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Plant architecture characteristics contribute significantly to the microclimate within

peanut canopies, affecting weed suppression as well as incidence and severity of foliar

and soil-borne diseases. However, plant canopy architecture is difficult to measure and

describe quantitatively. In this study, a ground-based LiDAR sensor was used to scan

rows of peanut plants in the field, and a data processing and analysis algorithm was

developed to extract feature indices to describe the peanut canopy architecture. A

data acquisition platform was constructed to carry the ground-based LiDAR and an

RGB camera during field tests. An experimental field was established with three peanut

cultivars at Oklahoma State University’s Caddo Research Station in Fort Cobb, OK in

May and the data collections were conducted once each month from July to September

2015. The ground-based LiDAR used for this research was a line-scan laser scanner

with a scan-angle of 100◦, an angle resolution of 0.25◦, and a scanning speed of 53ms.

The collected line-scanned data were processed using the developed image processing

algorithm. The canopy height, width, and shape/density were evaluated. Euler number,

entropy, cluster count, and mean number of connected objects were extracted from

the image and used to describe the shape of the peanut canopies. The three peanut

cultivars were then classified using the shape features and indices. A high correlation was

also observed between the LiDAR and ground-truth measurements for plant height. This

approach should be useful for phenotyping peanut germplasm for canopy architecture.

Keywords: peanut cultivar, canopy height and density, image processing, classification, region of interest (ROI)

INTRODUCTION

Peanut (Arachis hypogaea L.) is a major crop which is widely cultivated in warmer areas of the
United States and around the world. In the U.S., it is the 12th most valuable cash crop with a farm
value of over one billion U.S. dollars (American Peanut Council, 2018). Many peanut breeding
programs work on developing high-yielding cultivars with resistance to biotic and abiotic stressors
(e.g., drought and diseases), which may reduce the yield, quality, and the health benefits of this
crop. More recently, there is an effort to utilize newly available genome sequences of domesticated
peanut and its ancestral relatives (Bertioli et al., 2015) to develop improved cultivars. As a result,
more work is needed on high-throughput phenotyping to connect extensive genotypic data to
phenotypic characteristics in a field context (Furbank and Tester, 2011 and Fiorani and Schurr,
2013). There are numerous studies characterizing peanut germplasm for various traits, such as
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yield, disease resistance, and heat and drought tolerance
(Holbrook and Noe, 1992; Holbrook and Anderson, 1995; Nigam
et al., 2005; Bennett et al., 2018), but traditional methods for
data collection are inefficient, laborious, and time-consuming for
evaluating large numbers of plant genotypes.

One plant characteristic that is currently not considered in
peanut breeding is canopy architecture, which has profound
effects but is difficult to measure. Canopy structure affects solar
radiation interception, plant growth (Suprapto et al., 2013), and
ability to compete with weeds (Jannink et al., 2000). Canopy
traits, such as plant size and leaf area can affect adaptation
to drought conditions (Cattivelli et al., 2008). Open canopies
and upright growth habits can also reduce disease incidence
by creating microclimates that are less conducive to pathogen
growth or by reducing opportunities for plant contact with
infested soil (Shew and Beute, 1984; Dow et al., 1988; Chappell
et al., 1995; Bailey and Brune, 1997). The difficulty in defining
and quantifying a three-dimensional structure may be why
canopy architecture is rarely measured or adopted in most crop
breeding programs (Pangga et al., 2011; Tivoli et al., 2013).
While there is a substantial body of literature on theoretical
models of plant growth (de Visser et al., 2002; Prusinkiewicz
and Runions, 2012), at a more applied level, the relatively few
studies attempting to quantify aspects of canopy architecture in
row crops have manually measured height, width, and/or leaf
area index (Blad et al., 1978; Jannink et al., 2000; Leon et al.,
2016). More recently, promising research on quantifying plant
canopies use various sensors (Paulus et al., 2014; Bai et al., 2016;
Hui et al., 2018), bypassing manual measurements which are
low-resolution, subjective, and laborious to acquire.

