
fnins-13-00174 February 27, 2019 Time: 17:12 # 1

ORIGINAL RESEARCH
published: 28 February 2019

doi: 10.3389/fnins.2019.00174

Edited by:
Shella Keilholz,

Emory University, United States

Reviewed by:
Changsong Zhou,

Hong Kong Baptist University,
Hong Kong

Scott Peltier,
University of Michigan, United States

*Correspondence:
Zheng Wang

zheng.wang@ion.ac.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 26 October 2018
Accepted: 14 February 2019
Published: 28 February 2019

Citation:
Yin D, Zhang Z, Wang Z, Zeljic K,
Lv Q, Cai D, Wang Y and Wang Z

(2019) Brain Map of Intrinsic
Functional Flexibility in Anesthetized

Monkeys and Awake Humans.
Front. Neurosci. 13:174.

doi: 10.3389/fnins.2019.00174

Brain Map of Intrinsic Functional
Flexibility in Anesthetized Monkeys
and Awake Humans
Dazhi Yin1, Zhao Zhang2, Zhiwei Wang1, Kristina Zeljic1,3, Qian Lv1, Danchao Cai1,
Yingwei Wang2 and Zheng Wang1*

1 Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center
for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy
of Sciences, Shanghai, China, 2 Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China,
3 University of Chinese Academy of Sciences, Beijing, China

Emerging neuroimaging studies emphasize the dynamic organization of spontaneous
brain activity in both human and non-human primates, even under anesthesia. In a
recent study, we were able to characterize the heterogeneous architecture of intrinsic
functional flexibility in the awake, resting human brain using time-resolved analysis
and a probabilistic model. However, it is unknown whether this organizational principle
is preserved in the anesthetized monkey brain, and how anesthesia affects dynamic
and static measurements of spontaneous brain activity. To investigate these issues,
we collected resting-state functional magnetic resonance imaging (fMRI) datasets
from 178 awake humans and 11 anesthetized monkeys (all healthy). Our recently
established method, a complexity measurement (i.e., Shannon entropy) of dynamic
functional connectivity patterns of each brain region, was used to map the intrinsic
functional flexibility across the cerebral cortex. To further explore the potential effects
of anesthesia, we performed time series analysis and correlation analysis between
dynamic and static measurements within awake human and anesthetized monkey
brains, respectively. We observed a heterogeneous profile of intrinsic functional flexibility
in the anesthetized monkey brain, which showed some similarities to that of awake
humans (r = 0.30, p = 0.007). However, we found that brain activity in anesthetized
monkeys generally shifted toward random fluctuations. Moreover, there is a negative
correlation between nodal entropy for the distribution of dynamic functional connectivity
patterns and static functional connectivity strength in anesthetized monkeys, but not
in awake humans. Our findings indicate that the heterogeneous architecture of intrinsic
functional flexibility across cortex probably reflects an evolutionarily conserved aspect of
functional brain organization, which persists across levels of cognitive processing (states
of consciousness). The coupling between nodal entropy for the distribution of dynamic
functional connectivity patterns and static functional connectivity strength may serve
as a potential signature of anesthesia. This study not only offers fresh insight into the
evolution of brain functional architecture, but also advances our understanding of the
dynamics of spontaneous brain activity.
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INTRODUCTION

A fundamental goal of comparative neuroscience is to determine
conservation and evolution-driven changes in functional brain
organization between species. Functional magnetic resonance
imaging (fMRI), a non-invasive technique, has been utilized
to identify functionally homologous or unique areas across
primate species based on specific experimental tasks (Nakahara
et al., 2002; Vanduffel et al., 2002; Wang et al., 2015). This
technique has the advantage of providing a direct cross-species
comparison using a common physiological measurement, i.e.,
blood oxygen level-dependent (BOLD) signal. Owing to ease
of implementation and the robustness of findings, resting-state
fMRI, simply a period of recording of BOLD signal in the absence
of any explicit tasks, has become an attractive tool for studying
large-scale brain functional organization (Zhang and Raichle,
2010; Power et al., 2014). Resting-state functional connectivity
(FC) is typically used to index the interregional coherence in
spontaneous low-frequency fluctuations (e.g., 0.01∼0.1 Hz) of
BOLD signals (Biswal et al., 1995; Fox and Raichle, 2007).
Through this approach, many functional brain networks such
as the sensorimotor and default mode networks have been
identified in both human and non-human primates (Vincent
et al., 2007; Margulies et al., 2009; Hutchison et al., 2011;
Hutchison and Everling, 2012; Mantini et al., 2013; Miranda-
Dominguez et al., 2014; Neubert et al., 2014). In particular,
the patterns of resting-state FC have showed some similarities
across species and appear to transcend levels of consciousness,
being present under anesthesia, see Raichle (2015) for a review.
However, conventional resting-state FC is frequently evaluated
in a time-averaged sense, under the potential assumption of
stationary functional organization. Moreover, the origins and
functional significance of resting-state FC patterns remain to be
further understood.

Recently, emerging studies have emphasized the dynamic
organization of brain function, suggesting that understanding
brain function and dysfunction requires an integrated framework
linking brain connectivity and brain dynamics (Deco et al., 2011;
Liu and Duyn, 2013; Calhoun et al., 2014; Kopell et al., 2014;
Braun et al., 2015; Christoff et al., 2016). Therefore, dynamic
FC analysis, e.g., taking into account the temporal fluctuations
of FC in different time windows of BOLD signals, has been
proposed to characterize spontaneous brain activity (Chang and
Glover, 2010; Zalesky et al., 2014; de Pasquale et al., 2015;
Karahanoglu and Van De Ville, 2015; Chen et al., 2016). Although
a number of challenges in techniques and interpretation remain,
time-resolved analysis allows researchers to extract more in-
depth information about brain function than static FC analysis
(Jia et al., 2014; Keilholz et al., 2017; Liegeois et al., 2017;
Preti et al., 2017).

