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Abstract: While on the path forward to the long-term or lifelong robotics, one of the most important capabilities is to 

have a reliable localization and mapping module. Data association and loop detection play critical roles in the 

localization and mapping problem. By utilizing the radio frequency identification (RFID) technology, these problems 

can be solved using the extended Kalman filter (EKF) based simultaneous localization and mapping (SLAM) with the 

tag information. But one of the critical barriers to the long-term SLAM is the overconfidence issue. In this paper, we 

focus on solving the overconfidence issue, which is introduced by the linearization errors. An Unit Circle 

Representation (UCR) is proposed to diminish the error in the prediction stage and a Correlation Coefficient 

Preserved Inflation (CCPI) is developed to recover the overconfidence issue in the update stage. Based on only 

odometry and sparse short-range RFID data, the proposed method is capable to compensate the linearization errors 

in both simulation and real experiments. 
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Introduction 

Simultaneous localization and mapping (SLAM) is 

one of the foundation stones for long-term robotics. The 

detection and recognition of the loop closures are critical 

in SLAM, in which the incorrect loop closures leads to 

bad estimates or divergence. Our previous work [11] has 

shown that loop detection can be solved by matching the 

tag ID directly. However, one of the remaining issues is 

overconfidence in which the ground truths of landmarks 

are not properly covered by the estimates. 

The overconfidence situation, also called 

inconsistency, is difficult to compensate, due to that the 

ground truth is impractical to obtain in real environments. 

Thus, the inconsistency detection and recovery are 

almost impossible without any further information. The 

inconsistency could be introduced by the linearization 

error while obtaining the first order derivative 

approximation [17]. In this paper, a modification of the 

state vector representation, the unit circle 

representation, is applied to decrease the linearization 

errors. Moreover, in order to recover from the 

inconsistency, an inflation scheme, the correlation 

coefficient preserved inflation, is utilized to enlarge the 

possibility of the estimates while considering the 

relationships between landmarks and the robot. With 

these two improvements, the residual of the first order 

derivative approximation can be compensated for 

performing long-term SLAM. Following our previous 

work [11], a short-range passive RFID system is exploited 

to accomplish a low cost and highly reliable long-term 

SLAM system. 

It is well known that the RFID technology is flexible 

and feasible because of RFID's fast detection capability 

and contactless identification with perfect data 

association. The RFID technology has been used to solve 

a number of daunting robot perception problems such as 

mapping, localization and activity recognition. With a 

predefined or calibrated map of RFID tags, localization 

can be performed [3-5]. Hähnel et al. [6] and Joho et al. 

[7] proposed to learn the map of the RFID tags with 

perfect localization, and then use the built map to 

perform localization in which mapping and localization 

are solved separately in two stages. In [8], data from a 

camera and RFID mounted on a pan-tilt unit of a robot 

are fused to accomplish person tracking in which a RFID 

tagged person can be followed by the robot.  
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Our previous work [11] has demonstrated the 

feasibility of using RFID to solve the data association 

problem. It was pointed out that there are three major 

differences comparing to the conventional EKF-based 

SLAM with laser scanners. The first one is the contrast 

between the large odometry uncertainty and the small 

RFID sensor uncertainty. The huge odometry uncertainty 

is increased continually as the robot moves while the 

uncertainty from the RFID is within a 10 cm radius circle. 

The second one is that if a local RFID measurement is 

obtained, the localization is accurate. Since the sensor 

model is accurate, the localization of the robot near the 

tags is precise due to that the uncertainty of the robot 

converged quickly to the landmark/tag. The final one is 

that the update step is executed less frequently. While 

operating in environments with sparse tags, only the 

prediction step is executed in most of the time. 

Therefore, one of the challenges of EKF-based RFID 

SLAM is to estimate the robot pose between the tags. 

