd
 of 2 foci and scatter plot 

showing the position of the 1
st
 of 2 foci relative to cell length (x axis) against the position of the 2

nd
 

of 2 foci relative to cell length (y axis) in the absence and presence of Mn
2+

. 

a) Average relative positions of the 1
st
 of 2 foci in cells tagged adjacent to mntH and dps, grown 

with and without induction by Mn
2+

. 

b) Average relative positions of the 2
nd

 of 2 foci in cells tagged adjacent to mntH and dps, grown 

with and without induction by Mn
2+

. 

c) Strain SXB3-pLER108, with an insert of 20 MalI DNA sites adjacent to the mntH promoter, 

was transformed with pLER108, carrying MalI::mCherry, grown with and without induction by 

Mn
2+

. 

d) Strain SXB4, with an insert of 22 LacI DNA sites adjacent to the dps promoter and a 

chromosomal LacI::GFP fusion, was grown with and without induction by Mn
2+

. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml 

chloramphenicol if necessary. Cells were grown to an OD650 of approximately 0.1 and induced 

cultures had 0.1 μM MnCl2 added for the final 10 minutes of growth. The position of foci in cells 

with 2 foci were measured relative to cell length. The position of the focus closest to a cell pole 

(“1
st
 of 2 foci) is plotted on the x axis. The position of the further away focus (2

nd
 of 2 foci) was 

plotted on the y axis. A star above a bar represents data that is significantly different to 

unsupplemented cultures (* = 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) represents data that is 

not significantly different. n = > 350 cells. 
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both strains there are very few points in the bottom left quarter of the graph. As sister 

chromatids of the left and right macrodomains are segregated soon after replicating, this is to 

be expected, as the two copies of the chromosome are positioned on either side of the cell, 

ready for when the cell divides so each daughter cell has one copy of the chromosome. The 

positions of the two foci seem to be asymmetric, with the majority of foci in both strains 

falling between the positions of 0.2 and 0.3 or 0.6 and 0.7 compared to cell length. If the two 

copies of the chromosome were segregated equally after replication, the foci would be 

expected to be equal distance from the centre of the cell, 0.5. This asymmetry can be 

explained by the positioning of the left and right replichores after replication. 

 

4.3 Defining the threshold concentration of arabinose for induction of 

transcription at araBAD 

AraC acts as an arabinose-dependent switch and has even been referred to as a rheostat.  This 

means that if the concentration of arabinose present is below the optimal concentration, in 

some cells the target promoters will be fully induced, and, in the remainder, the promoter will 

be fully repressed. For experiments studying AraC-regulated promoters, it is essential that as 

many cells as possible are fully induced, as the data collected from microscopy is from 

individual cells. To find the threshold concentration for full induction, the β-galactosidase 

activity of cells carrying a plasmid containing lacZ under the control of the araBAD promoter, 

pBAD, was measured after induction with various concentrations of arabinose (see figure 

4.8). Strain KH001 was used as it carries a deletion of the lacZ promoter. The highest levels 

of β-galactosidase activity were seen with final concentrations of 0.1% and 0.3% arabinose. 

Increasing the concentration above 0.5% was seen to significantly reduce the β-galactosidase 

activity (P < 0.05). For all further experiments requiring induction by arabinose, 0.3% 

arabinose was used.  
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Figure 4.8: Induction of araBAD promoter with different concentrations of 

Arabinose  

Expression from the araBAD promoter cloned into the lac expression vector pRW50 

was measured in strain KH001, grown aerobically at 37ºC to mid-exponential phase 

(OD650 0.3-0.5) in M9 salts medium supplemented with 0.3% fructose and induced 

with various concentrations of arabinose 2 hours prior to assaying. pRW901 was 

included as a negative control. Data shown are representative of results from three 

independent experiments and error bars indicate one standard deviation from the mean. 

A star above a bar represents data that is significantly different to cultures 

supplemented with 0.3% arabinose (* = 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) 

represents data that is not significantly different. n = 9. 

 

***         ***         NS          *                        NS          *            *         *** 

Percent concentration of Arabinose 
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4.4 Studying AraC controlled promoters 

To investigate whether AraC controlled promoters, located at various positions on the 

chromosome, colocalise due to AraC binding after induction by arabinose, strains were made 

for use with FROS. 22 LacI DNA sites are inserted adjacent to the araBAD promoter in a 

strain that also had a chromosomal LacI::GFP fusion, LR06. 22 LacI DNA sites are also 

inserted adjacent to the araJ promoter in strain LR39, with a chromosomal LacI::GFP fusion 

20 MalI DNA sites are inserted adjacent to the araFGH promoter in strain LR38. This was 

then transformed with plasmid pLER108, encoding a MalI::mCherry fusion. This strain 

containing the plasmid will be referred to as LR38-pLER108. Cultures were grown as 

previously described, with 0.3% arabinose or glucose added for 1 minute before slides were 

prepared. Slides were prepared as previously described. The experiment was repeated 3 times, 

with at least 100 cells analysed from each repeat. Only single cells were analysed, as cells at 

the point of division are thought to have a different chromosome structure which will be 

studied separately. Single cells were distinguished first by brightfield view, and then DAPI 

was used to view the nucleoid. Although the nucleoid is often lobed in single cells, there is 

still a connection between the two halves. 

 

4.4.1 Comparison of the number of foci per cell with and without induction by arabinose 

The number of foci in each cell was counted to give a percentage of cells containing each 

number of foci. LR06, tagged at araBAD, had around 60% of cells with a single focus and 

30% of cells with 2 foci (see figure 4.9a). Cultures grown with arabinose, glucose or with no 

supplement did not show any significant difference in the number of foci per cell (P > 0.05). 

LR39, tagged at araJ, had around 70% of cells with a single focus and 25% with 2 foci, also 

with no significant difference in the number of foci per cell for cultures grown in the different 
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Figure 4.9: Comparison of the number of foci representing AraC controlled 

promoters seen with and without induction by arabinose  

Bar chart showing the percentage of cells with different numbers of foci, in 

unsupplemented cultures and those supplemented with arabinose or glucose. 

a) Strain LR06, with an insert of 22 LacI DNA sites adjacent to the araBAD promoter 

and a chromosomal LacI::GFP fusion, was grown with and without induction by 

arabinose. 

b) Strain LR39, with an insert of 22 LacI DNA sites adjacent to the araJ promoter and 

a chromosomal LacI::GFP fusion, was grown with and without induction by arabinose.  

c) Strain LR38-pLER108, with an insert of 20 MalI DNA sites adjacent to the araFGH 

promoter, was transformed with pLER108, carrying MalI::mCherry, and grown with 

and without induction by arabinose. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.3% arabinose or glucose added for 1 

minute before slides were prepared. The number of foci per cell was recorded. A star 

above a bar represents data that is significantly different to unsupplemented cultures (* 

= 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) represents data that is not significantly 

different. n = > 350. 
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conditions (P > 0.05) (see figure 4.9b). LR38-pLER108, tagged at araFGH, had around 80% 

of cells containing a single focus and 10% with 2 foci. Again, there was no significant 

difference between the cultures grown in the 3 different conditions (P > 0.05) (see figure 

4.9c). This suggests that induction by arabinose does not cause a change in the rate of DNA 

replication or the segregation of sister chromatids at positions on the chromosome adjacent to 

AraC controlled promoters. The percentage of cells containing a single focus rises from 60% 

to 70% and then 80% in cells tagged adjacent to araBAD, araJ and araFGH respectively. As 

the percentage of cells with a single focus rises, the percentage of cells with 2 foci falls by 

approximately the same amount. This is due to the positions of the 3 genes relative to oriC, 

the origin of replication. As araBAD is close to the edge of the Ori macrodomain it is 

replicated early in the cell cycle and as a result a relatively large proportion of cells will have 

2 foci. In contrast, araFGH is located in the Ter macrodomain and as a result is replicated late 

in the cell cycle meaning relatively few cells have 2 foci and more having a single focus. The 

average number of foci per cell was calculated for each strain and strain SXB4, tagged 

adjacent to dps, in each condition. This average was then plotted against distance from the tag 

to oriC, in kb (see figure 4.10). The graph shows that the average number of foci per cell 

decreases with distance from oriC, with little difference between cultures grown with 

arabinose, glucose or no supplement.  

 

4.4.2 Comparison of the position of a single focus in cells tagged adjacent to AraC 

controlled promoters, with and without induction by arabinose 

For cells containing a single focus, the cell length was measured and then the distance from 

the centre of the focus to the closest cell pole. Cell length varied so to make the data 

comparable, the distance from focus to cell pole was divided by cell length to give a position 

of the focus relative to cell length. The percentage of cells containing a focus centred at each  
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Figure 4.10: Average number of foci per cell relative to distance from tag to oriC, 

in cells unsupplemented or supplemented with arabinose or glucose 

The average number of foci per cell was calculated for strains tagged adjacent to 

araBAD (LR06), araJ (LR39), dps (SXB4) and araFGH (LR38-pLER108). This 

number was plotted against the distance from each gene to oriC, 785 kb, 1126 kb, 

1563 kb and 1940 kb respectively. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.3% arabinose or glucose added for 1 

minute before slides were prepared. The number of foci per cell was recorded.  
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0.02 of cell length between 0 and 0.5 were calculated. Strain LR06, tagged adjacent to 

araBAD, did not show any significant difference (P > 0.05) between unsupplemented cultures 

and those grown with arabinose and glucose (see figure 4.11a and b). Strain LR39, tagged 

adjacent to araJ¸ also did not show any significant difference between cultures grown in the 3 

conditions (P > 0.05) (see figure 4.11a and c). LR38-pLER108, tagged adjacent to araFGH, 

showed no significant difference between unsupplemented cultures and those grown with 

glucose (P > 0.05) but the cultures grown with arabinose were significantly different (P < 

0.05) (see figure 4.11a and d). The average position of a focus changing from 0.351 and 

0.358, for unsupplemented and glucose supplemented cultures respectively, to 0.375 for 

arabinose supplemented cultures. This can be seen on the bar chart (see figure 4.11d) as a 

shift in the bars representing arabinose supplemented cultures towards the right side of the 

graph. This means that upon induction with arabinose the araFGH promoter is more likely to 

be located towards the centre of the cell (0.5 relative to cell length) than towards the pole of 

the cell. This suggests that, for some promoters at least, the activity of a promoter can 

influence its position in the cell. 

 

4.4.3 Comparison of the positions of 2 foci from cells tagged adjacent to AraC controlled 

promoters, with and without induction by arabinose 

The positions of foci in cells containing 2 foci were also measured. The focus closest to a cell 

pole was called “1
st
 of 2 foci” and the distance was measured from the centre of this focus to 

the cell pole. The other focus was called “2
nd

 of 2 foci” and the distance was measured from 

the centre of this focus to the same pole. These distances were represented relative to cell 

length and plotted on a scatter graph with “1
st
 of 2 foci” on the x axis and “2

nd
 of 2 foci” on 

the y axis. The data for strain LR06, tagged adjacent to araBAD, was spread across a similar 

area of the graph for cultures grown with arabinose, glucose or without an extra supplement 
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Figure 4.11: Comparison of the position of foci representing AraC controlled 

promoters seen with and without induction by arabinose in cells with a single 

focus 

A bar chart showing the average position of foci or percentage of foci centred at each 

0.125 of cell length in the absence and presence of arabinose and glucose. 

a) Average position of foci in cells with a single focus tagged adjacent to araBAD, 

araJ, or araFGH , grown with and without induction by arabinose 

b) Strain LR06, with an insert of 22 LacI DNA sites adjacent to the araBAD promoter 

and a chromosomal LacI::GFP fusion, was grown with and without induction by 

arabinose.  

c) Strain LR39, with an insert of 22 LacI DNA sites adjacent to the araJ promoter and 

a chromosomal LacI::GFP fusion, was grown with and without induction by arabinose  

d) Strain LR38-pLER108, with an insert of 20 MalI DNA sites adjacent to the araFGH 

promoter, was transformed with pLER108, carrying MalI::mCherry, and grown with 

and without induction by arabinose.  

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.3% arabinose or glucose added for 1 

minute before slides were prepared. The position of foci in cells with a single focus 

were measured relative to cell length. A star above a bar represents data that is 

significantly different to unsupplemented cultures (* = 0.05, ** = 0.01, *** = 0.001), 

NS (P > 0.05) represents data that is not significantly different. n = > 350 cells. 
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 (P > 0.05) (see figure 4.12a and c). Strain LR39, tagged adjacent to araJ, was also found to 

have no significant difference between the positions of foci grown with no extra supplement, 

arabinose and glucose, with the points from all 3 conditions covering a similar area of the 

graph (P > 0.05) (see figure 4.12a and d). The data from strain LR38-pLER108, tagged at 

araFGH, showed a significant difference between the position of the 1
st
 of 2 foci in cultures 

grown with arabinose (P < 0.01) or glucose (P < 0.05) compared to unsupplemented cultures 

(see figure 4.12a and e). These differences can be seen in figure 4.12e as a small shift towards 

the right of the chart for the points representing glucose supplemented cultures and a 

considerable shift towards the right for the points representing arabinose supplemented 

cultures. The area of the graph containing the majority of the points representing the arabinose 

and glucose supplemented cultures (0.25-0.4 on the x axis and 0.5-0.7 on the y axis) 

corresponds to cells with the 2 foci arranged with both foci close to the centre of the cell, with 

areas around both poles of the cell unoccupied by foci. This is seen by the lack of arabinose or 

glucose points in the top section of the scatter graph or the left side (see figure 2.20). There 

was no significant difference between the 3 conditions for the 2
nd

 of 2 foci (see figure 4.12b) 

indicating that the movement seems to be in the focus designated as the “1
st
 of 2 foci”. This 

may be because it is a movement from an asymmetrical to a more symmetrical arrangement of 

the 2 foci, and as the cells have already been orientated for measuring purposes so that the 

focus further from the cell centre is “1
st
”, this will always be the focus that “moves”.  

