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Abstract: Providing robots with the capability of following human targets can allow them to assist people in various 

ways in different environments. One of the main difficulties in performing human tracking and following is the occlusion 

problem caused by static and dynamic obstacles. This paper addresses the occlusion problem by planning a robotic 

trajectory to maximize target visibility and following the moving target. Initially, a laser range finder is used to detect 

the human target and then robustly track the target using the Kalman filter. Afterward, a human following algorithm 

based on a look-ahead algorithm, DWA*, is implemented to pursue the target while avoiding static or dynamic 

obstacles. Extensive experiments were conducted to test to evaluate robot maneuvers and several field tests were 

conducted in more complex environments such as a student cafeteria, computer center, and university library. 
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Introduction 

One fundamental skill of a robot is moving from its 

present location to a specified destination. Several studies 

have been devoted to topics including localization, 

mapping, and path planning for this purpose. Other 

studies have focused on the use of different sensors such 

as laser range finder and/or camera to detect and/or track 

moving objects. This paper seeks to improve the robot’s 

ability to follow a human target by further integrating 

algorithms used in moving object tracking and path 

planning. 

The ability of robots to track pedestrians in their 

surroundings is essential to many real life applications 

such as providing assistance in venues such as museums, 

offices or libraries. Another key aspect of human-robot 

interaction is the robot’s ability to follow a target 

pedestrian in an indoor environment while executing 

various instructions such as holding books in a library or 

carrying groceries at a store. Figure 1 illustrates a 

schematic scenario of a robot following a target 

pedestrian. The robot should follow the target while 

avoiding a static obstacle (indicated by the red triangle), 

and a moving obstacle (the secondary pedestrian). This 

paper seeks to address this type of problem by allowing 

the robot is to accurately identify the target and robustly 

follow the target while avoiding any obstacles. 

The main tasks for each stage are listed as follows. 

As shown in Fig. 1(a), the robot executes both ‘Localization’ 

and ‘Moving Target Tracking’ operations. That is, the robot 

must first localize itself in the environment and then 

identify and track the target human. Once the robot starts 

to follow the target as shown in Figs. 1(b) and 1(c), the 

‘Target Tracking’ process provides the estimated target 

location and trajectory while the ‘Path Planning’ 

generates and selects the optimal path to follow the target, 

as shown in Fig. 1(d). After the path is selected, the 

velocity commands are given to the ‘Actuator’ to initiate 

the movement. This paper focuses on the integration of 

‘Localization’, ‘Moving Target Tracking’, and ‘Path Planning’ 

to achieve human following. 

A robust approach to follow a target human in 

dynamic environments is proposed. Several techniques 

have been used to improve robot localization and human 

tracking results. Moreover, the detecting and tracking 

moving object (DATMO) system is integrated with the 

dynamic window approach (DWA*) [16] navigation system 

to anticipate human behavior and, as a result, to enhance 

human following performance. The robot is capable of 
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selecting the optimal path by simultaneously considering 

several operational factors such as the distance between 

the robot and the target, and the target visibility at each 

moment. This ensures that the robot follows the target in 

a robust and appropriate manner. 

  

a) (b) 

 

 

(c) (d) 

Figure 1. Pedestrian following scenario. 

 

The remainder of this paper is organized as follows. 

Section 2 discusses some of the important related works. 

Section 3 describes the proposed DATMO system in detail, 

including the methods used in robot localization, moving 

point detection, and human tracking. Section 4 presents 

the framework for integrating the DATMO and DWA* 

approaches. Section 5 compares the proposed algorithms 

and evaluates the related experimental performance. This 

section also describes the experimental results of the 

robot following a human target in real-life indoor 

environments. Finally, Section 6 concludes this paper and 

provides important directions for future work.  

Background and Literature Survey 

Various approaches have been used to detect and 

track moving objects using a laser range finder. When 

detecting moving objects in the robot’s surroundings, 

Wolf & Sukhatme [1] proposed the concept of maintaining 

static and dynamic occupancy grid maps. Landmark 

features are used to solve the localization problem when 

the robot is in motion. A different approach, presented by 

Horiuchi et al. [2], searches for local minima to recognize 

humans and uses the particle filter localization method. 

However, this technique cannot resolve the issue of 

frequent occlusions. Yang and Wang [3] proposed a robust 

ego-motion estimation algorithm in dynamic 

environments. 

