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Substance use disorders are chronic, relapsing, and harmful conditions characterized by

executive dysfunction. While there are currently no approved pharmacotherapy options

for stimulant and cannabis use disorders, there are several evidence-based options

available to help reduce symptoms during detoxification and aid long-term cessation

for those with tobacco, alcohol and opioid use disorders. While these medication

options have shown clinical efficacy, less is known regarding their potential to enhance

executive function. This narrative review aims to provide a brief overview of research

that has investigated whether commonly used pharmacotherapies for these substance

use disorders (nicotine, bupropion, varenicline, disulfiram, acamprosate, nalmefene,

naltrexone, methadone, buprenorphine, and lofexidine) effect three core executive

function components (working memory, inhibitory control and cognitive flexibility). While

pharmacotherapy-induced enhancement of executive function may improve cessation

outcomes in dependent populations, there are limited and inconsistent findings regarding

the effects of these medications on executive function. We discuss possible reasons for

the mixed findings and suggest some future avenues of work that may enhance the

understanding of addiction pharmacotherapy and cognitive training interventions and

lead to improved patient outcomes.

Keywords: addiction, cognitive enhancement, cognitive flexibility, executive function, inhibitory control,

pharmacotherapy, substance use disorder, working memory

INTRODUCTION

Substance use disorders are chronic, relapsing conditions (1) with huge costs to the individual
and to society. For example, using data from 2015, Peacock et al. (2) estimate global prevalence
of past 30 day heavy alcohol use, daily smoking and past year opioid use at 18.4, 15.2, and 0.37%,
respectively and they estimate disease burden with the number of disability-adjusted life years (the
number of years lost due to ill-health, disability, or early death) as 170.9 million, 85.0 million and
27.8 million for tobacco smoking, alcohol, and illicit drug use, respectively. Indeed, alcohol, heroin,
and tobacco have previously been rated amongst themost harmfulmisused drugs when considering
harms to both the individual and to others (3).
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There are several psychological/behavioral treatments
available for substance use disorders [for a brief overview
see McGovern and carroll (4)]. While there are no approved
pharmacotherapies for stimulant and cannabis use disorders,
evidence-based pharmacological agents are available for tobacco,
alcohol and opioid use disorders (TUD, AUD, and OUD,
respectively). Medications currently approved for these disorders
include nicotine replacement therapy, bupropion, varenicline
(for TUD), disulfiram, acamprosate, naltrexone, nalmefene (for
AUD), methadone, buprenorphine, naltrexone, and lofexidine
(for OUD). While previous research has found these drugs to be
efficacious, relapse in drug dependence is 40–60% (5) suggesting
efficacy is limited and that there is room for improvement in the
management of addictions.

Cognitive processes may be important targets for the
treatment of substance use disorders (6, 7). In particular,
executive dysfunction is considered a hallmark of addiction
(8, 9) and may represent a good transdiagnostic target across
addictive disorders. Impairments in executive function may
contribute to the initiation and maintenance of problematic drug
use. For instance, executive function at an early age predicts
subsequent substance use (10) and performance comparisons
across drug users, non-addicted family members and healthy
controls suggest that deficits in executive function may be
a cognitive endophenotype associated with drug dependence
vulnerability (11, 12). Executive function deficits are also related
to relapse, worse clinical outcomes and poor treatment adherence
(13–19) with exacerbation of executive function impairments
observed during early abstinence which may contribute to
relapse (20–22).

While the clinical efficacy of approved pharmacotherapy for
TUD, AUD, and OUD is recognized, there has been far less
research conducted on the cognitive effects of these medications
(23) despite potential cognitive enhancement effects contributing
to clinical efficacy. Therefore, the goal of this review is to
provide a brief and selective, narrative summary of the evidence
examining the impact of nicotine, bupropion, varenicline,
disulfiram, acamprosate, nalmefene, naltrexone, methadone,
buprenorphine, and lofexidine on executive function. We do
not include medications used off-label to treat substance use
disorders due to the wide-range of off-label prescribing practices,
limited, or inconsistent evidence for clinical efficacy and because
we cannot be certain which of these medications will continue
to look effective as the evidence base for them increases.
This review complements the recent systematic review that
investigated general cognitive effects of pharmacotherapy for
substance use disorders (23). While this earlier review provides a
good overview of the cognitive impact of substance use disorder
medication, its discussion of the impact on executive function
could be considered limited by the general approach to cognition
that has been taken. The current review fractionates executive
function and focuses on working memory, inhibitory control,
and cognitive flexibility as there is general agreement that these
are the three core executive function components and that
other higher-order executive functions such as decision-making,
planning, problem-solving, and reasoning may require these
basic components (24, 25). Additionally, the current review also

takes a translational approach by including relevant findings
from research with non-human animals where human research
is scarce or it adds to an understanding of drug effects.

