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Self-interacting proteins (SIPs), whose more than two identities can interact with
each other, play significant roles in the understanding of cellular process and cell
functions. Although a number of experimental methods have been designed to detect
the SIPs, they remain to be extremely time-consuming, expensive, and challenging
even nowadays. Therefore, there is an urgent need to develop the computational
methods for predicting SIPs. In this study, we propose a deep forest based predictor
for accurate prediction of SIPs using protein sequence information. More specifically,
a novel feature representation method, which integrate position-specific scoring matrix
(PSSM) with wavelet transform, is introduced. To evaluate the performance of the
proposed method, cross-validation tests are performed on two widely used benchmark
datasets. The experimental results show that the proposed model achieved high
accuracies of 95.43 and 93.65% on human and yeast datasets, respectively. The
AUC value for evaluating the performance of the proposed method was also reported.
The AUC value for yeast and human datasets are 0.9203 and 0.9586, respectively.
To further show the advantage of the proposed method, it is compared with several
existing methods. The results demonstrate that the proposed model is better than other
SIPs prediction methods. This work can offer an effective architecture to biologists in
detecting new SIPs.

Keywords: self-interacting proteins, disease, position-specific scoring matrix, deep learning, wavelet transform

INTRODUCTION

Proteins, highly complex substance, are the main compound of all the life. It is also the material
basis and the first element of the life. Individual proteins rarely works in isolation. Most of proteins
can work together with molecular partners or other proteins, which are associated with protein-
protein interactions (PPIs) (Chou and Cai, 2006; You et al., 2014b,c; Li et al., 2017). One special
case of PPIs is self-interacting proteins (SIPs), whose more than two identities can interact with each
other to form a homodimer or homotrimer or homo-oligomer (Marianayagam et al., 2004), play
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key roles in the understanding of celluar process and cell
functions. These interactions have received much more attention
than they have done in recent years. Ispolatov et al. (2005)
specified that the quantity of SIPs is more than twice as much
as that of other proteins in the protein interaction network
(PIN) (You et al., 2010a, 2014a, 2015b, 2017c; Liu et al.,
2013; Huang et al., 2016a; Li et al., 2016), which point out
the function of SIPs importance for cellular systems, so as
to better understand the effect of disease mechanism. Pérez-
Bercoff et al. (2010) considered that the genes of SIPs may have
higher duplicability than others, and their research focus on
the whole-genome level rather than the small scale. Hashimoto
et al. (2011) presented several molecular mechanisms of self-
interaction, mainly includes ligand-induced, domain swapping,
insertions, and deletions. As a result, most previous works focus
on the individual SIPs with the level of structures and functions.
To our current knowledge, there are a great deal of computational
techniques based on machine learning and deep learning (Gui
et al., 2009; You et al., 2010b, 2015a, 2017a,b; Lu et al., 2013;
Mi et al., 2013; Huang et al., 2015; Chen et al., 2016, 2018a,b,c;
Gui et al., 2016; Huang et al., 2016b; Li et al., 2018) which applied
in the field of bioinformatics and genomics, in which they were
few for detecting protein interactions.

Recently, Zhou et al. (2012) developed a PPI model for
PPIs prediction, which inputs condon pair frequency difference
into a support vector machine (SVM) predictor. Particularly,
You et al. (2013) presented a novel method which combined
principal component analysis (PCA) with ensemble extreme
learning machine model to predict PPIs based on the amino acid
sequences information. Since the proposed feature extraction
method has a higher discriminative power to reveal most
of the information from protein sequences, they are great
success for PPIs detection. Zahiri et al. (2013) introduced a
PPIevo algorithm based on evolutionary feature which extracted
from position-specific scoring matrix (PSSM) of known protein
sequences. Du et al. (2014) designed a predictor for SIPs by
applying random forest with the ensemble coding method, which
integrated many biochemical properties and useful features.
Zhang et al. (2018) predicted PPIs by using a ensemble deep
neural networks (DNN) based on various of representations
of protein sequences. Li et al. (2017) detected the SIPs based
on evolutionary information and amino acids sequences by
using ensemble learning method. Although these methods were
relatively mature for PPIs prediction, there were few machine
learning and deep learning methods to predict SIPs.