 

The area covered by points in the graphs for strains tagged adjacent to araBAD and araJ 

appears to cover a larger area than for the strain tagged adjacent to araFGH. This is probably 

because both araBAD and araJ are located in the Non-Structured Right (NSR) macrodomain  
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Figure 4.12: Comparison of the position of foci representing AraC controlled 

promoters seen with and without induction by arabinose in cells with a two foci 

Bar chart showing the average relative position of the 1
st
 of 2 foci and 2

nd
 of 2 foci and 

scatter plot showing the position of the 1
st
 of 2 foci relative to cell length (x axis) 

against the position of the 2
nd

 of 2 foci relative to cell length (y axis) in the absence 

and presence of arabinose and glucose. 

a) Average relative positions of the 1
st
 of 2 foci in cells tagged adjacent to araBAD, 

araJ or araFGH, grown with and without induction by arabinose. 

b) Average relative positions of the 2
nd

 of 2 foci in cells tagged adjacent to araBAD, 

araJ or araFGH, grown with and without induction by arabinose. 

c) Strain LR06, with an insert of 22 LacI DNA sites adjacent to the araBAD promoter 

and a chromosomal LacI::GFP fusion, was grown with and without induction by 

arabinose. 

d) Strain LR39, with an insert of 22 LacI DNA sites adjacent to the araJ promoter and 

a chromosomal LacI::GFP fusion, was grown with and without induction by arabinose  

e) Strain LR38-pLER108, with an insert of 20 MalI DNA sites adjacent to the araFGH 

promoter, was transformed with pLER108, carrying MalI::mCherry, and grown with 

and without induction by arabinose.  

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.3% arabinose or glucose added for 1 

minute before slides were prepared. The position of foci in cells with 2 foci were 

measured relative to cell length. The position of the focus closest to a cell pole (“1
st
 of 

2 foci) is plotted on the x axis. The position of the further away focus (2
nd

 of 2 foci) 

was plotted on the y axis. A star above a bar represents data that is significantly 

different to unsupplemented cultures (* = 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) 

represents data that is not significantly different. n = > 350 cells. 
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which is less constrained than the Ter domain, where araFGH is located. This may allow 

DNA in the NSR a larger area to diffuse within. 

 

4.5 Colocalisation of foci 

4.5.1 Colocalisation of MntR controlled promoters with and without induction by Mn
2+

 

To further investigate the possibility that MntR positions the promoters that it regulates, two 

MntR controlled promoters are tagged in the same cell. 20 copies of the MalI DNA site are 

inserted adjacent to the mntH promoter in a strain that also has 22 copies of the LacI DNA site 

adjacent to the dps promoter, strain LR47. This strain also has a chromosomal LacI::GFP 

fusion and was transformed with pLER108, encoding MalI::mCherry. This strain carrying the 

plasmid will be referred to as LR47-pLER108. A second strain was used in this experiment to 

compare the localisation of mntH to an unrelated promoter. This has 20 copies of the MalI 

DNA site inserted adjacent to the mntH promoter and 22 copies of the LacI DNA site adjacent 

to the araBAD promoter and is called LR42. It also has a chromosomal LacI::GFP fusion and 

was transformed with plasmid pLER108, encoding a MalI::mCherry fusion. This strain 

carrying the plasmid will be referred to as LR42-pLER108. Cultures were grown as described 

previously with 0.1 μM MnCl2 added for the final 10 minutes of growth. Slides were prepared 

as previously described. The experiment was repeated 3 times, with at least 150 cells analysed 

from each repeat. An example of an image showing cells tagged adjacent to dps and mntH is 

shown in figure 4.13 

 

Cell length was measured for each cell containing 1 GFP and 1 mCherry focus. The distance 

from the centre of the GFP focus to the closest cell pole was measured, followed by the 

distance from the centre of the mCherry focus to the same cell pole. Focus to cell pole
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Merged                                Brightfield Hoechst 33258

GFP                                     mCherry

 

Figure 4.13: Using LacI::GFP and MalI::mCherry to tag dps and mntH in the same 

cell  

Strain LR47-pLER108 has 22 LacI DNA sites inserted adjacent to the dps promoter and 20 

MalI DNA sites inserted adjacent to the mntH promoter. It also has chromosomally 

encoded LacI::GFP and is transformed with pLER108, encoding MalI::mCherry. Cells 

were grown in M9 minimal media supplemented with 0.3% fructose at 23ºC until reaching 

an OD650 of approximately 0.1. Hoechst 33258 was used to stain the nucleoid.  
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distances were divided by cell length to give a position of each focus relative to cell length. 

The position of the GFP focus for each cell was plotted on a scatter graph against the position 

of the mCherry focus. If the two foci colocalise, the points on the graph will fall along a 

diagonal line, which would go through the origin (as shown in figure 4.14 c and d). The data 

from LR47-pLER108, tagged adjacent to mntH and dps, is spread evenly across the graph and 

there is no significant difference (P > 0.05) between cultures grown with and without Mn
2+

 

(see figure 4.14a, b and c). This suggests that the induction by Mn
2+

 does not cause MntR 

controlled promoters to colocalise in the nucleoid. Strain LR42-pLER108, tagged adjacent to 

mntH and araBAD, also does not show any significant difference (P > 0.05) between cultures 

grown with and without Mn
2+

 (figure 4.14a, b and d).  

 

4.5.2 Colocalisation of AraC controlled promoters with and without induction by 

arabinose 

To investigate the possibility of AraC playing a role in chromosome structure by bringing the 

promoters it controls together to a particular location, two AraC controlled promoters were 

tagged in the same cell to directly compare their positions. 3 strains were made that all had 22 

copies of the LacI DNA site are inserted adjacent to the araBAD promoter and a chromosomal 

LacI::GFP fusion. In combinations with these inserts, 20 MalI DNA sites were inserted 

adjacent to either the araJ promoter (LR31), araFGH promoter (LR48) or the mntH promoter 

(LR42). These strains were transformed with plasmid pLER108, encoding MalI::mCherry. 

Strains carrying the plasmid are referred to as LR31-pLER108, LR48-pLER108 and LR42-

pLER108, respectively. Cultures were grown as described previously with 0.3% arabinose 

added for 1 minute before slides were prepared. Slides were prepared as previously described. 

The experiment was repeated 3 times, with at least 150 cells analysed from each repeat. An  
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Figure 4.14: Colocalisation of foci representing MntR controlled promoters with and 

without induction by Mn
2+

 

Bar charts showing average relative positions of foci. Also, scatter plots comparing the positions 

of two loci on the chromosome, tagged with LacI::GFP (x axis) and MalI::mCherry (y axis). 

Diagonal line shows the position of colocalising points. 

a) Average relative positions of foci in strain LR47-pLER108 with an insert of 22 LacI DNA 

sites adjacent to the dps promoter, 20 MalI DNA sites adjacent to the mntH promoter and a 

chromosomal LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by Mn
2+

.  

b) Average relative positions of foci in strain LR42-pLER108, with an insert of 22 LacI DNA 

sites adjacent to the araBAD promoter, 20 MalI DNA sites adjacent to the mntH promoter and a 

chromosomal LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by Mn
2+

. 

c) Strain LR47-pLER108, with an insert of 22 LacI DNA sites adjacent to the dps promoter, 20 

MalI DNA sites adjacent to the mntH promoter and a chromosomal LacI::GFP fusion, was 

transformed with pLER108, carrying MalI::mCherry, and grown with and without induction by 

Mn
2+

.  

d) Strain LR42-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD promoter, 

20 MalI DNA sites adjacent to the mntH promoter and a chromosomal LacI::GFP fusion, was 

transformed with pLER108, carrying MalI::mCherry, and grown with and without induction by 

Mn
2+

. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 17.5μg/ml 

chloramphenicol, if necessary. Cells were grown to an OD650 of approximately 0.1 and induced 

cultures had 0.1 μM MnCl2 added for the final 10 minutes of growth. The distance between GFP 

or mCherry foci and the cell pole were measured in μm. A star above a bar represents data that is 

significantly different to unsupplemented cultures (* = 0.05, ** = 0.01, *** = 0.001), NS (P > 

0.05) represents data that is not significantly different. n = > 500 cells. 
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example of an image showing cells tagged adjacent to araBAD and araFGH is shown in 

figure 4.15. For cells with one focus each of GFP and mCherry, the distance between the 

centre of the GFP focus and the cell pole was measured and then the distance between the 

centre of the mCherry focus and the same cell pole. These distances were represented relative 

to cell length and plotted on scatter graph, with GFP focus position on the x axis and mCherry 

focus position on the y axis. Colocalisation would result in the points clustering around a 

diagonal line, intersecting the origin.  

 

The scatter plot for strain LR31-pLER108, tagging araBAD and araJ, shows the points are 

spread out with a no obvious clustering on the diagonal line, suggesting that these promoters 

do not colocalise (see figure 4.16a and d). Strain LR48-pLER108, tagged adjacent to araBAD 

and araFGH, gave data that is very evenly spread suggesting that in many cells these 2 

promoters are at distant points. For these 2 strains there was no significant difference between 

the positions of foci with and without induction by arabinose (P > 0.05) (see figure 4.16b and 

e). The data for strain LR42-pLER108, tagged adjacent to araBAD and mntH, is also spread 

out on the graph suggesting there is no colocalisation (see figure 4.16c and f). However, there 

is a significant difference between the cultures grown with and without arabinose (P < 0.01), 

with the average position of the focus representing the position of mntH changing from 0.476 

to 0.507 upon addition of arabinose, so moving towards the centre of the cell upon induction. 

The average position of the focus representing araBAD was 0.350 in the absence of arabinose 

and 0.345 in the presence, with no significant difference. This was unexpected as mntH and 

the surrounding genes are not regulated by AraC and have no known connection to arabinose. 

The reason for this change is unknown. The points representing foci adjacent to araBAD and 

araJ are much tighter together than the corresponding points for araBAD and araFGH. This 
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Merged                                Brightfield Hoechst 33258

GFP                                     mCherry

Figure 4.15: Using LacI::GFP and MalI::mCherry to tag araBAD and araFGH in the 

same cell  

Strain LR48-pLER108 has 22 LacI DNA sites inserted adjacent to the araBAD promoter 

and 20 MalI DNA sites inserted adjacent to the araFGH promoter. It also has 

chromosomally encoded LacI::GFP and is transformed with pLER108, encoding 

MalI::mCherry. Cells were grown in M9 minimal media supplemented with 0.3% fructose 

at 23ºC until reaching an OD650 of approximately 0.1. Hoechst 33258 was used to stain the 

nucleoid.  
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Figure 4.16: Colocalisation of foci representing AraC controlled promoters with and 

without induction by arabinose  

Bar Charts showing the average position of foci. Also, scatter plot comparing the positions of 

two loci on the chromosome, tagged with LacI::GFP (x axis) and MalI::mCherry (y axis). 

Diagonal line shows the position of colocalising points. 

a) Average positions of foci in strain LR31-pLER108, with an insert of 22 LacI DNA sites 

adjacent to the araBAD promoter, 20 MalI DNA sites adjacent to the araJ promoter and a 

chromosomal LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose. 

b) Average positions of foci in strain LR48-pLER108, with an insert of 22 LacI DNA sites 

adjacent to the araBAD promoter, 20 MalI DNA sites adjacent to the araFGH promoter and a 

chromosomal LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose. 

c) Average positions of foci in strain LR42-pLER108, with an insert of 22 LacI DNA sites 

adjacent to the araBAD promoter, 20 MalI DNA sites adjacent to the mntH promoter and a 

chromosomal LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose. 

d) Strain LR31-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the araJ promoter and a chromosomal LacI::GFP 

fusion, was transformed with pLER108, carrying MalI::mCherry, and grown with and without 

induction by arabinose.  

e)  Strain LR48-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the araFGH promoter and a chromosomal LacI::GFP 

fusion, was transformed with pLER108, carrying MalI::mCherry, and grown with and without 

induction by arabinose.  

f) Strain LR42-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the mntH promoter and a chromosomal LacI::GFP 

fusion, was transformed with pLER108, carrying MalI::mCherry, and grown with and without 

induction by arabinose.  

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml 

chloramphenicol if necessary. Cells were grown to an OD650 of approximately 0.1 and induced 

cultures had 0.3% arabinose added for 1 minute before slides were prepared. The distance from 

the GFP focus to the closest cell pole was measured relative to cell length and plotted on the x 

axis. The distance from the mCherry focus to the same cell pole was measured relative to cell 

length and plotted on the y axis. A star above a bar represents data that is significantly different 

to unsupplemented cultures (* = 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) represents data 

that is not significantly different. n = > 500 cells. 
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is to be expected as araBAD and araJ are both located in the NSR macrodomain whereas 

araFGH is in the Ter domain. Although the NSR domain is less restricted than other 

macrodomains it would still be more likely to find araBAD in a similar area of the cell to 

another gene in NSR than a gene from a different macrodomain. These results suggest that 

AraC binding does not change chromosome structure by bringing different AraC-regulated 

promoters together, supporting the result seen in section 4.4.3. 

 

4.6 Distance between promoters with and without induction 

4.6.1 Distance between foci representing MntR controlled promoters with and without 

induction by Mn
2+

 

To investigate the distance between 2 MntR-regulated promoters, strains with 2 FROS tags 

were used. Strain LR47 has 22 LacI DNA sites adjacent to dps and 20 MalI DNA sites 

adjacent to mntH. The distance between mntH and araBAD was also measured as araBAD is 

not controlled by MntR so can be used as a reference point. Strain LR42 has 22 LacI DNA 

sites inserted adjacent to araBAD and 20 MalI DNA sites adjacent to mntH. Both of these 

strains also have a chromosomal LacI::GFP fusion and were transformed with a plasmid 

encoding MalI::mCherry, pLER108. Strains transformed with the plasmid are referred to as 

the strain name-pLER108. Cells with one focus of each colour were analysed. The distance 

from the centre of the GFP focus was measured to the closest cell pole before the distance 

from the centre of the mCherry focus was measured to the same pole. As cell length is not 

relevant for this analysis, distance was measured in μm rather than relative to cell length to 

give an actual value to the distance between the 2 loci. Cultures were grown as described 

previously with 0.1 μM MnCl2 added for the final 10 minutes of growth. Slides were prepared 

as previously described. The experiment was repeated 3 times, with at least 150 cells analysed 

from each repeat. 