PHARMACOTHERAPIES FOR TOBACCO

USE DISORDER

Nicotine
The nicotinic acetylcholine receptor agonist nicotine is used
in those with TUD as a replacement therapy where it can
be delivered in many forms including chewing gum and
adhesive skin patches. When used as an aid to quit smoking or
chewing tobacco, nicotine replacement therapy helps to manage
withdrawal symptoms associated with cessation and can increase
the rate of quitting by up to 50–70% (26). Both α4β2 and α7
nicotinic receptor subtypes have been implicated in cognitive
enhancement (27). Indeed, a considerable amount of evidence
exists regarding the cognitive enhancing effects of nicotine.
For instance, nicotine can improve some abstinence associated
cognitive impairments (28). Additionally, a 2010 meta-analysis
suggests that finemotor, alerting attention-accuracy and response
time, orienting attention reaction time, short-term episodic
memory accuracy, and working memory reaction time are
particularly sensitive to enhancement following administration
of nicotine (29). Furthermore, because the studies included
in this meta-analysis used non-smokers or non-/minimally
deprived smokers the cognitive enhancement is unlikely to be
driven by relief from withdrawal but, instead, represents true
cognitive enhancement.

However, reported effects of nicotine on working memory
are far from consistent. Animal work suggests that working
memory (radial-armmaze) performance is improved by nicotine
administration (30) and that methamphetamine or ketamine-
induced impairments in working memory (radial-arm maze,
odor span task) can be improved by nicotine (31, 32). On the
other hand, no effect on working memory (digit recall, serial
addition/subtraction, n-back task, digit span, spatial span, letter-
number sequencing, odor span task) has been seen in human
studies that have administered 2 and 4mg nicotine gum relative
to placebo in healthy non-smoking participants (33–35). Another
study found that 15mg nicotine patches improved working
memory (n-back task reaction time) in deprived smokers relative
to placebo while they had no benefit in healthy non-smokers but
instead impaired performance with significantly fewer hits, more
misses and false alarms and a trend toward longer reaction times
(36). Taken together this suggests that nicotine may improve
working memory when there is impaired baseline performance
present but has no effect or impairs performance when baseline
performance is higher (37).

Nicotine administration has also been found to improve
inhibitory control (antisaccade task, errors of commission on
a continuous performance task) deficits that are induced by
overnight smoking abstinence (38). However, 7mg nicotine
patches do not improve inhibitory control (stop-signal task,
go/nogo task, antisaccade task) in healthy non-smokers (39, 40).
In contrast to the findings of these studies, several nicotine
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administration studies in animals have shown that nicotine
can induce disinhibition with increased impulsive responding
evident across a range of behavioral tasks (41–47). Similarly,
acute cigarette smoking may bias responding to more impulsive
action and impulsive choices (48, 49). As with the effect of
nicotine on working memory, the mixed findings with nicotine
apparently able to improve, impair or have no effect on inhibitory
control may be due to baseline differences in performance and
several previous studies support this idea. For example, nicotine
enhances inhibitory control (fewer errors of commission on a
continuous performance task) in non-smokers that have low
levels of attention but not in those with high levels of attention
(50) while in another study, nicotine enhanced inhibitory control
(fewer errors of commission on a continuous performance task)
in those with a diagnosis of schizophrenia but not in healthy
controls (51). Finally, the effect of chronic nicotine exposure
on impulsivity in rats may be influenced by baseline levels of
impulsivity with nicotine inducing greater impulsive choice in
those with lower trait impulsivity (52, 53).

Few studies have examined the effects of nicotine on cognitive
flexibility and those which have reveal mixed findings, much
as studies assessing working memory and inhibitory control
have. Acute cigarette smoking has been shown to impair
cognitive flexibility (more intra-dimensional set-shifting errors
on an intra-extra dimensional set-shifting task) in high but not
low dependent smokers (54) and (greater difficulty integrating
reinforcement history on a reversal learning task) relative to
never and former smokers (55). Cognitive flexibility has also
been shown to be impaired (poorer learning of strategies to
complete the task in the Wisconsin Card Sorting test) by
7mg nicotine patch administration relative to placebo in non-
smokers with high but not low levels of attention (50). Nicotine
administration at high (18 mg/Kg/day × 4 weeks) but not
low dose (6.3 mg/Kg/day × 4 weeks) also impaired cognitive
flexibility (increased perseverative responding to previously non-
reinforced stimuli in a reversal learning task) in mice (56).
Conversely, improvements in cognitive flexibility (attentional
set-shifting task) and reversal of nicotine withdrawal-induced
impairment in cognitive flexibility (reversal learning task) have
both been reported in rats (57, 58). While in another human
study, cognitive flexibility (attentional switching on the flexibility
of attention test) was not changed by nicotine (59). As with
working memory and inhibitory control, mixed findings like
these suggest that baseline performance levels may be influential
in determining cognitive effects of nicotine. As nicotine can
induce dopamine release (60), as smoking does in humans
(61), a more biological explanation for the mixed findings
reported throughout this section might be that performance and
dopamine levels are related such that at optimal dopamine levels
executive function performance is at its peak i.e., the inverted
“U” curve theory (62, 63). Release of dopamine by nicotine could
therefore improve or impair performance depending on initial
dopamine levels.

Bupropion
Used clinically for depression as well as a smoking cessation aid,
bupropion is a norepinephrine-dopamine reuptake inhibitor and

a nicotinic acetylcholine receptor antagonist. Bupropion reduces
the severity of nicotine craving and withdrawal symptoms, its
clinical effectiveness as a smoking cessation aid is comparable
to nicotine replacement therapy and is independent of its
antidepressant effect (64, 65). Symptoms that improve in
depressed patients that respond to bupropion include those
reflecting cognitive disturbance (66). Indeed, one study in
patients with major depressive disorder has shown that while
serotonin selective reuptake inhibitor-treated patients show
cognitive impairments including worse cognitive flexibility
relative to matched healthy controls, bupropion-treated patients
had normalized cognitive performance with better cognitive
flexibility but with no significant mean difference compared
to controls (67). Further, another study in those with major
depressive disorder found that 8 weeks of bupropion treatment
lead to improvements on tasks requiring cognitive flexibility
(Trail Making B), working memory and reasoning [A not B
Task; (68)].

