
TEM Journal. Volume 8, Issue 1, Pages 73-77, ISSN 2217-8309, DOI: 10.18421/TEM81-09, February 2019. 

TEM Journal – Volume 8 / Number 1 / 2019.                                                                                                                                 73 

Application of the Nullcline Method to a 
Certain Model of Competitive Species  

 

Vahidin Hadžiabdić 1, Midhat Mehuljić 1 , Jasmin Bektešević 1, Isad Šarić 2 

 

 
1Faculty of Mechanical Engineering, Department of Mathematics,University of Sarajevo, Sarajevo,  

Bosnia and Herzegovina 
2Faculty of Mechanical Engineering, Department of Mechanical Design,University of Sarajevo, Sarajevo, 

Bosnia and Herzegovina 

 

  
Abstract – In this paper we will observe the model of 
competitive types and it will be analyzed using the 
nullcline method. It will be shown that this model has 
four points of equilibria, which are stable or unstable 
depending on the parameters a and b. The local 
stability of these points was investigated and global 
dynamics was determined using nullcline methods, that 
is, the bases of attraction of these points were shown.  
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1. Introduction 

 
      One of the basic methods in studying the systems 
of ordinary differential equations in the plane is the 
nullclines method. If we consider the system of 
differential equations 
 

     �
𝑥̇ = 𝑓(𝑥,𝑦)
𝑦̇ = 𝑔(𝑥,𝑦),                              (1) 
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then the x-nullclines are obtained by solving the 
equation 𝑓(𝑥,𝑦) = 0. Similarly, y-nullclines are 
obtained by solving the equation 𝑔(𝑥,𝑦) = 0. The 
vector field point on x-nullcline is directed up or 
down, and on the y-nullcline is directed left or right. 
The intersection points of the x-nullclines and y-
nullclines are the equilibrium points. Thus, x-
nullclines and y-nullclines separate the plane in the 
area so that in each of these areas the vector field is 
one of four directions: southwest, southeast, 
northwest or northeast. Using a vector field in each 
of these areas, it is possible to sketch the phase 
portrait of the system (1) and this greatly helps us to 
qualitatively analyze the system of equations (1). In 
this paper we observed a competitive model  

                 �
𝑥̇ = 𝑥(𝑎 − 𝑥 − 𝑎𝑦)
𝑦̇ = 𝑦(𝑏 − 𝑏𝑥 − 𝑦),                     (2)               

where 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑎 > 0 and 𝑏 > 0, which is a 
special case of a general competitive model 

                   �
𝑥̇ = 𝑥𝑓(𝑥,𝑦)
𝑦̇ = 𝑦𝑔(𝑥,𝑦).                              (3)               

      The variables 𝑥 and 𝑦 denote two species, and the 
functions 𝑓 and 𝑔 depend on both variables and 
represent a growth rate of species. Competitive 
models have great applications in biology. In 
medicine we have applied this model to infectious 
diseases (see [1]). The Lotka-Volterra model is also a 
special case of a competitive model (see [2],[3]). A 
better insight into the relationship between predators 
and prey to the Lotka-Volterra model with infected 
prey is given in the delayed equation (see [4]). One 
of the basic theorems for the model of competitive 
species is: 

Theorem 1: The flow 𝜙𝑡 of the competitive species 
system has the following property: For all points 
(x,y), with 𝑥 ≥ 0 and 𝑦 ≥ 0, the limit 
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𝑙𝑖𝑚𝑡→∞𝜙𝑡(𝑥,𝑦) exists and is one of a finite number 
of equilibria (see [5]). 

