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Abstract 

In this article a new method of identification of a backlash zone width in 

a structure of an electromechanical system has been presented. The results 

of many simulations in a tested model of a complex electromechanical 

system have been taken while changing a value of a reduced masses 

inertia moment on a shaft of an induction motor drive. A wavelet analysis 

of tested signals and analysis of weights that have been obtained during  

a neural network supervised learning - have been applied in a diagnostic 

algorithm. The proposed algorithm of detection of backlash zone width, 

represents effective diagnostic method of a system at changing dynamic 

conditions, occurring also as a result of mass inertia moment changes. 
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1.  INTRODUCTION 
 

In this paper it has been assumed, that information has been available by meas-

uring signals, and this most often is the base of the diagnostic reasoning methods 

in electromechanical systems. The process of simultaneous classification of signals 

in the field of time and frequency is possible due to the use of transformation 

methods, which allow to test these signals spectral properties. Tested signal can 

be presented as linear combination of certain base orthogonal signals. This method 

minimizes the signal model. For the purpose of the minimization of the set of im-

portant coefficients of a distribution it is necessary to fit shapes of base functions 

to the analyzed signal (Zając, 2009). 

A progress in technology of signal processing has caused that during the last 

few years a big number of induction motor drives diagnostics methods by means 

of wavelet analysis have been studied and presented in numerous papers. Within 

the last two years more and more scientific works have occurred that have been 

using time-frequency methods and neural networks in fault diagnostics of in-

dustrial structures. 

During the last few years there have been published some works that have been 

using a combination of a wavelet transformation with an artificial intelligence meth-

od, and which have been presented as faults detection techniques. It is worthy  

to mention some of them, like the following ones: 

 using a combination of a neural network and a wavelet transformation for 

diagnostics purposes for the induction motor drive (Kowalski, 2005),  

 analysis of descriptions of a current of a motor (MCSA) for a stator 

current with the use of a wavelet analysis in faults detection of the broken 

rotor’s barrier in the transitional area (Douglas, Pillay & Ziarani, 2003),  

 presentation of methods of detection of rotor’s breakage in the cage 

induction motor on the basis of analysis of the stator’s current by means 

of using a Fourier transformation and a discrete wavelet transformation 

(Da Costa, Kashiwagi & Mathias, 2015), 

 analysis of stator’s current using the combination of a discrete wavelet 

transformation and a feedforward neural network and a neural network 

with radial activation functions (Sridhar, Uma Rao & Jade, 2016), as well 

as analysis of vibration - for the purpose of faults diagnostics of the induc-

tion motor drive using a wavelet decomposition and methods of clustering 

data FCM based on fuzzy logic (Chandralekha & Yayanthi, 2016), 

 presentation of a possibility of a mechanical estimation of state’s variables 

of a two-mass drive with the use of a perceptron neural network MLP 

(Multi Layer Perceptron) (Orłowska-Kowalska & Szabat, 2007), 

 diagnostics of the induction motor using a packet wavelet transformation for 

detection of faults of a stator’s current (Annamalai & Swaminathan, 2016). 
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2.  PRESENTATION OF THE METHODOLOGY AND RESEARCH  

ON FAULT IDENTIFICATION ALGORITHM 

 

Diagnostic tests have been carried out using a working machine in the form 

of a dynamic mass-absorbing-resilient element connected to the load of the in-

duction motor. There have been accepted nominal conditions of the induction 

motor, and this model has been built in a stationary coordinate system related  

to the stator (model α, β, 0). The tested backlash zone width occurs between the 

rod of the induction motor drive and a working machine drive wheel. 

A simplified form of the connection of the induction motor with a working 

machine has been shown on a diagram in Fig. 1. 

 

 

Fig. 1. A diagram showing the connection of the induction motor drive with the dynamic 

mass-absorbing-resilient element by means of a clutch, in which a backlash zone  

occurs and gradually increases  

 

The following parameters of the induction motor have been applied in the con-

ducted simulation tests (parameters of a substitute circuit are expressed in relative 

units): circuit stator relative resistance rs = 0.059 [Ω], circuit rotor relative 

resistance rw = 0.048 [Ω], relative reactance of the dispersion circuit stator  

xs = 1.92 [Ω], relative reactance of the dispersion circuit rotor xw= 1.92 [Ω], 

relative reactance of the dispersed circuit xm= 1.82 [Ω], mechanical time constant 

Tm = 0.86 [s].  