214 

 

The percentage of cells with the distance between foci at each 0.1 μm from 0 to 1.5 μm was 

calculated for cells grown with and without Mn
2+

. Strain LR47-pLER108, tagged at mntH and 

dps, did not show any significant difference (P > 0.05) between the distance between the 2 

locations when cells are grown with or without Mn
2+

 (see figure 4.17a and b). Strain LR42-

pLER108, tagged adjacent to mntH and araBAD, also had no significant difference (P > 0.05) 

in the distance between the 2 locations when grown with and without Mn
2+

 (see figure 4.17a 

and c). To further investigate, the cells with a distance between the 2 locations tagged that 

was less that 0.5 μm were split to show the percentage of cells for each 0.02 μm. Again, there 

was no significant difference (see figure 4.18). This suggests that MntR does not alter the 

chromosome structure by repositioning promoters that it controls.  

 

4.6.2 Distance between foci representing AraC controlled promoters with and without 

induction by arabinose 

To further investigate the possibility of the induction state of AraC controlled promoters 

affecting their position within the cell. 22 LacI DNA sites are inserted adjacent to araBAD 

and 20 MalI DNA sites are inserted adjacent to araJ in strain LR31. 22 LacI DNA sites are 

inserted adjacent to araBAD and 20 MalI DNA sites are inserted adjacent to araFGH in strain 

LR48. To measure the position of araBAD against a position that should be unaffected by the 

addition of arabinose, a third strain was made with 22 LacI DNA sites adjacent to araBAD 

and 20 MalI DNA sites adjacent to mntH, strain LR42. All 3 strains also had a chromosomal 

LacI::GFP fusion and were transformed with a plasmid encoding MalI::mCherry, pLER108. 

Strains transformed with the plasmid will be referred to as the strain name-pLER108. Cells 

with one focus of each colour were analysed. The distance from the centre of the GFP focus 

was measured to the closest cell pole before the distance from the centre of the mCherry focus 

was measured to the same pole. As cell length is not relevant for this analysis, distance was  
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Figure 4.17: Distance between of foci representing MntR controlled promoters with 

and without induction by Mn
2+

 

Bar chart showing the distance in μm between LacI::GFP and MalI::mCherry foci. 

a) Average distance between a LacI::GFP focus a MalI::mCherry focus in strain LR47, 

tagged adjacent to mntH and dps, and LR42, tagged adjacent to araBAD and mntH. 

b) Strain LR47-pLER108, with an insert of 22 LacI DNA sites adjacent to the dps promoter, 

20 MalI DNA sites adjacent to the mntH promoter and a chromosomal LacI::GFP fusion, 

was transformed with pLER108, carrying MalI::mCherry, and grown with and without 

induction by Mn
2+

.  

c) Strain LR42-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the mntH promoter and a chromosomal LacI::GFP 

fusion, was transformed with pLER108, carrying MalI::mCherry, and grown with and 

without induction by Mn
2+

. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml 

chloramphenicol if necessary. Cells were grown to an OD650 of approximately 0.1 and 

induced cultures had 0.1 μM MnCl2 added for the final 10 minutes of growth. The distance 

between GFP and mCherry foci were measured in μm. A star above a bar represents data that 

is significantly different to unsupplemented cultures (* = 0.05, ** = 0.01, *** = 0.001), NS 

(P > 0.05) represents data that is not significantly different. n = > 500 cells. 
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Figure 4.18: Distance between of foci representing MntR controlled promoters with and 

without induction by manganese 

Bar chart showing the distance in μm between LacI::GFP and MalI::mCherry foci 

a) Strain LR47-pLER108, with an insert of 22 LacI DNA sites adjacent to the dps promoter, 20 

MalI DNA sites adjacent to the mntH promoter and a chromosomal LacI::GFP fusion, was 

transformed with pLER108, carrying MalI::mCherry, and grown with and without induction 

by manganese.  

b) Strain LR42-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the mntH promoter and a chromosomal LacI::GFP 

fusion, was transformed with pLER108, carrying MalI::mCherry, and grown with and without 

induction by manganese. 

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml 

chloramphenicol if necessary. Cells were grown to an OD650 of approximately 0.1 and induced 

cultures had 0.1 μM MnCl2 added for the final 10 minutes of growth. The distance between 

GFP and mCherry foci were measured in μm. Data shown for cells with foci under 0.5 μm 

apart. n = > 100 

 

- Mn
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+ Mn
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measured in μm rather than relative to cell length to give an actual value to the distance 

between the 2 loci. Cultures were grown as described previously with 0.3% arabinose added 

for 1 minute before slides were prepared. Slides were prepared as previously described. The 

experiment was repeated 3 times, with at least 150 cells analysed from each repeat. 

 

The percentage of cells with the distance between foci at each 0.1 μm from 0 to 1.5 μm was 

calculated for cells grown with and without arabinose. The distance between foci in strain 

LR31-pLER108, tagged adjacent to araBAD and araJ, did not change significantly (P > 0.05) 

with addition of arabinose (see figure 4.19a and b). Strain LR48-pLER108, tagged adjacent to 

araBAD and araFGH, also showed no significant difference in the distance between loci with 

and without arabinose (P > 0.05) (see figure 4.19a and c). When the cells with foci located 

within 0.5 μm of each other were further studied, there was also no significant difference for 

either of these strains when grown with and without arabinose (P > 0.05). Strain LR42-

pLER108, tagged adjacent to araBAD and mntH, was made to investigate the position of the 

araBAD promoter when compared to a promoter that is not regulated by AraC. There was a 

significant change in the distance between these two positions when the cells were grown 

with arabinose (P < 0.05), with the distance increasing with addition of arabinose (see figure 

4.19 a and d). When just cells with foci located within 0.5 μm of each other were studied it 

was found there was no significant difference (P > 0.05) (see figure 4.20). As seen previously 

(Section 4.5.2) when colocalisation of araBAD and mntH was studied, there was a change in 

the position of the mCherry focus representing the position of mntH. The average position of 

araBAD was 0.350 and 0.345 in the absence and presence of arabinose. The average position 

of mntH changed from 0.475 to 0.507 with the addition of arabinose, explaining the increase 

in distance  
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Figure 4.19: Distance between of foci representing AraC controlled promoters 

with and without induction by arabinose  

Bar chart showing the distance in μm between LacI::GFP and MalI::mCherry foci. 

a) Average distance between a LacI::GFP focus a MalI::mCherry focus in strain LR31, 

tagged adjacent to araBAD and araJ, LR48, tagged adjacent to araBAD and araFGH, 

and LR42, tagged adjacent to araBAD and mntH. 

b) Strain LR31-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the araJ promoter and a chromosomal 

LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose.  

c) Strain LR48-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the araFGH promoter and a chromosomal 

LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose.  

d) Strain LR42-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the mntH promoter and a chromosomal 

LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose.  

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.3% arabinose added for 1 minute before 

slides were prepared. The distance between GFP and mCherry foci were measured in 

μm. A star above a bar represents data that is significantly different to unsupplemented 

cultures (* = 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) represents data that is not 

significantly different. n = > 500 cells. 
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Figure 4.20: Distance between of foci representing AraC controlled promoters 

with and without induction by arabinose  

Bar chart showing the distance in μm between LacI::GFP and MalI::mCherry foci. 

a) Strain LR31-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the araJ promoter and a chromosomal 

LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose.  

b) Strain LR48-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the araFGH promoter and a chromosomal 

LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose.  

c) Strain LR42-pLER108, with an insert of 22 LacI DNA sites adjacent to the araBAD 

promoter, 20 MalI DNA sites adjacent to the mntH promoter and a chromosomal 

LacI::GFP fusion, was transformed with pLER108, carrying MalI::mCherry, and 

grown with and without induction by arabinose.  

Cells were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.3% arabinose added for 1 minute before 

slides were prepared. The distance between GFP and mCherry foci were measured in 

μm. Data shown for cells with foci under 0.5 μm apart. n = > 100 

 



222 

 

0

1

2

3

4

5

6

7

8

9

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

.1
2

0
.1

4
0

.1
6

0
.1

8
0

.2
0

.2
2

0
.2

4
0

.2
6

0
.2

8
0

.3
0

.3
2

0
.3

4
0

.3
6

0
.3

8
0

.4
0

.4
2

0
.4

4
0

.4
6

0
.4

8

P
e
rc

e
n

ta
g
e
 o

f 
c
e
ll

s

Distance between araBAD and mntH (μm)

- Arabinose

+ Arabinose

0

1

2

3

4

5

6

7

8

9

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

0
.1

6
0

.1
8

0
.2

0
0

.2
2

0
.2

4
0

.2
6

0
.2

8
0

.3
0

0
.3

2
0

.3
4

0
.3

6
0

.3
8

0
.4

0
0

.4
2

0
.4

4
0

.4
6

0
.4

8

P
e
rc

e
n

ta
g
e
 o

f 
c
e
ll

s

Distance between araBAD and araFGH (μm)

- Arabinose

+ Arabinose

0

1

2

3

4

5

6

7

8

9

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

.1
2

0
.1

4
0

.1
6

0
.1

8
0

.2
0

.2
2

0
.2

4
0

.2
6

0
.2

8
0

.3
0

.3
2

0
.3

4
0

.3
6

0
.3

8
0

.4
0

.4
2

0
.4

4
0

.4
6

0
.4

8

P
e
rc

e
n

ta
g
e
 o

f 
c
e
ll

s

Distance between araBAD and araJ (μm)

- Arabinose

+ Arabinose

a) 

b) 

c) 



223 

 

between these two points. However, the expression of mntH was not expected to be affected 

by arabinose.  

 

4.7 Induction of promoters in cells at the point of division and its effects on 

segregation of sister chromatids 

4.7.1 Separation of sister chromatids by induction of the araFGH promoter 

Cultures are a mixture of single cells and cells at the point of division, so the cultures used to 

measure the position of promoters could also be used to study the segregation of sister 

chromatids in dividing cells, at various locations on the chromosome. The percentage of 

single cells in cultures varied between 85 and 95%, independent of the strain analysed and the 

conditions used. This means that between 5 and 15% of cells imaged were at the point of 

division. Cells at the point of division were defined as those that could be seen as two 

individual cells in a brightfield image, presumably indicating that the septum has formed, and 

seemed to have two separate nucleoids when viewed with the DAPI filter. FROS was used to 

study the effect of promoter induction on the segregation of sister chromatids. 20 MalI DNA 

sites are inserted adjacent to the araFGH promoter in strain LR38, which was transformed 

with a plasmid encoding MalI::mCherry, pLER108. This transformed strain is referred to as 

LR38-pLER108. 22 LacI DNA sites are inserted adjacent to araBAD in strain LR06, which 

also has a chromosomal LacI::GFP fusion. 22 LacI DNA sites are also inserted adjacent to 

dps in strain SXB4, which also has a chromosomal LacI::GFP fusion. Cultures were grown as 

described previously, with 0.3% arabinose or glucose added for 1 minute before slides were 

prepared. Slides were prepared as previously described. Cells at the point of division were 

analysed, and the percentage of these that had a single focus in the centre of the two new cells 

were counted (see figure 4.21a). The presence of a single focus between the two new cells 

indicates that either the chromosome has not yet been replicated at the point that has been
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Figure 4.21: Images of cells at the point of division 

Strain LR38-pLER108 has 20 MalI DNA sites inserted adjacent to the araFGH promoter 

and is transformed with pLER108, encoding MalI::mCherry. Cells were grown in M9 

minimal media supplemented with 0.3% fructose at 23ºC until reaching an OD650 of 

approximately 0.1. Hoechst 33258 was used to stain the nucleoid. Cells at the point of 

division were defined as cells which had separate nucleoids and two separate cells could be 

seen in a brightfield image. 

a) Cells with a single, central focus. 

b) Cells with two separate foci. 
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Merged                                        Brightfield

mCherry Hoechst 33258

Merged                                        Brightfield

mCherry Hoechst 33258

a) 

b) 
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tagged, or it has been replicated but the sister chromatids have not segregated. If the sister 

chromatids have not been segregated, although there are two copies of the DNA site array on 

the chromosome, they are not far enough apart to be distinguished as separate foci (see figure 

4.21b). 

 

The LR38-pLER108 cells, tagged at araFGH, had the highest percentage of cells with a 

single focus, with over 35% of cells from unsupplemented cultures showing this arrangement 

(see figure 4.22). In strain SXB4, tagged at dps, 7% of cells had a single focus, and just 2% in 

LR06, tagged adjacent to araBAD. This difference can be explained by looking at the 

positions of these three genes on the chromosome. araBAD is located in the NSR 

macrodomain, near to the Ori macrodomain, which means it is replicated early in the cell 

cycle. Very few pairs of dividing cells in rapidly growing cultures, if any, tagged at this 

position would be expected to have a single focus. dps is in the Right macrodomain which is 

further away from OriC so would be replicated later in the cell cycle, hence the slightly higher 

percentage of dividing cells with a single focus. araFGH is replicated in the Ter 

macrodomain, which is last to be replicated. It is also known that sister chromatids in the Ter 

macrodomain delay before segregating, more than the other macrodomains (Possoz et al., 

2012). araFGH is located at the very edge of the Ter macrodomain, so it is possible that a site 

further towards the dif would have a higher percentage of dividing cells with a single focus. 

 

When cultures were supplemented with arabinose or glucose, there was no significant 

difference (P > 0.05) seen in the percentage of dividing cells with a single central focus for 

strains LR06 and SXB4, tagged adjacent to araBAD and dps, respectively. However, when
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Figure 4.22: Segregation of sister chromatids in cells at the point of division  

Bar chart showing the percentage of cells at the point of division had a single central 

focus (unsegregated sister chromatids at the position tagged). 