 
2. Model of competitive species 
 
       Now we will examine model (2), where 𝑥 ≥ 0 
and 𝑦 ≥ 0 are two species, and parameters 𝑎 > 0 and 
𝑏 > 0. The equilibrium points of the model (2) are 
the solutions of the system: 

             �𝑥
(𝑎 − 𝑥 − 𝑎𝑦) = 0

𝑦(𝑏 − 𝑏𝑥 − 𝑦) = 0.                         (4)               

These are actually intersect of nullclines (see[7],[9]). 
The system (4) has four solutions: 
𝑂(0,0),𝐴(𝑎, 0),𝐵(0,𝑏) and 𝐶 �𝑎𝑏−𝑎

𝑎𝑏−1
, 𝑎𝑏−𝑏
𝑎𝑏−1

�.  

Lemma 1: Equilibrium 𝐶 �𝑎𝑏−𝑎
𝑎𝑏−1

, 𝑎𝑏−𝑏
𝑎𝑏−1

� 42T is a positive 
if  0 < 𝑎 < 1 and 0 < 𝑏 < 1, or 𝑎 > 1 and 𝑏 > 1. 

Proof: Let  

               𝑎𝑏−𝑎
𝑎𝑏−1

> 0                                  (5) 

and 

               𝑎𝑏−𝑏
𝑎𝑏−1

> 0.                                 (6) 

If 𝑎𝑏 − 1 > 0, i.e. 𝑎𝑏 > 1, then from inequality 
(5) we get that 𝑎𝑏 − 𝑎 > 0, i.e. 𝑎(𝑏 − 1) > 0. Since 
𝑎 > 0, it implies that 𝑏 > 1. Similarly, from 
inequality (6) we get that 𝑎 > 1. So, if 𝑎𝑏 > 1, then 
𝑎 > 1 and 𝑏 > 1. 

If 𝑎𝑏 − 1 < 0, i.e. 𝑎𝑏 < 1, then from (5) we get that 
𝑎𝑏 − 𝑎 < 0, i.e. 𝑎(𝑏 − 1) < 0. The last inequality 
implies that 𝑏 < 1. Similary, using inequality (6) we 
get that  𝑎 < 1. So, if  𝑎𝑏 < 1, then 𝑎 < 1 and 𝑏 < 1.  
Hence, the Lemma 1 is proved. 

The system (2) can be written with 

𝑥̇ = �
𝑥(𝑎 − 𝑥 − 𝑎𝑦)
𝑦(𝑏 − 𝑏𝑥 − 𝑦)�. 

The Jacobian matrix is given with 

  𝐷𝑓 = �𝑎 − 2𝑥 − 𝑎𝑦 −𝑎𝑥
−𝑏𝑦 𝑏 − 𝑏𝑥 − 2𝑦�.        (7) 

Theorem 2: If  0 < 𝑎 < 1 and 0 < 𝑏 < 1, then for 
system (2) it means that: 

 

- equilibrium point 𝑂(0,0) is a source; 
- equilibrium 𝐴(𝑎, 0) is a saddle point; 
- equilibrium 𝐵(0, 𝑏) is a saddle point; 
- equilibrium 𝐶 �𝑎𝑏−𝑎

𝑎𝑏−1
, 𝑎𝑏−𝑏
𝑎𝑏−1

� 42T is a real sink. 

Proof: The Jacobian matrix (7) at the point  𝑂(0,0) is 

  𝐷𝑓(𝑂) = �𝑎 0
0 𝑏�.     Since both the eigenvalues of 

the matrix   𝐷𝑓(𝑂) are positive, then the equilibrium 
point 𝑂(0,0) 42Tis a source (see [ 6]).   

The Jacobian matrix (7) at the point  𝐴(𝑎, 0) has a 
form 

  𝐷𝑓(𝐴) = �−𝑎 −𝑎2
0 𝑏 − 𝑎𝑏

�.  

Since  

   det (𝐷𝑓(𝐴)) = −𝑎(𝑏 − 𝑎𝑏) = −𝑎𝑏(1 − 𝑎) < 0,  

then equilibrium point 𝐴(𝑎, 0) is a saddle point (see 
[6]). 