Developing new analytic tools to describe spatiotemporal
characteristics of resting-state FC patterns across species and
states may provide deeper insight into functional organization of
spontaneous brain activity. Based on dynamic FC analysis and
clustering method, many discrete, reproducible functional states
over the time of scan have been identified in both humans and
monkeys (Allen et al., 2014; Barttfeld et al., 2015), see Hutchison

et al. (2013a); Calhoun et al. (2014) for reviews. In contrast,
our recent work (Yin et al., 2016) focused on quantifying the
flexibility of the connectivity pattern for each brain region over
time, using a complexity measurement (i.e., Shannon entropy)
and probabilistic model. Consistent with task-induced functional
reconfigurations (Cole et al., 2013; Braun et al., 2015), we
revealed the heterogeneous organization of functional flexibility
in the resting human brain. However, it is unknown whether
this organizational principle is preserved in the anesthetized
monkey brain, and how it corresponds with the human brain
during wakeful rest. Although the spatiotemporal dynamics of
brain activity have been demonstrated in the anesthetic state
(Hutchison et al., 2013b; Barttfeld et al., 2015; Zhang et al., 2018),
few studies pay attention to the cross-species correspondence
of brain-wide dynamic organizational structure. Moreover,
how anesthesia affects dynamic and static measurements of
spontaneous brain activity still needs to be clarified.

To investigate these issues, we collected resting-state fMRI
datasets from 178 awake humans and 11 anesthetized monkeys
(healthy subjects). Our recently established method (Yin et al.,
2016), a complexity measurement (i.e., Shannon entropy) of
dynamic FC patterns of each brain region, was used to map the
intrinsic functional flexibility across the cerebral cortex. Brain
regions with high entropy for the distribution of dynamic FC
patterns indicate high functional flexibility, and vice versa. For
comparison, we conducted another complexity measurement
based on distribution of correlation values, which reflects the
functional complexity of a system (Zhao et al., 2010; Zamora-
Lopez et al., 2016). A temporal variability analysis as a measure
of functional flexibility was also carried out (Mueller et al.,
2013; Zhang et al., 2016). To further explore the potential effects
of anesthesia on the functional organization of spontaneous
brain activity, we performed time series analysis and correlation
analysis between dynamic and static measurements within
awake human and anesthetized monkey brains, respectively. We
hypothesized that the heterogeneous organization of intrinsic
functional flexibility in the awake human brain persists in the
anesthetized monkey brain.

MATERIALS AND METHODS

Participants
All experimental procedures for non-human primate research
in this study were approved by the Institutional Animal Care
and Use Committee at the Institute of Neuroscience and the
Biomedical Research Ethics Committee, Shanghai Institutes
for Biological Sciences, Chinese Academy of Sciences, and
conformed to National Institutes of Health guidelines for the
humane care and use of laboratory animals.

We recruited 11 wild-type monkeys (age 4.68 ± 0.46 years;
weight 3.97 ± 1.36 kg; 7 female). In addition, 178 healthy
human subjects (age 14.4 ± 3.6 years; 44 female; 35 subjects
with eyes closed and 143 subjects with eyes open) were collected
from the Autism Brain Imaging Data Exchange (ABIDE)1. We

1http://fcon_1000.projects.nitrc.org/indi/abide/
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screened the human data based on demographic and diagnostic
information provided in the ABIDE database (Di Martino et al.,
2014). The inclusion criteria in the present study are briefly
described as follows: (1) right-handedness, (2) age between 7
and 22 years, (3) a full-scale IQ score greater than 70; and time
resolution of fMRI data equal to 2 s (datasets from four sites fit
this criterion, including NYU, YALE, TRINITY, and UM).

Monkey Data Acquisition
Magnetic resonance imaging images of monkeys were acquired
at the Institute of Neuroscience on a 3T whole-body scanner
(Trio; Siemens Healthcare, Erlangen, Germany) running with
an enhanced gradient coil insert (AC88; 80 mT/m maximum
gradient strength, 800 mT/m/s maximum slew rate). A custom-
built 8-channel phased-array transceiver coil was used for
animal imaging sessions. Whole-brain resting-state fMRI data
were collected using a gradient-echo echo-planar imaging (EPI)
sequence (TR = 2000 ms; TE = 29 ms; flip angle = 77◦;
slices = 32; matrix = 64 × 64; field of view = 96 mm × 96 mm;
1.5 mm × 1.5 mm in plane resolution; slice thickness = 2.5 mm;
GRAPPA factor = 2). For each session, 5–10 runs were acquired
and each run consisted of 200 functional volumes. A pair of
gradient echo images (echo time: 4.22 and 6.68 ms) with the
same orientation and resolution as EPI images were acquired
to generate a field map for distortion correction of EPI images.
High-resolution T1-weighted anatomical images were acquired
using a MPRAGE sequence (TR = 2500 ms; TE = 3.12 ms;
inversion time = 1100 ms; flip angle = 9◦; acquisition voxel
size = 0.5 mm× 0.5 mm× 0.5 mm; 144 sagittal slices). Six whole-
brain anatomical volumes were acquired and further averaged for
better brain segmentation.

For MRI scanning, animals were prepared and maintained
in a stable brain state under light anesthesia. The animal
preparation procedure was conducted in a manner similar to
our previous work (Wang et al., 2013; Lv et al., 2016). Induction
of anesthesia was achieved by intramuscular injection with
ketamine (10 mg/kg, Gutian Pharma Co., Ltd., China) before
MRI scanning sessions, supplemented with atropine sulfate
(0.05 mg/kg, Shanghai Harvest Pharma Co., Ltd., China) to
decrease bronchial and salivary secretions. After intubation,
animals were ventilated with a mixture of isoflurane (2–2.5%,
Lunan Pharma Co., Ltd., China) and oxygen via either a standard
ventilator (CWE, Inc., Ardmore, PA, United States) outside
the scanner room or an MRI-compatible ventilator (CWE Inc.,
Weston, WI, United States) inside the scanner room. Macaques
were maintained with intermittent positive-pressure ventilation
to ensure a constant respiration rate (25–35 breaths/min).
The concentration of isoflurane was adjusted based on
continuously monitored vital signs, including blood oxygenation,
electrocardiogram (ECG), rectal temperature (Small Animal
Instruments, Inc., Stony Brook, NY, United States), respiration
rate and end-tidal CO2 (Smiths Medical ASD Inc., Dublin, OH,
United States). Oxygen saturation was kept over 95% and body
temperature was kept constant using a heated water blanket
(Gaymar Industries Inc., Orchard Park, NY, United States).
Lactated Ringer’s solution was given with a maximum rate of
10 ml/kg/h during the anesthesia process (Logothetis et al.,

1999). We removed the runs that showed erratic vital signs,
image artifacts, as well as burst suppression according to the
recordings of MRI-compatible electroencephalograph (Brain
Products GmbH, Gilching, Germany) during functional data
acquisition. In total, 99 runs were left for the final analyses.
We treated each run independently following previous studies
(Barttfeld et al., 2015; Lv et al., 2016).