Strains tagged adjacent to araFGH (LR38-pLER108), araBAD (LR06) and dps 

(SXB4) were grown in M9 minimal media supplemented with 0.3% fructose and 

17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and induced cultures had 0.3% arabinose or glucose added for 1 

minute before slides were prepared. Dividing cells were analysed and the percentage 

of dividing cells which had one focus between the 2 cells was calculated for each 

strain in each condition. A star above a bar represents data that is significantly different 

from unsupplemented cultures (* = 0.05, ** = 0.01, *** = 0.001), NS (P > 0.05) 

represents data that is not significantly different. n = > 550 cells. 
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strain LR38-pLER108, tagged adjacent to araFGH, was supplemented with arabinose there 

was a significant drop in the percentage of dividing cells with a single focus (P < 0.05). This 

effect was not seen in cultures supplemented with glucose. This shift from around 35% of 

cells at the point of division having a single focus to an average of 12.5%, when the araFGH 

promoter is induced, is evidence that induction of a promoter can have an effect on 

chromosome structure. It is likely that many of the uninduced cells had two copies of the 

chromosome, at the position of the araFGH gene and the tag, but these had not yet 

segregated. Induction of araFGH appears to speed up the segregation process, possibly 

because the promoter is not accessible to the transcription machinery in the unsegregated 

sister chromatids. Although the addition of a sugar to the growth medium could increase 

growth rate, and therefore the rate of chromosome replication, this effect is specific to 

arabinose and is not seen in the presence of glucose.  

 

4.7.2 Comparison of dividing cells tagged at different points in the Ter macrodomain 

with and without induction by arabinose 

To check whether the addition of arabinose to a culture has an effect on the separation of loci 

throughout the whole of the Ter macrodomain, or if the effect is specific to the region 

adjacent to the araFGH locus, strains with tags at different positions in the Ter macrodomain 

were compared. 20 MalI DNA sites are inserted adjacent to araFGH in strain LR38, which 

was transformed with a plasmid encoding MalI::mCherry, pLER108. This strain transformed 

with the plasmid is referred to as LR38-pLER108. 22 LacI DNA sites are inserted adjacent to 

the gene flxA in strain KC01, which also has a chromosomal LacI::GFP fusion. flxA is located 

in the Ter macrodomain around 40 kb from the dif. The insert adjacent to araFGH is 

approximately 384 kb from the dif. Cultures were grown as described previously with 0.3% 

arabinose added for 1 minute before slides were prepared. Slides were prepared as previously 
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described. Cells at the point of division were analysed and the percentage of these that had a 

single focus in the centre of the two new cells were counted.  

 

In strain KC01, tagged adjacent to flxA, around 75% of cells at the point of division had 

unsegregated chromosomes, with no significant difference in the presence and absence of 

arabinose (P > 0.05) (see figure 4.23). Strain LR38-pLER108, tagged adjacent to araFGH, 

showed a significant drop in the number of cells at the point of division with unsegregated 

chromosomes in the presence of arabinose (P < 0.01). This confirms that the change in 

chromosome structure in the Ter macrodomain when cells are induced with arabinose is 

restricted to the region surrounding the araFGH gene. It is not known how far the effect of 

arabinose induced segregation will extend. The insert of multiple MalI DNA sites is 1.3 kb 

from the araFGH transcription start site, spanning another gene, so this region does not just 

include the araFGH promoter and operon.  

 

4.7.3 Separation of sister chromatids by induction of the araFGH promoter in cells 

treated with rifampicin 

To check whether the effect on sister chromatid separation seen when the araFGH promoter 

is induced is dependent on transcription, the experiment was repeated in the presence of 

rifampicin. Rifampicin works by binding RNA polymerase in the channel where the 

DNA/RNA hybrid sits and prevents RNAP from extending past 2 or 3 nucleotides (Campbell 

et al., 2001). 20 MalI DNA sites are inserted adjacent to araFGH in strain LR38, which was 

also transformed with a plasmid encoding MalI::mCherry, pLER108. Strain LR38 

transformed with the plasmid is referred to as LR38-pLER108. 22 LacI DNA sites are 

inserted adjacent to dps in strain SXB4, which also has a chromosomal LacI::GFP fusion. 
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Figure 4.23: Segregation of sister chromatids in cells at the point of division at 

different locations in the Ter macrodomain 

Bar chart showing the percentage of cells at the point of division with a single central 

focus. 

20 MalI binding sites were inserted adjacent to araFGH in strain LR38-pLER108, 

which was transformed with plasmid pLER108, encoding MalI::mCherry. 22 LacI 

binding sites were inserted adjacent to flxA in strain KC01 which also has a 

chromosomal LacI::GFP fusion. Cells were grown in M9 minimal media 

supplemented with 0.3% fructose and 17.5 μg/ml chloramphenicol if necessary. Cells 

were grown to an OD650 of approximately 0.1 and induced cultures had 0.3% arabinose 

or glucose added for 1 minute before slides were prepared. Dividing cells were 

analysed and the percentage of dividing cells which had one focus between the 2 cells 

was calculated for each strain in each condition. A star above a bar represents data that 

is significantly different from unsupplemented cultures (* = 0.05, ** = 0.01, *** = 

0.001), NS (P > 0.05) represents data that is not significantly different. n = > 1000 

cells 
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Cultures were grown as described previously with 50 μM rifampicin added for the final 15 

minutes of growth (Grainger et al., 2005) and 0.3% arabinose added for 1 minute before 

slides were prepared. Dividing cells were analysed and the percentage of these that had a 

single focus in the centre of the two new cells were counted.  

 

When cultures had been treated with rifampicin, neither strain showed significant difference 

(P > 0.05) in the percentage of  dividing cells with a single focus in response to arabinose (see 

figure 4.24). Strain LR38-pLER108, tagged adjacent to araFGH, had around 40% of dividing 

cells with a single focus and strain SXB4, tagged adjacent to dps, had around 10%. 

Rifampicin causes RNAP to become trapped at promoters. Since rifampicin was added to the 

cells 15 minutes before they were induced with arabinose it is likely that the majority of 

RNAP in the cells was already immobilised and therefore unable to bind the araFGH 

promoter. The effect seen in section 4.7.1, of arabinose inducing chromatid segregation at 

araFGH, was lost in the presence of rifampicin. This suggests that the arabinose induced 

segregation is due to active transcription, presumably at the araFGH promoter, not any other 

effect of arabinose addition. 

 

4.7.4 Evidence that the segregation of sister chromatids at the position of araFGH upon 

induction by arabinose is dependent on AraC 

To investigate whether the increased segregation of sister chromatids seen in cells tagged 

adjacent to araFGH is due to promoter activation by AraC, a strain with an araC knock out 

was constructed. Strain LR38 carries 20 MalI DNA sites inserted adjacent to araFGH. LR44 

is a ΔaraC derivative of LR38. Both of these strains were then transformed with plasmid 

pLER108 encoding MalI::mCherry. Strains containing the plasmid will be referred to as 
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Figure 4.24: The effect of rifampicin on the stimulation of the separation of sister 

chromatids adjacent to araFGH by arabinose  

Bar chart showing the percentage of cells at the point of division with a single central 

focus. 

Strains tagged adjacent to araFGH (LR38-pLER108) and dps (SXB4) were grown in 

M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml chloramphenicol 

if necessary. Cells were grown to an OD650 of approximately 0.1 and rifampicin was 

added to a final concentration of 50 μM. Induced cultures had 0.3% arabinose added 

for 1 minute before slides were prepared. Dividing cells were analysed and the 

percentage of cells at the point of division which had one focus between the 2 cells 

was calculated for each strain in each condition. A star above a bar represents data that 

is significantly different from unsupplemented cultures (* = 0.05, ** = 0.01, *** = 

0.001), NS (P > 0.05) represents data that is not significantly different. n = > 1000 

cells 
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LR38-pLER108 and LR44-pLER108. Cultures were grown as described previously with 

0.3% arabinose added for 1 minute before slides were prepared. Cells at the point of division 

were analysed and the percentage of these that had a single focus in the centre of the two new 

cells were counted. 

 

Strain LR38-pLER108, with AraC, had a significant reduction (P < 0.01) in the percentage of 

cells at the point of division with a single central focus in cultures induced with arabinose, as 

previously seen (see figure 4.25). Strain LR44-pLER108, with a chromosomal AraC deletion, 

the addition of arabinose caused no significant difference (P > 0.05) in the percentage of cells 

at the point of division with a central focus. However, the percentage of cells with a central 

focus in uninduced cultures was significantly less in the absence of AraC (P < 0.01). This 

could suggest that AraC is needed for the normal chromosome structure, and when AraC has 

been deleted, cells are in a state more similar to that of arabinose induced wildtype cells. 

Although AraC activates the araFGH promoter in the presence of arabinose, it also binds in 

the absence of arabinose (Hendrickson et al., 1990). The presence of arabinose changes the 

function of AraC, instead of causing binding. However, the separation of sister chromatids 

adjacent to araFGH in the presence of arabinose is not seen in a ΔaraC, suggesting this effect 

is dependent on AraC. 

 

4.7.5 The effect of inducing a neighbouring promoter on the separation of sister 

chromatids adjacent to araFGH 

To investigate whether inducing another promoter in the Ter macrodomain can also stimulate 

the separation of sister chromatids adjacent to araFGH, we searched for an inducible 

promoter close to araFGH. Unfortunately, many of the genes surrounding araFGH are of 

unknown function or are not easily inducible. The closest suitable promoter found was mntP, 
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Figure 4.25: The effect of AraC on the stimulation of the separation of sister 

chromatids adjacent to araFGH by arabinose  

Bar chart showing the percentage of cells at the point of division with a single central 

focus. 

Strains tagged adjacent to araFGH either with araC present on the chromosome 

(LR38-pLER108) or with a mutated araC (LR44-108). Cells were grown in M9 

minimal media supplemented with 0.3% fructose and 17.5 μg/ml chloramphenicol if 

necessary. Cells were grown to an OD650 of approximately 0.1. Induced cultures had 

0.3% arabinose added for 1 minute before slides were prepared. Cells at the point of 

division were analysed and the percentage of dividing cells which had one focus 

between the 2 cells was calculated for each strain in each condition. A star above a bar 

represents data that is significantly different from unsupplemented cultures (* = 0.05, 

** = 0.01, *** = 0.001), NS (P > 0.05) represents data that is not significantly 

different. n = > 1000 cells 
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around 80 kb from araFGH, towards the dif. mntP is inducible with 10 μM  MnCl2 (Waters et 

al., 2011). The effect of Mn
2+

 addition on foci in cells at the point of division was observed in 

strains LR38-pLER108 and SXB4, tagged adjacent to araFGH and dps respectively. Cultures 

were grown as previously described, with 0.1 μM MnCl2 added for the final hour of growth. 

Slides were prepared as previously described. Dividing cells were analysed and the 

percentage of these that had a single focus in the centre of the two new cells were counted. 

There was no significant difference for either strain (P > 0.05) in the percentage of dividing 

cells with a single central focus in cultures grown with or without Mn
2+

 (see figure 4.26). This 

means that either induction of the mntP promoter does not cause sister chromatids to 

segregate, or if induction of the mntP promoter does cause segregation of sister chromatids, 

the effect is localised to a small area around mntP.  

 

4.7.6 Comparison of the position of araBAD and araFGH in cells at the point of division 

with segregated chromosomes, with and without induction by arabinose 

Section 4.5 and 4.6 concluded that, in single cells, there was no colocalisation between 

araBAD and araFGH and there was no significant difference in the distance between these 

two loci in the presence and absence of arabinose (see figures 4.19b and 4.20b). Strain LR48-

pLER108 was used for this experiment, with a LacI DNA site insert adjacent to araBAD, 

MalI DNA site insert adjacent to araFGH, chromosomal LacI::GFP fusion and a plasmid 

encoded MalI::mCherry fusion. As studies of cells at the point of division have shown that the 

addition of arabinose initiates the segregation of sister chromatids adjacent to araFGH, this 

strain was used to see whether, after segregation, araFGH moves to a position closer to 

araBAD. Cells at the point of division, around 10% of total cells, were analysed from cultures 

of LR48-pLER108, either unsupplemented or supplemented with 0.3% arabinose 1 minute 

before slides were prepared. Data was included from cells at the point of division when each
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Figure 4.26: The effect of inducing a neighbouring promoter on the separation of 

sister chromatids adjacent to araFGH  

Bar chart showing the percentage of cells at the point of division with a single central 

focus. 

Strains tagged adjacent to araFGH (LR38-pLER108) and dps (SXB4) were grown in 

M9 minimal media supplemented with 0.3% fructose and 17.5 μg/ml chloramphenicol 

if necessary. Cells were grown to an OD650 of approximately 0.1 and 0.1 μM MnCl2 

was added for the final 10 minutes of growth. Cells at the point of division were 

analysed and the percentage of dividing cells which had one focus between the 2 cells 

was calculated for each strain in each condition. A star above a bar represents data that 

is significantly different from unsupplemented cultures (* = 0.05, ** = 0.01, *** = 

0.001), NS (P > 0.05) represents data that is not significantly different. n = > 1000 

cells 
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daughter cell had a single focus of GFP and mCherry, to study colocalisation and distance 

between the two locations. The distance from the centre of the GFP focus to the closest cell 

pole was measured in μm, and then the distance from the centre of the mCherry focus to the 

same pole, for both daughter cells. These distances were represented relative to cell length 

and plotted on a scatter graph, with GFP focus position on the x axis and mCherry focus 

position on the y axis. If the two points tagged did colocalise, the points on the scatter plot 

would cluster along the diagonal line. This does not happen for araBAD and araFGH in cells 

at the point of division (see figure 4.27a). There is also no difference in the positions of foci in 

the absence and presence of arabinose, suggesting that when sister chromatids segregate at 

araFGH, the araFGH gene moves to a position similar to that which it would occupy when it 

segregated by normal cell mechanisms.  