Given this potential, in this study we presented a novel
approach for SIPs prediction, which combined deep forest
with wavelet transform (WT) method based on PSSM of
protein sequences. First, we widely collected the golden standard
human and yeast datasets from common database, which can
be integrated for discriminating SIPs. Second, Position-specific
Iterative Basic Local Alignment Search Tool (PSI-BLAST)
collated each protein sequence conversion for a PSSM. Third,
WT approach was applied to calculate the feature values which
could be input into deep forest, and then the SIPs prediction
model was constructed. At last, we carried out experiments on the
two golden standard datasets and compared the presented model

with SVM method and other existing methods. Experimental
results suggest that our proposed model works very well for
SIPs prediction and can provide clues for understanding protein
functions. We described our work as a Figure 1.

MATERIALS AND METHODS

Datasets Preparation
In the experiment, we can derive 20,199 curated human protein
sequences from the UniProt database (Consortium, 2014). Then,
the PPI related information were integrated from all sorts of
resources, including PDB (Berman et al., 2000), DIP (Salwinski
et al., 2004), MINT (Licata et al., 2011), InnateDB (Breuer et al.,
2012), IntAct (Orchard et al., 2013), BioGRID (Chatr-Aryamontri
et al., 2017), and MatrixDB (Launay et al., 2014). The high quality
data of these resources was sufficient for the creation of PPI
prediction models. Here, we only paid close attention to those
PPIs whose interaction types were labeled as “direct interaction”
and for which the two interaction partners were identical. Finally,
we can gather 2994 human self-interacting protein instances.

We need construct the golden standard datasets based on 2994
human SIPs mentioned above to measure the performance of
the prediction model. It mainly includes the following steps (Liu
et al., 2016): (1) We removed the protein sequences whose length
<50 residues and >5000 residues from all the human proteome,
because they may be fragments; (2) To construct human golden
standard positive dataset, and ensure that the SIPs is of high
quality. It must be meet one of the following requirements: 1© the
protein has been announced as homo-oligomer (containing
homodimer and homotrimer) in UniProt; 2© the self-interaction
could be detected by more than one small-scale experiment or
two large-scale experiments; 3© it has been reported by more
than two publications for the self-interactions; (3) For human
golden standard negative dataset construction, we removed the
various kinds of SIPs from all the human proteome (including
proteins characterized as “direct interaction” and more wide-
ranging “physical association”) and the detected SIPs annotated
in UniProt database. As a result, the ultimate human golden
standard datasets consisted of 1441 SIPs and 15,938 non-SIPs.
And then, the whole human datasets size is 17379.

According to the above-mentioned method, we also built the
yeast golden standard datasets to further measure the cross-
species capacity of our proposed model. Thus, the final yeast
datasets contained 710 SIPs as positives and 5511 non-SIPs as
negatives. And then, the whole yeast datasets size is 6221.

Position Specific Scoring Matrix
In our achievements, position specific scoring matrix
(PSSM) method is helpful to detect distantly related proteins
(Gribskov et al., 1987; Gao et al., 2016; Wang L. et al., 2017;
Wang Y.-B et al., 2017; Wang Y. et al., 2017). Accordingly, a
PSSM was converted from each protein sequence information
by employing the position specific iterated BLAST (PSI-BLAST)
(Altschul and Koonin, 1998). And then, a given protein sequence
can be transformed into an H × 20 PSSM which can be

Frontiers in Genetics | www.frontiersin.org 2 March 2019 | Volume 10 | Article 90

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00090 February 27, 2019 Time: 16:34 # 3

Chen et al. Deep Forest for Predicting SIPs

FIGURE 1 | The flowchart of our work.

announced as follow:

M = {Mαβ α : 1 = 1 · · ·H, β = 1 · · · 20} (1)

where the rows H of the matrix is the length of a protein sequence,
and the columns represent the number of amino acids because of
each protein gene was constructed by 20 types of amino acids.
For the query protein sequence, the score Cαβ represents the β-th
amino acid in the position of α which can be distributed from a
PSSM. Thus, the score Cαβ can be defined as:

Cαβ =

20∑
k=1

p(α, k)× q(β, k) (2)

where p(α,k) denotes the appearing frequency value of the k-th
amino acid at position of α with the probe, and q(β,k) is the
value of Dayhoff’s mutation matrix between β-th and k-th amino
acids. Eventually, different fractions represent different positional
relationships, a strongly conservative position can achieve a
greater score, and otherwise a lower degree denotes a weakly
conservative position.