As the previous work, we utilized the low-end 

sensor, RFID, to perform a reliable SLAM while verifying 

the proposed ideas. Figure 1 (a) shows the NTU-PAL4 

robot in which the RFID reader was mounted on the right 

side of the robot and the SICK LMS291 laser scanners 

were used to collect ground truth data. Figure 1 (b) 

shows the RFID system used in this work. The RFID 

system is the RWM600 module for ISO/IEC 15693 spec 

working on 13.56MHz channel with 5Hz reading 

frequency and the sensible range is 0.1 m. As the RFID 

devices in this work only have a centimeter level of 

detection range, only odometry data are available most 

of the time in the situations that RFID tags are deployed 

sparsely in environments. While a new feature/landmark 

is added to the SLAM state vector, the global pose 

uncertainty of the robot is taken into account to 

estimate the location probability of this new feature. 

Since the deployed tags are sparse, the size of the SLAM 

state vector can be maintained for real time applications 

with limited computational resources. 

Note that the interference between RFID antennas 

should be introduced to any RFID system with multiple 

readers. In this work, only one RFID antenna is exploited 

to reduce the complex interference issue. Still, the RFID 

system used in this work shows the existence of a tag 

while this tag has left the sensible area of the reader 

from a couple more seconds ago. Unlike [26] to learn the 

probability of the detection correctness, the 

delayed-state EKF [8] is implemented to deal with the 

false measurements to diminish the effect. 

With the remove of false measurements, a 

modification of the state vector representation, and a 

technique to adjust the estimate while considering the 

relationship between the robot and landmarks, a 

long-term RFID SLAM can be demonstrated. The 

following sections of this paper are organized as the 

following. Sec. II describes the related works on the RFID 

sensor model and the modifications to improve EKF 

SLAM. The vanilla EKF RFID SLAM approach, the unit 

circle representation in the prediction step, and the 

correlation coefficient preserved inflation in the update 

step are introduced in Sec. III. Sec. IV exhibits the 

simulation results in different conditions. Sec. V shows 

the results of the real experiments. In the end, Sec. VI 

concludes the contributions of this work.  

(a) The NTU-PAL4 robot. 

 

 
(b) The short-range passive RFID reader and tag. 

Figure 1. The RFID system is mounted on the right side of the NTU-PAL4 
robot parallel to the robot body. The SICK laser scanners on the top of 
the robot were used to collect ground truth data. 
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Table 1. Comparison of the related works. In the tag layout item, R is the abbreviation of random and S stands for structured in which the type of 

deployment is specified. In the number of tags column, Active indicates the active RFID system is used. 

Approaches Achieved Task Tag 

Layout 

Antenna 

(Reader) 

Detection 

Range (m) 

#Tags Field Size Coverage 

(m2/tag) 

Hähnel et al. [4] Mapping first, then Localization R 2 6 100 28m*28m 7.84 

Joho et al.[5] Mapping first, then Localization R 2 5 350 1m between 2 tags 1 

Ni et al. [1] Localization only S 4 45 16 Active 4m*9m 2.43 

Liu et al. [2] Localization only R 2 10 30 4m*10m 4 

Bohn and Mattern [3] Localization only S 1 0.04 30 0.5m*0.5m 0.0083 

Johansson and Saffiotti 
[9] 

Navigation, Mapping S 1 1 350 7m*4m 0.08 

Vorst and Zell [10] Trajectory estimation R 4 10 400 15m*10m 0.375 

Kleiner et al. [7] Exploration, SLAM with laser R 1 0.3 50 16m*16m 5.12 

Chen and Wang [11] SLAM R 1 0.1 25 20m*50m 40 

Artur and Zell[26] Mapping, negative information R 2 7 71 65m2 0.915 

        

Related Work 

Table 1 summarizes a comparison of the related 

works and demonstrates the significance of the 

approaches in terms of the cost, the achieved tasks and 

the coverage area per tag. While most works use 

long-range active or passive RFID technology and deploy 

dense tags on the scene to accomplish localization and 

mapping separately, our previous work [11] has been 

employed to show with sparse tags as the conventional 

approach in this work. For RFID systems, there are two 

major measurement modeling approaches, the 

environment based model and the sensor centric model. 

In the environment based modeling approach, data are 

collected at each place in the environment as snapshots 

or fingerprints [12][13] which are later used for 

accomplishing localization. In [10], the robot trajectory is 

estimated in a batch-processing fashion which could be 

unsuitable for real-time and online robotic applications. 