All tests have been carried out within a MATLAB / Simulink R2017a 

environment. 
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3.  IDENTIFICATION TESTS OF THE BACKLASH ZONE WIDTH  

IN AN ELECTROMECHANICAL SYSTEM CONTAINING  

A VISCOUS FRICTION 
 

The tests have been carried out in four test groups, with the following four differ-

ent values of apparent viscosity coefficient c: 0.8 [N.s/m], 1.0 [N.s/m], 1.25 [N.s/m] 

and 1.4 [N.s/m]. Each test group has contained seven cases with different inertia 

moment J1 values. Results of the simulations for all these physical quantities 

have been written in the matrix N[7,2048]. Elements of the matrix N have been 

written for each coefficient value of the viscosity friction c. The value of an inertia 

moment J1 has been determined as the percentage in relation to its nominal value 

J1, down with value A% and up with value C%. Formal changes of the inertia 

moment J1 have been written in matrix K1 in the following order: K1 = [nominal 

value of the inertia moment (J1 = 0.87 [kg*m2]), A=2.5% (J1 = 0.8482 [kg*m2]), 

A = 5% (J1 = 0.8265 [kg*m2]), A = 7.5% (J1 = 0.8047 [kg*m2]), A = 12.5%  

(J1 = 0.7612 [kg*m2]), C = 2.5 % (J1 = 0.8917 [kg*m2]), C = 5% (J1 = 0.9135 

[kg*m2])]. In all executed simulation tests the inertia moment J2 of the drive wheel 

of a working machine has been assumed to have value equal to 0.348 [kg*m2]. 

For each of the seven cases of changes of an inertia moment J1 there have 

been carried out simulation tests for six backlash zone widths. The backlash zone 

width values have been taken in sequence from the epsilon matrix, in the following 

order: K = [0.0025, 0.00375, 0.005, 0.0075, 0.009, 0.01]. All tests have been 

carried out for the discontinuity in zero value c1 = 0.2. 

The wavelet type and its order they have been selected in such a way that the 

shape of the basic wavelet approximately would be adequate to the character  

of the transient course of the tested physical quantity that would be obtained as a re-

sult of a simulation for the case of the smallest backlash value. Based on the carried 

out tests the following selections of wavelets have been made for individual 

physical variables, with decomposition level 10: 

a)  a linear acceleration of the induction motor drive a1 – wavelet function 

symlet of the order 5, 

b)  an electromagnetic moment of the induction motor drive mel – wavelet 

function daubechies of the order 6, 

c)  an angular speed of the induction motor drive rotor 1 – wavelet function 

symlet of the order 5, 

d) a linear acceleration of a mass a2 – wavelet function daubechies of the 

order 6, 

e)  a linear speed of a mass v2 – wavelet function symlet of the order 5. 
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In these simulation tests, it has been assumed that the process of the electro-

mechanical system dynamics testing within the backlash zone starts when the ex-

pression specified in the left part of the following inequality (1) is smaller than 

its right part: 

 

    6,...,2,121  i;
r

K
αα

(i)
,          (1) 

 

where:  r  – a radius of the drive wheel of a working machine [m], 

   K(i) – value that has been taken sequentially from the matrix K,  

   corresponding to the given backlash value of its mechanical  

   connection, 

   i – index number within the matrix K. 

 

The location change angle 1 for rod masses of the induction motor drive 

[rad] has been calculated using the formula: α1 =∫ ω1·dt, and the location 

change angle 2 of the drive wheel of the working machine [rad], has been 

calculated using the formula: α2 =∫ ω2·dt, where ω1 is the angular speed, done 

by rod masses of the induction motor drive [rad/s], and ω2 is the angular speed 

done by a drive wheel of the working machine [rad/s]. 

After satisfying the condition determined by the inequality described by formula 

(1) the electromagnetic moment of the induction motor drive in the tested 

electromechanical system is set to zero value. 

While conducting these simulations it has been assumed that specified earlier 

matrix K would contain 2000 samples of a signal, chosen in a sequence starting 

from the time obtaining in the tested model of an electromechanical system  

a backlash zone and also 48 samples preceding this point in time. This assumption 

has been presented in Fig. 2. 

 

 

Fig. 2. Testing dynamics in a backlash zone for all physical quantities carried out  

by means of selected time range choices (samples of the tested signal) 
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3.1.  Description of the learning process of the three-layer backpropagation 

neural network 

 

During simulations discussed in the Section 3.2 the value of the apparent 

viscosity coefficient c has been set up to 1.0, the value of the backlash zone 

width has been allowed to change and the value of the inertia moment J1 has 

been set up, and all these assumptions have had impact on all values of variables 

and matrices, that have been calculated or obtained during the conducted testing.  

Nonlinear neural network's learning algorithm based on the backpropagation 

of errors method enables reproduction of the assumed values of errors into 

deeper layers of this network (to which a direct access is not available), by back 

propagating errors detected on this network's output. During analysis of a single 

hidden layer neuron – errors of all of neurons, to which this single neuron has 

transferred his output signal have been taken into account. Then these errors have 

been summed up taking also into consideration these neurons weights. Fig. 3 pres-

ents used in the simulations 3-layers backpropagation neural network. 