 

The distance between araBAD and araFGH was then calculated. The percentage of cells with 

foci separated by each 0.1 μm was then calculated for cells that had been grown with and 

without arabinose (see figure 4.27b). There was no significant difference between the foci 

representing the positions of the araBAD and araFGH promoters (P > 0.05) suggesting the 

araFGH sister chromatids do not move to a location close to the AraC controlled araBAD 

promoter. However, the distance between these two promoters in dividing cells was 

significantly less than that seen in single cells (see section 4.6.2, figure 4.19b) (P < 0.01) for 

both induced and uninduced cultures, with averages falling from 0.66 μm and 0.63 μm to 0.48 

μm and 0.43 μm. This suggests that the chromosome structure in dividing cells may be 

different to that in single cells. As each daughter cell is likely to be much smaller than a single 

cell, the distances between various points on the chromosome will also be shorter as the
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Figure 4.27: Distance between araBAD and araFGH in cells at the point of 

division, grown with and without arabinose  

a) Scatter plot comparing the positions of two loci on the chromosome, tagged with 

LacI::GFP (x axis) and MalI::mCherry (y axis). 

b) Bar chart showing the distance in μm between LacI::GFP and MalI::mCherry foci. 

22 LacI DNA sites were inserted adjacent to araBAD and 20 MalI binding sites were 

inserted adjacent to araFGH in strain LR48-pLER108, which also had a chromosomal 

LacI::GFP fusion and was transformed with a plasmid encoding MalI::mCherry, 

pLER108.Cells were grown in M9 minimal media supplemented with 0.3% fructose 

and 17.5 μg/ml chloramphenicol if necessary. Cells were grown to an OD650 of 

approximately 0.1 and 0.1 μM MnCl2 was added for the final 10 minutes of growth. 

Dividing cells were analysed. The distance between GFP and mCherry foci were 

measured in μm. n = > 40 
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nucleoid itself will be smaller. A comparison of relative positions may show there is no 

difference between single cells and cells at the point of division. 

 

4.8 Discussion 

4.8.1 Positions of inducible promoters 

It has been shown that GalR tetramers binding at distant DNA sites cause clustering of GalR-

regulated genes in the cell (Qian et al., 2012). This chapter aimed to use FROS to study two 

other transcription factors, AraC and MntR, to see whether their binding affected the cellular 

position of promoters they control and if this caused clustering. This was done by first tagging 

locations adjacent to specific promoters, and measuring their positions with and without 

induction. Then, two locations were tagged in the same cell to give information about their 

positions relative to each other, and the distance between them. Finally, the same strains were 

used to study the effects of transcription on chromosome segregation in dividing cells. 

 

No significant differences were seen in strains tagged at a location adjacent to two MntR-

regulated genes, mntH and dps, when the number of foci per cell or the positions of foci were 

analysed in the presence and absence of Mn
2+

. In the presence of Mn
2+

, MntR will bind to 

both of these genes and repress transcription (Yamamoto et al., 2011). The positions of 

promoters araBAD, araJ and araFGH were also studied individually, in the presence of 

arabinose or glucose or in the absence of any supplement. In the presence of arabinose, AraC 

should bind all three promoters and activate transcription. In the presence of glucose, AraC is 

known to bind adjacent to, and actively repress, the araBAD and araC promoters. There was 

no significant difference seen in strains tagged adjacent to araBAD or araJ when the number 

of foci per cell or the positions of foci were analysed in the different conditions. 
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A strain tagged adjacent to araFGH did not show a significant difference in the number of 

foci per cell, but some differences in the positions of foci were seen in the different 

conditions. For cells with a single focus, the average position of the focus was shown to be 

slightly closer to the centre of the cell, on average, when cultures had been grown in the 

presence of arabinose. A difference was also seen in cells with two foci. Due to the position of 

the araFGH gene relative to oriC, there were less cells containing two foci than most other 

strains, around 10% of all cells. Despite this lower number of cells analysed, the data shown 

is the result of around 70 cells for each condition, and is statistically significant. In the 

presence of arabinose, both foci representing the position of the araFGH promoter tended to 

be located close to the centre of the cell. There were very few foci in the fifth of the cell 

closest to either cell pole in any cells analysed. AraC is thought to bind to the araFGH 

promoter in both the absence and presence of arabinose (Hendrickson et al., 1990), suggesting 

that binding of arabinose by AraC bound to the araFGH promoter leads to other changes.  

 

One possible explanation as to why cells tagged adjacent to araFGH are the only ones to 

show differences in the position of foci, is that the products of the araFGH operon are 

membrane proteins. It has long been known that in bacteria, due to the lack of nuclear 

membrane, the processes of transcription and translation can be linked in time and space 

(Miller et al., 1970). In the case of membrane proteins, it is thought that transcription and 

translation can also occur at the same time as the insertion of the protein into the membrane in 

a process known as transertion, preventing the hydrophobic membrane proteins from being 

exposed to the unfavourable conditions of the cytoplasm (Norris, 1995). This involves the 

gene encoding the membrane protein moving towards the membrane, along with RNAP, 

ribosomes and any other factors needed. A previous study has used FROS to visualise the 
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movement of lacY towards the membrane upon induction (Libby et al., 2012). Although this 

study has identified a movement in the araFGH operon upon induction as a shift away from 

the cell pole, it may be that the movement is also towards the side of the cell, towards the 

membrane. As the size of the focus was very large compared to cell width and measurements 

may not have been accurate, the position of foci in the width of the cell was not measured and 

so this has not been seen. It is possible that there is a preferred position on the membrane for 

transertion, or araFGH specific transertion, that is slightly closer to the centre of the cell than 

the araFGH gene is usually found. From this position, the AraFGH transporter could diffuse 

around the membrane to be more evenly distributed. This explanation also accounts for the 

change seen in the distribution of foci in cells with two foci. The addition of arabinose in this 

case also leads to a movement of foci away from the pole of the cell. A model has been 

suggested where, when there are two copies of a gene in the cell after replication, one copy 

will be expressed while any others are not (Norris and Madsen, 1995). In the case of araFGH, 

the two foci are arranged symmetrically in the presence of arabinose, not suggesting that one 

copy of the gene is being expressed and the other silenced. FROS could be used with RNA 

FISH to show the locations of both the araFGH  promoter and mRNA, which might answer 

this question.  To confirm the movement of the araFGH locus towards the cell membrane, 

measurements could be taken of the position of the focus relative to cell width. This method 

has been used to show that expression of lacY, encoding a membrane protein, caused the locus 

to be repositioned closer to the membrane (Libby et al., 2012). However, there are problems 

associated with this method. Because a bacterial cell is 3D and the microscope produces a 2D 

image, foci that are adjacent to the membrane on the top or bottom of the cell, as it lies on the 

slide, will appear to be in the centre of the cell. Also, as cell width is much less than cell 

length in E. coli, the focus produced by FROS is quite large compared to cell width. This 

could make it difficult to get accurate measurements. A super resolution microscope approach 
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may give more reliable data. Overall, this result suggests that inducing transcription, and 

therefore transertion, at araFGH causes some changes in the local chromosome structure. 

Although mntH also encodes a membrane protein this effect is not seen in a strain tagged 

adjacent to mntH. This could be for a variety of reasons, for example, transertion may not 

happen in the cases of all membrane proteins. Also, if there are specific transertion sites, the 

“home” position of mntH may be close to this position, meaning little rearrangement is 

needed after induction, and the movement was too small to detect by FROS. 

 

The average positions of foci in cells with 2 foci correlate with the information in the 

literature about segregation of sister chromatids. It is known that, once the majority of the 

chromosome is replicated, each sister chromatid is segregated to one half of the cell, with the 

left and right replichores alternating along cell length (see section 1.3) (Nielsen et al., 2006, 

Reyes-Lamothe et al., 2008b). Of the five locations tagged for experiments in this chapter, 

araBAD, araJ and dps are found in the right replichore, with araFGH and mntH located in the 

left replichore. When the positions of foci in cells with 2 foci was analysed, the position of the 

focus closest to a cell pole was analysed relative to the closest focus. For this reason, strains 

with tags at different locations cannot be directly compared, as they may have been orientated 

using different cell poles. To resolve this issue, the experiment would need to be repeated 

with a label on either the old or new pole of the cell. However, if it is assumed that strains 

with tags in the left and right replichores are orientated to opposite poles of the cell, the 

positions of foci compares to that predicted in other studies. All of the positions are a fraction 

of cell length, represented as 1, so the average positions of foci in 2 foci cells tagged in the 

right replichore were subtracted from 1. This gave an average position corrected for the 

replichore. The average positions of foci from cells with 2 foci, tagged at different positions,  
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b) 

Figure 4.28: Positions of foci representing locations in the left and right replichores 

a) Positions of foci in cells containing 2 foci in strains tagged adjacent to araBAD, araJ, 

araFGH, mntH and dps. Locations tagged in the Left replichore are show in blue, 

locations in the right replichore are shown in red. The focus closest to a cell pole (1
st
 of 

2 foci) is represented as a diamond, the 2
nd

 of 2 foci is represented as a triangle. 

b) A model of a bacterial cell, with the majority of the chromosome replicated, showing 

the segregation of the left and right replichores into the future daughter cells. The 

positions of mid-cell and one quarter and three quarters of cell length are shown with 

arrows. Figure adapted from Nielsen et al. 2006. 
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are shown in figure 4.28a. It can be seen that foci representing locations in the left replichore, 

blue markers, are found in similar areas of the cell, as are locations in the right replichore. It 

was expected that the border between the left and right replichores in each copy of the 

chromosome would be located at approximately the one quarter and three quarter positions. 

Figure 4.28b shows an estimation of the layout of the chromosome after the majority has been 

replicated. The average positions of the promoters studied can be compared to this model and 

it is seen that they are approximately in the positions expected. Some of the promoters have 

an average position that is slightly closer to mid-cell than expected. This is probably due to 

the fact that the cells were not synchronised so some of the cells would not have fully 

segregated chromatids, causing a bias in the average. 

 

The movement, upon induction, of foci representing the position of the araFGH promoter in 

cells with 2 foci goes against this unsymmetrical model. In uninduced cells, the majority of 

foci in cells with 2 foci are arranged asymmetrically. Upon addition of arabinose, there is a 

shift towards the majority of cells being more symmetrical, with both foci close to mid-cell 

(figure 4.12). This is a movement away from the natural arrangement of the chromosome that 

is brought about by induction of gene expression. Although the results from this chapter 

cannot explain this movement, it is a clear indication that gene expression can affect 

chromosome structure. 

 

4.8.2 Clustering of promoters from the same regulon 

To investigate whether promoters controlled by MntR and AraC cluster in the cell, like those 

controlled by GalR, strains were created with two FROS tags labelling different promoters. 

This allowed the colocalisation of two locations to be studied, as well as measuring the 
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distance between the two points. When locations adjacent to the mntH and dps promoters 

were tagged in the same cell there did not seem to be any colocalisation. A second strain 

compared the position of mntH to araBAD, not known to be affected by the addition of Mn
2+

. 

mntH seemed to colocalise more with the MntR-regulated dps than araBAD (figure 4.14).  

This may be due to the fact that araBAD is located in the non-structured right (NSR) domain, 

and so has more range of movement than dps, which is located in the right domain. The 

addition of Mn
2+

 to the cultures did not cause any significant difference in the distribution of 

foci, suggesting that MntR binding does not cause MntR-regulated promoters to cluster.   

 

There were also no significant differences in the distances between mntH and either dps or 

araBAD, in the presence and absence of Mn
2+

. araBAD can be used as a reference point in 

this case as it is assumed not to be affected by Mn
2+

, and potentially show small movements 

that could not be detected when measuring focus position compared to cell length. However, 

there were no significant differences. Again, the data suggested that mntH was likely to be 

found closer to dps than araBAD, as the graph representing distances between mntH and dps 

was shifted slightly to the left, compared to the mntH and araBAD graph. This could also be 

due to the increased flexibility of the NSR macrodomain, allowing araBAD to be found in a 

larger area of the cell. This experiment did not find any suggestion that binding by MntR 

causes distant DNA sites on the chromosome to cluster, unlike GalR binding. This may be 

because, unlike GalR, MntR is unable to tetramerise (Tanaka et al., 2009). MntR dimers 

would need another mechanism of interacting with each other in order to confine distant DNA 

sites to the same area of the cell, but it seems this is not the case. 
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Pairs of AraC controlled promoters were also tagged in the same cell using LacI and MalI 

FROS. Tags were inserted adjacent to the araBAD promoter in strains also tagged adjacent to 

the araJ or araFGH promoters. There was no colocalisation between the araBAD and 

araFGH promoters, with the points spread evenly across the graph, with no significant 

difference between induced and uninduced cultures. These promoters are located in the NSR 

and Ter domains respectively, and are almost opposite each other on a circular chromosome 

map. These locations would not be expected to interact, unless AraC binding brought them 

together. The result for these two promoters suggests that AraC is not capable of bringing 

distant DNA sites together in the cell. araBAD and araJ were shown to be more likely to 

colocalise, with points on the scatter graph in a much tighter group. There is no significant 

difference between cultures grown with and without arabinose, suggesting that the reason for 

araBAD and araJ being located in similar areas of the cell does not involve AraC binding. 

Although AraC binds at araBAD in the presence and absence of arabinose, this is not thought 

to be the case at araJ. Instead it is more likely that araBAD and araJ colocalise because they 

are located in the same macrodomain, NSR. Sites in this macrodomain are not as restricted as 

other parts of the chromosome, and are more able to interact with sites in other 

macrodomains, there is still a region of the cell where sites within the NSR are largely found, 

although it is larger than areas for the more structured macrodomains. As a result, araBAD 

and araJ will often be located in similar areas of the cell due to macrodomain organisation. 