The sensor centric measurement modeling approach was 

firstly proposed in [6]. Vorst and Zell [14] proposed a 

semi-supervised learning approach to learn about the 

detection probability. With a high-end long-range RFID 

system, Ni et al. [3] adjusted the power levels of the 

antenna to change detection ranges for estimating 

distances between the reader and tags. In the RFID 

systems that the received signal strength indication (RSSI) 

is available, the signal strength can be used for 

estimating distances between the reader and tags [15]. 

Joho et al. [7] took both RSSI and the detection 

probability into account using a hybrid measurement 

model. With the high-end RFID systems, measurements 

from RFID could contain range information. And with 

multiple readers, bearing information could be available. 

In this work, a low-end RFID system is applied in which 

both range and bearing information are unavailable. 

For sensors which are not capable to obtain the 

measurement information instantly, the delayed 

initialization method is applied for waiting more 

confident data or accumulating the range data from two 

bearing only measurements. In the control literature, the 

delayed-state EKF had been proposed to estimate the 

states of nonlinear time-delay systems [8]. In the 

robotics literature, Eustice et al. [16] used the exactly 

sparse delayed-state filter to initiate new landmarks. 

With the augmented poses, landmarks can be estimated 

more accurately by exploiting delay measurements. 

Julier and Uhlmann [17] exhibited a simple 

example that even the robot is stationary without any 

transition noise, the SLAM algorithm yields an 

inconsistent map subsequently in which the SLAM is 

utilized under a two-dimensional plane with a typical 

range-bearing sensor. The results of [17] show that the 

inconsistency issue is introduced by the non-linear model. 

Following this conclusion, Castellanos et al. [18] 

reexamined the same problem and find out that the 

inconsistency from the linearization error would make 

the estimator overconfident after a long duration or in a 

large environment. Therefore, [18] suggests keeping the 

small map and applies a local map solution to their 

following work [19]. 

Bailey et al. [20] and Huang and Dissanayake [21] 

take a further look of the inconsistency phenomenon. 

Bailey et al. [20] learn that the vehicle heading 

uncertainty is the major cause of the inconsistency 

problem in 2D SLAM. Furthermore, [20] provides a 

verification index called Normalized Estimation Error 

Squared (NEES) to characterize the filter performance. 

Huang et al. [21] interpret the convergence property and 

the source of inconsistency with theoretical proofs which 

support that the scale of the angular uncertainty would 

affect the inconsistency as discussed in [20]. Moreover, 

[21] provide the lower bound of the uncertainty for the 

2D SLAM problem which constructs the connections 

between the theoretical stationary uncertainty and the 

given motion and observation models. 

Accordingly, the conventional EKF SLAM would be 
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inconsistent in large environments. Castellanos et al. [19] 

use small robo-centric maps to reduce the expansion of 

the nonlinearity, but the fundamental problem of the 

inconsistency still exists. Agamennoni et al. [22] propose 

an outlier robust Kalman Filter to remove outliers and 

reduce the inconsistency. [22] focuses on dealing with 

sequential data in which the non-Gaussian and 

heavy-tailed noise occurs. The key idea of [22] is applying 

a recursive iteration to execute the update step of the 

EKF several times. By adjusting the sensor uncertainty, 

the update step would converge with robustness. Since 

there is a recursive step in the update step, the 

computational cost would be higher than the 

conventional method. Choi and Oh [23] proposed to 

inflate the covariance matrix according to the shifted 

mean to deal with the so-called "disturbance". Thus, the 

Shifted Mean based Covariance Inflation (SMCI) is 

utilized to expand the covariance matrix to cover the 

disturbance as one of the possibility. But the drawback 

of the SMCI method is that the relationships between 

the robot and landmarks are not taken into 

consideration. 

Long-term RFID SLAM 

The framework to achieve long-term RFID SLAM is 

based on our previous work [11]. Then, since the 

previous work will failed to perform long-term tasks, we 

proposed two improvements in the prediction and 

update stages of the EKF estimator. The first modification 

focuses on the prediction step of the EKF to improve the 

linearity while the second modification aims at the 

update step of the EKF to increase the robustness while 

overconfidence happened. 