Sensing technologies, such as RGB cameras, ultrasonic
and infrared sensors, and laser scanners, have been used to
characterize plant canopies. Image analyses are perhaps the most
commonmethod for quantifying plant parts, such as roots, stems,
leaves, seeds, and flowers. Recently, 3D imaging techniques
were used to describe complex geometric traits, expanding
conventional 2D imaging methods with an additional dimension
of distance measurement using time of flight (TOF), stereovision
(Lati et al., 2013), and structure-from-motion (Li et al., 2014; Jay
et al., 2015). Ultrasonic sensors were also used as a 3D sensor
to evaluate canopy information in tree fruits and nuts (Escolà
et al., 2011), estimate citrus yields (Zaman et al., 2006), and
evaluate canopy contours of pistachio trees (Maghsoudi et al.,
2015). Ultrasonic sensors are relatively inexpensive and simple
to use, but their measurement accuracy is often low, being easily
affected by surrounding interferences andmeasurement distance.
Hence, ultrasonic sensors may be acceptable for evaluating fruit
trees with relatively large canopies and leaves, but they are less
suitable for row crops which generally have smaller canopies and
smaller leaves, resulting in greater diffusion of ultrasonic waves.

Light Detection and Ranging sensors (LiDAR) are increasingly
used to evaluate plant canopy architecture. This technology
measures the distance between a LiDAR sensor and a targeted
object based on TOF. The distance between the LiDAR and the
targeted object is determined by a product of the speed of light
and the time interval between when a laser signal is emitted and
when the reflected laser signal is received. LiDARs were used

to evaluate height, shape, structure, and contours of trees (Van
der Zande et al., 2006; Côté et al., 2012; Shi et al., 2013, 2015;
McMahon et al., 2015), as well as to describe surface features
of vegetation canopies (Saeys et al., 2009; Li et al., 2014; Liu
et al., 2017). LiDAR has the advantage of being accurate, fast, and
compatible for use in outdoor environments. In addition, LiDAR
is less affected by solar radiation, air temperature, humidity, or
wind speed. LiDAR sensors were also used to phenotype detailed
morphological features of plants. Paulus et al. (2014) built an
indoor phenotyping system using a 3D, high-precision laser
scanner coupled with a movable articulated arm. The system was
able to scan the architecture of entire barley plants, reconstruct
3D plant models with the scanned data, estimate cumulated leaf
area, height, and width, and correlate the measured features
with plant growth analysis. Thapa et al. (2018) developed an
indoor phenotyping system with a LiDAR sensor mounted on
a rotation stage. The system generated 3D point cloud data
from LiDAR-scan data, reconstructed plant leaves in digital
format, and estimated morphological features of maize and
sorghum leaves. Sun et al. (2017) developed a LiDAR-based high-
throughput phenotyping system for cotton plants and tested the
system under field conditions. An RTK GPS was used to geo-
reference the LiDAR scans, and the height of every cotton plant
was evaluated. Jimenez-Berni et al. (2018) designed a ground-
based platform, comprised of LiDAR, digital single-lens reflex
camera, and a GreenSeeker R© sensor, to analyze canopy height,
ground cover, and the above-ground biomass of wheat. These
reports demonstrate the great potential of LiDAR technology in
evaluating plant architecture indoors and in the field.

Peanut cultivars can show great variation in canopy
architecture. In this study, a LiDAR sensor-based phenotyping
system was developed to characterize peanut cultivars with
divergent canopy architectures. The specific objectives were to:
(1) design a field phenotyping platform to evaluate peanut
canopy architecture; (2) to develop software to evaluate canopy
features of height, width, shape, and density, and to classify
among different varieties; and (3) to conduct field tests to verify
the feasibility of the developed phenotyping platform.