Human Data Acquisition
Human MRI data were acquired from multiple sites with different
parameters of pulse sequences (see text footnote 1). In the present
study, one of the inclusion criteria was a time resolution of fMRI
data equal to 2 s, to match the monkey data. In addition, we kept
the same number of time points (i.e., 150 brain volumes) used
across different sites.

Preprocessing of Monkey and Human
fMRI Data
Functional brain images of monkey and human were
preprocessed using the same steps, including slice timing
correction, motion correction, coregistration with individual T1-
weighted image, normalization to the corresponding standard
space, resampling and spatial smoothing, regression of nuisance
signals, removal of linear drift, and temporal filtering.

Specifically, the preprocessing of the monkey data were
done using the SPM 8.0 toolbox2 and the FMRIB Software
Library toolbox (FSL3). The first 10 volumes were discarded.
The field map images of each participant were then applied to
compensate for the geometric distortion of EPI images caused
by magnetic field inhomogeneity using FSL FUGUE. After slice
timing correction and motion correction, the corrected images
were normalized to standard space of the monkey F99 atlas4

using an optimum 12-parameter affine transformation and non-
linear deformations, and then resampled to 2-mm cubic voxels
and spatially smoothed with a 4 mm full-width at half-maximum
isotropic Gaussian kernel. Six head motion parameters, ventricle,
and white matter signals were removed from the smoothed
volumes using linear regression. Linear drift of the volumes was
removed and temporal filtering (0.0025–0.05 Hz) (Vincent et al.,
2007; Barttfeld et al., 2015; Lv et al., 2016) was performed.

The preprocessing of human data was performed by
the Preprocessed Connectomes Project (PCP5) using
the Data Processing Assistant for Resting-State fMRI
(DPARSF) Toolbox (Yan and Zang, 2010). Preprocessing
steps included slice timing correction, motion correction,
spatial normalization into MNI space, resampled to
3 mm × 3 mm × 3 mm voxels and smoothing with a
Gaussian kernel (full-width at half-maximum = 6 mm).
Friston-24 parameters of head motion, white matter and
ventricle signals were regressed out, followed by linear
drift correction and temporal filtering (0.01–0.1 Hz).

2http://www.fil.ion.ucl.ac.uk/spm
3http://www.fmrib.ox.ac.uk
4http://sumsdb.wustl.edu/sums/macaque more.do
5http://preprocessed-connectomes-project.org/abide/index.html
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For more details, readers may refer to the description
in the PCP6.

Static and Dynamic FC Analysis
For both preprocessed monkey and human datasets, we first
divided the brain into different areas. For a direct cross-
species comparison, here we adopted a regional map (RM)

6http://preprocessed-connectomes-project.org/abide/dparsf.html

TABLE 1 | Brain parcellation of regional map.

Label Abbreviation Full name

1/2 TCpol Temporal polar cortex

3/4 Amyg Amygdala

5/6 PHC Parahippocampal cortex

7/8 TCi Inferior temporal cortex

9/10 TCv Ventral temporal cortex

11/12 HC Hippocampal cortex

13/14 TCc Central temporal cortex

15/16 TCs Superior temporal cortex

17/18 VACv Anterior visual cortex, ventral part

19/20 V1 Primary visual cortex

21/22 PFCoi Orbital inferior prefrontal cortex

23/24 V2 Secondary visual cortex

25/26 PFCom Orbitomedial prefrontal cortex

27/28 Ia Anterior insula

29/30 Ip Posterior insula

31/32 CCs Subgenual cingulate cortex

33/34 PMCvl Ventrolateral premotor cortex

35/36 CCp Posterior cingulate cortex

37/38 CCr Retrosplenial cingulate cortex

39/40 G Gustatory cortex

41/42 PFCol Orbitolateral prefrontal cortex

43/44 A2 Secondary auditory cortex

45/46 PFCvl Ventrolateral prefrontal cortex

47/48 A1 Primary auditory cortex

49/50 VACd Anterior visual cortex, dorsal part

51/52 S2 Secondary somatosensory cortex

53/54 PFCpol Prefrontal pole cortex

55/56 S1 Primary somatosensory cortex

57/58 PFCm Medial prefrontal cortex

59/60 PCm Medial parietal cortex

61/62 M1 Primary motor cortex

63/64 FEF Frontal eye field

65/66 CCa Anterior cingulate cortex

67/68 PFCcl Centrolateral prefrontal cortex

69/70 PCip Intraparietal cortex

71/72 PCi Inferior parietal cortex

73/74 PCs Superior parietal cortex

75/76 PFCdm Dorsomedial prefrontal cortex

77/78 PFCdl Dorsolateral prefrontal cortex

79/80 PMCdl Dorsolateral premotor cortex

81/82 PMCm Medial premotor cortex

Odd numbers denote regions in the left hemisphere, and even numbers denote
regions in right hemisphere.

parcellation (82 cortical regions) for both monkeys and humans
(Table 1), which is based on a combination of microstructural,
functional, and topographic features (Kotter and Wanke, 2005;
Bezgin et al., 2012; Reid et al., 2016). This parcellation has
the same terminology for the monkey and human brains, but
the topographic assignments originate from the monkey cortex.
Pearson’s correlation coefficients between the mean time courses
of any pair of regions over the whole scan were then calculated to
represent static FC, resulting in an 82 × 82 connectivity matrix.
Finally, Fisher’s Z-transformation was applied to the connectivity
matrix so that their distributions could better satisfy normality.

To calculate dynamic FC, we applied a commonly used sliding
window approach following our previous study (Yin et al., 2016).
Briefly, a tapered window was selected and slid 1 TR, resulting
in 168 windows for monkeys and 123 windows for humans. For
each time window, Pearson’s correlation coefficients between the
mean time courses of any pair of regions were calculated and then
a symmetric 82 × 82 connectivity matrix was generated. Thus,
dynamic FC matrices were obtained for each participant.