The Jacobian matrix (7) at the point  𝐵(0, 𝑏) has a 
form 

  𝐷𝑓(𝐵) = �𝑎 − 𝑎𝑏 0
−𝑏2 −𝑏�. 

Similarly, for the point 𝐵(0, 𝑏) we get that 
  det (𝐷𝑓(𝐵)) = −𝑏(𝑎 − 𝑎𝑏) = −𝑎𝑏(1 − 𝑏) < 0,  

from which we conclude that equilibrium point 
𝐵(0,𝑏) is a saddle point (see [6]). 

The Jacobian matrix (7) evaluated at the point  

𝐶 �𝑎𝑏−𝑎
𝑎𝑏−1

, 𝑎𝑏−𝑏
𝑎𝑏−1

�  42Tis 

  𝐷𝑓(𝐶) = �
𝑎−𝑎𝑏
𝑎𝑏−1

−𝑎(𝑎𝑏−𝑎)
𝑎𝑏−1

−𝑏(𝑎𝑏−𝑏)
𝑎𝑏−1

𝑏−𝑎𝑏
𝑎𝑏−1

�.  Determinant of 

this matrix is  

  det (𝐷𝑓(𝐶)) = (𝑎𝑏−𝑎)(𝑎𝑏−𝑏)
1−𝑎𝑏

= 𝑎𝑏(𝑏−1)(𝑎−1)
1−𝑎𝑏

> 0.  

Trace of matrix   𝐷𝑓(𝐶) is  

 𝑡𝑟 �𝐷𝑓(𝐶)� =
𝑎 + 𝑏 − 2𝑎𝑏
𝑎𝑏 − 1

< 0, 

 since 𝑎𝑏 − 1 < 0 and 𝑎 + 𝑏 − 2𝑎𝑏>𝑎2 + 𝑏2 − 2𝑎𝑏 =
(𝑎 − 𝑏)2 ≥ 0. Besides, we have that 
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�𝑡𝑟 �𝐷𝑓(𝐶)��

2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐶)�

= �
𝑎 + 𝑏 − 2𝑎𝑏
𝑎𝑏 − 1 �

2

− 4
𝑎𝑏(𝑏 − 1)(𝑎 − 1)

1 − 𝑎𝑏

=
−2𝑎𝑏 + 𝑏2 + 4𝑎3𝑏3 − 4𝑎3𝑏2 + 𝑎2−4𝑎2𝑏3 + 4𝑎2𝑏2

(𝑎𝑏 − 1)2

=
(𝑎 − 𝑏)2 + 4𝑎2𝑏2(1 − 𝑎)(1 − 𝑏)

(𝑎𝑏 − 1)2 > 0. 

Based on the above, we conclude that equilibrium 
point C �ab−a

ab−1
, ab−b
ab−1

� 42T is a real sink ( see [5]). 

   
(a)                               (b)                                                 

 

Figure 1. (a) The nullclines of the system (2) in the case 
when  𝒂 = 𝟎,𝟓 𝒂𝒏𝒅 𝒃 = 𝟎,𝟔 , and (b) trajectories in the 

case  𝒂 = 𝟎,𝟓 𝒂𝒏𝒅 𝒃 = 𝟎,𝟓. 
 
Theorem 3: If  𝑎 > 1 and 𝑏 > 1, then for system (2) 
it means that: 
 

- equilibrium point 𝑂(0,0) is a source; 
- equilibrium 𝐴(𝑎, 0) is a real sink; 
- equilibrium 𝐵(0, 𝑏) is a real sink; 
- equilibrium 𝐶 �𝑎𝑏−𝑎

𝑎𝑏−1
, 𝑎𝑏−𝑏
𝑎𝑏−1

� 42T is a saddle 
point. 

Proof: Same as in the case when it is 0 < 𝑎 < 1 and 
0 < 𝑏 < 1, the Jacobian matrix   𝐷𝑓(𝑂) has both 
positive eigenvalues and equilibrium point 𝑂(0,0) is 
a source.  
 