When the distance between foci representing the positions of araBAD and either araFGH or 

araJ were measured in the presence and absence of arabinose there was no significant 

difference, suggesting AraC binding does not alter the distance between the two sites. Again, 

araBAD and araJ were shown to often be found close together, with a peak in the graph, in 

both conditions, of around 0.1 μm gap. In contrast, the graph showing the distance araBAD 

and araFGH does not seem to have a peak, with foci almost as likely to be found 0.1 μm and 
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nearly 1 μm apart. This suggests there are no specific factors regulating the position of 

araFGH relative to araBAD, only the natural variations in the positions of the macrodomains. 

AraC does not have the property, shown by GalR, of colocalising distant DNA sites. This is 

probably because AraC cannot tetramerise (Soisson et al., 1997), which has shown to be 

essential for colocalisation of GalR DNA sites (Qian et al., 2012). 

 

The position of araBAD in the presence and absence of arabinose was compared to the 

position of mntH, not controlled by AraC, as a reference point. Unexpectedly, when the 

colocalisation of foci and distance between foci were measured, it was seen that the position 

of mntH was significantly different when grown with arabinose. In the presence of arabinose, 

mntH was seen to move towards the centre of the cell and away from araBAD. As mntH was 

not thought to have any connection to arabinose or AraC, a search was completed of the genes 

in the surrounding area. An operon consisting of genes ypdAB was found within 13 kb of the 

tag adjacent to mntH. ypdA is predicted to encode an inner membrane sensor kinase and ypdB 

is predicted to encode a response regulator. A recent study has identified one gene, yhiX that 

is thought to be the sole target of ypdB. It was thought that this system was involved in carbon 

control so a carbon source screen was carried out. The expression of yhiX was induced in a 

few specific conditions, including in the presence of pyruvate (Fried et al., 2013). However, 

arabinose was not included in this screen and could have some affect on the expression of 

ypdAB. As ypdAB encodes proteins linked to the membrane, it is possible that transertion has 

caused this movement. The region surrounding mntH includes several genes of unknown 

function making it difficult to rule out one of these genes being responsible for the change in 

chromosome structure in the presence of arabinose, not mntH. 
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4.8.3 Chromosome segregation 

Cells at the point of division were studied to investigate whether transcription had any effect 

on chromosome segregation. It is known that when the chromosome is replicated, the sister 

chromatids stay together in the region where they were replicated for a short time, before 

being segregated and moving to opposite halves of the cell. The time before the sister 

chromatids segregate varies between macrodomains. The non-structured macrodomains 

segregate quicker than the other macrodomains. The Ter macrodomain has been shown to 

have the longest time sister chromatids segregate with estimates ranging from 15 to 60 

minutes and higher (Possoz et al., 2012). When cells at the point of dividing, tagged adjacent 

to araBAD, araFGH or dps, were studied it was seen that some pairs of cells had a single 

focus located near the middle of the two cells. It is likely that this single focus is actually an 

unsegregated pair of sister chromatids, too close together for individual foci to be 

distinguished by microscopy. As expected, these cells were very rarely seen in the strain 

tagged adjacent to araBAD, located in NSR, relatively close to oriC. This location will be 

replicated early in the cell cycle and the sister chromatids will be segregated before the cell 

begins to divide. Around 8% of cells at the point of division tagged adjacent to dps had a 

single central focus. Since dps is located in the right macrodomain, this small number is also 

expected, as most sister chromatids at this point will have separated before the cells starts to 

divide. Cells tagged adjacent to araFGH had the highest percentage of cells at the point of 

division with single foci, with 35% of cells. araFGH is in the Ter macrodomain, making it 

more likely that, at the point where the cell begins to divide, this location will either not have 

been replicated or still have cohesive sister chromatids. This number may be lower than 

expected for a location in the Ter macrodomain, possibly because araFGH is located at the 

very edge of the macrodomain. The structure of the Ter macrodomain is organised by MatP 

binding to sites known as matS¸ of which there are 21 within the Ter. araFGH is located 40 
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kb outside the last matS site (Mercier et al., 2008), possibly meaning the structural properties 

of the Ter macrodomain will not be seen as clearly at this point. 

 

Cells at the point of division were then studied under conditions that were inducing, 

supplemented with arabinose, or repressing, supplemented with glucose. No significant 

difference was seen in cells at the point of division tagged adjacent to araBAD or dps. 

However, in cells tagged adjacent to araFGH, there was a significant reduction in the 

percentage of cells at the point of division with a single focus in the presence of arabinose. 

This effect was not seen in cells grown with glucose. This result suggest that the induction of 

the araFGH promoter stimulates the segregation of sister chromatids at this point. This could 

be because DNA in unsegregated sister chromatids is not very accessible for transcription 

machinery, so it moves to an area of the cell where transcription can occur. Alternatively, it 

could be due to the fact that the proteins encoded by araFGH are membrane proteins, and 

therefore may undergo the combined processes of transcription, translation and insertion in to 

the membrane, known as transertion. This involves proximity to cell membrane, and the 

location of the sister chromatids is in the centre of two cells preparing to divide, so much of 

the membrane at this point is likely to be covered by FtsK and other proteins involved in cell 

division. araFGH may need to move into the two future daughter cells for transertion, to find 

a suitable location to insert protein into the membrane.  

 

This effect was shown to be specific to the region of the chromosome adjacent to araFGH, as 

a strain with an insert in the Ter around 300 kb from araFGH was unaffected by the addition 

of arabinose. This suggests that the addition of arabinose does not affect the structure of the 

Ter domain for reasons unrelated to araFGH induction. It also shows that the separation of 
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the sister chromatids at araFGH does not lead to the segregation of the whole Ter domain, 

probably just the region around araFGH. A promoter 80 kb from araFGH, mntP, was 

induced to investigate whether this would also lead to separation of sister chromatids at 

araFGH. The addition of Mn
2+

 to induce mntP did not have any effect on segregation of sister 

chromatids adjacent to araFGH. mntP encodes a membrane protein so transcription and 

translation may be combined with inserting the protein into the membrane, but this is not 

known. If transertion is the driving force for chromatid segregation at araFGH and the same 

process is occurring at mntP, a loop of DNA must be separating, leaving the DNA on either 

side undisturbed. Alternatively, mntP may be transcribed separately to insertion of the protein 

into the membrane, not altering the structure of the chromosome. If mntP does undergo 

transertion, it may be that a small loop of DNA, including the mntP gene, moves away from 

the rest of the Ter macrodomain. Without further experiments, it is unknown whether the 

segregation of sister chromatids by transcription is a disruptive process, or if it could even just 

be a temporary effect for the time of transcription. 

 

When cells tagged adjacent to araFGH were grown in the presence of rifampicin, the effect of 

arabinose on sister chromatid segregation was not seen. Cells were grown with rifampicin 

before arabinose was added so, at the time of induction, most RNA polymerase in the cell 

would probably be stuck at other promoters, leaving no free RNA polymerase to transcribe 

araFGH. This proves the segregation of sister chromatids at araFGH upon addition of 

arabinose is dependent on transcription. Deletion of AraC from the strain tagged adjacent to 

araFGH also removed the effect of arabinose on chromatid segregation at araFGH. This 

shows that both RNA polymerase and AraC are required for any effect. Compared to 

uninduced cultures with AraC, the percentage of cells at the point of division with a central 
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focus was lower in the absence of AraC, both with and without arabinose. This result suggests 

AraC may play some role in chromosome organisation. 

 

When the sister chromatids adjacent to the induced araFGH gene move, they are moving 

away from the “home” position of the Ter domain. It was investigated whether, in the absence 

of a “home” position, araFGH moved to a location closer to another AraC controlled gene, 

araBAD. A strain tagged using different FROS reporters at araBAD and araFGH was used to 

measure the distances between the two genes in cells at the point of division, in the presence 

and absence of arabinose. This showed there was no significant difference between the two 

conditions suggesting that in the presence of arabinose, araFGH moves to a similar position 

to that which it moves to when the sister chromatids separate in uninduced cells. However, the 

distances between the two genes in cells at the point of division are different to that seen in 

single cells. This suggests that cells at the point of division may have a different arrangement 

of macrodomains to that in single cells.  

 

Overall, it has been shown that, unlike GalR, MntR and AraC do not cause DNA sites across 

the chromosome to colocalise. GalR dimers, bound to distant DNA sites, can interact and 

form tetramers, which causes the DNA sites to colocalise. Bound MntR and AraC dimers 

cannot interact, therefore cannot colocalise the promoters they regulate. There is some 

evidence that the AraC-regulated araFGH changes position when it is induced, probably to 

move closer to the cell membrane to allow the process of transertion to occur. Inducing 

araFGH in cells at the point of division causes an increase in the number of cells with 

segregated sister chromatids at this point, again, probably due to transertion. 
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5. Super resolution microscopy studies on Transcription Factors 
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Molecular constructs and bacterial strains used in this chapter were prepared by Laura Sellars 

(University of Birmingham). Single-molecule data was collected, analysed and interpreted by 

Federico Garza de Leon (University of Oxford). 

 

5.1 Introduction 

Transcription factors fused to fluorescent proteins have been used in FROS as a tool for 

tagging the chromosome. However, these labelled transcription factors could also be used to 

study the transcription factors themselves, to get information about diffusion and binding. 

Chapter 3 showed that the epifluorescent microscopy set up was not able to show any 

information about individual molecules of fluorescently tagged transcription factors as, in the 

absence of an array of DNA sites, transcription factors could not be observed. In order to 

visualise single transcription factor molecules, improved resolution is needed. Techniques 

have been developed that are capable of studying individual molecules, including atomic 

force microscopy (AFM), optical tweezers and patch clamping but none of these would be 

suitable for for studying individual transcription factors in vivo. There are also several super-

resolution microscopy techniques which could be used for these experiments.   

 

5.1.1 Super-resolution Microscopy 

To get information about the exact position of individual molecules in the cell, improved 

resolution is needed. Light is diffracted, meaning that two objects closer together than half the 

wavelength of light cannot be distinguished as separate. Resolution of about 250 nm is the 

best that can be achieved by conventional light microscopy (Cattoni et al., 2012). Optimal 

spatial resolution also requires a high signal to noise ratio. This is difficult to achieve in 
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biological samples and with molecules that may be moving. (Schermelleh et al., 2010). The 

limited resolution of conventional light microscopy is a particular problem in the study of 

bacteria, where cells are often only 1-2 μm long, and resolution of 250 nm restricts the 

information that images can give. New microscopy techniques have been developed that have 

broken the diffraction limit and made it possible for single molecules to be studied inside the 

cell. These include derivatives of confocal microscopy, which use a pinhole to block light 

from points in the sample that are not at the focal point of the lens. These include 4Pi (Gugel 

et al., 2004) and Stimulated Emisson Depletion (STED) microscopy (Hell, 2007). Although 

resolution is improved and a thin section of the sample is imaged very clearly, much light is 

blocked, reducing signal intensity. Other techniques employ the principles of Total Internal 

Reflection Fluorescence (TIRF) microscopy, which uses the principle of total internal 

reflection to excite only fluorophores within around 100 nm of the surface without exciting 

fluorophores further away, and therefore reducing background fluorescence.  It is, however, 

limited to imaging surface structures. TIRF based techniques include Near-field Scanning 

Optical Microscopy (NSOM) and Photoactivated Localisation Microscopy (PALM) 

(Adelmann et al., 1999). PALM uses a photoactivatable fluorophore, which can be 

photobleached, thereby isolating single molecules so the exact position can be calculated 

statistically. Fluorophores are activated and then photobleached so they do not interfere with 

subsequent rounds of photoactivation. (Single molecule tracking PALM will be referred to as 

PALM for the remainder of this thesis). 

 

The technique used in this chapter is a PALM system developed by the Kapanidis lab 

(University of Oxford) which combines PALM and single molecule tracking, so  molecules 

can be followed within a cell (Uphoff et al., 2013). Near TIRF illumination was used, which 
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uses light at a angle close to that of TIRF but results in illumination deeper into the sample. 

This technique was chosen because it had previously been used to track DNA polymerase I, 

so would be suitable for tracking transcription factors. PALM is used in this chapter to study 

the diffusion of LacI, with the view to extending this technique to study other transcription 

factors in the future. PAmCherry is a fluorophore developed for PALM, which exists in a 

dark state until it is exposed to violet light, when it becomes red fluorescent (Subach et al., 

2009). Photoactivation is controlled so less than one fluorophore is activated at any time, per 

cell. Cells were imaged in 15 ms exposures until all activated fluorophores are photobleached 

(Uphoff et al., 2013). Single molecule tracking (Manley et al., 2008, Niu and Yu, 2008) was 

used with PALM to follow molecules and give information about their diffusion (Uphoff et 

al., 2013) (see section 2.12). 

 

5.1.2 Super-resolution microscopy studies on LacI 

Two recent papers have used single molecule microscopy techniques to investigate the 

diffusion and distribution of LacI. Hammar et al., 2012 investigated the theory that LacI 

searches for its DNA sites by a combination of 3D diffusion and 1D sliding using wide-field 

laser microscopy. It was discovered in 1970 that the rate at which LacI associated with its 

DNA sites was not limited by diffusion (Riggs et al., 1970). The greater than expected rate of 

LacI association with its DNA sites was explained by the facilitated diffusion theory. This 

suggests that transcription factors could search for their DNA sites by combining 3D diffusion 

with non-specific binding to DNA, followed by a brief period of 1D sliding along the DNA 

(Richter and Eigen, 1974, Berg et al., 1981). Although this theory had previously been 

investigated in vitro (Ruusala and Crothers, 1992), super resolution imaging provided the 

opportunity to investigate it in vivo (Hammar et al., 2012). Strains were made with two copies 
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of the LacI DNA site inserted onto the E. coli chromosome and different spaces between 

them. If the space between the two sites is greater than the distance LacI slides after binding 

non-specific DNA, then the sites will be recognised separately. If the space is smaller, the 

sites may be recognised as one target due to the facilitated diffusion theory. This study found 

that LacI DNA sites spaced 45 or 25 bp apart were bound slower than a single LacI DNA site, 

or two sites further apart. This suggests that when the space between two LacI DNA sites is 

45 bp or less they act like one site. LacI slides an average of 45 ± 10 bp, and this sliding 

makes the rate of finding a LacI binding site 40 times faster. More than 90% of the time LacI 

passes the DNA site without recognising it, indicating that although sliding is a quicker 

method of searching for DNA sites, some specificity is lost. Hammar et al., also found that 

the presence of another protein bound adjacent to the LacI DNA site prevent LacI from 

approaching the DNA site by sliding from that direction. Although this study was able to 

investigate LacI at the single-molecule level, the technique used involved limiting the number 

of LacI molecules to three to five molecules per cell (Hammar et al., 2012), a reduction from 

the usual 20 monomers per cell (Gilbert and Müller-Hill, 1966). 