Mapping Intrinsic Functional Flexibility of
Brain
Based on the dynamic FC matrices of each participant, we
computed the normalized probability distribution Pi (j. . .n) for
a given brain region i as follows:

Pi (j) =
n(cij)

k × w
, j = 1, 2, . . . ,N, and j 6= i

where n(cij) denotes how many times the connection between
i and j emerged across temporal windows, k is a predefined
threshold indicating number of the strongest connections
reserved for region i at each time window, and w denotes the
number of temporal windows. Pi(j) denotes the probability of
occurrence for the connection between regions i and j across
all temporal windows. The greater the value of Pi(j), the more
frequent the interaction between region i and j across the
temporal windows, and vice versa.

Regarding the threshold k, we have justified the choice of k
for the human dataset in our previous study (Yin et al., 2016)
as follows. Taking into account that brain is organized as a
sparse and economical functional network, we first considered
a wide range of k from 1 to 10. We then calculated the
entropy (see definition below) for all brain regions for each k.
Subsequently, two parameters were calculated, including contrast
(identifying the value of k most sensitive to differences in
entropy across the whole brain) and consistency (identify the
value of k where the resulting entropy distribution is most
representative of the distributions at other thresholds). We finally
summed the two metrics, contrast and consistency, at each
threshold k, and the peak value of this total was considered as
corresponding to the optimal threshold (a peak value emerges
at k = 3 for human dataset). Considering that the optimal
threshold k may be different for different states or species, we
conducted the above analysis for the anesthetized monkeys in
this study. We found that the peak value also emerges at k = 3,
although the maximum value was at k = 1 for the anesthetized
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monkeys (Supplementary Figure S1). We therefore used the
same threshold k = 3 for both humans and monkeys.

Subsequently, Shannon entropy Ei was applied to the
probability distribution of each brain region i:

Ei = −

N∑
j=1

Pi
(
j
)
× log2 Pi

(
j
)
,

Here, Ei was used to quantify functional flexibility, which
characterizes heterogeneous connectivity between region i and
others over time. A higher value of Ei indicates greater functional
flexibility, and vice versa. Readers can see our previous study for
details regarding methodology (Yin et al., 2016).

Mapping Intrinsic Functional Complexity
of Brain
The measure of functional complexity based on the distribution
of whole-brain correlation values (for static network) without
the need for thresholding has been proposed in earlier work
(Zhao et al., 2010; Zamora-Lopez et al., 2016). Inspired by this,
we calculated complexity Ci for the distribution of correlation
values rij (for dynamical FC) of a node i. Here, we chose to define
complexity as the difference between the observed distribution
p(rij) and the uniform distribution, which is most robust to
variations in the number of bins compared with alternatives such
as entropy (Zamora-Lopez et al., 2016). The formula is as follows:

Ci = 1−
1
Cm

m∑
u=1

∣∣∣∣pu (rij
)
−

1
m

∣∣∣∣ ,
where || means the absolute value, Cm = 2∗(m-1)/m, and m
indicates number of bins (here using 50 bins). The Ci reflects
functional complexity of a node i.

Mapping Intrinsic Temporal Variability of
Brain
A recent study (Zhang et al., 2016) used temporal variability
analysis to characterize dynamic functional reconfiguration of
each brain region, which can be expressed as follows.

Vi = 1− E
[
corrcoef

(
Fi,j, Fi,k

)]
, j, k = 1, 2, 3,. . .w

where E[ ] denotes mean value, Fi,j indicates FC profile of node
i at time window j and w denotes number of temporal windows.
This linear measure does not need a threshold for FC values and
is indicative of functional flexibility.

Time Series Analysis of Brain Activity
To evaluate fluctuations of brain activity, we performed a time
series analysis. For the time series of each brain region, we first
calculated the distribution of the BOLD signal values with m
bins (here using 30 bins). Then, we used entropy to quantify
the randomness of fluctuations of brain activity. The higher the
entropy of time series, the more random the fluctuations of
brain activity. To further test the statistical significance of the
randomness, we finally compared real entropy and entropies of
1000 random time series with the same number of time points

and number of bins, and a Z-score was obtained using the
following formula.

Z =
Hreal − E [Hrand]

std (Hrand)
,

where Hreal denotes entropy of the observed time series, Hrand
denotes entropy of the random time series, and E[] indicates
mean value. If the Z-score approaches zero (theoretically Z-score
≤0), the fluctuations of brain activity tend to be random.

Coupling Between Dynamic and Static
Measurements of Spontaneous Brain
Activity
To explore the potential effects of anesthesia, we calculated
correlations between dynamic measurement (nodal entropy
E, complexity C, and temporal variability V) and static
measurement (nodal strength, i.e., sum of nodal static FC) within
anesthetized monkey and awake human brains, respectively.

Validation Analysis
To validate our results, we considered the effects of different
data processing on interspecies comparisons. Following previous
studies (Vincent et al., 2007; Barttfeld et al., 2015; Lv et al.,
2016), we used temporal filtering (0.0025–0.05 Hz) for monkeys,
which is different from that commonly used for humans (0.01–
0.1 Hz). To test the effect of different temporal filtering, we
first compared the brain map of entropy E, complexity C,
and temporal variability V between different temporal filters in
monkeys. We then performed interspecies comparisons using the
same temporal filtering (i.e., 0.01–0.1 Hz).

In our main analyses, we used a different number of time
points for monkey (n = 190) and human (n = 145) datasets. To
test the effect of a different number of time points, we performed
the interspecies comparisons using the same number of time
points (n = 145).

In the human subject sample, there are 35 subjects with eyes
closed and 143 subjects with eyes open. To consider the effect
of eye status, we first compared the brain map of entropy E,
complexity C, and temporal variability V between the two human
subgroups with different eye status. We then performed the
interspecies comparisons for both anesthetized monkeys versus
human subjects with eyes closed and anesthetized monkeys
versus human subjects with eyes open.

RESULTS

Static FC Patterns in Anesthetized
Monkey and Awake Human Brains
We calculated static, time-averaged FC for both human and
monkey datasets. We found that the FC in anesthetized monkeys
(mean ± SD = 0.25 ± 0.16) was generally weaker than in
awake humans (mean ± SD = 0.44 ± 0.13) (effect size:
Cohen’s d = −1.3). However, FC between anesthetized monkeys
and awake humans was significantly correlated (r = 0.60,
p < 0.00001) (Figure 1).
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FIGURE 1 | Mean static functional connectivity matrices for anesthetized monkeys (A) and awake humans (B); panel (C) shows distributions of static functional
connectivity for anesthetized monkeys (red) and awake humans (blue); and (D) exhibits correlation of static functional connectivity between anesthetized monkeys
and awake humans. Color bar denotes Pearson correlation coefficients.