MATERIALS AND METHODS

System Architecture
A field phenotyping platform (Figure 1A) was constructed from
two bicycles and a frame holding a ground-based LiDAR
sensor (LMS291-S05, SICK AG, Waldkirch, Germany), a video
camera (GoPro 4, GoPro Inc, California, USA), a shaft encoder
(Danapar, Gurnee, Illinois, USA) attached to one of the rear
wheels to record a location stamp of every LiDAR scan, a
laptop, and a battery unit (24V, 18.0 Amp. Hr.). The LiDAR
was mounted on the platform at 1m above ground and was
oriented to face downward. To obtain a reasonable field of
view of the entire canopy within a single row, the LiDAR was
configured to operate in a continuous line-scan mode with a
field of view of 100◦ (2.38m in width) and a resolution of
0.25◦ (Figure 2B). The laser scanner output had a total of 401
points for every line scan. To ensure high-speed data collection
(500 kbps/s), the LiDAR was connected to a laptop through
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FIGURE 1 | Measurement system and experimental field setup: (A) Ground-based mobile data acquisition system; (B) Experimental design of field: each plot had four

rows, but only one (Row 3) was measured; Row 1 was not used. The arrow shows the travel direction of measurement system.

FIGURE 2 | Detailed plot layout and LiDAR configuration: (A) The 3-row subsection of the plot covered by the field acquisition system; (B) Field-of-view of laser

scanner; (C) Cartesian coordinates of the collected data.

a serial-to-Ethernet converter (DeviceMaster 500, Comtrol Co.,
New Brighton, Minnesota, USA). A data acquisition program
was developed using LabVIEW (The LabVIEW 2011, National
Instrument Co., Austin, Texas, USA) to communicate with the
LiDAR, correctly receive data packages, extract and convert
distance data from polar to Cartesian coordinates, and save

data as an MS Excel file. All line-scanned data were stored
with a distance stamp and a time stamp. A video camera was
mounted 10 cm from the center plane of the LiDAR and oriented
downward to obtain a similar field-of-view (FOV). The camera
recorded videos during field tests to verify LiDAR measurements
in the field.
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Field Setup and Data Acquisition
Field experiments were conducted at Oklahoma State
University’s Caddo Research Station in Fort Cobb, Oklahoma,
USA. The following three peanut cultivars of the runner market-
type were planted on June 3, 2015: Georgia-04S (Branch, 2005),
McCloud (McCloud, 2006) and Southwest Runner (Kirby et al.,
1998). For easier planting, each plot had four rows but only
one row was measured. This plot setup permitted the designed
platform to scan one row without treading on the plants within
the scanned row (Figure 1). Each plot was 3.66m in width and
4.57m in length. The experimental design was a randomized
complete block design with four replications for each cultivar.
The 12 four-row-wide plots were arranged in a single line in the
field (Figure 1B), and plots were separated by 1.52m borders
(Figure 2A). To provide fixed reference points within each
plot over the collection periods, 0.76 m-long metal posts were
installed within the center length of each scanned row at 0.9, 1.8,
2.7, and 3.7m.

Data were collected three times during the 2015 growing
season on 10 July, 21 August, and 18 September. At each
collection date, the entire field of 12 plots was scanned three times
with the developedmobile data acquisition system. The data from
each scan were stored in separate files on the laptop.

Ground-Truth Data Collection
The ground-truth data were obtained by taking manual
measurements in each plot along the moving direction of the
mobile data acquisition system at 0, 0.9, 1.8, 2.7, 3.7, and 4.6m. At
each of these six locations, canopy height was measured at seven
points in the direction perpendicular to the moving direction at
15.2-cm intervals. In total, 42 ground-truth data measurements

were taken in each plot, and 504 measurements for the entire
field. Ground-truth data were collected on the same days that
LiDAR measurements were taken.

Software Design for Data Preprocessing
Raw Data
The raw data consisted of three parts: encoder data (location
stamp), a time stamp, and 401 pairs of x-y coordinates of the
collected data. The encoder data provided a moving distance
between two LiDAR scans and was used as a location stamp. The
LiDAR was configured to provide each data output as Cartesian
coordinates with the center of the LiDAR as the origin. Each
LiDAR scan generated 401 pairs of x-y coordinates. The x-
coordinate provided horizontal displacement to the origin where
a measurement was taken from, while y-coordinate provided a
vertical distance measurement, which was used to evaluate the
height of canopy. The horizontal scanning range, perpendicular
to the row, was about −1.19 to +1.19m (Figure 2C). When
collecting field data, the LiDAR continuously acquired data with
a sampling interval of 53ms along the movement of the mobile
data acquisition system.