 

 
 

Fig. 3. Used in the simulations 3-layers backpropagation neural network 

 

The first layer of this network represents the given set of sample pairs of this 

neural network input signals X1 and values of weights W1. The second and third 

layer of this network represents the set of the output signals of the second and 

third neural network layer X2 and X3, as well as sample values of their weights 

(i.e. W2 and W3). 
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The identification procedure could be successfully carried out in conditions 

of changing values of the reduced masses inertia moment and the induction 

motor drive J1, which has been stiffly connected to the rotor. 

The results of the backpropagation neural network processing depend on the ap-

propriate defining of the input signals in the first layer X1 and also on the initial 

selection of the weight values in the first, second and the third layer (i.e. in W1, 

in W2 and in W3). 

Input values X1 in the first layer of the neural network represent values of the 

matrix N normalized to the range [h2,k2] and have been calculated according  

to the formula: 

 

   
     ,7,...,1,2048,...,2,1;222

11

1

))((1 
















 pjkkh

kh

kN
X

jp

jp          (2) 

 

where:  N – values of the matrix registered during the test,   

   h1 and k1 – the minimal and the maximal value of the matrix N deter-  

    mined during the test, 

   h2 and k2 – the initial and the final value of the range, which contains 

   normalized values of the matrix N calculated during the test, 

   p – a column number of the matrix “K4”. 

 

For all tested physical quantities variables h2 and k2 represent the minimal  

(h2 = min(h3, h4)) and the maximal (k2 = max(h3, h4)) value. The values of the 

variables h3 and h4 have been calculated in the following way: h3 = (h5 – h6) and 

h4 = (h6 – h5), where h5 and h6 have been calculated as follows: 

 

       )5(1)4(1)4(1)3(1)3(1)2(1)2(1)1(15 NNNNNNNNh  ,     (3) 

 

       )5(2)4(2)4(2)3(2)3(2)2(2)2(2)1(26 NNNNNNNNh  .   (4)  

 

Values of two matrices Nm for m  {1, 2} represent arithmetic means of the 

matrix N and during the test values of their rows' elements have been calculated 

for a given value of the inertia moment J1 using the following formula: 

 

,
1
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n

N
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n

j
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for i  {1, ..., 5}, p {1, ..., 7} and for m  {1, 2}; and with the notice that for  

m = 1 (i.e. for matrix N1 ): for i = 1 n is equal to 100; for i = 2 n is equal to 200;  

for i = 3 n is equal to 300; for i = 4 n is equal to 400 and for i = 5 n is equal  

to 500; and for m = 2 (i.e. for matrix N2 ) with the notice that: for i  {1, ..., 5} 

and p  {1, ..., 7}; and with the notice that for i = 1 n is equal to 256; for i = 2  

n is equal to 512; for i = 3 n is equal to 768; for i = 4 n is equal to 1024 and for  

i = 5 n is equal to 1280. 

The best result of calculations has been obtained while using the two cases  

of determining the values of variables h3 and h4 for simulations with apparent 

viscosity coefficient coefficient c = 1.0. 

During the test calculations of values of variables h3 and h4 have been carried 

out for the specified earlier value of inertia moment J1 in the following way:  
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where: h7, h9 – values of the variables representing the result of calculations 

   executed with using specific, appropriate variables during the test, 

   h8  the minimal value of the matrix N3 determined during the test,  

   h10, h11, hb12 – values of these variables have been obtained in the test, 

   m1,m2 – arithmetic means calculated during the test. 

 

Value of the variable h7 has been calculated in the following way:  

h7 = h13 + (m3 – h8). The variable h13 carries the maximum value of the matrix N3 

(i.e. h13 = max(N3(p)(i)), for i {1, ..., 6} and p {1, ..., 7}). The variable h8 

carries the minimum value of the matrix N3 (i.e. h8 = max(N3(p)(i)) for i {1, ..., 6}  

and p {1, ..., 7}). The variable m3 is the arithmetic mean calculated for the set 

up number of elements of the matrix N3 during the test – i.e. 
 

  

,
3

3

1

3

3




 i

ipN

m  

 

for i {1, ..., 6} and p {1, ..., 7}). 
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Elements of the matrix N3 – carry the results of the cyclic summations  

of values of variable h16 calculated for the tests:     16p3 hN i for 

     ipjipN 1,  , for i{1, ..., 6}, j{1, ..., 2048}, and for p{1, ..., 7}.  

))((1 ip  is the standard deviation of elements of matrix N i-th row: 

  
     

2048

mN
2

i4jip

ip1




,
, for i{1, ..., 6}, j{1, ..., 2048}, and p{1, ..., 7}. 