For tracking moving objects, Schulz et al. [4] and 

Mucientes et al. [5] proposed using probabilistic methods 

such as multiple hypothesis tracking (MHT), joint 

probabilistic data association (JPDA), and Kalman filter to 

develop a human tracking system. On the other hand, 

Shao et al. [6] introduced the idea of combining a human 

walking model with a particle filter to track hundreds of 

people with stationary laser range finders. Lee et al. [7] 

applied a similar walking model to a robot in motion using 

odometry data, and their experimental results showed 

accurate human tracking assuming perfect odometry.  

This paper aims to solve the moving target following 

problem in the face of obstacles. Many previous works 

have successfully demonstrated automatic driving in static 

environments, including Fox et al. [8], Ulrich and 

Borenstein [9], Minguez and Montano [10] and Seder and 

Petrovi´c [11]. However, these methods are designed to 

reach a fixed goal and assume that the environment and 

robot states are fully observable. Directly applying 

traditional obstacle avoidance algorithms on the target 

following task directly can fail easily because a moving 

target can change its speed and direction at any time and 

the target can be occluded by obstacles. 

The partially observable Markov decision process 

(POMDP) provides a general framework for planning 

under imperfect perception. However, using POMDP to 

compute the optimal policy is usually very 

computationally expensive because it has to compute a 

plan over a large belief space (typically N-1 dimensional 

for an N-state problem). Fortunately, several useful 

approaches for POMDP approximation or alternatives 

have been developed in recent years. Many aim to reduce 

the dimension of belief space, such as PBVI in Pineau et al. 

[12], AMDP in Roy et al. [13], and MOMDP in Sylvie et al. 

[14]. These methods are much faster than the original 
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POMDP, but are still too computationally complex to 

perform real-time planning. The method proposed here is 

a sub-optimal but fast approach which assumes that the 

robot always receives the most possible observation and 

plans a path which can reach the goal and minimize 

uncertainty in particular states. For example, in Prentice 

and Roy [15], the robot aims to reach the goal with 

minimum uncertainty for its position, so it may choose a 

path which is long but provides sufficient localization 

landmarks.  

We propose a motion planner for following a 

moving target. The robot is first effectively localized by the 

scan matching method and several techniques are utilized 

to filter out outliers and other moving objects. We then 

combine the concepts of the occupancy grid map and 

feature recognition such as local minima and motion 

velocity to improve human detection accuracy. Each 

human is then tracked by using the extended Kalman filter 

(EKF) which solves the occlusion problem and also 

provides the computational advantage in real time 

performance. Finally, the planner uses an extension of the 

dynamic window approach proposed in Chou et al. [16] 

and Chou and Lian [17] to find collision-free velocities and 

choose a proper velocity using the A* heuristic search [22]. 

Proper cost functions are designed to minimize the 

distance between the robot and the target and to 

maximize the possibility that the robot can maintain 

observation of the target in a fixed time horizon. Similar 

to the work of Pomares et al.  [18] which uses a collision 

avoidance system in human-robot cooperation, the 

proposed path planner can also guarantee human safety 

and collision avoidance. In addition, the concept of the 

nearness diagram algorithm proposed by Minguez and 

Montano [10] is applied to compute a better estimation of 

the distance between the robot and target, thus achieving 

a smooth, non-hesitating performance. 

Detecting and Tracking Moving Objects 

Detecting and tracking moving objects (DATMO) is a 

long-studied issue in mobile robotics. This paper aims to 

solve the DATMO problem using a laser range finder 

mounted on a mobile robot. This approach is much more 

difficult than implementing DATMO using a fixed sensor 

because the robot must localize itself correctly in order to 

distinguish static objects and moving objects. The 

proposed system architecture refers those studied in 

Wang et al. [19] and Montesano et al. [20]. First, robot 

odometry is corrected by a scan-matching algorithm with 

outlier filtering. Second, moving objects are detected by 

comparing the current scan with a local occupancy grid 

map. Finally, for each moving object, the Kalman filter is 

used to maintain object tracking. 

Accurate odometry is a key for detecting moving 

objects using a mobile robot. Most studies on moving 

target tracking assume that the robot has perfect 

odometry, but this is a poor assumption in most real 

environments. The iterative closest point (ICP) algorithm 

is a popular method for correcting robot odometry by 

finding the relative position between two laser scans. 

However, the standard ICP algorithm assumes that all 

points are static and contained in these two compared 

scans. In real applications, outlier points such as moving 

objects or occluded objects may seriously influence ICP 

performance. Hence, outlier deletion is a very important 

issue when using ICP odometry. 

In the standard ICP algorithm, each laser scan is 

matched with the previous scan to acquire the robot pose. 