In conclusion, PSSM have become essential to much research
for predicting SIPs. Each PSSM from protein sequence was
generated by PSI-BLAST algorithm, which can be employed
for predicting SIPs. In a detailed and exact way, to get a high
degree and a wide range of homologous sequences, the E-value
parameter of PSI-BLAST was set to be 0.001 which reported for a
given result represents the number of two sequences’ alignments
and chose three iterations in this process. As a result, the PSSM
can be denoted as a 20-dimensional matrix which compose of
M × 20 elements, where the rows M of the matrix is the number
of residues of a protein, and the columns of the matrix denote the
20 amino acids.

Wavelet Transform
In signal processing, WT (Daubechies, 1990) is an ideal tool for
signal time-frequency analysis and processing. The main point
is that transformation can adequately highlight some aspects of

the problems, and any details of signal can be focused. It solved
the difficult problem of Fourier transform. And then, WT has
been a major breakthrough in the scientific method since the
Fourier transform.

In mathematics, WT is a new branch. It merges the technology
of functional, Fourier analysis, harmonic analysis, and numerical
analysis. A wavelet series is a representation of a square-integrable
function by a certain orthonormal series generated by a wavelet.
WT (Lewis and Knowles, 1992) was applied to decompose the
image. WT also can be employed in many fields, such as signal
processing (Sahambi et al., 1997), speech processing (Agbinya,
1996), and non-linear science (Staszewski, 1998). The main
feature is that some characteristics of the problem can be fully
highlighted by transformation, and then it can focus on any
details of the problem.

The integral WT can be defined as follow:

WTϕ(p, q) =
1√
|p|

∫
∞

−∞

ϕ(
x− q

p
)f (x)dx (3)

where, the binary dilation p = 2−i, and the dyadic position q = 2−i

j, and the wavelet coefficients were given by

Cij =WTϕ(2−i, 2−ij) (4)

And then, an orthonormal wavelet can be applied to define a
function ϕεL2(R). L2(R) is the Hilbert space. The Hilbert basis is
built as the family of functions:

ϕij(x) = 2
i
2 ϕ(2ix-j) (5)

where
{ϕij : i, j ∈ Z} (6)

If under the standard inner product on L2(R),

〈
f , g

〉
=

∫
∞

−∞

f (x)g(x)dx (7)
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which is orthonormal, this is an orthonormal system:〈
ϕij,ϕmn

〉
=

∫
∞

−∞

ϕij(x)ϕmn(x)dx = δimδjn (8)

where δim is the Kronecker delta.
In order to satisfy the completeness that every function fε

L2(R) may be expanded in the basis as

f (x) =
∞∑

i,j=−∞

Cijϕij(x) (9)

with convergence of the series understood to be
convergence in norm.

However, the establishment of features extraction based
on machine learning methods is a challenging mission. In
bioinformatics and genomics, an amino acid sequence can be
treated as a series of digital signals, and then, we can applied WT
method to analyses them (Jia et al., 2016). Because each protein
sequence contains different amount of amino acids which will
bring about different length of feature vectors. We cannot directly
transform a PSSM into a feature vector. Hence, we multiplied the
transpose of PSSM by PSSM to get 20× 20 matrix, and employed
the feature extraction method of WT to generate feature
vectors from the 20 × 20 matrix. Afterward, the eigenvalues of
each protein sequence can be calculated as a 400-dimensional
vector. Eventually, each protein sequence of yeast and human
datasets was converted into a 400-dimensional vector by
applying WT method.

In our research, in order to reduce the influence of unimpor-
tant information and increase the prediction accuracy, we used
the PCA approach to remove noisy features from yeast and
human datasets. So that we can reduce the dimension of
the two datasets from 400 to 300. Furthermore, reducing the
dimensionality of the datasets could use lower dimension of
features to represent the main information, so as to speed up
calculation speed.