Vanilla Approach and Essential Probabilistic Models 

The EKF estimator is utilized to compute the 

estimate following the scheme in [11]. The robot pose in 

the global coordinate system is computed with data from 

odometry given the initial pose. The robot pose 

transformation is the same as [24] in which the pose is 

represented with [x y θ] as a point with orientation. 

Therefore, the odometry information is decomposed to 

three components: a rotation, followed by a straight line 

translation, and another rotation to finalized one step 

movement. The motions are formulated as a [d r1 r2] 

vector, in which d is the translation, r1 is the initial 

rotation, and r2 is the final rotation. Following [24], the 

probability is represented with a Gaussian distribution. 

Therefore, the variances of the three components are 

estimated using: 
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where α and β are the percentage of the distance 

and rotation difference and σ d,min, σ r,min are the 

minimum standard deviation of distance and rotation 

respectively. 

The probabilistic short-range RFID measurement 

model is established as P(zt|Δ(xt; li)), whereΔ(xt; li) is 

the relative location between the i-th tag and the RFID 

antenna, zt is the measurement from the reader, xt is the 

antenna pose, and li is the i-th tag location. Without RSSI 

and power level data, our RFID system only receives 

strings of the tag ID code. Therefore, the nearby 2D 

space is separated to 2cm by 2cm grids and accumulated 

the tag detection events respectively. The weighted 

mean and variance with respect to the antenna 

coordinate system are computed by utilizing the 

histogram of the tag detection events in a 2D space. 

More than essential models in the vanilla approach, 

our RFID system shows that some ghost detection exist 

during the detecting period as describing in [26]. The tag 

arriving events are sensitive and accurate in which the 

measurement delay is less than 0.2 seconds. 

Unfortunately, the tag leaving events response much 

more slowly and the delays can be up to 1.6 seconds. 

This means that the reader still reports the existence of a 

tag while the tag has already left the sensible area of the 

antenna. These incorrect measurements would produce 

incorrect estimates of the tag locations. Thus, the 

delayed time should be modeled to compensate the 

effects. By considering the temporal and spatial 

relationships between the tag and the antenna, the tag 

location in the antenna coordinate system transferred to 

the global coordinate system with compound and 

inverse transformations. 

To compensate this delay effect, a queuing 

method is introduced to recover the leaving 

measurements. The measurements from the time of tag 

leaving to the previous 1.6 seconds are removed in the 

measurement queue. With the use of delayed-state EKF 

[16], the augmented poses are activated when the tags 

are observed with collecting the poses of the delayed 

measurements. In this work, at most 10 augmented 

poses are kept and will be eliminated while there is no 

new observation. With these 10 augmented poses, the 

proposed method would be guaranteed to cover 2 

seconds comparing to the 1.6 seconds time delay. Here, 

the augmented poses are introduced to estimate the 
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SLAM state with: 
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where Xt = xt-k:t, Zt-k = z1:t-k, Ut = u1:t and M are the 

robot state, measurements, control commands and 

estimated map respectively. k is the delayed time of the 

measurement. From (2), the robot trajectory from time 

t-k to time t is saved. The augmented poses with a sliding 

window scheme are applied when the new tag 

measurement arrived and the augmented poses are 

removed from the current state vector if there is no 

measurement. 

Linearization Improvement with Unit Circle 

Representation (UCR) 

The nonlinearity would cause the EKF estimator to 

become overconfidence which would lead to a diverged 

estimate. By examining the EKF equations, the 

linearization error is introduced by not only the 

transformed control noise, but also the transition 

Jacobian. Figure 2 reveals two situations with small and 

large uncertainty under the perfect motion control 

assumption which represents that the control noise is 

zero. It is obviously to show that even under the perfect 

motion control assumption; the robot pose uncertainty 

would introduce large linearization error if the original 

value of the uncertainty is large. That is because of the 

transition is not linear due to the heading of the robot. 

Therefore, the objective of the modification here is to 

make the transition as linear as possible. 

A well-known linear transformation in the 

Computer Graphics literature is the Quaternion 

transformation at the three dimensional space. We first 

applied the Quaternion on the 2D space with the 

projection. Unfortunately, the Quaternion projected to 

two dimensional space is not linear while performing the 

transition. Two quadratic terms are generated during the 

transition and lead to nonlinear. By employing the Angle 

Addition Theorems, the quadratic terms are eliminated 

and the representation of the robot pose is Equation (3). 