For the point 𝐴(𝑎, 0) we have that 

                     𝐷𝑓(𝐴) = �−𝑎 −𝑎2
0 𝑏 − 𝑎𝑏

�, 

  det (𝐷𝑓(𝐴)) = −𝑎(𝑏 − 𝑎𝑏) = −𝑎𝑏(1 − 𝑎) > 0, 

 
�𝑡𝑟 �𝐷𝑓(𝐴)��

2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐴)� = (𝑎 + 𝑏 − 𝑎𝑏)2 > 0 

and 

𝑡𝑟 �𝐷𝑓(𝐴)� = −𝑎 + 𝑏 − 𝑎𝑏 = −𝑎 + 𝑏(1 − 𝑎) < 0. 

It implies that equilibrium point 𝐴(𝑎, 0) is a sink (see 
[5],[8]). 

On the basis of the symmetry of the system (2) and 
equilibrium points 𝐴(𝑎, 0) and 𝐵(0, 𝑏) we conclude 
in the same way that the equilibrium point 𝐵(0, 𝑏) is 
a sink. 

For the point 𝐶 �𝑎𝑏−𝑎
𝑎𝑏−1

, 𝑎𝑏−𝑏
𝑎𝑏−1

� we have that 

  det (𝐷𝑓(𝐶)) =
(𝑎𝑏 − 𝑎)(𝑎𝑏 − 𝑏)

1 − 𝑎𝑏 =
𝑎𝑏(𝑏 − 1)(𝑎 − 1)

1 − 𝑎𝑏 < 0 

and it implies that equilibrium point 𝐶 �𝑎𝑏−𝑎
𝑎𝑏−1

, 𝑎𝑏−𝑏
𝑎𝑏−1

� 
is a saddle point (see [5]). 
 
      In all other cases, the system (2) has exactly 3 
equilibrium points. In addition, point 𝑂(0,0) is in all 
of the following cases, as well as the earlier is a 
source. For this reason, we will only examine the 
behavior of points 𝐴(𝑎, 0) and 𝐵(0, 𝑏). 

 
   (a)                                           (b)                 

                                 
Figure 2. (a) The nullclines of the system (2), and (b) 
trajectories, both in the case  𝒂 = 𝟏,𝟏 𝒂𝒏𝒅 𝒃 = 𝟏,𝟐. 

 

Theorem 4: If 0 < 𝑎 < 1 and 𝑏 > 1, then 
equilibrium 𝐴(𝑎, 0) is a saddle point, 
and equilibrium point 𝐵(0, 𝑏) is a real sink. 

Proof: Now we have that  

  𝑑𝑒𝑡 (𝐷𝑓(𝐴)) = −𝑎𝑏(1 − 𝑎) < 0. 

and it means that equilibrium point 𝐴(𝑎, 0) is a 
saddle. For the point 𝐵(0, 𝑏) follows 

  det (𝐷𝑓(𝐵)) = −𝑎𝑏(1 − 𝑏) > 0, 

 
�𝑡𝑟 �𝐷𝑓(𝐵)��

2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐵)� = (𝑎 + 𝑏 − 𝑎𝑏)2 > 0 

and 

𝑡𝑟 �𝐷𝑓(𝐵)� = −𝑏 + 𝑎 − 𝑎𝑏 < 0.   

So, equilibrium point 𝐵(0, 𝑏) is a real sink. 
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Theorem 5: If 0 < 𝑏 < 1 and 𝑎 > 1, then 
equilibrium 𝐴(𝑎, 0) is a real sink, and equilibrium 
point 𝐵(0, 𝑏) is a saddle. 