However, this method incurs accumulated errors from 

each scan-matching. In other words, once the robot pose 

is inaccurately computed, the scan-matching result will 

suffer the same inaccuracy since only the previous scan is 

used. To remedy this problem, N (e.g., N=5) previous scans 

are also used to perform scan-matching with the current 

scan, namely, multiple ICP or MICP, instead of only the 

previous one. Thus, even if the previous pose was 

inaccurately computed, the ICP algorithm still has plenty 

of accurate scan points to match with and acquire the 

correct pose. 

When performing scan matching in the dynamic 

environment, moving points can significantly degrade 

scan matching performance which depends on the 

number of moving objects. It is imperative that these 

moving points are eliminated prior to scan-matching and 

only static points from the environment are used. When a 

new measurement scan is acquired in the system, it 

consists of both stationary and moving points. It is difficult 

to accurately separate the stationary and moving objects 

at this point. Therefore, the robot pose generated from 

MICP using this measurement scan will lose some 

accuracy. Nonetheless, this pose is required to detect the 

moving objects along with the global static map. Once the 

moving objects are identified, MICP can be performed 

again using only the stationary points this time. Hence, the 

accuracy of newly acquired robot pose improves. Finally, 

the detecting moving object algorithm is performed again 

using the most accurate robot pose. 

Furthermore, the occupancy grid map is used to 

segregating moving objects in dynamic environments. In 

[1], Wolf and Sukhatme proposed the idea of maintaining 

two grid maps: static and dynamic. In this paper, a static 

map is generated from the past N frames. This static map 

is updated when a new measurement scan is acquired. A 

grid cell can be in one of three states: Free (probability < 

0.2), Unknown (0.2 < probability < 0.8), and Occupied 

(probability > 0.8). The inverse observation model 
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determines the updated rate of the cell probabilities or 

how fast a grid cell shifts from the Free state to the 

Occupied state and vice versa. Table 1 depicts the detail of 

inverse observation model used in the system. 

 

Table 1. Inverse observation model. 

St-1 ot p(St|ot, St-1) 

Free Free Low (0.2) 

Unknown Free Low (0.3) 

Occupied Free Low (0.2) 

Free Occupied Low (0.3) 

Unknown Occupied High (0.7) 

Occupied Occupied High (0.8) 

Note that St denotes the state at time t, ot denotes the observation, 

i.e., sensory measurement, at time t, and p(St|ot, St-1) denotes the 

conditional probability under ot and St-1.  

 

The sensor data is first clustered into numerous 

objects. The human detection process segregates the data 

from the humans and the noise from the batch of clusters, 

where each human is tracked independently in tracking 

human process. Ultimately, the human data are stored in 

the human database and are constantly updated. Each 

process block is discussed in the following section. 

Upon acquiring all the moving points in the laser 

scan, these data points can now be grouped into various 

clusters. Each cluster represents a moving object, human 

or otherwise. This paper uses the point-distance 

segmentation method which computes the Euclidean 

distance between two consecutive scan points, i.e., 
1,i ip p   , in the polar coordinate, using the following 

formula: 

 

 

(1

) 

where ir   and 
i   are respectively the measured 

distance and the indexed angle of the i-th data from the 

laser range finder. If the calculated distance given by Eq. 

(1) is less than a threshold value, thD  , the points are 

considered to be belong to the same object. Dietmayer et 

al. [21] proposed a threshold function to calculate thD
 

which allows the adjustment to noise and overlapping in 

close range. The thD  value used in this paper is set at 0.1 

m, which has been experimentally shown to be an 

adequate clustering range. Each cluster is then 

represented by its center-of-gravity (COG) and available 

for the next step of the tracking procedure. 

The average width of a human leg is approximately 

0.1 m to 0.3 m. Consequently, to become a valid leg 

candidate, the cluster size must be within the range of 0.1 

m and 0.5 m. The upper limit is set at 0.5 m because, more 

often or not, two legs are grouped into one cluster due to 

occlusion depending on the motion of the human. 

Furthermore, any clusters with fewer than five scan points 

are automatically eliminated. 

One feature that can be observed and used to 

separate humans from noise is the moving velocity. It is 

assumed that a human moves at a velocity greater than a 

threshold value    while the noise should have very 

minimal or no velocity. In other words, the clusters must 

move at a sufficient velocity to qualify as leg candidates. 

The   used in this paper is 0.5 m/s. 

On the other hand, most noise is caused by 

accumulated errors in SLAM and LRF inaccuracy. These 

falsely identified moving points are essentially static 

points from obstacles or walls in the environment. As a 

result, the local minima of the moving clusters belonging 

to a human are distinguishable to one from a noise cluster. 

Thus, a valid leg candidate must have a local minimum 

greater than a predefined threshold value   . 