Therefore, the prediction transition is Equation (4). 

The relationship between the proposed unit circle 

representation and the θ only representation is a 

projection from the θ domain to the 2D space 

composed with cos and sin functions. It is clear that the 

proposed representation makes a projection to a unit 

circle (cos, sin). From Table 2, the linearity of two angular 

space representations are compared. The representation 

of θ is linear at the dimension of θ, but it is nonlinear 

at the dimension of x and y since the cos and sin 

functions provide the nonlinear transform here. The 

proposed unit circle representation is linear at all 

dimensions of the robot state. The unit circle 

representation can reduce the nonlinearity as shown in 

Figure 2. In Figure 3, the area of the ground truth 

distribution covered by the estimator is revealed with 

different angular uncertainty. After 25 degree 

uncertainty, the proposed approach covered more area 

than the vanilla approach. The result is generated with 

15000 samples and 2 m uncertainty in x and y. 

 
 

 
(a) Small uncertainty situation. The left figure is the vanilla approach while the right figure is the proposed 
approach with 2σbound 
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(b) Large uncertainty situation. The left figure is the vanilla approach while the right figure is the proposed 
approach with 2σbound 

Figure 2. Different situations under the perfect control assumption. When the uncertainty of the robot is small at Ti, the prediction from Ti to Ti+1 
introduced quite small linearization error in which could be negligible. But if the uncertainty of the robot is large, the prediction from Tj to Tj+1 led to 

huge linearization error. 
 

 

Figure 3. Area covered by the estimators to the ground truth. 

 
Table 2. Comparison between different angular representations. Note that the control input of the odometry motion model is (d, r1, r2) and the 
variables with prime is the prediction result at the next time step comparing to the variables without prime. 

Angular 

representation 

θ cos(θ), sin(θ) 

Robot state (x, y, θ)T (x, y, cos(θ), sin(θ))T                                    (3) 

Transition 

formulation 
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(a) Overall view with 2σbound (b) Inconsistent part 

Figure 4. Overconfidence case with 25 tags. The blue squares are the ground truth of tags while the black dots are the estimation with the two sigma 
bound uncertainty colored with light red ellipses after the prediction step. The green line is the desired robot path. The brown crosses are the target 
points which the inflated covariance needs to cover. The purple ellipses on the right figure are the inflated covariance according to the target points. 

 

Robustness Improvement with Correlation Coefficient 

Preserved Inflation Techniques (CCPI) 

Since the times of the prediction is much larger 

than the times of the update in our setting, the 

overconfidence issues are significant as shown in Figure 

4. This case shows that the overconfidence could happen 

at loop closures. The overconfidence can be recovered 

by inflating the uncertainty, with directly multiply a 

factor or [23] to compensate the residuals. 

Instead of the naive method which enlarges the 

whole covariance matrix with a single factor, we 

proposed a scheme with different inflating factor while 

considering the correlation coefficient between 

landmarks and the robot. Since the related correlation 

terms are one of the most important elements in the EKF, 

we should modify the correlation terms according to the 

correlation coefficient to preserve the relationship 

between landmarks and robot while performing 

covariance inflation. The correlation coefficient between 

two variables is rewritten as: 

 

 


     
  ,

cov( , )cov( , )
( , ) X Y

X Y

X Y X X Y Y

X YX Y
corr X Y     (5) 

 

where γX and γY are two desired inflating factor for X  

and Y accordingly. Thus, the relationship between 

landmarks and the robot can be preserved. Therefore, 

the matrix form of the inflating factor is: 
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       (7) 

 

where A is the inflating matrix with n landmarks, 02 is a 2 

by 2 zero matrix, I2 is a 2 by 2 identity matrix, γR is the 

inflating factor of the robot pose, and γθ is the inflating 

factor of the robot orientation. If the robot pose is 

represented by the unit circle representation, the 

inflating factor of the angular information would be 

separated to cos and sin space respectively. For example, 

the inflating factor γli of the i-th landmark is: 

 

   




  


1

2

( ) ( )
i i i i i

i

T
l l l l l

l
                  (8) 

 

whereμ li is the mean after the update, λ  is the 

desired inflation sigma bound and 
il

 and 
il
 are the 

mean and covariance matrix after the prediction respect 

to i-th landmark. The proposed inflating factor varies 

according to the update mean and the predicted 

estimation. By applying Equation (8) and Equation (6), 

the correlation coefficient between each landmark and 

the robot are preserved. 