 

A second study the same year used super resolution imaging to study the distribution of LacI 

in E. coli. LacI was known to be able to diffuse at a rate of 0.4 μm
2
/s (Elf et al., 2007), 

suggesting that LacI distribution should be homogenous throughout the cell. Kuhlman and 

Cox used TIRF microscopy to visualise the distribution of tagged LacI and lacI-venus mRNA 

compared to the position of the lacI gene, which was inserted at different positions on the E. 

coli chromosome. Strains had the native lac operon deleted so there were no LacI DNA sites 

on the chromosome. Surprisingly, LacI was found to colocalise with its encoding gene and 

mRNA, whether the gene was inserted at an origin-proximal or terminus-proximal location. 
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This localisation was not seen when the DNA binding domain was deleted. Condensation of 

DNA seemed to have an effect on the distribution of LacI when the DNA binding domain was 

deleted. The mutant LacI was excluded from the nucleoid in stationary phase cells, where the 

DNA is tightly packed, compared to its even distribution in slow growing cells. The full LacI 

protein localised with its gene in both cases. The authors suggest this means E. coli could 

change the distribution of transcription factors with growth phases, as DNA compaction 

changes (Kuhlman and Cox, 2012). 

 

LacI is one of the best studied transcription factors in E. coli, and is part of a large family of 

transcription factors. This makes LacI a good candidate for further single-molecule studies, as 

any findings about LacI can probably be applied to other LacI/GalR family members. A 

system that works for LacI is also likely to be suitable for studying other transcription factors. 

 

5.2 Super resolution microscopy of LacI::PAmCherry 

For use in PALM experiments, LacI needed to be tagged with a photoactivatable fluorophore, 

PAmCherry. Strain LR35 is derived from MG1655 and carries a chromosomal 

LacI::PAmCherry fusion. Strain LR18 carries 6 LacI DNA sites adjacent to the araBAD 

promoter and a chromosomal LacI::GFP fusion. Strain LR37 is derived from LR18 and has a 

chromosomal LacI::PAmCherry fusion. In both LR35 and LR37, the 3 LacI DNA sites at the 

lacZ promoter have been removed and the LacI::PAmCherry fusion is under the control of the 

lacI promoter. Fixed cells had previously been imaged using PALM to define the apparent 

diffusion coefficient of bound LacI.  
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5.2.1 Number of LacI molecules per cell 

The number of LacI molecules per cell averaged at 31.5 for strain LR37, carrying 6 LacI 

DNA sites, and 36.0 for strain LR35, with no LacI DNA sites (figure 5.1). There are thought 

to be around 20 monomers of LacI per gene copy (Gilbert and Müller-Hill, 1966), suggesting 

that many of the cells have multiple copies of lacI. In both strains more than three quarters of 

the cells had 50 or less monomers, and less than 3% had over 100 monomers. Although there 

seems to be more LacI::PAmCherry molecules present in the strain without any LacI DNA 

sites, LR35, this has been shown not to be significantly different to LR37. The average for 

strain LR35 may have been skewed by the presence of a few cells with very high numbers of 

LacI::PAmCherry molecules, but this is not the norm. Overall, this result suggests that the 

addition of a PAmCherry tag to LacI has not changed the copy number of the protein as it is 

found in similar numbers as previously reported.  

 

5.2.2 Effect of LacI DNA sites on the apparent diffusion coefficient of LacI::PAmCherry 

To investigate whether the presence of LacI DNA sites on the chromosome would change the 

diffusion of LacI::PAmCherry, strains LR35, with no DNA sites, and LR37, with 6 LacI DNA 

sites adjacent to araBAD, were compared. Molecules with an apparent diffusion coefficient of 

less than 0.1 μm
2
/s were defined as being “immobile” or bound to DNA. Molecules with a 

higher apparent diffusion coefficient are mobile and freely diffusing. In the strain with 6 LacI 

DNA sites, 36.6% of LacI molecules were in the immobile fraction, shown in the grey are of 

the graph, compared to 25% in the strain with no LacI DNA sites (see figure 5.2). The 

immobile molecules in the strain without any DNA sites are probably LacI molecules bound 

non-specifically to DNA. LacI has been shown to bind DNA and slide to search for its DNA 

sites (Hammar et al., 2012) (see section 5.1.2). There are only 6 LacI DNA sites per copy of 
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Figure 5.1: Number of LacI::PAmCherry molecules per cell 

Bar chart to show the number of LacI::PAmCherry molecules per cell.  

a) Strain LR35, with a chromosomal fusion of LacI::PAmCherry and all LacI DNA 

sites removed. 

b) Strain LR37, with a chromosomal fusion of LacI::PAmCherry and 6 LacI DNA sites 

inserted adjacent to araBAD. 

Cells were grown in M9 minimal media supplemented with 0.2% glycerol to an OD600 of 

approximately 0.1. Localisation analysis was performed using custom written MATLAB 

software. Microscopy and analysis was carried out by Federico Garza de Leon (University 

of Oxford). n = >150 
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Figure 5.2: Effect of LacI DNA sites on the apparent diffusion coefficient of 

LacI::PAmCherry 

Bar chart to show the apparent diffusion coefficient (D*) of LacI::PAmCherry. Bars in 

the grey section of the graph represent the immobile fraction of LacI::PAmCherry (D* < 

0.1 μm
2
/s). 

a) Strain LR35, with a chromosomal fusion of LacI::PAmCherry and all LacI DNA 

sites removed. 

b) Strain LR37, with a chromosomal fusion of LacI::PAmCherry and 6 LacI DNA 

sites  inserted adjacent to araBAD. 

Cells were grown in M9 minimal media supplemented with 0.2% glycerol to an OD600 of 

approximately 0.1. Localisation analysis was performed using custom written MATLAB 

software. Microscopy and analysis was carried out by Federico Garza de Leon 

(University of Oxford). n = > 150 
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the chromosome and an average of 31 monomers per cell. Each LacI DNA site is bound by 

one dimer, a maximum of 12 monomers per array, which means there will also be a 

proportion of LacI::PAmCherry that is not bound to DNA, as the DNA site array will be 

saturated. A strain with a higher number of DNA sites on the chromosome would probably 

have a higher percentage of immobile molecules and lower percentage of mobile.   

 

5.3 The effect of IPTG on the apparent diffusion coefficient of 

LacI::PAmCherry 

In the presence of IPTG, LacI should not bind to its DNA sites. To investigate the effect of 

IPTG on the apparent diffusion coefficient of LacI::PAmCherry, strains LR35, with no LacI 

DNA sites, and LR37, with 6 LacI DNA sites adjacent to araBAD, were imaged in the 

presence and absence of IPTG. Cells were immobilised in 1 μl wells and, to induce, washed 

with M9 minimal media supplemented with 1 mM IPTG.  

 

Both of these strains carry a chromosomal LacI::PAmCherry fusion. When cells were induced 

with IPTG, strain LR35, with no LacI DNA sites, showed no change in the apparent diffusion 

coefficient of LacI::PAmCherry (P > 0.05) (figure 5.3a). This suggests that the bound fraction 

of LacI in these cells is bound non-specifically, in a way that is not affected by IPTG. Strain 

LR37 had a significant reduction in the fraction of LacI::PAmCherry molecules in the 

immobile state when cells were induced with IPTG (P < 0.01) (see figure 5.3b). The 

percentage of mobile molecules dropped from 36.7% to 19.8% when induced with IPTG. 

When the apparent diffusion coefficient of LacI::PAmCherry in strain LR37 was compared to 

that in LR35 there was found to be no significant difference (P > 0.05), suggesting that the 

addition of IPTG has eliminated all specific binding of LacI::PAmCherry to LacI DNA sites.  
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Figure 5.3: Effect of IPTG on the binding of LacI::PAmCherry to LacI DNA sites 

Bar chart to show the apparent diffusion coefficient (D*) of LacI::PAmCherry with and without 

induction by IPTG. Bars in the grey section of the graph represent the immobile fraction of 

LacI::PAmCherry (D* < 0.1 μm
2
/s). 

a) Strain LR35, with a chromosomal fusion of LacI::PAmCherry and all LacI DNA sites 

removed. 

b) Strain LR37, with a chromosomal fusion of LacI::PAmCherry and 6 LacI DNA sites  

inserted adjacent to araBAD. 

Cells were grown in M9 minimal media supplemented with 0.2% glycerol to an OD600 of 

approximately 0.1. Cells were immobilised in 1 μl channels, and to induce, washed with M9 

minimal media supplemented with 1 mM IPTG. Localisation analysis was performed using 

custom written MATLAB software. Microscopy and analysis was carried out by Federico Garza 

de Leon (University of Oxford). n = > 150 
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This result shows that changing the position of the LacI DNA sites on the chromosome does 

not change the behaviour of LacI. Also, as it agrees with known behaviours of LacI, it shows 

that this technique is relevant for studying transcription factors. 

 

Figure 5.4 shows preliminary results of the tracks of LacI::PAmCherry in strain LR37, with 6 

LacI DNA sites adjacent to araBAD. Red tracks show the diffusion of molecules with an 

apparent diffusion coefficient of less than 0.1 μm
2
/s, blue tracks show the diffusion of 

molecules with an apparent diffusion coefficient of between 0.1 and 0.4 μm
2
/s and green 

tracks show the diffusion of molecules with an apparent diffusion coefficient of greater than 

0.4 μm
2
/s. It appears that when cells are uninduced (figure 5.4a), the tracks of immobile 

molecules cluster in one or two areas of the cell, sometimes with blue tracks, representing the 

diffusion of molecules that are mobile, but at the less mobile end of the scale. In cells that 

have been induced with IPTG the immobile molecules are more spread out (figure 5.4b). 

Although more cells need analysing, this suggests that the immobile molecules seen in 

induced cells are not due to LacI::PAmCherry binding at the multiple LacI DNA sites, as this 

would cause the immobile molecules to clusters. 

 

5.4 The effect of the addition of arabinose on LacI binding to DNA sites 

adjacent to araBAD 

Strain LR37 has a LacI::PAmCherry fusion on the chromosome and 6 LacI DNA sites 

inserted adjacent to araBAD. These are the only LacI DNA sites on the chromosome. To 

investigate whether induction of a neighbour promoter would affect the ability of LacI to bind 

its DNA sites, cells were induced with arabinose. If induction of araBAD changes the local 

chromosome structure the LacI DNA sites may become less accessible to LacI::PAmCherry,  
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a) 

b) 

Figure 5.4: Tracks of LacI::PAmCherry 

Images showing tracks of LacI::PAmCherry. Red tracks show the diffusion of molecules with 

an apparent diffusion coefficient of less than 0.1 μm
2
/s, blue tracks show the diffusion of 

molecules with an apparent diffusion coefficient of between 0.1 and 0.4 μm
2
/s and green tracks 

show the diffusion of molecules with an apparent diffusion coefficient of greater than 

0.4 μm
2
/s. 

a) Uninduced cells. 

b) Cells induced with 1 mM IPTG. 

Strain LR37, with a chromosomal fusion of LacI::PAmCherry and 6 LacI DNA sites inserted 

adjacent to araBAD. Cells were grown in M9 minimal media supplemented with 0.2% glycerol 

to an OD600 of approximately 0.1. Cells were immobilised in 1 μl channels, and to induce, 

washed with M9 minimal media supplemented with 1 mM IPTG. Localisation analysis was 

performed using custom written MATLAB software. Microscopy and analysis was carried out 

by Federico Garza de Leon (University of Oxford). Pixel size = 0.1145 μm. 
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which would be reflected in the apparent diffusion coefficient. Strain LR35, carrying a 

LacI::PAmCherry fusion and no LacI DNA sites, was also induced with arabinose as a 

control. Cells were immobilised in 15 μl wells containing polyethylenimine, which facilitates 

attachment of the cells. To induce, cells were washed with M9 minimal media supplemented 

with 0.2% arabinose.   

 

Strain LR37 did not show any significant difference in the apparent diffusion coefficient of 

LacI::PAmCherry upon induction with arabinose (P > 0.05) (figure 5.5b). Strain LR35 was 

included as a control where LacI diffusion should not be affected by arabinose and also 

showed no significant difference (P > 0.05) (figure 5.5a). If induction of araBAD made the 

surrounding DNA more accessible to LacI::PAmCherry, there would be an increase in the 

percentage of molecules in the bound fraction. If it made the LacI DNA sites less accessible, 

there would be a decrease in the percentage of molecules in the immobile fraction (grey area 

of the graph). As there was no change, this suggests that induction of gene expression does 

not change the accessibility of neighbouring DNA sites to DNA binding proteins in this case.  

 

5.5 Discussion 

Previous super resolution studies of LacI had shown that the repressor locates its binding sites 

by a combination of 3D diffusion and non-specific binding to DNA, followed by sliding 

(Hammar et al., 2012). It has also been shown that the LacI protein colocalised with its 

encoding gene and mRNA, even when this was not at its native location (Kuhlman and Cox, 

2012). This chapter aimed to use another super resolution technique, PALM, to track LacI 
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Figure 5.5: Effect of araBAD induction on the binding of LacI::PAmCherry to LacI 

DNA sites 

Bar chart to show the apparent diffusion coefficient (D*) of LacI::PAmCherry with and 

without induction by IPTG. Bars in the grey section of the graph represent the immobile 

fraction of LacI::PAmCherry (D* < 0.1 μm
2
/s).  

a) Strain LR35, with a chromosomal fusion of LacI::PAmCherry and all LacI DNA 

sites removed. 

b) Strain LR37, with a chromosomal fusion of LacI::PAmCherry and 6 LacI DNA 

sites  inserted adjacent to araBAD. 