Consequently, any falsely identified moving clusters from 

the static environment can now be eliminated. 

When moving clusters are initially detected, they 

are first assigned as dummy tracks. Each of these clusters 

is given three-scan periods to become a valid leg 

candidate by satisfying the following three filtering 

conditions: 

1. 0.1 m < cluster size < 0.5 m; 

2. Moving velocity >  m/s; 

3. Local minimum >  m. 

 

Once a cluster turns into a leg candidate, it searches 

for the other leg candidate in the proximity of 0.5 m. If no 

other leg candidate is found, the sole leg candidate is 

assigned a unique ID and represents a human. On the 

other hand, if two leg candidates are found within the 

range, they are considered to belong to the same human 

and assigned a single ID. If the observation indicates that 

the cluster does not fit the characteristics of a human, it is 

considered noise and removed from the database. 

One of the main objectives in target tracking is to 

estimate the motion parameters of the moving target. The 

extended Kalman filter (EKF) is a computationally efficient 

estimator for the state of a dynamic system observed 

through noisy measurement. The noise processes are 

assumed to be Gaussian and the motion behaviors are 

assumed to be linear. In this work, the state vector used in 

EKF is [ , , , ]x yX x y v v  , representing the position and 

velocity of the human in the x and y directions. Each 

iteration involves two steps: the measurement update 

step and the prediction step. The measurement update 

step integrates the human position into the current belief 

and the prediction step alters the belief according to the 

motion model. 

2 2
1 1 1 1( , ) 2 cos( )i i i i i i i iD p p r r r r        

http://www.ausmt.org/


Feng-Li Lian, Chin-Lung Chen, and Chih-Chung Chou 

www.ausmt.org  53          auSMT Vol. 5 No.1 (2015) 

Copyright © 2015 International Journal of Automation and Smart Technology 

The data association is based on the calculated 

Euclidean distance between the new human cluster and 

the estimated tracked human. If the distance is less than 

a threshold value, the new human is associated with the 

tracked human and inherits its attributes such as ID, 

appearance time, and velocity. Moreover, suppose that 

the tracked human disappears due to being occluded or 

out of range, and the threshold value is adjusted in 

proportion to the belief uncertainty. For example, the 

algorithm will search for a new human cluster to connect 

in a larger region if the human has disappeared for a long 

time, e.g., five processing steps. In comparison, the search 

region will be much smaller if the human has just begun 

to disappear. 

The database stores the attributes of each human, 

including {ID, x, y, vx, vy, appear_time}. Every human has 

a unique ID and each ID can be assigned to a maximum of 

two clusters (i.e., two legs). The appear_time attribute 

keeps track of how long the human has been tracked. The 

database is updated at each iteration while the location of 

the target human can be pulled from the database and set 

as temporal goal in the DWA* navigation system. Each 

human track is deleted from the database if it disappears 

more than a fixed period of time. When a human 

disappears, it could be due to being temporary out of 

range or occluded. In that case, EKF continues to estimate 

the locations until it returns to range. However, if a human 

disappears longer than a pre-set period of time, the track 

is considered lost and deleted from the database. 

The pseudo code of the human detecting and 

tracking algorithm is depicted in Algorithm 1. If a moving 

cluster fulfills all three conditions, it is assigned an ID and 

tracking is initiated using the Kalman filter.  

Human Following Algorithm 

The goal is to follow a moving target despite the 

existence of obstacles. A reasonable solution is to see it as 

a path planning problem and use the obstacle avoidance 

algorithm to compute possible actions. Compared with 

the traditional navigation problem, there are two 

additional challenges in solving a moving target following 

problem. 

1. The robot should be able to act with sufficient agility 

to react to any drastic change in target motion.  

2. Since the target motion mode is changeable and 

difficult to predict, gathering information is as 

important as approaching the target. In the planning, 

the robot should consider its sensing ability in finding 

a trajectory with maximum information gain. 

In this paper, the DWA* navigation system in [16]is 

adopted as the obstacle avoidance algorithm.  

 

Algorithm 1. Human detecting and tracking algorithm. 

Goal: Detect and track humans using 3 conditions 

Requires: Moving points in the environment 

1: Group moving points into clusters if distance between points < 

threshold 

2: For i  {1,…, n}, n being the number of clusters segmented  

3: If i-th cluster size < 0.5 cm 

4: If i-th cluster motion velocity >   

5: If | ( 1) ( ) |start startrange t range t     and 

| ( 1) ( ) |end endrange t range t     

6: Set human_check = true 

7: Perform data association 

8: Set cluster ID 

9: Run Kalman filter updates 

10: Update human database 

11: End if 

12: End if 

13: End if 

DWA* Navigation System 

Dynamic window approach or DWA is a collision 

avoidance approach strategy developed by Fox et al. [8]. 