Three covariance inflation methods are evaluated, 

including a naive method, Choi and Oh [23], and the 

proposed CCPI. Assuming the inflation factor is γ, the 

naive method to tackle the covariance inflation is by : 

 

  *t t                                 (9) 

 

 Figure 5(a) reveals the result using the naive 

method and it shows that once the inflation is performed, 
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it is hard to converge back. Another drawback of inflating 

the covariance with single factor is that there are some 

landmarks in which their inflations are unnecessary. 

Therefore, by applying [23], Figure 5(b) exhibits the 

inflated result. It is better than the naive inflation 

scheme, but it is still could not converge as the 

relationship between the robot and each landmark is not 

taking into account. The result of the proposed inflation 

scheme is displayed in Figure 5(c), which show that after 

preserving the relationship, the estimate can converge 

better and more accurate. 

 

 

 

 

 

 
(a) Naive inflation (b) The SMCI (c) The proposed CCPI 

Figure 5. The results of three inflation methods with 25 tags after 10 loops with 2σbound 

 

Evaluation with Simulations 

To evaluate the improvements, we define the 

evaluation metric for analysis. Since the modification for 

the long-term RFID SLAM is not only about the mean 

positions of tags and the robot pose but also about the 

related covariance matrix, Euclidean distance (E-dist) and 

Mahalanobis distance (M-dist) are applied for the 

performance quantitatively. The detection range of the 

RFID antenna is 10 cm in all simulations. The simulated 

robot equipped with one RFID antenna mounted in front 

of the platform. The simulation environment is 

30m×20m with 40 tags deployed randomly along the 

path. As the proposed approach using RFID and 

odometry data has limited bearing information, the 

results often show an angular shift compared to the 

ground truth. To properly evaluate the performance, the 

results are aligned with the ground truth with perfect tag 

ID association using the iterated closest point (ICP) 

algorithm [25]. 

Analysis with the Different Improvements 

In the first simulation, the effects of different 

improvements are evaluated with 25 tags. The 

combinations of the improvements are vanilla EKF SLAM, 

unit circle representation, correlation coefficient 

preserved inflation with the vanilla EKF SLAM, and 

applying both proposed modifications. Figure 6 shows 

the mapping accuracy of different kinds of 

improvements with 25 tags along the number of loops. 

The results indicate that the unit circle representation 

causes small improvement while the correlation 

coefficient preserved inflation introduces large 

improvement. Another observation from the results is 

that both indices are decreased along time gradually. 

The results in Figure 6 also illustrate that the M-dist is 

lower for the method with the proposed inflation 

technique in which the technique leads to the better 

estimates. 

Besides, the performance of the robot localization 

is also verified with the E-dist and M-dist as shown in 

Figure 7. Since the best performance is obtained with 

applying both improvements, the figures only display the 

difference of the both applied method and the 

conventional approach. And the proposed method 

reduces the robot localization error as the results reveal 

in the mapping in Figure 6. 

For detailed statistic values, we list the average 

E-dist in both localization and mapping at Table 3. The 

average E-dist of the localization is computed after the 

first loop closure while the E-dist of the mapping is 

obtained from the result after the 10 loop trajectory. It 

shows that the proposed method improves the 
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performance in both localization and mapping. 

In addition to the numerical comparison, the 

whole results after the 10 loop journey are illustrated in 

Figure 8. As illustrated in Figure 6, the same conclusion is 

confirmed that the improvement of the unit circle 

representation is smaller than the correlation coefficient 

preserved inflation. And still, the results with both 

improvements are the best. From those figures, the 

upper results without the inflation technique encounter 

the overconfidence and could not compensate the effect 

while the lower results are capable to alter the 

uncertainty and lead to the proper estimate. 

 
Table 3. E-dist comparison of the proposed method and the vanilla 

method in terms of robot localization and mapping. 