Cells were grown in M9 minimal media supplemented with 0.2% glycerol to an OD600 of 

approximately 0.1. Cells were immobilised in 15 μl wells, and to induce, washed with M9 

minimal media supplemented with 0.2% arabinose. Localisation analysis was performed 

using custom written MATLAB software. Microscopy and analysis was carried out by 

Federico Garza de Leon (University of Oxford). n = > 150 
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molecules in the cell to understand more about LacI diffusion and develop a technique that 

could be used to study other transcription factors. 

 

The apparent diffusion coefficient of LacI::PAmCherry in a strain with no LacI DNA sites 

was compared to that in a strain with 6 LacI DNA sites inserted adjacent to the araBAD 

promoter. In the absence of LacI DNA sites 25% of LacI::PAmCherry was in the immobile 

fraction, even though there were no specific sites on the chromosome. These molecules are 

probably bound to DNA non-specifically, perhaps searching for a binding site by facilitated 

diffusion. This result agrees with the Hammar et al., 2012 paper, and suggests that, when LacI 

is present in the cell at wild-type levels, about a quarter of the molecules are undergoing 

facilitated diffusion (Hammar et al., 2012). When 6 LacI DNA sites were present on the 

chromosome, the percentage of LacI::PAmCherry in the bound fraction increased to 37%. 

This 11% change is presumed to be due to LacI::PAmCherry binding to the DNA sites. As 

there are only 6 DNA sites and an average of around 36 monomers of LacI::PAmCherry per 

cell, it is expected that there would still be a large percentage of molecules in the mobile 

fraction. If a larger array of DNA sites was inserted, the increase in molecules in the bound 

fraction would be expected to be larger. If the DNA site array is saturated, 12 

LacI::PAmCherry monomers would be bound, one third of the molecules in the average cell. 

As 37% of molecules were in the bound fraction this suggests that the array may not be 

saturated, as some of these molecules will be bound non-specifically. There may not be 100% 

occupancy of the DNA site array due to steric hindrance effects. 
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When cells with LacI DNA sites on the chromosome were induced with IPTG, the percentage 

of molecules in the bound fraction decreased to a similar level to that of cells with no LacI 

DNA sites. This was expected as IPTG prevents LacI from binding specifically to its DNA 

sites. As 20-25% of molecules were still in the bound fraction this suggests that non-specific 

binding of LacI is not affected by IPTG. The profile of the apparent diffusion coefficient of 

LacI::PAmCherry in IPTG induced cells with LacI DNA sites looked very similar to that of 

uninduced cells with no DNA sites. This suggests that IPTG removes any effect of LacI DNA 

sites. In Chapter 3, inducing cells with IPTG did not prevent the formation of LacI::GFP foci, 

implying that IPTG did not have any effect. Although the fusions of LacI to GFP and 

PAmCherry should behave in the same way, they appear to have different sensitivity to IPTG. 

It is possible that the different tags have had different effects on the way that LacI responds to 

IPTG. However, this seems unlikely since GFP and PAmCherry are very similar molecules in 

both size and structure. A higher number of LacI DNA sites were present in the strain with 

LacI::GFP, although this does not explain why IPTG does not dissociate LacI::GFP from 

DNA sites on the chromosome.  

 

Induction of the araBAD promoter did not affect the binding of LacI::PAmCherry to LacI 

DNA sites inserted adjacent to araBAD. If induction of araBAD caused a change in the local 

chromosome structure that made the DNA less accessible to LacI, a reduction in the 

percentage of molecules in the bound fraction would be seen, which was not the case. 

However, a change in structure due to induction of gene expression would be predicted to 

make the surrounding DNA more accessible, as the promoter would need to be bound by 

RNAP and any activating transcription factors. In this experiment, LacI is present in excess so 
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LacI DNA sites are thought to be saturated, as far as steric hindrance will allow. In this case, 

an increase in accessibility would not be seen, only a decrease. 

 

These results have shown that PALM can be used to track transcription factors and the results 

agree with previous experiments, suggesting this method produces accurate data. To further 

investigate the diffusion of LacI, the LacI::PAmCherry fusion needs to be inserted onto the 

chromosome of a strain which still has the 3 natural LacI DNA sites. This will give 

information about LacI diffusion and binding in a system with the same stoichiometry as 

wild-type E. coli. Other transcription factors can then be investigated using this same method. 

In the case of transcription factors like AraC and MntR, with DNA sites at multiple locations 

around the chromosome, this will show whether they cluster, or not as suggested by the 

results of chapter 4. 

 



270 

 

 

 

 

 

 

 

 

6. Closing Comments 
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Our understanding of the bacterial nucleoid has expanded greatly in recent years, and bacteria 

are no longer assumed to have little or no structure in the way their DNA is arranged. It has 

been shown that, like eukaryotes, there are proteins dedicated to maintaining chromosome 

structure. However, unlike in eukaryotes, a number of these proteins involved in structuring 

chromosomes are also involved in gene regulation. This led to the idea that gene expression 

and chromosome structure could be linked in bacteria, and that a change in gene expression 

could change the local chromosome structure, or vice versa.  

 

The technique used to investigate this idea was fluorescent repressor/operator system (FROS). 

A development of this technique to use smaller inserts has made it more suitable for studying 

chromosome structure. The development of MalI as a novel FROS reporter has given another 

option for experiments requiring multiple labels, as an alternative to TetR. Although the 

transcription factors studied in chapter 4 did not cause clustering of the promoters they 

control, there is evidence that this is the case for some other transcription factors, for example, 

GalR (Qian et al., 2012). LacI::GFP and MalI::mCherry could be used to confirm the results 

already seen by chromosome conformation capture. Although new microscopy techniques, 

described in chapter 5, have shown that conventional fluorescence microscopy and FROS are 

limitated by resolution, there is still a place in science for these types of microscopy. 

Although epifluorescent microscopy does not give the same detail as super-resolution 

techniques, this study has shown it is sufficient to show large movements and requires much 

less specialised equipment and operators. One future application for this adapted FROS 

method could be to combine it with RNA FISH (Fluorescence in situ hybridisation) to follow 

both the promoter and newly synthesised mRNA of an inducible gene. To further study the 

induction of gene expression, the protein encoded by the gene could be tagged with a 
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fluorescent protein to give a three colour system able to follow a promoter, mRNA and 

protein. This would be particularly useful for studying membrane proteins and the possibility 

of the process of transertion.    

 

The only promoter studied that changed position upon induction was araFGH. In all cases, 

induction of araFGH led to a movement away from the poles of the cell. araFGH encodes 

transporters, including a membrane protein, so the process of transertion could be the driving 

force behind this movement. Transertion would involve a movement towards a membrane, 

which would be assumed to be a movement along the radius of the cell. A movement along 

the length of the cell was seen but no radial measurements were taken in this study as 

resolution was thought to be insufficient for reliable measurements. Figure 6.1 shows how a 

movement along the length of the cell could be showing a movement towards the 

chromosome. As the cells are 3D but images are 2D, a movement towards the membrane 

could involve moving towards or away from the slide, which would not been seen by this type 

of microscopy, although TIRF microscopy may be able to detect this movement. The fact that 

a movement away from the cell pole is seen implies that the proteins encoded by araFGH 

require insertion at a specific point on the cell membrane, rather than insertion into the 

membrane at the closest point to the genes. In this case it seems to be an avoidance of the area 

of the cells around the pole, changing the usual asymmetrical arrangement of the chromosome 

to a symmentrical one . Without further experiments it would not be possible to say whether 

this effect was specific to a few membrane proteins, including AraFGH, or the case for all 

transerted proteins. The lack of any movement seen when mntH was induced suggests that 

there is no specific location for insertion of the MntH protein, although it is not 
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+ Ara

+ Ara

+ Ara 

a) 

b) 

c) 

Figure 6.1 Schematic model of the movement of araFGH upon induction 

Model showing the position of araFGH in cells at different stages of the cell cycle.  

a) Cells with a single copy of the chromosome and a single focus representing the position 

of araFGH. 

b) Cells with most of the chromosome replicated and two foci representing the position of 

araFGH. 

c) Cells at the point of division. 

Figures a and b show the left and right replichores as blue and red respectively and newly 

replicated DNA is paler. Figure c shows the chromosome as a black circle with the Ter 

macrodomain shown in pale blue, unsegregated. The position of araFGH is shown as a red 

circle. Red arrows show the direction of movement along the length of the cell upon 

induction by arabinose.   
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yet known whether all membrane proteins are transerted, or if some are inserted into the 

membrane separately from transcription and translation. A recent study showed that lacY 

moved across the radius of the cell, towards the membrane, upon induction, but no 

measurements of position related to cell length were made (Libby et al., 2012). The promoters 

of a selection of other membrane proteins would need to be investigated, in the presence and 

absence of rifampicin, to see how widespread this effect is. To show the link between the 

movement and transertion, the membrane protein could be tagged with a fast folding 

fluorescent protein to show its position in the membrane when inserted, if the membrane 

protein can be tagged without affecting function. Other promoters of genes located in the Ter 

macrodomain should also be investigated. The properties of the Ter macrodomain may mean 

that promoters of genes encoding non-membrane inserted proteins may also move upon 

induction. 

 

It is the belief of some that chromosome segregation is driven by transertion of membrane 

proteins. It is thought that as the region of the chromosome containing the gene that encodes 

the membrane protein moves towards the membrane, it would separate the two sister 

chromatids into opposite halves of the cell. For this to be the case, the two copies of the gene 

encoding the membrane protein would need to move towards the cell poles. This is not seen 

in the case of araFGH in single cells, probably because the chromosome is either not 

replicated or already segregated at the position of araFGH. However, when cells at the point 

of division are studied, the percentage of cells containing cohesive sister chromatids at the 

location of araFGH drops significantly upon addition of arabinose. araFGH is then 

segregated into the two future daughter cells. Alternatively, this could again be seen as a 
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movement away from the cell poles, although this time away from the septum, where the 

future cell poles of the daughter cells will be.  

 

From these experiments, it is unclear whether the movement of araFGH leads to a permanent 

segregation of the entire Ter macrodomain. The regions of chromosome surrounding araFGH 

move in opposite directions, away from mid-cell and the rest of the Ter macrodomain, and 

towards the membrane. After transcription, translation and insertion have occurred, the DNA 

may remain in the same area of the cell or return to the rest of the Ter macrodomain. 

Alternatively, after the segregation of araFGH, the rest of the Ter macrodomain may follow, 

meaning that araFGH induction initiates chromosome segregation. This may depend on the 

point of the cell cycle and whether the Ter macrodomain has finished replicating.  As figure 

6.1 suggests, the movement of the araFGH promoter may involve a loop of the chromosome 

moving towards the chromosome without disturbing the rest of the structure.  

 

It is known that the E. coli membrane has microdomains, some areas of the membrane are 

enriched for certain lipids, and this creates a non-uniform distribution of membrane proteins 

(Jacoby and Young, 1988). One reason for lipid enrichment is that some lipids have a more 

curved structure which excludes them from the length of the rod shaped cell. Instead, these 

lipids are found in clusters at the pole of the cell (Huang et al., 2006). It has also been shown 

that two differently labelled phospholipids inserted into the E. coli membrane do not mix wth 

each other (Vanounou et al., 2003). These microdomains will have differing properties which 

may favour insertion of different membrane proteins. Many E. coli proteins have been 

observed to be located at the pole of the cell, including proteins involved chemotaxis, 
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autotransporters and type III secretion systems (Li and Young, 2012). It is likely that there are 

some proteins that preferentially locate in the side membranes of the cell, perhaps for their 

function. It is unknown whether the site of transertion is the same as the final location for the 

membrane protein, but the AraFGH transporter may be required to be positioned away from 

the cell poles, so this is the site of insertion. Fluorescently labelled phospholipids used to 

investigate microdomains could be combined with FROS to see whether promoters move to a 

particular type of phospholipid.  

 

The only promoter to show any movement within the cell upon induction was araFGH. The 

positions of other promoters controlled by AraC and promoters controlled by MntR showed 

no significant difference between supplemented and unsupplemented cultures. This suggests 

that, at these sites, gene expression does not have an effect on chromosome structure that can 

be detected using this method. It also suggests that neither AraC nor MntR binding causes 

clustering of their DNA sites. This effect has been shown with the transcription factor GalR 

(Qian et al., 2012), indicating a possible role in chromosome structuring for transcription 

factors with DNA sites at multiple locations on the chromosome. Now the PALM system has 

been established and data from LacI has shown that it has given comparable data to previous 

studies, other transcription factors will be studied. This will include other transcription  

factors with a small number of DNA sites at one location on the chromosome, for example 

MalI, those with DNA sites  at  a small number of locations around the chromosome, for 

example MntR and AraC, and those with a large number of DNA sites, for example IHF. 
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Although the idea of transcription factors structuring the chromosome in a dynamic way that 

can react to the environment of the cell as the binding of transcription factors change, is 

attractive, this may not be practical. In E. coli there are thought to be around 300 transcription 

factors, 80% of which regulate more than 2 promoters (Martínez-Antonio and Collado-Vides, 

2003). If all of these caused clustering when bound, the chromosome would end up as a 

knotted mass, where the possibility of other processes, such as replication, taking place seems 

unlikely. On top of this, 49% of promoters are regulated by more than one transcription 

factor, meaning that those promoters would need to belong to multiple clusters. Transcription 

factors also have an effect on chromosome structure when they have a secondary function as 

NAPs, when binding introduces bends and bridges into the DNA. It seems more likely that a 

small number of transcription factors could cause clustering of promoters they regulate, but 

not the majority.  
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