The DWA system is designed to deal with constraints 

imposed by limited velocities and accelerations when the 

robot navigates in the environment. DWA* navigation is 

an extension of DWA proposed in Chou et al. [16]. In the 

extension system, the A* heuristic [22] is used to search 

for the optimal trajectory. This approach greatly increases 

computation speed and enhances overall efficiency. 

DWA* is a trajectory-rollout algorithm. First, the 

environment information is realized as an interval 

configuration for faster processing. Each interval value 

represents the maximum distance that can be traveled by 

the robot on a certain circular trajectory. Second, the 

intervals are clustered as navigable areas. Third, for each 

area, a candidate velocity is determined according to an 

objective function. For each candidate velocity, a new 

robot position is computed as a new node and is saved in 

a trajectory tree. Then a node with the minimum 

estimated cost value will be extracted as the base node for 

generating new nodes. The procedure is repeated until 

the goal location is expanded or the tree depth reaches a 

certain value. After the tree expansion stops, the deepest 

node is determined as a temporal goal, and the present 

candidate velocity which can lead the robot to the 

temporal goal is selected. 

Following Algorithm 

The primary objective when following the human 

target is to maintain the target in range while avoiding any 

obstacles that may block the trajectory. Here, three 

distinct approaches are applied to achieve optimal human 
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following performance. 

When implementing human following algorithm, an 

intuitive approach is to set the present location of the 

moving target as the goal of the navigation algorithm. 

Considering the tracked target at an angle with respect to 

the robot, the DWA* algorithm will generate an angular 

and translational velocity which produces an arc-like 

trajectory. If the goal is within a close proximity of the 

robot, the angular velocity will be small and the arc-like 

route often results in an indirect or detour path for the 

robot to reach the goal. Consequently, the robot can easily 

lose the tracked target. The problem lies with the DWA* 

navigation because the system considers the goal to be a 

static, non-moving goal in the environment. However, in 

reality, the goal is a human, moving at an unpredictable 

velocity and with changing direction. Therefore, the 

selected DWA* trajectory is no longer optimal because it 

does not consider where the target goal would be in the 

next time step. 

On the contrary, if the goal is set further away from 

the robot at the same angle, any movement of the goal 

will result in a much larger displacement change. 

Therefore, the angular velocity would increase in 

response to the substantial change to the goal location. 

Consequently, the trajectory becomes more directly in 

line toward the goal. 

In the so-called pseudo-goal method, the space in 
front of the robot is divided into several trajectories, for 
example, at 55 , 35 , 20 ,0 ,20 ,35 ,55           . A pseudo 
goal is set at three times the original distance between the 
goal and robot along each trajectory. After acquiring the 
human location, the pseudo goal with a trajectory closest 
to the human location is then selected. Setting the goal 
further away from the robot remedies the issue of the 
small angular velocity and provides a much more direct 
path to reach the goal. 

Another problem is the limited sensing ability. In 
this paper, the algorithm is implemented on a mobile 
robot with a laser range finder with a 180-degree field-of-
view, thus providing an information gathering mode. 
When the moving target enters the ‘dangerous zone’, i.e., 

55  , in the robot coordinate, the robot will stop and turn 
rapidly towards the target. Adding this mode greatly 
lowers the risk of losing the target. 

Although the pseudo-goal method is very simple to 
implement, it can easily lose track of the target because it 
does not take the limited observability into consideration. 
Another drawback is that the pseudo-goal method cannot 
react quickly to the change of target velocity. A better 
method is to plan according to a reference trajectory but 
not a fixed location. In this way, the target velocity can be 
considered and the robot observability can be considered 
by adding terms to the cost function. For each possible 
robot trajectory, a total cost is defined as follows: 

 

 
(2) 

 

which is a linear combination of two terms: ( )dist t   

depicts the distance between robot and target, and 
( )vis t   reflects whether the robot can see the target at 

time t. Also, 1   and 2   are two constants and T   is 

the evaluating time interval. They are all normalized to [0 

1]. When computing ( )dist t , rather than computing the 

straight-line distance, another method is used to provide 
a more reasonable distance estimate based on the fact 
that, without a straight collision-free path between the 
robot and the target, the robot must pass a “gap” to reach 
the target. A gap means a discontinuity in the sensor data 
and suggests a potentially passable gate. The distance 
function is modified as follows: 

 

 

(3

) 

where RX , TX , and gX  respectively denote the pose 

information of the robot, the target, and the gap. When 

performing the heuristic search, the distance metric 

forces the robot to first search branches which lead to 

passable gates. As the result, given the same computing 

time limitation, the robot is more likely to move toward 

passable gates in early stage and therefore navigates 

smoothly. Previous studies have shown that, when the 

distance metric was applied to navigate in a static 

environment, the performance is better than that of using 

straight-line distance metric. Computing ( )dist t   and 
( )vis t   requires repeatedly checking whether a straight 

path exists between the robot and target. An intuitive 

solution is the ray-casting algorithm, but this is unsuitable 

in this task because of its computational complexity. 