Few studies have investigated the effects of bupropion on
executive function in smokers and the findings of existing
studies have been equivocal. One study in 24 smokers with
high interest in quitting reported that working memory (correct
response times on an N-Back task) was improved by bupropion
compared to placebo on the first day of a quit attempt (69).
In contrast, another study in 58 smokers (36 male, 22 female)
found that bupropion enhanced working memory (Digit Span
task) in females but not males whereas it enhanced inhibitory
control (inhibiting choice of immediate rewards over a larger,
delayed reward) in males but not females during early abstinence
(70). A final study in smokers investigated effects of both
abstinence and bupropion on cognitive function in adults with
schizophrenia. However, in this study 1 week of abstinence
was not associated with deficits in working memory (Digit
Span task) and controlling for abstinence status, bupropion
wasn’t associated with better working memory performance
(71). Similar null findings have been observed in healthy
participants where working memory (Digit Span task) was not
improved by either a single dose (150mg) or 2 weeks repeated
administration (150 mg x 6days followed by 300 mg x 8days)
of bupropion (72). However, in an animal study there were
positive effects of bupropion on inhibitory control. In this
study, rats were perinatally exposed to polychlorinated biphenyls
thought to decrease medial prefrontal cortical dopamine levels
and cause subsequent inhibitory control deficits assessed with a
differential reinforcement of low rates of responding (DRL) task.
This study showed that bupropion improved inhibitory control
performance on the DRL task (73).

Varenicline
As a partial agonist at α4β2 nicotinic acetylcholine receptors,
varenicline has been found to reduce craving and the pleasurable
effects of tobacco and is more effective for smoking cessation
than both nicotine replacement therapy and bupropion (74).
Varenicline can reverse withdrawal-associated working memory
impairment (75). Patterson et al. (75) showed that in abstinent
smokers varenicline, vs. placebo, improved reaction times
on correct N-back trials with no significant effects on task
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accuracy. Interestingly, slower correct responses on the N-
Back task predict more rapid resumption of smoking during
a short period of abstinence in smokers receiving placebo but
not varenicline (76). Beyond simply improving withdrawal-
associated impairment, varenicline (0.5 mg/day× 3days followed
by 1 mg/day × 4days) administered to non-smokers has
been shown to also improve working memory performance
(77) with a significant positive association found between
plasma varenicline levels and visual-spatial working memory
in another non-smoker study (78). There are mixed findings
regarding working memory performance in studies with other
populations for instance varenicline (1 mg/day × 3 days)
attenuated withdrawal-associated working memory impairments
in smokers with schizophrenia (79) but did not improve
working memory in smokers with schizophrenia who are
not treatment-seeking and could continue to smoke (80,
81). Mixed working memory findings have also been found
with varenicline in human studies with populations that have
other substance abuse problems. For example, varenicline
has been shown to improve working memory in heavy
drinkers; with larger improvements predicting less alcohol-
primed ad libitum drinking (82), but not in non-treatment
seeking methamphetamine dependent participants (83). While
an animal study found that varenicline improves working
memory in cocaine-experienced monkeys (84). These mixed
findings for other substances of abuse and across different species
make it difficult to draw firm conclusions regarding varenicline’s
cognitive impact. However, as described above evidence suggests
that there is some cognitive benefit for certain types of
abstinent smoker (75).

Studies regarding varenicline effects on inhibitory control are
also mixed. For instance, animal studies indicate that varenicline
increases premature responding (failure to inhibit a response
during a wait period) on a 5-Choice Serial Reaction Time task
(85) however, using a similar 3-Choice task, Ohmura et al. (86)
demonstrate that this pro-impulsive effect is evident for nicotine-
naïve but not nicotine-exposed or nicotine-abstinent animals.
In human studies there was no significant effect of varenicline,
compared to placebo, on inhibitory control assessed with a
stop-signal task in treatment-seeking smokers (87). In contrast,
impulsive responding was increased on a stop-signal task by
cigarette smoking and by varenicline [albeit to a smaller degree
than smoking; (48)]. However, Austin et al. (48) also found that
varenicline attenuated smoking-induced impulsive responding.
Varenicline has also been found to reduce antisaccadic error
rate (an oculomotor measure of disinhibition) in those with
schizophrenia/schizoaffective disorder regardless of smoking
status (80).