Deep Forest
As we all know, DNN have been successfully applied to various
fields, such as visual and speech information (Hinton et al.,
2012; Krizhevsky et al., 2012), leading to the hot wave of deep
learning (Goodfellow et al., 2016; Chen and Huang, 2017; Chen
et al., 2017). Zhou and Feng (2017) proposed deep forest, which
also termed GCForest (multi-Grained Cascade Forest), that is a
novel decision tree ensemble approach. Actually, it is used to do
representation learning, which can find out the better features
by end to end training. The performance of GCForest is more
competitive than that of DNN.

GCForest model can deal with a wide variety of data
from different domains, and whose training process has
high computational efficiency and strong extensibility. In our
experiment, the training process of GCForest model was mainly
divided into two parts. The first part is devoted to the
construction of cascade forest, as illustrated in Figure 2; The
second part is multi-grained scanning, as shown in Figure 3.

From Figure 2, we input the feature vector which obtained by
multi-grained scanning approach. GCForest employs a cascade

structure, and each level of the cascade forest includes two
random forests and two complete-random tree forests (Breiman,
2001). Each random forest contains 500 trees, and the

√
d

number of features was chosen randomly as the candidate, and
then the feature with the best gini value was selected as the
segmentation. Each complete-random tree forest contains 500
complete-random trees, and the tree was generated by randomly
choosing features to be partitioned at each node of the tree, and
the tree grew until each leaf node only contains instances of the
same class or no more than 10 instances. The number of trees in
each forest was a hyper-parameter. It was a binary classification
problem in our experiment, so the output of each forest will be
a two-dimensional class vector, which is then linked to the input
feature to represent the next original input. In order to reduce the
risk of over-fitting, the class vectors generated by each forest are
produced by k-fold cross validation.

From Figure 3, multi-grained scanning approach was applied
to enhance the cascade forest. This method used sliding window
to scan the raw input features which extracted from human and
yeast datasets by WT method into our model, and then generate
instances which was fed into forests to merge the new feature
vectors. In our experiment, there are two classes, and the raw
input features dimensions are 300, and the dimension of sliding
window is100.

Model Assessment
In order to intuitively present the availability and stability of
our proposed model, in our study, we assessed our model
and calculated the values of following parameters: Accuracy
(Accu), specificity [Spec, also called true negative rate (TNR)],
Precision [Prec, also named positive predictive value (PPV)],
Recall [Sensitivity, also known as true positive rate (TPR)],
F1_score (is the harmonic mean of precision and recall) and
Matthews’s correlation coefficient (MCC), respectively. These
parameters can be described as follows:

Accu =
TP + TN

TP + FP + TN + FN
(10)

Spec = TNR =
TN

FP + TN
(11)

Prec = PPV =
TP

TP + FP
(12)

Recall = TPR =
TP

TP + TN
(13)

F1_score = 2×
Prec× Recall
Prec+ Recall

=
2TP

2TP + FN + FP
(14)

MCC =
(TP × TN)− (FP × FN)

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(15)
where, TP represents the number of true positives, that is
to say the count of true interacting pairs correctly predicted.
FP represents the quantity of false positives, which defined as
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FIGURE 2 | Cascade forest structure.

FIGURE 3 | Flow chart of Multi-grained scanning approach.

the count of true non-interacting pairs falsely predicted. TN
represents the count of true negatives, which is the number of
true non-interacting pairs predicted correctly. FN represents the
quantity of false negatives, in other words, it represents true
interacting pairs falsely predicted to be non-interacting pairs. On
the basis of these parameters, we plotted a receiver operating
curve (ROC) to assess the predictive properties and ability of our
proposed model. And then, we can compute the area under curve
(AUC) to evaluate the quality of the classifier.

RESULTS AND DISCUSSION

Performance of GCForest on
Human and Yeast Datasets
In order to illustrate that our proposed model can achieve good
results as comprehensive as possible, we detected the human and

yeast SIPs which was collected from multiple publicly available
resources. In the experiment, we used cross validation to obtain
reliable and stable model. Taking human dataset which was
removed noisy features by PCA method as an example, the
whole dataset was divided into five non-overlapping parts, and
randomly selected four parts as training set, and the remaining
part was taken as the independent test set. Next, to build the
model on the training set, and evaluate the performance of the
model on independent test set.