 Robot Localization Tag Mapping 

 Vanilla Proposed Vanilla Proposed 

25 tags 3.23m 1.91m 2.30m 0.36m 

 

 

  
(a) E-dist of 25 tags in terms of mapping.  (b) M-dist of 25 tags in terms of mapping. 

Figure 6. Mapping results of 25 tags. 

 

 

 
(a) E-dist of 25 tags in terms of robot localization. 

 
(b) M-dist of 25 tags in terms of robot localization. 

Figure 7. Localization E-dist and M-dist results of different improvements with 25 tags. The green dash line indicates the 5m error line for 
comparison. 
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(a) Vanilla EKF-based SLAM (b) UCR 

  
(c) CCPI (d) Applying Both Improvements 

Figure 8. Simulation results of 25 tags after the 10th loop. The blue squares are the truth and the green line is the path in which the robot follows. The 
estimation results are the black dots with the light red ellipses of the mean and 5σuncertainty bound. 
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Analysis with Monte Carlo Runs 

The second simulation is the applicability of the 

tag distribution. Since EKF-based RFID SLAM is a data 

driven approach in which the different given data would 

have different outcomes, a Monte Carlo Test is applied 

to evaluate the performance of the proposed method 

under different tag distributions. This simulation 

performs 10 loops for each sample and applies Monte 

Carlo test with multiple samples for 7, 13, and 25 tags. In 

each sample, a given number of tags from the total 40 

tags are selected randomly in the simulation. Table 4 

shows the total Monte Carlo samples in this simulation. 

In Table 4, the cases of the vanilla approach are acquired 

from the mapping results while the improvement of the 

proposed method is verified with the E-dist and M-dist. If 

the estimate is larger than 3 σ, the related tag is called 

overconfidence. Once over 50% of the landmarks are 

overconfidence, the sample is classified as the 

overconfidence case. Therefore, the criterion is stricter 

than [11] and nearly 50% of the samples are 

overconfidence. The statistics data in Table 4 reveals that 

the proposed method improves the percentage of the 

consistency case to more than 68% in all samples. 

In order to understand the enhancements of the 

proposed method quantitatively, we verified the E-dist in 

both localization and mapping with the overconfidence 

cases after applying the vanilla approach and listed in 

Table 5. The localization result is computed the average 

error after the first loop closure and the mapping result 

is the average error of the tags at the 10-th loop closure. 

The results show that the improvements in the 

overconfidence cases are about 20 to 30 percent. Second, 

if the number of tags is higher, the E-dist is smaller in 

terms of the robot localization. This leads the conclusion 

that the more tags, the more accurate robot localization. 

But in terms of mapping, it points out the same 

conclusion that more tags do not always improve the 

performance as [11]. Because the path of the simulation 

is a rectangle and the estimator with fewer tags cases 

almost adjust the relationships in inter-sides rather than 

the relationships in intra-side. The results show that the 

proposed method is capable to tackle the 

overconfidence situation and increases the localization 

and mapping accuracy. 

 

 

Table 4. Overall Monte Carlo Sample in different kinds of tag numbers. 
Once over 50% of the landmarks are overconfidence, the sample is 

classified as the overconfidence case. The definition of the over 
confidence here is the estimate is larger than 3 σ. 

7 tags(70 samples) 

 Vanilla Proposed  

Consistency 24(34.0%) 48(68.6%) 

Overconfidence 46(66.0%) 22(31.4%) 

13 tags(60 samples) 

 Vanilla Proposed  

Consistency 31(51.7%) 46(76.7%) 

Overconfidence 29(48.3%) 14(23.3%) 

25 tags(60 samples) 

 Vanilla Proposed 

Consistency 23(38.3%) 45(75.0%) 

Overconfidence 37(61.7%) 15(25.0%) 

 
Table 5. E-dist comparison of the proposed method and the vanilla 

method in terms of robot localization and tag mapping of 
overconfidence cases. 