Algorithm 2 shows the pseudo code to compute 

distance and visibility costs. The algorithm first acquires 

the estimated target location or path, depending on 

whether the pseudo-goal or trajectory-optimization 

approach is used. It then checks the stop condition and 

sees if the target human is within one meter. In the 

pseudo-goal method, the algorithm also checks to see if a 

rotation is required to maintain the target human within 

the comfort zone which allows maximum information 

gathering. Finally, an optimal trajectory is selected using a 

heuristic search approach and the proper velocities are 

given to the robot. Algorithm 3 describes the pseudo code 

of the trajectory-optimization following algorithm. 

 

0

0

1 2( ) ( )
t T

t t

Cost dist t vis t 




   

(Straight paths exists between & )

( , ) ;

( , ) min( );

R T

R T R T

R T T g g R
g

If X X

dist X X X X

else

dist X X X X X X
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Algorithm 2. Distance and visibility cost computation algorithm. 

Goal: Compute distance and visibility costs 

Requires: Robot pose, target pose, gap pose 

1: Acquire robot pose: XR 

2: Acquire target pose: XT 

3: Acquire gap pose: XgG 

4: If straight line exist between XR & XT 

5:   dist(XR, XT) = || XR - XT || 

6:   v(XR, XT) = 1 

7: Else 

8:   dist(XR, XT) = min(||XR - XT||+ || Xg – XR||) 

9:   v(XR, XT) = 0 

10: End if  

11:  

12:  

 

 

Algorithm 3: Human following: trajectory optimization algorithm 

Goal: Follow the human target  

Requires: Target pose, robot pose, target trajectory 

1: Acquire target pose and robot pose: XT 

2: Acquire target trajectory: ET 

3: While (1) 

4:   DT = T rX X  

5: If DT > 1 

6:  Run Distance and Visibility Cost Algorithm: DWA* (ET) 

7: End if   

8: End While  

Experimental Results and Analysis 

In this section, the algorithms proposed in previous 

sections are extensively tested in designated scenarios 

and the real-life contexts such as a university library. The 

proposed algorithms are implemented on a commercial 

robotic platform, the Pioneer 3 robot, which is a circular 

differential robot and with a maximum velocity of 0.5m/s. 

A SICK LMS100 laser range finder with an operating range 

of 20 m is used. 

Robot motion in free space  

To compare the pseudo-goal and trajectory-

optimization approaches, three different cases of human 

trajectories are used to test the robustness of robot 

following: straight line, circular motion, and S shape. The 

target human trajectories and performed robot 

trajectories of one tested example are illustrated in Fig. 2. 

Detailed analyses of these tested experiments are 

discussed below. 

  
(a) (b) 

  

 

(c) 

Figure 2: One tested example: (a) straight line, (b) circular motion, 

and (c) S shape. Note that the target human trajectories and 

performed robot trajectories are shown in black and red, 

respectively. 

To characterize these maneuvers, three metrics are 

used to evaluate the experimental performance: 

1. Angle between human position and robot pose. 

, ,

, , , ,

( , )
( , ) 1 ( , ) 1

2

R t T t

R t T t R t T t

X X
vis X X v X X






   

max

0

1 , , 2 , ,( , ) ( , )
t

R t T t R t T t

t t

Cost dist X X vis X X 


   

http://www.ausmt.org/


 ORIGINAL ARTICLE  Tracking and Following Algorithms of Mobile Robots for Service Activities in Dynamic Environments 

www.ausmt.org  56           auSMT Vol. 5 No.1 (2015) 

Copyright © 2015 International Journal of Automation and Smart Technology 

2. Degree of robot fluctuation. 

3. Distance between robot and the target. 

First, the position and angle of the target human with 

respect to the robot is computed as follows: 

 

(4) 

Ideally, the robot should be able to maintain the 

target in front (0 degree) at all times to ensure robust 

following and to maximize target visibility. Directional 

fluctuation is another metric used to evaluate human 

following performance. The less the robot’s direction of 

movement fluctuates, the greater the robot’s stability. The 

fluctuation degree is evaluated by computing the STD of θ 

in each trial:  

 

(5) 

where N = # of scans. 