Data Preprocessing

Plant height calculation
The plant height was calculated using Equation (1),

Heightplant = HeightLiDAR − yi, i = 1, 2, . . . n (1)

where n was the total number of scanning points in direction of
X-axis; for this project, n = 401. Heightplant was the calculated
plant height. HeightLiDAR was the mounted height of the LiDAR,
which was 1m above ground level. yi was the distance measured

FIGURE 3 | An example of the point cloud of the collected data.
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at the ith data point. A threshold of ±2 cm was used for
Heightplant to represent ground.

Identify region of interest
A wide aperture angle of 100◦ was used for the LiDAR sensor
to ensure a complete scan of the target canopy. As a result,
the collected data included scanned canopies of adjacent rows
(Figures 2, 3). A five-step algorithm was developed in MATLAB
(MATLAB 2017A, MathWorks Inc., MA, USA) to extract the
region of interest (ROI), i.e., the center row, through the
polynomial curve fitting method:

Step 1: Separate each plot
Every data file included the collected data from all 12 plots.
Equation (2) was used to extract the data for each plot based on
the encoder readings.

Encodereachplot =

∣

∣Encoderend − Encoderstart
∣

∣

Nplots
, (2)

where Encodereachplot was the calculated encoder readings for
each plot; Encoderstart was the encoder reading at the start of
the field; Encoderend was the encoder reading at the end of the
field, and Nplots was the number of plots (Nplots = 12 in this
research). As a result, the data file for a field run was divided into
12 sub-files, each representing data from the 12 plots.

Step 2: Curve fitting for the data in each sub-file
Peanut canopies were generally rounded as an arc when viewed
from top (Figure 3). In order to describe canopy shape, curve
fitting was implemented to fit the data from each plot. As each
data file for a single plot included multiple scans, multiple fitting
curves were generated using fifth-order polynomial curve fitting
(Equation 3).

f (x, y) =

n
∑

i=0

ωix
i, n = 5, (3)

where ωi was the coefficient of the polynomial and n is the order
of the polynomial.

Step 3: Find theminimum andmaximum points of the canopy
Multiple fitting curves describing canopy shape were generated in
Step 2. The highest point and the left and right boundary points

of the fitting curves were determined through the calculations
of the maximum and minimum points in the fitting curves.
Generally, the resulted curves of the peanut canopy scans
from Step 2 (visible in Figures 3, 4B) have a shape with one
peak (the highest height) in the middle and two valleys with
minimum heights. The section of each curve between the two
minimum points indicated the canopy area of interest. However,
due to overlapping plants with adjacent rows, especially from
data collected in August and September, some of the resulting
fitted curves were distorted (Figures 4A,C). To find the targeted
section in the distortion curves, the number and positions of the
extreme points, especially the minimum points, of all resulted
curves were evaluated.

Step 4: Determine canopy boundaries for the target plot
The flowchart in Figure 5 shows the procedures to determine

the boundaries of a plot.
At first, the minimum values from all fitted curves in a
plot were calculated. If two minimum points (minimum-left
and minimum-right) were found for a fitted curve, their x-
coordinates, i.e., their positions relative to the origin, were
recorded. If only one minimum point was found, the fitted

FIGURE 5 | Flowchart for determining canopy boundaries.

FIGURE 4 | The examples of fitting curves for the data: (A) Distorted curve; (B) Curve with one peak and two valleys; (C) Distorted curve.
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curve was not used to calculate the boundaries. After finding all
the pairs of the minimums for the fitted curves in a plot, the
averages of the left and right minimums were calculated using
Equation (4).















xaverage−left =

n
∑

i=1
x
minimum−left
i

n

xaverage−right =

n
∑

i=1
x
minimum−right
i

n

i = 1, 2, ...n, (4)

where n was the numbers of the fitted curves with two minimum
points; xaverage−left was the average x-coordinate of all the left
minimum points; xaverage−right was the average x-coordinate of all
the right minimum points; [[Inline Image]]was the x-coordinate
of the left minimum in the ith fitted curve; and [[Inline Image]]
was the x-coordinate of the right minimum in the ith fitted curve.