FIGURE 2 | Brain maps of mean entropy for the distribution of dynamic functional connectivity patterns (A,B), complexity for the distribution of correlation values
(C,D), and variability for the dynamic functional connectivity patterns (E,F) for anesthetized monkeys and awake humans. Color bars denote mean values.
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Similarity of Intrinsic Functional
Flexibility Between Anesthetized Monkey
and Awake Human Brains
For the anesthetized monkeys, we found that the brain
regions with higher entropy E mainly involved the lateral
prefrontal cortex, anterior insula, and medial temporal
lobe. The brain regions that showed lower entropy
E included primary sensory areas (e.g., auditory and
somatosensory regions) and midline default mode regions
(e.g., posterior cingulate cortex/retrosplenial cingulate
cortex) (Figure 2A).

For the awake humans, we observed that brain regions
that showed higher entropy E mainly involved the
lateral prefrontal, parietal, and temporal cortex, anterior
insula, as well as supplementary motor area. The brain
regions that showed lower entropy E included primary
sensory areas (e.g., auditory, visual, and somatosensory
regions) and midline default mode regions (e.g.,
posterior cingulate cortex/retrosplenial cingulate cortex)
(Figure 2B). This result is consistent with our previous
study (Yin et al., 2016), despite the use of different brain
parcellation and dataset.

Quantitatively, we found a significant correlation of brain-
wide entropy E between anesthetized monkeys and awake
humans (r = 0.30, p = 0.007) (Figure 3A), although averaged
entropy E across the whole brain of anesthetized monkeys
(mean ± SD = 5.18 ± 0.18) was higher than that of
awake humans (mean ± SD = 4.27 ± 0.41) (effect size:
Cohen’s d = 2.9) (Figure 3B). These findings indicate that the
heterogeneous flexibility across brain regions is preserved in
anesthetized monkeys. However, there are some inconsistencies.
For example, the primary visual cortex showed relatively
higher entropy E in the anesthetized monkeys, and relatively
lower entropy E in the awake humans. In contrast, the
inferior parietal cortex exhibited relatively lower entropy
E in the anesthetized monkeys, but higher in the awake
humans. By comparing brain regions with top 30% and
bottom 30% entropy E values in anesthetized monkeys and
awake humans, we found that overlapping regions with higher
entropy E between species included the left dorsolateral
prefrontal cortex, left frontal eye field, left orbitolateral
prefrontal cortex, bilateral anterior insula, bilateral orbital
inferior prefrontal cortex, bilateral hippocampus, and bilateral
parahippocampal cortex (Figure 4A); and that overlapping
regions with lower entropy E between species included
the bilateral posterior cingulate cortex, bilateral retrosplenial
cingulate cortex, left primary auditory cortex, left secondary
auditory cortex, right anterior visual area, bilateral secondary
somatosensory cortex, bilateral medial parietal cortex, and right
posterior insula (Figure 4B).

Comparison of Functional Complexity
Measurement With Our Method
We found that overall complexity C was higher in awake
humans compared with anesthetized monkeys, and the
correlation of brain-wide complexity C between anesthetized

monkeys and awake humans was similar with that obtained
using our method (Figures 2C,D, 3C,D). However, few of
the well-known flexible cognitive control regions such as
lateral prefrontal cortex, anterior insula, and hippocampal
cortex showed higher complexity C in anesthetized monkeys
(Figure 4C). Instead, we observed unimodal regions such
as secondary somatosensory cortex, auditory cortex, and
visual cortex showed higher complexity C (Figure 4D). It
is possible that this complexity measurement C based on
the distribution of correlation values is not suitable for
quantifying the heterogeneous functional flexibility of the
brain, although it can better assess the functional complexity
of the system at different states. For instance, we found
the hippocampal cortex exhibited narrower distribution of
correlation values (lower complexity) than that of secondary
somatosensory cortex in both anesthetized monkeys and awake
humans, whereas the time-varying strongest connections of
hippocampal cortex was more uniform (higher flexibility)
across the whole brain than that of secondary somatosensory
cortex (Figure 5).

Additionally, we found right inferior parietal cortex showed
higher complexity C and primary visual cortex showed lower
complexity C in both anesthetized monkeys and awake
humans (Figures 4C,D). However, we observed that the
strongest connections of primary visual cortex were local and
stereotyped in awake humans while distributed and variable
across brain in anesthetized monkeys. Moreover, we found
inferior parietal cortex more frequently connected with local
brain regions in parietal, temporal, and visual cortices in
monkeys while more frequently connected with broad brain
regions in parietal, temporal, and frontal cortices in humans
(Figure 6).

Comparison of Time Variability
Measurement With Our Method
We found the results obtained by temporal variability
measurement V were highly consistent with that using
our method, but not complexity measurement C based on
distribution of correlation values (Figures 2E,F, 3E,F, 4E,F).
This suggests that information of spatial connectivity patterns
is more important than distribution of correlation values for
describing functional flexibility, even with k (= 3) strongest
connections at each time window.

Time Series Analysis of Brain Activity
We found the entropy H of time series to be globally higher
in anesthetized monkeys compared with awake humans. In
particular, we observed that the primary visual cortex showed the
highest entropy H in anesthetized monkeys. However, entropy
H of time series for all brain regions were remarkably lower
than that of random time series in both anesthetized monkeys
and awake humans (Figure 7). This result suggests that brain
activity in anesthetized monkeys generally shifts toward the
random fluctuations, but still differs from random fluctuations.
In addition, the effect of anesthesia on fluctuations of brain
activity is probably non-uniform across brain.
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FIGURE 3 | Correlations of mean entropy for the distribution of dynamic functional connectivity patterns (A), complexity for the distribution of correlation values (C),
and variability for the dynamic functional connectivity patterns (E) between anesthetized monkeys and awake humans. The distribution of mean entropy (B),
complexity (D), and variability (F) is also shown for anesthetized monkeys and awake humans.