Fewer studies have reported effects of varenicline on cognitive
flexibility. Animal studies have provided mixed findings with
Gould et al. (84) finding no effect of varenicline on reversal
learning (at doses that give maximum improvement in working
memory) in rhesus monkeys. However, varenicline reduced
ketamine-induced impairments in reversal learning (accuracy
and perseverative responding) and improved working memory
(accuracy at long delays on a delay match to sample task)
in rhesus and pigtail monkeys (88). In studies related more

specifically to smoking, varenicline reversed nicotine withdrawal-
induced deficits in the number of reversals on a probabilistic
reversal learning task administered to rats (58).While in a human
study comparing 24 abstinent smokers with 20 non-smokers,
impairments on a reversal learning task (increased response
shifting with decisions less sensitive to available evidence) found
in abstinent smokers were attenuated by varenicline. In addition,
decreased mesocorticolimbic activity associated with shifting in
abstinent smokers was increased to the level of non-smokers
by varenicline (89). It should be noted that as with nicotine,
varenicline produces elevation of dopamine (90).

PHARMACOTHERAPIES FOR ALCOHOL

USE DISORDER

Disulfiram
By inhibiting the enzyme aldehyde dehydrogenase, disulfiram
administration leads to acetaldehyde accumulation when alcohol
is consumed. This results in an unpleasant reaction consisting
of tachycardia, flushing, nausea, and vomiting. This aversion
therapy creates the expectancy of negative consequences that
are thought to deter alcohol use. Disulfiram is an efficacious
treatment in supervised and high compliance open label studies
but not blinded studies suggesting that expectancy may be a
requirement of clinical effectiveness [for a review and meta-
analysis of efficacy see Skinner et al. (91)]. There is evidence
that anti-addictive effects may be mediated by an additional
mechanism of action. For example, in rats disulfiram reduces
drug-induced reinstatement of cocaine seeking via dopamine β-
hydroxylase inhibition (92). Similarly reductions in chocolate
self-administration and reinstatement of chocolate seeking have
also been observed in rats treated with disulfiram (93) and
there are reports that it may have potential for treatment of
pathological gambling (94, 95) and cocaine dependence (96).

Few studies have investigated disulfiram’s cognitive effects
(see Pujol et al. (23) for an overview). In terms of executive
function, there were no effects of disulfiram on working memory
assessed with the Digit Span Test (97). Similarly, Gilman et al.
(98) found no group differences on an extensive test battery,
including tasks assessing executive function, when comparing 11
alcoholic patients receiving disulfiram and 37 alcoholic patients
not receiving the drug. In contrast, disulfiram administration
has been shown to improve inhibitory control (by inhibiting
preference for immediate gain at the expense of reduced net gain)
in rats that were making suboptimal choices but not those whose
choices were already optimal (94).

Acamprosate
Although the precise mechanism of action is not fully
understood, acamprosate is thought to correct imbalance in
inhibitory and excitatory neurotransmission induced by chronic
alcohol exposure (99). Acamprosate has been found to be a
safe and efficacious anti-craving and anti-relapse agent (100).
There have been limited studies examining acamprosate effects
on executive function. The drugs proposed mechanism of action
at NMDA receptors suggests acamprosate would have negative
effects on learning and memory, indeed previous cognitive

Frontiers in Psychiatry | www.frontiersin.org 4 March 2019 | Volume 10 | Article 98

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Butler and Le Foll Addiction Pharmacotherapy and Executive Function

work in healthy participants indicates an acamprosate-induced
impairment in delayed free recall. However, working memory
was unaffected by acamprosate in the same participants (101).
Similarly, there was no significant effect of acamprosate on
working memory performance of rats in a three-panel runway
task. Although, performance (both errors and latency) was
better in acamprosate and scopolamine-treated rats compared
to when they were administered the muscarinic acetylcholine
receptor antagonist alone (102). There have been mixed findings
with studies investigating cognitive flexibility. While Ralevski
et al. (103) found no significant effects of acamprosate in
23 alcohol-dependent schizophrenic patients on the Wisconsin
Card Sorting Test, animal studies suggest that acamprosate
reverses chronic alcohol-induced impairments in attentional set-
shifting including reducing task perseveration (104). More recent
evidence suggests that these cognitive effects may be related
to acamprosate’s calcium moiety as a sodium salt version of
the drug failed to reverse chronic alcohol-induced deficits in
cognition (105).

Nalmefene
Approved in Europe but not in America, nalmefene is an
antagonist at µ-opioid and δ-opioid receptors as well as a
partial agonist at κ-opioid receptors thus reducing the positive,
rewarding effects of acute alcohol consumption. Nalmefene has
greater affinity for κ-opioid receptors than naltrexone does
(106). Nalmefene also differs from naltrexone in having a
longer half-life, greater bioavailability and no observed dose-
dependent liver toxicity [see review by Niciu and Arias (107)].
To the best of our knowledge, there has not been any
published research investigating the effects of nalmefene on
executive function. However, the κ-opioid receptor agonists
nalfurafine and U50,488 produce deficits in inhibitory control
(DRL, delay-discounting and stop-signal tasks) in mice and
rats (108, 109). U50,488 also produces deficits in cognitive
flexibility (modified water maze task) in mice that are reversed
by the κ-opioid receptor antagonist nor-binaltorphimine (110).
Another κ-opioid receptor agonist U69,593 enhances, while nor-
binaltorphimine disrupts working memory (Y-maze) in mice
(111). Future studies with nalmefene are warranted because these
animal studies suggest that modulation of κ-opioid receptors
effects executive function which may be beneficial in disorders
characterized by executive dysfunction, such as addiction. Studies
examining general cognitive effects of nalmefene are also scarce
with one report suggesting increases in subjective alertness but
no effect on a choice reaction time task (112).