Step 5: Extract the data in ROI
Once the two boundary coordinates xaverage−leftand

xaverage−right were identified, data with x-coordinates between
xaverge−left and xaverage−right were considered within the ROI. The
data with x-coordinates smaller than xaverge−left and larger than
xaverage−right were considered to be part of the plant canopies
from adjacent rows and were not included in downstream
processing. The identified ROI of each plot was extracted
according to the canopy boundary points.

Remove noise and unwanted data
The presence of the four metal stakes installed in each plot
were captured by LiDAR in all the data files and needed to be
removed. Other additional noise was also present in the raw data.
The following steps were used to remove extraneous noise and
interference:

Step 1: Define a threshold operator (THO) Calculate the average
height and standard deviation of each row. Next, the sum
of the average height and 2 times the standard deviation
was used as the judgement operator.

Step 2: Compare measurement values with THO Measurement
data in a scan within a plot were retrieved and compared
with THO. If the measurement value was smaller than
THO, it remained unchanged and retrieved the next
measurement value.

Step 3: Remove unwanted data When the measured value was
greater than THO, the average of its two adjacent values
(Adj_avg) was compared with THO. If THO was smaller
than Adj_avg, THO was used as the measured data. If
THO was greater than Adj_avg, the measurement value
was replaced by Adj_avg. Return to Step 2 for the next
measured value.

Analysis for Canopy Phenotype
After preprocessing, the data file for each plot included multiple
LiDAR scans. For further analyses, these multiple data scans in a

plot were organized into a matrix (Equation 5).

ploti =











scan i_1
scan i_2

...
scan i_n











mi×ni

, (5)

where scan i_n was the nth set of canopy height data within the
ROI; mi was the number of scans of the LiDAR in plot i ; and
ni was the number of height data in a scan within the ROI for
plot i. The matrix (ploti) included all the canopy height data in
the ROI. The data were processed either through standard data
manipulation or as an image with image processing approaches.

Statistics of Peanut Canopy
Height and width are frequently used by plant scientists to
describe canopy features (Dow et al., 1988; Richard et al., 2013;
Hoyos-Villegas et al., 2015; Leon et al., 2016). Height and width
of the three cultivars over time were analyzed using mixed-
model ANOVA in PROC GLIMMIX of SAS (ver. 9.4, SAS
Institute, Cary, North Carolina). Fixed effects included cultivar,
month, and their interaction. Block, or repetition of cultivars,
was treated as a random effect. The three scans of the field for
each collection date were treated as subsamples from each plot, so
the random effect of block∗cultivar∗month was used as the error
term. Denominator degrees of freedom were corrected using the
Kenward-Rogers option. When the cultivar∗month interaction
was significant, simple effects of temperatures within each week,
and week within each temperature, were compared using the
SLICE option of the LSMEANS statement. Type I error was
controlled at α = 0.05 using the ADJUST= SIMULATE option.

Shape Features of Peanut Canopy
In order to obtain shape features of the peanut canopies, a
MATLAB program was developed to read plotias a gray-scale
image. This image was converted into binary image using the
threshold defined in Equation 6.

Thresholdi =

∑ni
b=1

∑mi
a=1 ploti

(

a, b
)

|ploti
(

a, b
)

> 0

ni ×mi
, (6)

If the value in ploti was larger than Thresholdi, the relevant
element in the binary image was set to 1. If the value

TABLE 1 | Feature indices for canopy shape and density.

Feature index Description

Euler number A scalar that specified the number of holes in the region

minus the objects in the region

Entropy A scalar that characterized the aggregation characteristics of

the image’s gray distribution. An image with more details and

larger changes in brightness, as in an open canopy, has a

higher entropy value.

Cluster count The number of connected objects found in binary image

Mean area The mean area of the connected objects.
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FIGURE 6 | Examples of the divided sub-files: (A) Southwest Runner, (B) McCloud, and (C) Georgia-04S.

FIGURE 7 | Examples of the data set with Region of Interest: (A) Southwest Runner, (B) McCloud, and (C) Georgia-04S.