Based on the constructed data sets, we predicted the SIPs
by using the proposed model. To ensure the fairness and
objectivity of the experiment, the parameters of proposed model
should be consistent on human and yeast datasets, respectively.
The fewer hyper-parameters are contained in the GCForest
model and the parameter setting is not very sensitive for the
model. That is to say, GCForest model has high robustness
for the hyper-parameters setting. But there are still some
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TABLE 1 | Performance of proposed model on human and yeast dataset.

Accu Spec Prec Recall F1_score MCC

Datasets (%) (%) (%) (%) (%) (%)

human 95.43 99.09 84.07 54.06 65.81 65.26

yeast 93.65 99.28 88.73 47.01 61.46 61.87

parameters need to be set up. In the experiment, we set
shape_1X = 100 [shape of a single sample element (100, 100)],
window = 100 (list of window sizes to use during Multi-
Grain Scanning), tolerance = 5.0 (accuracy tolerance for the
cascade growth).

Afterward, we implemented the proposed model on human
and yeast datasets, respectively. The prediction results can be
shown in Table 1. By cross-validation on the human and
yeast datasets, we observed that the prediction accuracy of
GCForest reached up to 95.43 and 93.65% on human and yeast
datasets, respectively.

As shown in Table 1 above, it is shown that the proposed
model gained accuracy more than 93% for predicting SIPs on
the two integrated datasets. We summed up that a reasonable
classifier and feature extraction method is necessary and sufficient
for SIPs prediction, and presented some reasons in the following:
(1) The use of PSSM has greatly improved the prediction effect,
which was transformed by PSI-BLAST. Not only can it describes
the protein sequence in the terms of numerical forms, but also
it contains useful enough information as much as possible.
Accordingly, a PSSM provides almost all the major information
of single protein sequence to detect SIPs. (2) The WT feature
extraction method can find out more useful information of
the protein sequences, and improve the performance of the
prediction model. (3) GCForest is an appropriate classifier,
and it can perform well when bound with the WT feature
extraction method.

Comparison of GCForest
and SVM Method
As shown in section “ Datasets Preparation,” we can see that
our proposed model can obtain a good performance on both
human and yeast integrated datasets, respectively. But it is still
necessary to further verify the effectiveness of the algorithm. In
terms of classification, the state-of-the-art SVM is a common
classification algorithm based on supervision learning model,
which has been widely applied in a great deal of scientific
research fields. Therefore, we compared the performance of
GCForest with SVM classifiers to detect SIPs, employing the
same features which extracted from the two integrated datasets
described above. In the experiment, the LIBSVM packet tool
(Chang and Lin, 2011) was mainly applied for classification.
At the beginning of the experiment, we should set certain
parameters of SVM. A radial basis function (RBF) was selected
as the kernel function, and then using a grid search approach
to adjust c and g of RBF, which were set up c = 0.3
and g = 1000.

The performance statistics reported in Figures 4, 5 were
obtained comparing the proposed model and SVM-based model

FIGURE 4 | Performance between GCForest and SVM on human dataset.

FIGURE 5 | Performace between GCForest and SVM on yeast dataset.

on human and yeast datasets, respectively. From Figure 4, on the
human dataset, the prediction accuracy for both GCForest and
SVM classifier were greater than 92%; the precision was 84.07%
(GCForest) and 100% (SVM); the recall was 54.06% (GCForest)
and 14.87% (SVM); the MCC was 65.26% (GCForest) and 37.13%
(SVM). From Figure 5, the accuracy, the precision, the recall,
and the MCC of SVM classifier are 89.14, 100.00, 5.88, and
22.83% on the yeast dataset; Nevertheless, the GCForest classifier
achieved 93.65% accuracy, 88.73% precision, 47.01% recall, and
61.87% MCC. These results all suggest that our proposed model is
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TABLE 2 | Measure the quality of GCForest and the other methods on human
dataset.