PHARMACOTHERAPIES FOR ALCOHOL

AND OPIOID USE DISORDERS

Naltrexone
Pharmacologically, naltrexone has greatest affinity for the µ-
opioid receptor but is an antagonist at all opioid receptors and
it reduces the rewarding effects as well as craving and desire
for alcohol and opiates (113, 114). Indeed, mice lacking the µ-
opioid receptor do not self-administer alcohol (115). There have
been a small number of human and animal studies examining

the effects of naltrexone on executive function. After 8 weeks
of administration, Hatsukami et al. (116) found no significant
differences in working memory (digit span backwards) in
overweight men who were administered either naltrexone (300
mg/day) or placebo. In contrast, animal research suggests
naltrexone in rats improves working memory performance
(radial arm maze) compared to saline administration (117)
and that naltrexone reverses deficits in working memory
(radial arm maze) that have been induced by exposure to
microwaves (118). However, one study did find the opposite
with microwave exposure failing to induce deficits in radial arm
maze performance and naltrexone treated rats taking longer to
complete the task relative to saline treated animals (119).

In animal studies examining the effects of naltrexone on
inhibitory control, naltrexone had no significant effect on
delay discounting (inhibiting choice of immediate reward over
a larger, delayed reward) when administered alone in rats
and mice (120, 121). In contrast, naltrexone has been shown
to improve inhibitory control in a rat gambling task (by
inhibiting preference for immediate gain at the expense of
reduced net gain) in animals that made more suboptimal
choices at baseline (122). Additionally, naltrexone pre-treatment
improved morphine-induced decrements in impulsive choice
(120). Similarly, naloxone (a drug which is used clinically for
acute opioid overdose and is a non-selective opioid antagonist
which, like naltrexone, blocks µ-opioid receptors with greatest
affinity) attenuates drug-induced inhibitory control deficits (five-
choice serial reaction time task) in rats (123). In humans,
the acute effect of naltrexone (50mg) on inhibitory control
(inhibiting choice of immediate reward over a larger, delayed
reward) has been investigated in abstinent alcoholics and
healthy controls. Naltrexone did not improve impulsive choice
reliably across abstinent alcoholic participants, but performance
was instead dependent on personality. Across both abstinent
alcoholics and healthy controls, those with greater external locus
of control made fewer impulsive choices on naltrexone and the
opposite was true for individuals with greater internal locus of
control (124). As perceptions of control may be influenced by
tonic frontal dopamine (125) and frontal dopaminergic tone may
account for individual differences in impulsive choice (126) it is
interesting to note here that previous evidence suggests that the
opioid system appears to have a role in modulating dopamine
tone (127).

Research regarding the effect of naltrexone on cognitive
flexibility has been mixed. A study in rats suggests that aged
relative to young rats have impaired flexibility on an attentional
set-shifting task (extradimensional shifting) and that this age-
related impairment was reversed by naltrexone while there was
no effect of naltrexone on the performance of younger rats (128).
In humans, no significant difference in cognitive flexibility (Color
Trails task) was found between abstinent heroin abusers receiving
naltrexone therapy and healthy controls whereas buprenorphine-
maintained patients showed impairments in cognitive flexibility
(129) while, an earlier study in overweight men suggested there
was no significant effect of receiving high dose naltrexone (300
mg/day) on cognitive flexibility (Trails B) after 8 weeks of
treatment compared to placebo (116).
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PHARMACOTHERAPIES FOR OPIOID USE

DISORDER

Methadone
As a µ-opioid receptor agonist that also has antagonist
properties at the glutamatergic NMDA receptor, methadone
is used clinically as an analgesic and is used in OUD where
it may be used in long-term maintenance therapy or to
manage withdrawal during detoxification (130). Several
studies have investigated executive function in patients
receiving methadone maintenance therapy. Studies tend
to differ in terms of the methadone dose and duration of
treatment as well as by comparator i.e., healthy controls
with no history of substance abuse, former opioid abusers
not in methadone maintenance therapy, or within subject
comparisons such as pre-/during therapy and peak/trough
concentration following dosing (for studies comparing
methadone maintenance therapy with buprenorphine see
next section). These differences may account for some equivocal
findings described below.

Studies have shown that methadone maintenance therapy is
associated with poorer working memory. For instance, those
who had been on short-term (at least 30 days) or long-term
(at least 6 months) methadone maintenance scored in the
lower portion of the normal range for working memory (letter-
digit ordering) based on normative test data (131). Working
memory (letter number sequencing) was also worse in those in
methadone maintenance therapy (mean duration of treatment:
38.66 months; mean dose of methadone: 83.82 mg/day)
compared to abstinent heroin abusers although this difference
only approached significance (132). Methadone users (mean
duration of treatment: 41.48 months) also had significantly
worse working memory (2-back task) compared to healthy
controls (133). While in another study using a within-subject
design working memory (n-back task and modified Sternberg
task) was assessed in methadone-maintained patients (mean
duration of treatment: 48.9 months; mean dose of methadone:
97.5 mg/day) at approximately 120min and 26 h after dosing
(to coincide with peak and trough methadone concentrations).
While there were no differences on the modified Sternberg task,
n-back performance was slower when testing time coincided
with peak methadone concentration. In addition, higher doses of
methadone were associated with decreased n-back hit rate (134).
However, some studies have found no significant differences
in working memory when comparing methadone-maintained
patients with healthy controls with no history of substance
abuse (135) or with abstinent former opioid abusers (136).
The average doses of methadone used in these two studies
was 15.14 and 67.2 mg/day, respectively. Taken together it
appears that methadone may impair working memory on
certain tasks and when higher doses are taken. However, more
studies are needed that take into account baseline cognitive
performance levels.