 

 

(6) 

In straight-line following, the robot follows a human 

target in a straight line using local goal approach, pseudo 

goal approach, and trajectory optimization approach. In 

each case, three trials are taken in the experiment and the 

average discrepancy is computed as shown in Table 2. 

Upon acquiring the average discrepancies, an average 

value is taken of the three trials as the performance index. 

In addition, to observe the variation in human angles (i.e., 

the degree of fluctuation in direction when following the 

target), the standard deviation is also computed for each 

trial. The lower the STD value, the less fluctuation, 

indicating greater robot stability during the experiment. It 

can be observed that the performance index is further 

minimized when the trajectory optimization approach is 

used. In other words, for straight line following, the 

trajectory optimization approach outperforms the local 

goal and pseudo goal approaches. 

In the case of circular motion following, the 

robot follows a target human moving in a circular 

pattern using the pseudo goal approach and the 

trajectory optimization approach. Note that, when the 

local goal approach is applied, the robot is incapable of 

following the target (i.e.., loses the target) due to all the 

detours and delays discussed in the previous section. 

Table 3 shows the human angle θ and the performance 

index using the pseudo goal approach. The robot was 

able to successfully follow the target human. However, 

the performance indexes are over 30 degrees which 

indicates the robot had difficulty maintaining the target 

in front and often had to perform drastic course 

corrections to continue the pursuit. However, overall 

performance is improved by using the trajectory 

optimization approach. 

 
Table 2. Performance index of straight line following. 

    Performance Index 
Metrics 

local 

goal 

pseudo 

goal 

trajectory 

optimization 

Average Discrepancy 

(Degrees) 
12.95 10.33 2.84 

Standard Deviation 
(Degrees) 

10.70 7.75 3.45 

Relative Distance (m) 2.85 2.64 2.37 

 
Table 3. Performance index of circular motion following. 

      Performance Index 
Metrics 

pseudo 
goal 

trajectory 
optimization 

Average Discrepancy (Degrees) 34.42 28.95 

Standard Deviation (Degrees) 35.33 29.41 

Relative Distance (m) 3.40 2.54 

 

In S-shape motion following, the target human is 

instructed to move in an S-shape pattern for the robot to 

follow. The local goal approach also fails to follow the 

target human in this case. The S-shape target motion is a 

more challenging trajectory for the robot to follow since 

the target changes its velocity abruptly at two separate 

times. The results are summarized in Table 4, showing a 

large performance index, similar to the results for circular 

target motion. Therefore, once again, the robot struggles 

to maintain the target in range. The computed results 

indicate that the performance indexes are drastically 

reduced compared to results from that obtained using the 

pseudo goal approach. In other words, the robot is much 

more likely to be facing the target and is also more stable 

during the experiment. This result is expected since the 

trajectory optimization approach takes target velocity into 

consideration when selecting the optimal path and the 

pseudo goal approach does not. Consequently, it is easier 

for the robot to adjust its motion by selecting the 

trajectory that most resembles the target trajectory. 

In summary, these experiments show that, when 

the robot follows a target human in free space, the local 

goal approach fails for targets moving in a circular or S-

shaped pattern. The pseudo goal approach also struggles 

to maintain the target within the comfort zone. Finally, 

using the trajectory optimization approach, the 

discrepancy between the human angle and the robot 

improves, especially in the case of S-shaped motion, 

where the human abruptly alters the motion velocity. The 

variation of the robot motion, illustrated by the standard 

deviation, is also the smallest for each case when applying 

1 target
tan ( )*180 /

target

x

y

 

2

1
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STD  
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the trajectory optimization approach. In other words, the 

robot is able to follow the target efficiently and robustly 

with the trajectory optimization approach. In addition, the 

robot is capable of following the target closely with a 

smaller distance between robot and the target when the 

trajectory optimization approach is applied. 

 
Table 4. Performance index of S-shaped motion following. 

      Performance Index 
Metrics 

pseudo 
goal 

trajectory 
optimization 

Average Discrepancy 
(Degrees) 

32.30 12.28 

Standard Deviation 
(Degrees) 

34.41 13.47 

Relative Distance (m) 3.28 3.01 

 

Static and Dynamic Obstacle Avoidance  

Another objective of the experiment is to 

demonstrate the robotic ability to avoid static and 

dynamic obstacles when following the target. 

Experiments were performed where the robot follows a 

target human for a longer duration and also in a narrow 

hallway. The trajectories and snapshots are shown in Fig. 