TABLE 2 | Mean canopy height and width of Southwest Runner, McCloud, and

Georgia-04S over time*.

Month Cultivar Height (mm) Width (mm)

July SW Runner 154.23 64.80

McCloud 130.03 57.59

Georgia-04S 125.24 43.47

August SW Runner 328.55 360.32

McCloud 318.52 332.39

Georgia-04S 215.01 228.46

September SW Runner 320.69 383.59

McCloud 298.84 348.62

Georgia-04S 217.73 248.92

*Standard errors: height, ± 5.5mm; width, ± 7.5mm.

in ploti was smaller than Thresholdi, the relevant element
in the binary image was set to 0. Several feature indices
were calculated to describe the shape and density of the
canopy (Table 1).

Canopy shape and density were described by Euler number,
entropy, cluster number, and mean area of the clusters. When
leaves overlap, they block the LiDAR signal from penetrating
the canopy, and in the image file, overlapping leaves appeared
as a cluster. If the canopy architecture was sparse and
open, some LiDAR signals could pass through leaves and

bounce back to the LiDAR. In the image file, these openings
appeared as holes.

In plants, the Euler number approach has been used to

estimate the number of flowers within a plant canopy (Adamsen
et al., 2000) and the distribution of watercore symptoms in

apple fruit (Melado-Herreros et al., 2013). The Euler number
represents differences between the connected areas and holes
in the image. A high Euler number indicates a denser canopy,
with fewer holes within the canopy and relatively smooth
edges in the connected regions. Entropy, representing the
randomness of the gray values in an image, has been used to
classify weed species (Burks et al., 2000) and detect calcium
deficiency in lettuce (Story et al., 2010). Higher entropy values
are obtained from images of open plant canopies due to greater
changes in canopy height; images of dense canopies would
have low entropy.

A cluster was defined as a group of connected objects
in an image. In a binary image, each pixel (central pixel)
had eight adjacent pixels, thus, the central pixel and the
other eight adjacent pixels formed a 3 × 3 matrix. This
matrix continued to expand if a non-zero neighboring pixel
was found. The set of connected pixels formed a connected
region or objects. The size and area of connected objects
reflected canopy density in the image. Smaller numbers of
clusters in an image indicated larger mean areas of connected
regions in the image—i.e., higher density plant canopies. Sparse,
open plant canopies would have larger differences in canopy
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FIGURE 8 | Canopy height and width of three peanut cultivars in 3 months.

height, resulting in more clusters and fewer connected objects
(small mean areas).

RESULTS AND DISCUSSION

Identify ROIs
Figure 6 shows examples of the scan data collected by the LiDAR
sensor, including the target rows in the center and two adjacent
rows. Figure 7 shows target rows or ROI after the neighboring
rows and other unwanted data were removed. The field data set
was separated into 12 plot data sets.

Height and Width of Peanut Canopies
Table 2 showsmean canopy height and width obtained by LiDAR
for the three peanut cultivars. A significant interaction between
cultivar and month was found for both height (F = 29.53;
df = 4, 24; P < 0.01) and width (F = 28.11; df = 4, 24;
P < 0.01), indicating that canopy height and width for each
cultivar depended on month. The canopies of all cultivars grew
significantly in height and width between July and August (P
< 0.001), but growth from August to September differed only
for McCloud in height and Southwest Runner in width (both
P = 0.04). In general, Southwest Runner was the tallest and
widest cultivar, and Georgia-04S had the smallest height and
width (Figure 8).

Shape and Density of Peanut Canopies
Over the season, plant canopies of all cultivars generally became
larger and denser (Table 3), and Euler numbers and entropy
values increased over time (Tables 3, 4). However, the Euler
number and entropy values for the three cultivars were very
similar at the earlier growth stage in July, making it difficult to
distinguish among cultivars. In later growth stages, Southwest
Runner had the most open canopy, while the canopy of Georgia-
04S was dense and round. Euler number appeared to be more
useful than entropy for describing the changes in peanut canopy
and for differentiating among the three cultivars at the later
growth stages.