FIGURE 4 | Overlapped brain regions for top 30% entropy values for the distribution of dynamic functional connectivity patterns (A), complexity values for the
distribution of correlation values (C), and variability values for the dynamic functional connectivity patterns (E) and bottom 30% entropy values for the distribution of
dynamic functional connectivity patterns (B), complexity values for the distribution of correlation values (D), and variability values for the dynamic functional
connectivity patterns (F) between anesthetized monkeys and awake humans. PFCdl, dorsolateral prefrontal cortex; FEF, frontal eye field; PFCol, orbitolateral
prefrontal cortex; Ia, anterior insula; HC, hippocampus; PHC, parahippocampal cortex; CCr, retrosplenial cingulate cortex; A1, primary auditory cortex; A2,
secondary auditory cortex; VACd, anterior visual area; S2, secondary somatosensory cortex; PCm, medial parietal cortex; Ip, posterior insula; PMCvl, ventrolateral
premotor cortex; PCi, inferior parietal cortex; PMCdl, dorsolateral premotor cortex; VACv, anterior visual cortex (ventral part); Amyg, amygdala; V1, primary visual
cortex; V2, secondary visual cortex; CCs, subgenual cingulate cortex; TCpol, temporal polar cortex; and S1, primary somatosensory cortex.
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FIGURE 5 | (A) Shows the distribution of correlation values for right HC and S2 in both anesthetized monkeys and awake humans. The distribution of correlation
values of right HC is narrower (lower complexity) than that of right S2 in both monkeys and humans. (B) Shows the probability distribution of strongest connectivity
with right HC and S2 in monkeys and humans. The distribution of strongest connectivity with right HC is more uniform (higher flexibility) across brain than that of right
S2 in both monkeys and humans. The most frequent connections with right HC and S2 are rendered in C. The patterns of most frequent connections are similar
between species for both right HC and S2. HC, hippocampal cortex and S2, secondary somatosensory cortex.
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FIGURE 6 | (A) Shows the distribution of correlation values for left V1 and PCi in both anesthetized monkeys and awake humans. The distribution of correlation
values of left V1 is narrower (lower complexity) than that of left PCi in both monkeys and humans. (B) Shows probability distribution of strongest connectivity with left
V1 and PCi in monkeys and humans. The distribution of strongest connectivity with left PCi is more uniform (higher flexibility) across brain than that of left V1 in
humans, which the opposite is seen in monkeys. The most frequent connections with left V1 and PCi are rendered in C. The patterns of most frequent connections
are different between species for both left V1 and PCi. V1, primary visual cortex and PCi, inferior parietal cortex.
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FIGURE 7 | Brain map of mean entropy of time series for anesthetized monkeys (A) and awake humans (B). Brain map of mean Z-scores for entropy of time series
are also shown for monkeys (C) and humans (D). (E) Shows global mean entropy of time series for monkeys and humans. Color bars denote mean values.

Distinct Relationships Between Dynamic
and Static Measurements Within Awake
Human and Anesthetized Monkey Brains
To explore the impacts of anesthesia, we calculated correlations
between dynamic measurement and static measurement in awake
humans and anesthetized monkeys, respectively. We found a
negative correlation (r = −0.47, p = 0.00001) between nodal
entropy E and strength in anesthetized monkeys, but not in
awake humans (r = −0.19, p = 0.085). In contrast, we found
a positive correlation (r = 0.69, p < 0.00001) between nodal
complexity C and strength in anesthetized monkeys, but not
in awake humans (r = −0.14, p = 0.22). Consistent with
our method, we found a negative correlation (r = −0.68,
p < 0.00001) between nodal temporal variability V and strength
in anesthetized monkeys, but not in awake humans (r = −0.19,
p = 0.089) (Figure 8).

Validation Analysis
Regarding the effect of temporal filtering, we found significant
correlations between two different temporal filters in monkeys
for entropy E (r = 0.97, p < 0.00001), complexity C
(r = 0.73, p < 0.00001), and variability V (r = 0.96,
p < 0.00001) (Supplementary Figure S2). Moreover, we
consistently observed significant correlations between species
for entropy E (r = 0.26, p = 0.02), complexity C (r = 0.30,
p = 0.007), and variability V (r = 0.37, p = 0.0007) with the
same time filtering (Supplementary Figure S3). However, the
interspecies correlations based on the same temporal filtering
were a little weaker than when using different temporal filtering
for entropy E and variability V, but the same for complexity
C. This result indicates that different temporal filtering
for monkeys and humans may give better correspondence
between species.

For the effect of different number of time points, we
consistently observed significant correlations between species for
entropy E (r = 0.28, p = 0.01), complexity C (r = 0.30, p = 0.005),
and variability V (r = 0.44, p = 0.00003) with the same number
of time points (Supplementary Figure S4). This result suggests
that the different number of time points used for monkeys and
humans did not significantly affect correlations between species.

For the effect of eye status, we found significant correlations
between the two human subgroups for entropy E (r = 0.96,
p < 0.00001), complexity C (r = 0.75, p < 0.00001), and
variability V (r = 0.91, p < 0.00001) with different eye status
(Supplementary Figure S5). For the interspecies comparisons,
we found the correlations were similar for the two conditions
of human subjects with different eye status (Supplementary
Figure S6). This result suggests that our main findings are not
significantly affected by eye status of human subjects during
resting-state fMRI scanning. Specifically, we observed that the
visual cortex showed lowest entropy E in the human subjects for
both closed and open eyes. This further implies that eye status
does not change the rank of functional flexibility of visual cortex
in the brain. In the anesthetized monkeys, the primary visual
cortex showed relatively high entropy E. This is probably because
anesthesia causes brain activity in primary visual cortex to shift
much more toward random fluctuations.

DISCUSSION

Although resting-state connectivity networks have been used
for decades to probe functional brain organization (Deco
et al., 2011; Raichle, 2015; Bassett and Sporns, 2017), the
origins and functional significance of resting-state connectivity
patterns require further understanding. In a recent study, we
were able to characterize the heterogeneous architecture of
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FIGURE 8 | Correlations between dynamic measurement (nodal mean entropy for the distribution of dynamic functional connectivity patterns, complexity for the
distribution of correlation values, and variability for the dynamic functional connectivity patterns) and static measurement (nodal mean FC strength) in awake humans
and anesthetized monkeys.

intrinsic functional flexibility in the awake, resting human brain
using dynamic FC analysis and a probabilistic model (Yin
et al., 2016). To further understand functional organization
of spontaneous brain activity, in this study, we performed an
interspecies comparison of intrinsic functional flexibility between
anesthetized monkeys and awake humans.