Two studies (described above) assessed the effects of
methadone maintenance therapy on inhibitory control (132,
133). These studies found that methadone maintenance was
associated with poorer inhibitory control (five-digit test)

compared to abstinent heroin abusers (132) and poorer
inhibitory control (stop-signal task) when compared to healthy
controls (133). In another study however, no correlations
between dose or duration of methadone maintenance therapy
were found in patients where the mean duration of treatment
was 8.6 years and the mean dose was 124.2 mg/day (137).
Perhaps the longer duration of treatment lead to tolerance of
cognitive effects in some participants. Surprisingly, opposite
findings have been observed with better inhibitory control
(stop-signal task) found in methadone maintenance therapy
compared to abstinent opiate dependent participants (138).
In their study, Liao et al. (138) found that stop-signal
reaction time was significantly shorter in methadone-maintained
participants compared to abstinent participants and was
no different when compared to healthy controls. Another
study comparing methadone-maintained patients and healthy
controls stratified patients by duration of treatment (short
term: <12 months or long term: ≥12 months) and by dose
(low dose: <80 mg/day or high dose: ≥80 mg/day). This
study found that healthy participants made more inhibitory
errors (errors of commission) on a continuous performance
task compared to short term and low dose methadone-
maintained patients (139). However, short term and low dose
methadone-maintained patients also had the slowest reaction
times on the task and the methadone group tended to have
poorer sustained attention than healthy controls assessed on
the same task. Therefore, the lower number of inhibitory
errors found in short term and low dose methadone-treated
patients could be due to general task disengagement in
this group.

Most studies investigating the effects of methadone
maintenance therapy on cognitive flexibility have demonstrated
that treatment is associated with impaired flexibility. Those
who had been on short-term (at least 30 days) or long-term (at
least 6 months) methadone maintenance scored in the lower
portion of the normal range for cognitive flexibility (trail making
test) based on normative test data (131). In addition, worse
cognitive flexibility assessed using a range of cognitive flexibility
tasks (trail making test, oral trails, Wisconsin Card Sorting test,
switching of attention task) has been reported in methadone-
maintained patients compared to abstinent opioid abusers
(132, 136) and healthy controls (135, 140, 141). One study found
no improvement in cognitive flexibility (trail making test) when
comparing opiate dependent participants at baseline and again
following 2 months on methadone maintenance therapy (142)
and surprisingly, in one study improved flexibility (trail making
test) was found as methadone dose increased (134). A further
study compared former opiate dependent participants that had
been medication free for 10 years with those whom had been
on methadone maintenance for the past 10 years (143). This
study demonstrated that methadone maintenance was associated
with a selective flexibility deficit. While both groups were able
to acquire and reverse information about positive and negative
outcomes under neutral conditions, Levy-Gigi et al. (143)
found that the methadone-maintained group were impaired
at reversing positive outcomes when these were presented in a
drug-related context.
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Buprenorphine
As a non-selective, mixed agonist-antagonist at opioid receptors
(partial agonist at µ-opioid receptor, antagonist at κ- and δ-
opioid receptors as well as weak partial agonist at nociception
receptors) buprenorphine is used as an analgesic as well as to
help manage withdrawal symptoms during opioid detoxification.
During detoxification, buprenorphine may be used as short or
long-term opioid replacement therapy (for longer-term use it is
often combined with the pure opioid antagonist naloxone) and
it appears to have similar clinical effectiveness to methadone at
managing opioid withdrawal (144).

Few studies have investigated the effects of buprenorphine
on executive function. One study investigating the impact
of different doses on working memory administered
buprenorphine/naloxone to opioid dependent patients at a
starting dose of 8 mg/2 mg going up to 16 mg/4 mg and then
32 mg/8 mg with 7–10 days at each dose. This study found that
there was no impairment in working memory (N-back task) as
the dose increased four-fold (145). However, poorer working
memory (Letter-Number Sequencing task, Paced Auditory Serial
Addition task) has previously been found in opioid-dependent
patients treated with buprenorphine/naloxone compared to
healthy controls (146, 147). Rapeli et al. (147) also compare
buprenorphine/naloxone treated patients with methadone-
maintained patients at several time points (1. 2months, 2.
6–9months and 3. 12–17months after starting substitution
therapy) and show that for one of the working memory tasks
(Letter-Number Sequencing task) the buprenorphine/naloxone
treated group improved between the second and third time
points while the methadone treated groups performance
remained stable across time. Working memory (digit span
backwards) was however not found to be significantly different
between patients on either buprenorphine (mean dose: 10.6
mg/day) or methadone (mean dose: 82.7 mg/day) maintenance
therapy (mean duration of treatment 48 months across both
maintenance therapies) or between these patients (combined
in to one group) and healthy controls in a study from another
group (148).