Proof: Now we have that  

  det (𝐷𝑓(𝐵)) = −𝑎𝑏(1 − 𝑏) < 0. 

and it means that equilibrium point 𝐵(0, 𝑏) is a 
saddle. For the point 𝐴(𝑎, 0) we have that 

  det (𝐷𝑓(𝐴)) = −𝑎𝑏(1 − 𝑎) > 0, 
 

�𝑡𝑟 �𝐷𝑓(𝐴)��
2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐴)� = (𝑎 + 𝑏 − 𝑎𝑏)2 > 0 

and 

𝑡𝑟 �𝐷𝑓(𝐴)� = −𝑎 + 𝑏 − 𝑎𝑏 < 0.   

From the last three inequalities, equilibrium point 
𝐴(𝑎, 0) is a real sink. 

Theorem 6: If 𝑎 = 1 and 0 < 𝑏 < 1, then  
equilibrium 𝐴(𝑎, 0) is a center, and equilibrium 
point 𝐵(0, 𝑏) is a saddle. 

Proof: We have  

  det (𝐷𝑓(𝐴)) = −𝑎𝑏(1 − 𝑎) = 0. 

It implies that equilibrium point  𝐴(𝑎, 0) is a center. 
Since,  

  det (𝐷𝑓(𝐵)) = −𝑎𝑏(1 − 𝑏) < 0,  

then equilibrium point 𝐵(0, 𝑏) is a saddle. 

 

(a)                                (b)                                                
Figure 3. (a) The nullclines of the system (2), and (b) 
trajectories, both in the case  𝒂 = 𝟏 𝒂𝒏𝒅 𝒃 = 𝟎,𝟑. 

Theorem 7: If 𝑏 = 1 and 0 < 𝑎 < 1, then  
equilibrium 𝐴(𝑎, 0) is a saddle, and equilibrium 
point 𝐵(0, 𝑏) is a centre. 

Proof: Proof of Theorem 7 is completely similar to 
the proof of Theorem 6. 

Theorem 8: If 𝑎 = 1 and 𝑏 > 1, then  equilibrium 
𝐴(𝑎, 0) is a center, and equilibrium point 𝐵(0, 𝑏) is 
a sink. 

Proof: For equilibrium point 𝐴(𝑎, 0) we have 

  det (𝐷𝑓(𝐴)) = −𝑎𝑏(1 − 𝑎) = 0, 

and it implies that 𝐴(𝑎, 0) is a center. 

For point 𝐵(0, 𝑏) it means that: 

  det (𝐷𝑓(𝐵)) = −𝑎𝑏(1 − 𝑏) > 0,  
 

�𝑡𝑟 �𝐷𝑓(𝐵)��
2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐵)� = (𝑎 + 𝑏 − 𝑎𝑏)2 > 0 

and 

𝑡𝑟 �𝐷𝑓(𝐵)� = 𝑎 − 𝑏 − 𝑎𝑏 = 1 − 2𝑏 < 0.   

From there, equilibrium point 𝐵(0, 𝑏) is a real sink. 

 
(a)                         (b)                                                

Figure 4. (a) The nullclines of the system (2), and (b) 
trajectories, both in the case  𝒂 = 𝟏 𝒂𝒏𝒅 𝒃 = 𝟏,𝟑. 

 

Theorem 9: If 𝑏 = 1 and 𝑎 > 1, then  equilibrium 
𝐴(𝑎, 0) is a sink, and equilibrium point 𝐵(0, 𝑏) is a 
center. 

Proof: Proof of Theorem 9 is similar to the proof of 
Theorem 8. 

Theorem 10: If 𝑎 = 𝑏 = 1 then system (2) has 
equilibrium point 𝑂(0,0) which is a source, and 
infinitely many equilibrium points in the form 
(𝑑, 1 − 𝑑) where (0 ≤ 𝑑 ≤ 1), which are the centers. 
The solution of the system (2) was given with 
𝑦 = 𝑐1𝑥, 𝑥

(𝑐1+1)𝑥−1
= 𝑐2𝑒𝑡 . 