For reference, we compared conventional, static FC patterns
between anesthetized monkeys and awake humans. We found
that functional coupling between brain regions in anesthetized
monkeys was generally weaker than in awake humans; however,
brain-wide connectivity patterns were correlated between
species. Previous studies showed that patterns of static FC, such as

the default mode network, persist even after loss of consciousness
in rodents (Liang et al., 2012; Lu et al., 2012) and primates
(Vincent et al., 2007; Hutchison et al., 2011; Hutchison and
Everling, 2012). In contrast, other studies suggested a breakdown
of both within- and between-network resting-state connectivity
in the anesthetized state (Boveroux et al., 2010; Stamatakis
et al., 2010) and deep sleep state (Tagliazucchi et al., 2013).
These studies raised two hypotheses about the origins of resting-
state FC patterns: reflecting a continuous stream of ongoing
cognitive process and random fluctuations constrained by a
stable anatomical skeleton (Vincent et al., 2007; Honey et al.,
2009; Barttfeld et al., 2015; Raichle, 2015). It is possible that

Frontiers in Neuroscience | www.frontiersin.org 12 February 2019 | Volume 13 | Article 174

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00174 February 27, 2019 Time: 17:12 # 13

Yin et al. Functional Flexibility in Primate Brains

persisting static FC patterns during anesthesia can be attributed
to anatomical constraints (Vincent et al., 2007; Deco et al.,
2013). On the other hand, consciousness is probably indexed
by global integration with strong couplings between long-range
brain regions (Alkire et al., 2008).

For our dynamic analysis, we found that the brain regions
that showed higher entropy E in both anesthetized monkeys
and awake humans mainly involved the higher-order association
cortex such as the lateral prefrontal cortex, and regions that
showed lower entropy E included primary sensory areas and
midline default mode regions. This result is consistent with the
flexible hub theory: the FC patterns of frontoparietal regions shift
more than those of other regions across a variety of task states
(Cole et al., 2013). A previous study focusing on the temporal
dynamics of resting-state functional networks suggested that
wakefulness is characterized by the dynamical exploration of a
richer repertoire of functional configurations or states (Barttfeld
et al., 2015). Moreover, individuals with brain networks showing
greater dynamics perform more favorably in behavioral tasks
(Jia et al., 2014). Through comparing anesthetized monkeys with
awake humans, Hutchison and his colleagues demonstrated that
the temporal dynamics of resting-state FC are also an intrinsic
property of brain organization and not simply a consequence
of conscious or cognitive processing (Hutchison et al., 2013b).
Moreover, there is accumulating evidence that many cognitive
processes can occur in the absence of awareness (MacDonald
et al., 2015). We have demonstrated that brain regions showing
higher entropy E may represent a more flexible exploration
of functional configurations, even under anesthesia. Expanding
upon previous studies (Cole et al., 2013; Yin et al., 2016; Zhang
et al., 2016), this study reveals that heterogeneous functional
flexibility across the cortex is evolutionarily conserved and
persists across brain states.

Although there is significant correlation of brain-wide entropy
E between anesthetized monkeys and awake humans, the whole-
brain average entropy E is remarkably higher in the anesthetized
monkeys. Barttfeld et al. study indicated that anesthesia may lead
to a stable brain state that is more similar to the structure, in
which time series of brain activity resemble random fluctuations
shaped by fixed anatomical connectivity (Barttfeld et al., 2015).
Using dynamical systems modeling, a previous study further
suggested that low coupling strength between brain regions can
coexist with a single stable spontaneous connectivity pattern
(Deco et al., 2013). Because it becomes the only available attractor,
the sedated brain cannot depart from it and remains confined
to a semirandom exploration of the valley surrounding it, thus
simultaneously exhibiting interregional correlations along with
fixed anatomical connectivity and a memoryless trajectory (Deco
et al., 2013; Barttfeld et al., 2015). Consistently, through time
series analysis, we found that brain activity in anesthetized
monkeys generally shifted toward random fluctuations, but it
was still different from random fluctuations. We speculate that
the general increase in entropy E and decrease in static FC
strength in the anesthetized monkey brain is likely attributable
to anesthesia-induced random fluctuations of brain activity.

Notably, previous electrophysiological studies have suggested
that brain neuronal activity is dominant with slow oscillations

under anesthetic states as well as during deep sleep state (Isomura
et al., 2006; Alkire et al., 2008; Ni Mhuircheartaigh et al., 2013).
A remarkable feature of slow oscillation is the synchrony over
large cortical areas (Achermann and Borbely, 1997; Destexhe
et al., 1999). Breshears et al. (2010) have demonstrated that
stable functional architecture and dynamic neural activity are
concurrent during induction of anesthesia. It is possible that
the stable functional architecture, i.e., large-scale functional
networks frequently observed even in anesthesia (Vincent
et al., 2007; Hutchison and Everling, 2012), is result from
synchrony induced by slow oscillation. Regarding dynamics of
brain activity, a breakdown of long-range temporal correlations
was observed in BOLD signals during both anesthesia and
deep sleep states, suggesting that the dynamics of time series
is close to white noise (Tagliazucchi et al., 2013; Barttfeld
et al., 2015). In despite of different temporal scales, the
findings that BOLD signal appears to be more random can
provide a supplement for understanding anesthesia-induced slow
oscillations of electrophysiological activity.

Moreover, previous evidence suggests that the dynamic
complexity of the system under anesthetized state is reduced
(Barttfeld et al., 2015). Accordingly, we found an overall
reduction of functional complexity in anesthetized monkeys
based on a complexity measure C for distribution of correlation
values, but this was not the case for our method and time
variability measurement. This suggests that the complexity
measure C for distribution of correlation values is better
to quantify dynamic complexity of system. In contrast, our
method and time variability measurement are more suitable
for describing functional flexibility, because they enable the
capture of information regarding dynamical spatial connectivity
patterns of a node, while this is not the case for the complexity
measurement based on distribution of correlation values. For
instance, the hippocampal cortex exhibited narrower distribution
of correlation values (lower complexity) than the secondary
somatosensory cortex in both anesthetized monkeys and awake
humans, whereas the time-varying strongest connections of
hippocampal cortex were more uniform (higher flexibility) than
that of secondary somatosensory cortex across the whole brain.
Our findings suggest that combining different methods could
provide more complete information for in-depth understanding
of functional brain organization.