3. In Fig. 3(a), the rectangle in the map shows the starting 

position of the robot. The blue circle and line indicates the 

robot’s trajectory. 

The cross marks on the map depict the position of 

the target human during the experiment. The green marks 

show a secondary human blocking the robot; the robot 

moves around this person to continue pursuing the target 

human. The robot rotates to move around the blocking 

human (snapshot 2) at scan 155 which results in the target 

human appearing at a less acute angle. Similarly, the robot 

rotates to avoid static obstacles (boxes shown in snapshot 

1) at scan 190. The experiment also shows that the robot 

is able to follow a target human in a narrow corridor as 

shown in Fig. 3. Furthermore, implementing the trajectory 

optimization algorithm best enables the robot to avoid 

any static or dynamic obstacles through the addition of 

distance and visibility metrics. 

Real-Life Scenarios 

As mentioned in the Introduction, one of the 

primary objectives of achieving human following is to 

allow robots to assist humans in various environments. 

After performing the motion maneuver tests and 

numerous set-up experiments, the proposed algorithms 

were extensively tested in real-life environments, such as 

a student cafeteria, a crowded computer center, and a 

university library. Figure 4 depicts the robot following a 

human target in a library. In Fig. 4(a), the robot starts to 

follow the human target. In addition to the target, two 

other individual humans appear within robot range as 

shown in Figs. 4(b) and 4(d). In Fig. 4(c), the target makes 

a turn into a narrower aisle and the robot continues to 

pursue. Once again, the target makes another turn into an 

even narrower aisle between shelves in Figs. 4(f) and 4(h). 

The robot is able to make the same turn without colliding 

with the obstacles. The global map is illustrated in Fig. 5. 

In these real-life scenarios, the robot demonstrates its 

ability to follow a human target in a more complex and 

dynamic environment. The robot performed exceptionally 

well and proved its robustness when the proposed 

following algorithm is implemented. 

 

 

 

(b) 

 

(a) (c) 

Figure 3. Human Following in Narrow Corridor.(a)Global map showing 

robot (blue ‘o’), target (black ‘x’), and human (green ‘*’). (b) and (c) 

Snapshots 1 and 2. 

Conclusion 

This paper presents an active human following 

system combining DATMO and DWA* to allow a robot to 

follow a target while avoiding any static or dynamic 

obstacles along a given path. To improve real-time 

performance in a dynamic environment, several 

techniques are used to correct the scan matching results 

such as outlier filtering, moving objects filtering, and 

multi-scan matching. These techniques can significantly 

improve the localization results and still maintain the 

computational advantage to perform in real time. When 

detecting humans in the DATMO system, three techniques 

are proposed to efficiently distinguish and filter out 
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surrounding noise which can result from the inaccuracy of 

the laser range finder and more complex environments. 

Related experimental results demonstrated that applying 

these techniques significantly reduces noise. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 4. Human following in library. 

 

Furthermore, integration approaches, namely 

pseudo goal and trajectory optimization, are proposed to 

combine DWA* navigation with the DATMO system. The 

pseudo-goal approach does not need to modify the cost 

function in DWA* and is easy to implement. This allows 

the robot to follow the target in a smoother and more 

spontaneous manner by manipulating the temporary 

goal. However, performance suffers from the lack of 

consideration of target velocity and trajectory. In other 

words, the path that robot selects to reach the target is no 

longer optimal because it does not consider where and 

how the target will behave in the following instant. 

Different from the pseudo-goal approach, the trajectory 

optimization approach estimates the target trajectory 

prior to selecting an optimal path. Distance and visibility 

metrics are implemented in the cost function to choose 

the optimal path. The distance metric ensures the robot 

chooses a path that most resembles the target trajectory 

while the visibility metric maximizes the target visibility at 

each time instant.  
 

 

Figure 5. Human following in library. Global map showing robot and 

target trajectories in blue ‘o’ and black ‘x’. 

 

For future work, there is room for improvement on 

the DATMO system which can help resolve complex 

occlusion issues by adopting a more advanced tracking 

algorithm. As for path planning, a more sophisticated 

method such as POMDP can also be implemented. 

Furthermore, a camera can also be equipped on the robot 

to provide additional features such as color and shape 

recognition to enhance the robustness of target following 

and to improve SLAM accuracy. In terms of practical 

applications, even though the robot has been 

demonstrated to successfully operate in real-life 

environments such as a library and cafeteria, additional 

factors must be considered for full-time service-related 

tasks in these environments. For example, the batteries 

for the laser range finder and robot must be recharged 

regularly. Eventually, the goal is to deploy the robot using 

the proposed system in a library or office for a longer time 

to assist humans in various tasks. 
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