Accu Spec Recall MCC F1 Score

Model (%) (%) (%) (%) (%)

SLIPPER (Chang and Lin, 2011) 91.10 95.06 47.26 41.97 46.82

DXECPPI (Du et al., 2014) 30.90 25.83 87.08 8.25 17.28

PPIevo (Zahiri et al., 2013) 78.04 25.82 87.83 20.82 27.73

LocFuse (Zahiri et al., 2014) 80.66 80.50 50.83 20.26 27.65

CRS (Liu et al., 2016) 91.54 96.72 34.17 36.33 36.83

SPAR (Liu et al., 2016) 92.09 97.40 33.33 38.36 41.13

Random forest 94.33 100.00 29.14 52.39 45.13

Proposed method 95.43 99.09 54.06 65.26 65.81

TABLE 3 | Measure the quality of GCForest and the other methods on yeast
dataset.

Accu Spec Recall MCC F1 Score

Model (%) (%) (%) (%) (%)

SLIPPER (Chang and Lin, 2011) 71.90 72.18 69.72 28.42 36.16

DXECPPI (Du et al., 2014) 87.46 94.93 29.44 28.25 34.89

PPIevo (Zahiri et al., 2013) 66.28 87.46 60.14 18.01 28.92

LocFuse (Zahiri et al., 2014) 66.66 68.10 55.49 15.77 27.53

CRS (Liu et al., 2016) 72.69 74.37 59.58 23.68 33.05

SPAR (Liu et al., 2016) 76.96 80.02 53.24 24.84 34.54

Random Forest 92.77 100.00 44.10 63.81 61.21

Proposed method 93.65 99.28 47.01 61.87 61.46

superior to those of SVM-based approach, and it has comparable
performance in SIPs prediction.

Compare GCForest With
Other Existing Methods
To further illustrate that our GCForest model has higher
prediction ability, we also measured the performance of our
proposed model with other existing methods based on human
and yeast datasets, respectively. As shown in Tables 2, 3, we
listed a clear statement of account that the accuracy of GCForest
model was higher than that of other existing methods on the
two integrated datasets (mentioned in section “Materials and
Methods”). The same as Spe, MCC, and F1 Score. However, the
recall (also named sensitivity, the true positive rate) of proposed
model was lower than that of other existing methods, which
measures the percentage of true positives that are successfully
identified as having the condition. The reason may be that
traditional PPI predictor could not work well for predicting
SIPs because of the utilized correlation information between two
proteins, such as co-localization, co-expression and co-evolution.
These results on human and yeast datasets all indicate that our
proposed model was justified to be a better deep learning method
to detect SIPs in this work.

Receiver Operating Characteristic
(ROC) Curve
The ROC curve, also called sensitivity curve, was widely used a
great deal of fields such as medicine, bioinformatics, forecasting

FIGURE 6 | ROC curve of GCForest based on the results of human SIPs
dataset.

FIGURE 7 | ROC curve of GCForest based on the results of yeast SIPs
dataset.

natural hazards, model performance assessment and so on. It is
a comprehensive index reflecting the continuous variables of
sensitivity and specificity, and it is a method to reveal the
relationship between sensitivity and specificity. According to a
series of different binary classification methods, the curve was
plot with false positive rate (FPR, also called sensitivity) as
abscissa and true positive rate (TPR, also named 1-specificity) as
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ordinate. We also used ROC curve to analysis the performance of
the prediction model.

In Figure 6, the ROC curve of our presented model performed
on human SIPs dataset, it is shown that the AUC is 0.9586. The
ROC curve of put forward model assessed on yeast SIPs dataset is
shown in Figure 7, it is clear that the AUC is 0.9203. Therefore,
the proposed model is necessary and sufficient for SIPs detection.

CONCLUSION

In this study, we developed an improved deep learning-based
model that was applied to predict whether an identified protein is
likely to interact or not. More specifically, firstly, we converted the
PSSM turned from each protein sequence into a 400-dimensional
feature vector by employing the WT feature extraction method;
then, in order to decrease the influence of noise and remove
the redundant information, we reduced the dimension of the
feature vector to 300 by using PCA dimensional-reduced method;
finally, realized classification on human and yeast datasets by
applying GCForest model. The performance of the proposed
model achieved an accuracy of 95.43 and 93.65% on the human
and yeast golden standard datasets, respectively. It is revealed that
our model is suitable and perform well for detecting SIPs. We also
compared it with SVM-based and other popular existing method,
and the comparison empirical results show that the proposed
model is superior to the SVM-based methods and other previous
methods. It is anticipated that our proposed model can act as a
potential tool in the SIPs prediction research.
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