We further found a negative correlation between nodal
entropy E and strength in anesthetized monkeys, but not in
awake humans. Previous simulating and empirical data suggest
that brain dynamics may change from a single stable state
to multi-stable state, as coupling strength between brain areas
increases from the sedated to the conscious condition (Dehaene
and Changeux, 2005; Ghosh et al., 2008; Deco et al., 2011,
2013; Hudetz et al., 2015). In agreement, conscious processing
is supported by global integration with strong coupling between
long-distance brain regions as well as a diversity of cognitive
states (Alkire et al., 2008; Dehaene and Changeux, 2011). Loss of
consciousness due to anesthesia may lack both strong coupling
and a rich repertoire of cognitive states (Barttfeld et al., 2015;
Hudetz et al., 2015). A possible explanation is that the negative
correlation between nodal entropy E and strength (i.e., the
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weaker connectivity strength, the higher entropy E) is primarily
dominated by random fluctuations of brain activity induced by
anesthesia. In contrast, the wakeful condition or conscious access
with dominance of heterogeneous cognitive states may lead to
decoupling between nodal entropy E and strength.

Consistently, we observed no correlation between the
complexity measurement C for distribution of correlation values
and static connectivity strength for the awake humans, but there
was a positive correlation for the anesthetized monkeys. Zamora-
Lopez et al. (2016) reported a reverse U-shaped relationship
between functional complexity and coupling strength, with an
optimal functional organization at the peak complexity. In other
words, the functional complexity increases and then decreases
during the increase of coupling strength. We therefore speculate
that positive correlation between the complexity measurement
C and static connectivity strength in anesthetized monkeys is
attributed to the anesthesia-induced lower coupling strength (at
the left part of reverse U-shape). This result further suggests that
the coupling between dynamic and static measures may serve
as a potential signature of anesthesia, whereas the direction of
correlation is probably dependent on specific metrics.

Although brain-wide correlation exists between species, it
should be noted that there were some divergences in intrinsic
functional flexibility between the anesthetized monkey and awake
human brains. For instance, the primary visual cortex exhibited
relatively high entropy E in the anesthetized monkeys, although
it was low in the awake humans. In contrast, the inferior parietal
cortex showed relatively low entropy E in the anesthetized
monkeys, whereas it was high in the awake humans. A previous
human study indicated that anesthesia preferentially modulates
higher-order connections, but not low-level sensory connections
(Martuzzi et al., 2010). One rodent study also showed that
anesthesia profoundly impacted the dynamic resting-state FC of
neural circuits subserving higher-order functions but had less
effect on sensory systems (Liang et al., 2015). On the other hand, a
study by Hudetz et al. (2015) reported that the largest reduction of
temporal variance of BOLD signals occurred in the visual cortex
and parietal cortex in anesthetized rats. Although conflicting
conclusions were drawn in previous studies, the converging
evidence suggests a non-uniform impact of anesthesia on brain
systems. In anesthetized monkeys, we found brain activity of
primary visual cortex and sensorimotor cortex to be much
more close to random fluctuations. In addition, the strongest
connections of primary visual cortex were local and stereotyped
in awake humans, but distributed and variable across the brain
in anesthetized monkeys. It is possible the much more random
fluctuations may contribute to the difference of functional
flexibility observed in primary visual cortex between species.

Regarding inferior parietal cortex, we found it to be more
frequently connected with local brain regions in parietal,
temporal, and visual cortices in monkeys while more frequently
connected with broad brain regions in parietal, temporal, and
frontal cortices in humans. From an evolutionary perspective,
the inferior parietal cortex in the human brain mainly contains
Brodmann areas 39 and 40, but monkeys do not have a
comparable area (Kotter and Wanke, 2005; Raichle, 2015). We
speculate that the difference of functional flexibility observed

in inferior parietal cortex of monkeys and humans is likely
attributed to evolution. Although evolution may indeed result
in functional reorganization of specific brain regions, it is hard
to separate the contributions of evolution and anesthesia in
the current study. A further study with awake monkeys and
anesthetized humans may help clarify this question.

In addition, there are some limitations to this study. First,
our analysis is based on dynamic FC and is affected by the
general limits of this technique, such as temporal resolution
of fMRI (Hutchison et al., 2013a; Hindriks et al., 2016).
Using simultaneous imaging and electrophysiological recording
is helpful for interpretation of dynamic FC (Keilholz, 2014).
Second, for a direct comparison of brain network between
monkeys and humans, we used a regional map template with
the same cortical partitions. Previous studies have suggested
evolutionary differences in anatomy between monkeys and
humans (Kotter and Wanke, 2005; Raichle, 2015). Our findings
may be potentially affected by the anatomical differences
resulting from primate evolution. Finally, the human data that
was collected from multiple centers with different acquisition
parameters likely contained non-trivial variability across sites
and individuals.

SUMMARY

This study combined dynamical complexity measurements
and static connectivity strength measurement to understand
functional brain organization in anesthetized monkeys and
awake humans. Cross-species comparison suggests that the
heterogeneous brain map of intrinsic functional flexibility
persists during primate evolution and transcends levels of
consciousness, remaining present under anesthesia. Moreover,
the coupling between dynamic and static measurements can
provide a potential signature of loss of consciousness due
to anesthesia. However, each method may capture different
biological information and have its own limitation. Specifically,
our method and temporal variability approach might be more
suitable for describing functional flexibility of a node, whereas
there is a potential flaw in characterizing the changes of
system complexity induced by anesthesia. In contrast, the
complexity measurement based on distribution of correlation
values is better for evaluating functional complexity of systems
with different states or coupling strength, but is probably not
suitable for describing functional flexibility of a node due to
failure in capturing information of spatial connectivity patterns.
Combining different methods could provide more complete
information for in-depth understanding of functional brain
organization. This study not only offers fresh insight into
evolution of functional brain organization, but also advances our
understanding of dynamics of spontaneous brain activity.
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