Proof: If 𝑎 = 𝑏 = 1, then system (2) has the form 

               �
𝑥̇ = 𝑥(1 − 𝑥 − 𝑦)
𝑦̇ = 𝑦(1 − 𝑥 − 𝑦).                     (8)               

If we solve the system 

𝑥(1 − 𝑥 − 𝑦) = 0
𝑦(1 − 𝑥 − 𝑦) = 0, 

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0



TEM Journal. Volume 8, Issue 1, Pages 73-77, ISSN 2217-8309, DOI: 10.18421/TEM81-09, February 2019. 

TEM Journal – Volume 8 / Number 1 / 2019.                                                                                                                                 77 

we have that 𝑥 = 𝑦 = 0, or 𝑥 + 𝑦 = 1. 

Since,   det (𝐷𝑓(𝑑, 1 − 𝑑)) = 0, equilibrium points 
(𝑑, 1 − 𝑑)  are the centers. 

The system (8) can be written in the form 

𝑑𝑥
𝑥(1 − 𝑥 − 𝑦) =

𝑑𝑦
𝑦(1 − 𝑥 − 𝑦) = 𝑑𝑡. 

From 

𝑑𝑥
𝑥(1 − 𝑥 − 𝑦) =

𝑑𝑦
𝑦(1 − 𝑥 − 𝑦), 

we have that 

𝑑𝑥
𝑥

=
𝑑𝑦
𝑦 . 

The solution of the last equation is 𝑦 = 𝑐1𝑥. 

Now it is 

𝑑𝑥
𝑥(1 − 𝑥 − 𝑐1𝑥) = 𝑑𝑡. 

If we integrate the last equation, then we get 

�
𝑑𝑥

𝑥(1 − 𝑥 − 𝑐1𝑥) = �𝑑𝑡, 

and from there 

𝑥
(𝑐1 + 1)𝑥 − 1

= 𝑐2𝑒𝑡 . 

Remark: Every point that belongs to the part of line 
𝑥 + 𝑦 = 142T which lies in the first quadrant (𝑥 ≥
0,𝑦 ≥ 0) is the equilibrium point. In addition, each 
solution tends to the one of these points, in the line 
𝑥 + 𝑦 = 142T, because the point 𝑂(0,0) is  the source. 

 

(a)                                                 (b)                                                
Figure 5. (a) The nullclines of the system (2), and (b) 

trajectories, both in the case  𝒂 = 𝟏 𝒂𝒏𝒅 𝒃 = 𝟏. 

 
 
 
 

3. Conclusion 
 
       According to all of the above, we can see that 
every solution of system (2) will tend to some of the 
equilibrium points. For all parameter values 𝑎 >
0 and 𝑏 > 0 point 𝑂(0,0) will be the source. The 
other three equilibrium points will be stable or 
unstable depending on the parameter value 𝑎 >
0 and 𝑏 > 0. If 𝑎 = 𝑏 = 1, then every solution of 
system (2) tends to some of the equilibrium points in 
form (𝑑, 1 − 𝑑), where 0 ≤ 𝑑 ≤ 1. If 𝑎 < 1 and 𝑏 <
1, then every solution of system (2) tends to 
equilibrium point �𝑎𝑏−𝑎

𝑎𝑏−1
, 𝑎𝑏−𝑏
𝑎𝑏−1

�. If 𝑎 < 1 and 𝑏 ≥ 1, 
then every solution of system (2) tends to the 
equilibrium point 𝐵(0,𝑏). If 𝑎 ≥ 1 and 𝑏 < 1, then 
due to symmetry of system (2) every solution of 
system (2) tends to the equilibrium point 𝐴(𝑎, 0). If 
𝑎 > 1 and 𝑏 > 1, then every solution of system (2) 
tends to one of the equilibrium points 𝐴(𝑎, 0) and 
𝐵(0,𝑏). 
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