Very few studies have assessed the effect of buprenorphine
on inhibitory control. One study already mentioned in this
section above (148) found that opiate-dependent patients on
either buprenorphine and methadone maintenance therapy
didn’t differ in inhibitory control (Haylings Sentence Completion
test) but that when compared to healthy controls these
patients (combined in to one group) performed significantly
worse. However, another study comparing buprenorphine-
maintained opioid dependent patients (mean duration of
therapy: 5.4 years; mean dose: 9 mg/day) with both methadone-
maintained patients (mean duration of therapy: 8.3 years;
mean dose: 66 mg/day) and healthy non-opiate dependent
controls found that the buprenorphine treated group performed
better than the methadone treated group and no different
from controls on the Iowa gambling task (149). The Iowa
gambling task is traditionally considered a decision-making
task but to perform well on the task it requires the
ability to inhibit selection of decks that provide higher
immediate gains but long-term losses (150). While, Haylings

Sentence Completion test involves inhibition of sensible words
that could be used to complete sentences (151). While
inhibition is required by both tasks the Iowa gambling task
is less semantic and the differing task demands and neural
underpinnings may account for the differing findings from
these studies.

Several studies have assessed the effect of buprenorphine
on cognitive flexibility. Two studies already mentioned in this
section above also included an assessment of cognitive flexibility
(145, 149). One of these studies did not find impairments
in cognitive flexibility (trail making task) with a four-fold
increase in the dose of buprenorphine/naloxone given to opioid
dependent patients (145). However, in the other studymentioned
buprenorphine-maintained patients made fewer perseverative
errors on the Wisconsin Card Sorting task compared to
methadone-maintained patients with their performance falling
somewhere between the group treated with methadone and
healthy controls (149). In other studies, a within-subject design
found that intravenous infusion of 0.6mg of buprenorphine to
healthy males over 150min resulted in a significant deterioration
in cognitive flexibility (trail making test) compared to a drug-free
baseline assessment (152). Studies comparing opioid dependent
patients on buprenorphine to healthy controls assessing cognitive
flexibility (trail making test, color trails task) have tended to
find that the treated patients perform less well than healthy
control (129, 153). However, in tasks comparing the cognitive
flexibility of buprenorphine and methadone-treated opioid
dependent patients two studies failed to find a significant
difference in cognitive flexibility in direct contrast to Pirastu
et al. (149) (154, 155). While maintenance therapy doses
and durations of treatment across these studies were similar,
these two latter studies used the trail making test while the
Wisconsin Card Sorting task was used by Pirastu et al. (149).
The different cognitive demands of these tasks may help
explain the differences seen across these studies. In the trail
making test participants are required to shift backwards and
forwards between numbers and letters in a predictable manner
(156). While in contrast, in the Wisconsin Card Sorting task
participants are unaware of what shifts will be required when
task rules change and must work these out for themselves using
feedback (157).

Lofexidine
Approved for the management of acute opioid detoxification
in the United Kingdom in 1994 and more recently by the
Food and Drug Administration in the United States in 2018,
lofexidine is an α2A adrenergic receptor agonist that has
historically been used to reduce blood pressure and is now
used to alleviate opioid withdrawal symptoms (158). To the
best of our knowledge, there has not been any published
research investigating lofexidine’s effects on executive function.
Studies examining general cognitive effects of lofexidine are
also scarce. However, one report in 14 opioid dependent
participants, suggests there may be a dose-related deterioration
in simple reaction time, continuous performance, procedural
memory, and mathematical processing when lofexidine is
added to methadone maintenance therapy (159). Nevertheless,
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other α2A adrenergic receptor agonists have been shown
to selectively improve prefrontal cortex mediated cognitive
functions (160).

DISCUSSION

The aim of this review was to provide a brief narrative
overview of the evidence for effects of some of the most
commonly approved and prescribed pharmacotherapies for
TUD, AUD, and OUD on the three core executive functions
(working memory, inhibitory control and cognitive flexibility).
Enhancement of executive function is likely to be an important
target for the treatment of substance use disorders and
may contribute to clinical efficacy of existing medications
since executive dysfunction is thought to contribute to poor
treatment adherence, worse clinical outcomes and relapse (13–
19). However, for most of the approved pharmacotherapies
reviewed it was difficult to draw firm conclusions regarding
effects on executive function. This is due to a surprising lack
of well-powered empirical research evaluating the effects of
pharmacotherapy on executive function, and because of the
extent of contradictory findings. A similar conclusion was made
by a recent systematic review of the general cognitive effects of
existing pharmacotherapy (23).

Both hypo- and hyperdopaminergic states have been
postulated to account for various addiction phenomenon
in the absence and presence of drug cues (161). Positron-
emission tomography (PET) studies in substance abusing
populations suggest that there are decreases in both dopamine
release and dopamine D2 receptors (162, 163). Indeed, the
dopamine hypothesis of drug addiction (164) implicates a
long-lasting hypodopaminergic state throughout the addiction
cycle including persistence of this state in withdrawal. For
example, PET imaging with a high affinity dopamine D2/3

receptor radioligand has established that there is a smaller
amphetamine-induced dopamine release in the cortex and
midbrain of abstinent alcoholics than in healthy controls (165).
Many of the pharmacotherapies reviewed here have direct or
indirect effects on dopamine levels. In line with the inverted “U”
shaped dose response curve for dopamine effects on executive
function (62) drugs that enhance dopamine levels in individuals
with a low baseline level of dopamine would be expected
to enhance executive function while potentially impairing
the performance of individuals with a higher dopaminergic
starting point. Mixed findings in the current review may
be attributable to differing dopaminergic baselines. In this
regard, medicated substance dependent patients with lower
baseline dopamine and greater cognitive impairments may
receive greater cognitive benefit than less cognitively impaired
patients with a higher dopaminergic baseline. While it may
be more difficult to demonstrate cognitive improvements in
healthy participants or there may be paradoxical impairment
in performance.