 Robot Localization Tag Mapping 

Vanilla Proposed Vanilla Proposed 

25 tags(46 samples) 2.03m 1.47m 

(↓28%) 

1.49m 0.69m 

(↓54%) 

13 tags(29 samples) 2.66m 2.00m 

(↓25%) 

1.45m 0.57m 

(↓61%) 

7 tags(37 samples) 4.13m 3.40m 

(↓18%) 

1.37m 0.79m 

(↓42%) 

Analysis with Long-Term Capability 

To test the long-term ability of the proposed 

approach, a simulation with 1000 loops using 25 tags is 

executed. Figure 9 reveals the mapping result after 1000 

loops while Figure 9(a) is the E-dist of the comparison of 

the vanilla and proposed approaches. Note that the 

vanilla approach died after 178 loops. The result of 

vanilla approach in Figure 9(b) is the first diverged 

snapshot. The vanilla approach leads to overconfidence 

and the estimator crushed. Thus, Figure 9(a) illustrates 

that the proposed approach is survived after 1000 loops 

with a lower error than the vanilla approach. Moreover, 

the proposed method could adjust to a better estimate 

faster than the vanilla method in which the vanilla 

approach adjusted the estimate slowly. The result in 

Figure 9(c) illustrates that the proposed approach after 

1000 loops is able to perform long-term slam with 0.21m 

Euclidean distance error. 
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(a) E-dist in terms of mapping with 25 tags along 1000 loops. 

  
(b) Vanilla approach. (c) Proposed approach 

Figure 9. The mapping results of vanilla approach after 178 loops and proposed approach after 1000 loops with 5σbound. Note that the vanilla 

approach diverged and overconfidence to cover the ground truth. 

Experiments using NTU-PAL4 

The experiment using the NTU-PAL4 robot was 

conducted in 4th floor of the CSIE building in National 

Taiwan University. The environment size is about 20m by 

50m and the 66 passive RFID tags were randomly 

attached on the wall. The NTU-PAL4 robot was 

controlled manually to follow the wall for tag detection 

and executed 4 loops in the environment. In this 

experiment, the result of using 25 tags which selected 

from the whole 66 tags is displayed. The mapping results 

are verified in which the ground truth is labeled manually 

with the SICK laser scanner. 

Figure 10 displays the mapping performance along 

the time steps. Figure 10 (a) and Figure 10 (b) exhibit the 

overconfidence recovery of the proposed method near 

the 10000 time step. The CCPI technique for recovery 

had been activated and the performance has been 

enhanced after several time steps. The dive of the final 

E-dist with 25 tags is from 1.70m using the vanilla 

approach to the 1.58m using the proposed method. The 

M-dist index in Figure 10 shows that the proposed 

method is more robust than the vanilla method while 

the M-dist value is usually lower in most of the time. 

Furthermore, the final mapping results after 4 loop 
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closure are illustrated at Figure 11. Note that there is a 

large gap between two tags at the bottom of the map 

and this situation could not be handled in [11] and would 

introduce an oblique map in the end. The proposed 

method is capable to dealing this case and guides the 

estimate to the proper result. Since the experimental 

result is executed in 4 loops to demonstrate the trend, 

the result of the estimate has larger uncertainty than the 

simulation cases. Through the real data experiments, the 

proposed method achieves that not only the topological 

geometry of the built map is still close to the ground 

truth, but also the overconfidence are endured and 

recover to a better estimate.

 

 

 
(a) Mapping E-dist of 25 tags. 

 
(b) Mapping M-dist of 25 tags. 

Figure 10. Mapping results of the real experiment along time with 25 tags. The green dash line indicates the 5m error line for comparison. 

 

  
(a) Vanilla EKF-based SLAM. The E-dist of mapping is 1.70m. (b) Proposed method. The E-dist of mapping is 1.58m. 

  
Figure 11. Real experiment result of 25 tags after the 4th loop closure. The red triangle is the estimated robot pose and the black dots are the 
estimated tags with the light red ellipses 5σbound. The blue squares are the ground truth labeling from the laser scanner data. 
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Conclusion 

 In this work, we proposed two improvements for 

the prediction and update step in the vanilla EKF-based 

RFID SLAM. The proposed modification could 

compensate the overconfidence and arrange the 

possibility to a proper estimate. Both simulations and 

experiments demonstrate that the proposed 

modifications are feasible while executing the long-term 

large-scale SLAM using short-range passive RFID with 

sparse tags. By applying the proposed techniques, the 

long-term RFID SLAM is feasible. 
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