The largest number of clusters and smallest mean areas of
connected objects for the three peanut cultivars occurred in July
(Tables 3, 5). These numbers indicated that peanut canopies were

relatively small in July and that the gaps between the leaves were
relatively large. By August, the number of clusters decreased for
all cultivars, and the mean area of connected objects increased
relative to July. Cluster number and mean area did not change
much in September from August, which was consistent with the
trend for height and width. The most notable difference between
August and September was a 32-point increase in cluster number
and a 19-point decrease in mean area for McCloud. For the last 2
months, Georgia-04S had the fewest clusters and the largest mean
area of connected objects among the three cultivars, indicating
that this cultivar had the densest canopy. Canopy densities of
Southwest Runner and McCloud were similar by September,
but in August, canopies of McCloud were denser than those of
Southwest Runner.

Comparison Between Ground-Truth Data
and the Calculated Data
There was a good correlation (R2 = 0.915; Figure 9) between
the heights obtained by the developed system and manual
measurements. The root-mean-squared-error was 22.78mm.
Figure 10 shows the comparison between the ground-truth
measurements and the LiDAR measurement for each cultivar
over time. The plant height and width measurements from
LiDAR data were consistently 18.28mm higher than the ground
truth data. The error, i.e., the difference between LiDAR and
ground-truth measurements, was between 5 and 24%, and the
average error was 9%. Possible explanations for the error include
the subjective nature of the ground-truth measurements, which
were affected by wind, position of the meter stick, and human
error. In addition, the vibrations of the developed mobile data
acquisition system also affected LiDAR measurements. However,
the LiDAR scanning platform scanned the entire field three times
in the time required to collect just one set of ground-truth data
from the field (504 points).

The developed LiDAR-based mobile acquisition system
provided a fast and reasonably accurate way for quantifying
peanut canopies. The LiDAR sensor was not affected by sun
light and was easy to use and efficient in measuring canopy
height compared to manual ground-truthing. However, some
issues need to be considered before practical deployment: (1)
Field conditions are generally not uniform, which affects the
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TABLE 3 | Sample of canopy shapes and descriptors (means) for Southwest Runner, McCloud, and Georgia-04S over time.

Month Cultivar Example of shape Euler |Entropy| Cluster number Mean area

July SW Runner 25.33 4.26 308.83 33.42

McCloud 27.75 4.37 261.17 33.67

Georgia-04S 21.42 4.11 282.25 37.58

August SW Runner 88.75 6.49 167.42 70.00

McCloud 84.75 6.62 122.33 107.08

Georgia-04S 58.25 5.87 54.33 244.33

September SW Runner 114.17 6.44 163.42 80.33

McCloud 96.50 6.52 153.83 88.50

Georgia-04S 68.42 6.02 62.92 190.50
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TABLE 4 | Euler number and entropy estimates for canopies of Southwest Runner, McCloud, and Georgia-04S over time.*.

Month Cultivar Euler number Entropy

Mean Max Min s.d. Mean Max Min s.d.

July SW Runner 25.33 44 6 10.74 4.26 4.58 4.03 0.17

McCloud 27.75 49 4 11.86 4.37 4.64 4.09 0.18

Geogia-S04 21.42 44 7 10.95 4.11 4.29 3.97 0.09

August SW Runner 88.75 105 63 13.67 6.49 6.60 6.33 0.07

McCloud 84.75 136 47 28.41 6.62 6.67 6.57 0.03

Geogia-S04 58.25 89 31 17.51 5.87 6.09 5.59 0.16

September SW Runner 114.17 69 185 33.58 6.44 6.55 6.31 33.58

McCloud 96.50 72 135 21.06 6.52 6.62 6.43 21.06

Geogia-S04 68.42 40 113 23.93 6.02 6.21 5.77 23.93

*Values for mean, maximum, minimum, and standard deviation (s.d.) for Euler number and entropy.

TABLE 5 | Cluster number and mean area of connected objects for Southwest Runner, McCloud, and Georgia-04S over time.

Month Cultivar Euler number Entropy

Mean Max Min s.d. Mean Max Min s.d.