Substance use disorder pharmacotherapies have been
shown to be efficacious however they do not work for
everyone. Identifying for whom they do, and do not, work

is an important unmet clinical need. While it is evident that
executive dysfunction is observed during early abstinence
which may contribute to relapse (20–22) much more work
is required in order to determine whether a drugs positive
effects on executive function are predictive of positive cessation
outcomes. Previous PET imaging studies with a high affinity
dopamine D2/3 receptor radioligand have suggested that the
extent to which methylphenidate induces increases in dopamine
are predictive of relapse and response to behavioral and
psychological treatments in methamphetamine and cocaine
abusers (166, 167). Future research should investigate whether
clinical effectiveness of pharmacotherapy (i.e., sustained
cessation) is related to individual differences in the ability
of the drugs to improve cognitive function and whether
this is associated with baseline differences or changes in
dopamine levels.

Existing and novel cognitive enhancers may be beneficial
for substance abuse disorders and studies investigating effects
of cognitive enhancers are on-going (7). Whether it is existing
pharmacotherapies being evaluated for their effects on cognition,
or novel cognitive enhancers being evaluated for the potential
to improve executive function and clinical outcomes in
substance dependent populations, it is important to consider
how cognition will be assessed. The current narrative review
illustrates that even when the number of studies assessing
different components of executive function are small, a wide
variety of tasks and outcome measures are used which can
make cross-study comparisons difficult. Future studies should
carefully consider which tasks are best suited to assess relevant
cognitive functions. Future work should also consider the
potential cognitive enhancers mechanism of action and abuse
potential. For example, modafinil is a promising cognitive
enhancer but it’s addictive potential has been illustrated in studies
examining effects on behavioral sensitization and conditioned
place preference (168).

An alternative approach to try and improve executive function
in addiction has been with cognitive training most notably
working memory training and inhibitory control training.
Training of workingmemory has been found to improve working
memory performance and reduce subsequent drug use in
methadone-maintained patients and problem drinkers compared
to control conditions (169, 170). Similarly, inhibitory control
training using an alcohol-related Go/NoGo task has previously
been found to reduce post-training alcohol consumption as
effectively as a Brief Alcohol Intervention (171). Reduced drug
use post-training suggests that interventions based on these
types of training procedure may improve clinical outcomes
and further supports the targeting of executive function in
addiction. However, future studies should consider whether
pharmacotherapy could compliment and even facilitate such
training. Inhibitory control training, for example, may work via
the devaluation of reward-related stimuli (172) and given that
some of the drugs reviewed here e.g., varenicline, disulfiram,
nalmefene, and naltrexone may devalue substances of abuse
(either by reducing the positive rewarding effects of substances
or by pairing them with an unpleasant reaction) it would be
interesting to see whether these drugs are able to facilitate
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inhibitory control training and improve dependent populations
control over substance use in real-world settings.

In this review we have examined the evidence for executive
function enhancement by commonly prescribed, labeled
pharmacotherapy for TUD, AUD, and OUD as any such
enhancement may contribute to clinical efficacy. However, it
should be noted that the act of detoxification might itself be
expected to improve executive function. Future studies should
include appropriate controls or take this variable in to account
when estimating the cognitive effects of medications used to
assist detoxification maintenance. While a potential strength
of this review is that it has evaluated the cognitive impact of
only those medications with a high degree of evidence for
efficacy in treating TUD, AUD, and OUD this does mean that
we may have missed important trends in findings with those
medications that are used off-label to treat these disorders
(e.g., topiramate). In addition, this review excluded off-label
pharmacotherapy for other substance use disorders such as the
stimulants cocaine and methamphetamine. These disorders
are persistent public health problems for which there are no
approved pharmacotherapy options (173, 174).While the relative
lack of evidence for consistent and positive pharmacotherapy
effects, coupled with a wide-range of off-label prescribing
practices lead us to exclude such research this too may have led
to missing important trends in findings and consequently limited
our discussion.

CONCLUSIONS

There are several efficacious pharmacotherapy options available
for TUD, AUD, and OUD. Evidence is limited and conflicting
regarding whether they can improve executive function in
dependent populations. It should be noted that baseline
differences in dopamine and performance may contribute to an
explanation for why inconsistent findings exist. So far, strategies
aimed at enhancing cognition to help with improving cessation
rates in dependent populations have not been successfully
implemented in the clinic. However, there has been limited
research conducted in this area and cognitive enhancement
remains a potential strategy that is worth exploring further. The
issue of abuse liability of drugs that can be cognitive enhancers
needs to be taken in to consideration when designing such
studies. Moreover, studies should now move beyond simply
assessing cognitive effects in order to establish whether an
improved cognitive response is related to clinical efficacy and if
this is also associated with baseline or changes in dopamine. This
approach may assist future personalized medicine strategies.
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