July SW Runner 308.83 470 154 93.82 33.42 69 18 16.04

McCloud 261.17 319 144 47.87 33.67 53 22 10.84

Geogia-S04 282.25 475 180 81.54 37.58 46 28 6.23

August SW Runner 167.42 217 116 34.69 70.00 132 46 25.94

McCloud 122.33 145 103 12.46 107.08 186 55 36.42

Geogia-S04 54.33 93 22 19.35 244.33 532 157 127.93

September SW Runner 163.42 267 56 58.42 80.33 267 44 47.56

McCloud 153.83 192 104 24.49 88.50 192 62 26.07

Geogia-S04 62.92 96 46 12.59 190.50 96 123 40.58

quality of the collected data. In this research, the height and width
evaluations for a cultivar were evaluated by plot instead of by

each LiDAR scan. Hence, resulting outliers or extreme data due

to movement from platform instability were removed through
statistical processing. Further study may need to be conducted

to address this concern. (2) The stability of the mobile data

acquisition system needs to bemaintained. (3) LiDAR-based crop
canopy phenotyping systems have advantages for quantifying

crop canopy architecture, however they may have difficulty in
differentiating various cultivars with similar architectures. For

example, the methods used in this project were unable to classify

the three cultivars at early growth stages when their canopy
architectures were similar. In the later growth stages, when

each cultivar started to show obvious differences, the developed
methods were able to classify them. This system could also be
used on other crops similar in height to peanut, such as alfalfa,
soybean, and canola.

The complex task of breeding for a specific crop ideotype

(Donald, 1968; Andrivon et al., 2012), i.e., one possessing optimal
genetic and phenotypic traits, such as disease-avoiding canopy

architecture, under various agronomic and environmental
conditions, is difficult. However, as plant phenotyping applies

more efficient technologies, such as laser scanning, 2D and
3D imaging, and spectral analyses to obtain and analyze
complex phenotypic information from multiple dimensions

FIGURE 9 | Correlation between the average heights from all plots from July

to September calculated from measured data and manual ground-truth

measurements.

(Khosrokhani et al., 2016; Roschera et al., 2016), breeding
for ideotypes may become easier. For this project, the three
peanut cultivars were chosen because they had divergent
canopy shapes. Southwest Runner is highly resistant to the
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FIGURE 10 | Plant heights calculated from LiDAR data vs. that from ground-truth measurements among cultivars.

soilborne fungal pathogen Sclerotinia minor in the field,
despite being susceptible when tested in a laboratory setting
(Damicone et al., 2010). This cultivar’s open canopy architecture
may enhance disease avoidance by permitting better air
circulation, solar canopy penetration, and increasing within-
canopy temperatures. Without the use of the LiDAR sensor or
other imaging technologies, it would have been unfeasible to
collect detailed quantitative canopy characteristics for Southwest
Runner and other peanut cultivars. While much work remains to
determine which canopy traits (and specific quantities thereof)
or combinations of traits are necessary for avoiding specific
diseases, this study demonstrates the utility of LiDAR for plant
canopy phenotyping.

CONCLUSIONS

This research aimed to develop a field phenotyping system
to study peanut canopy architecture. Conventional methods
for in-field canopy architecture assessments require substantial
investment in labor, cost, and time to acquire relatively low-
resolution data. Therefore, the development of an alternative
way that can rapidly measure canopy architecture is greatly
desired. In this study, a ground-based LiDAR phenotyping
system was developed to efficiently collect peanut canopy data
in field. The results showed that LiDAR was an effective tool
for assessing peanut canopy architecture under field condition.
The experiment was conducted monthly in July, August and
September 2015, and four replications of three cultivars were
evaluated. A set of algorithms was developed to extract features

of peanut canopy architecture, specifically canopy height, width,
and shape/density. The descriptors used to quantify canopy
shape and density, i.e., Euler number, entropy, cluster count, and
mean area of connected objects, were effective for describing
canopy characteristics and for discriminating among different
cultivars. Finally, the canopy height data collected by LiDAR
was highly correlated with ground-truth measurements with
a R2 of 0.915.
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