 

The value of the arithmetic mean m4 has been calculated using the formula: 

  

  

,
2048

2048

1

,

p4





j

jip

i

N

m  for i{1, ..., 6}, j{1, ..., 2048}, and p{1, ..., 7}. 

 

The variable h16 stores the biggest value of the matrix N, which has been 

registered during simulations (i.e. h16 = max(N3(p)(i,j)), for i   {1, ..., 6},  

j   {1, ..., 2048} and p {1, ..., 7}). 

The values of variables hb9, hb10, h14 and h15 have been calculated as follows: 

h9 = | h14 – h18 | and h10 = max(h15, h16), ,1614  hh  for     p2jp mN  , for 

j{1, ..., 2048}, and p{1, ..., 7}; h15 = | h17 – h18 |. The value of the variable m2, 

which is arithmetic mean of the tested matrix N, has been calculated as: 

 

  

,
2048

2048

1

p2





j

jpN

m  for j{1, ..., 2048}, and p{1, ..., 7}. The variables h15 and 

h16 are obtained and used during the test. The variable h17 and h18 store  

the biggest and the smallest value of the matrix N4 (i.e.    ipNh 417 max   

and    ipNh 418 min , for i {3,4, ..., 6} and p{1, ..., 7}).  

The variable h1 stores the smallest value determined for selected elements  

of the matrix N4. 

The matrix N4 has been calculated using the formula:    ,16p4  hN i  

for      ipjip mN 4,  , for indexes i{1, 2, ..., 6}, j{1, 2, ..., 2048} and p{1, ..., 7}. 

The variable m1(p) is the arithmetic mean calculated for the specific row of the 

matrix N (i.e.  

  

,
2048

2048

1

,1

p1





j

jpN

m  for j{1, ..., 2048} and p {1, ..., 7}), 

where N is the matrix registered during the test, while the backlash zone width 

has its smallest value. 
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The value of the variable h11 has been calculated in the test using the 

following formula:      ,2152120211911 hmhhhhh    

where: h19, h20 – variables storing the smallest and the biggest value of the matrix  

N5, 

   h21 – a variable used in the test, 

   m5 – the value of the arithmetic mean of the matrix N5. 

 

The values of the matrix N5 have been calculated during the test in the 

following way: 

 

                 )4,(2)3,(2)3,(2)2,(2)2,(2)1,(25 ipipipipipipip NNNNNNN 

    )5,(2)4,(2 ipip NN  , 

 

for i {1,2, ..., 6} and p{1, ..., 7}.  

 

The variables h19 and h20 store the smallest and the biggest values of the 

matrix N5 (i.e.    ipNh 519 min  and    ipNh 520 max , for i{1, ..., 6} and 

p{1, ..., 7}).   The value of the arithmetic mean m5 has been calculated using 

the formula: 
  

6

6

1

5

5


 i

ipN

m  for p{1, ..., 7}. The value of the variable h21 

has been calculated in the following way: 

 

       )5(1)4(1)4(1)3(1)3(1)2(1)2(1)1(121 NNNNNNNNh  . 

 

The value of the variable h12 has been calculated according to the following 

summation:  1612 hh , for     pjpN 2 , for j{1,2, ..., 2048} and p{1, ..., 7}, 

and )(2 p  is the standard deviation calculated as:  
   

2048

2

2

p2

mN jp 
 ,  

for j {1, ..., 2048} and p {1, ..., 7}. The variable m2 is the arithmetic mean  

of the tested matrix N. 

Initial values of the weights in all layers of the backpropagation neural 

network have been calculated using the arithmetic mean m1 described  

earlier (i.e.     i1,  m=W jid
, with the notice that for d = 1 i{1, ..., 15} and  

j  {1, ..., 2048}; for d=2 i{1, ..., 15} and j{1, ..., 15}; for d=3 i{1, ..., 6} 

and j{1, ..., 15}, and where: m1 – is the value of the arithmetic mean calculated 

in the determined group of analysis, d – the layer number of the neural network. 
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The output signals Z1 in the first layer of the neural network have been 

calculated using the formula: ,
2048

1

111  
=j

j)(i,(j)(i) WX=Z  with the notice that for  

d  {1, 2} the index i belongs to the set {1, ..., 15}; and for d=3 the index  

i belongs to the set {1, ..., 6}. The output signals of each layer have been used to 

calculate the value of the activation function of neurons according to the for-

mula:    
,

exp1

1

(d)(i)
Z(i)d

+

=Y


 with the same notice as mentioned before, i.e. 

for d{1,2} the index i belongs to the set {1, ..., 15}; and for d=3 the index  

i belongs to the set {1, ..., 6}. The input signals in the hidden layer, as well as in 

the output layer of the neural network have been calculated using the formula: 

  1)(i)(d(j)d Y=X  , for d{2,3}, i{1,...15}, and j{1,...15}. The output signals 

Z2 and Z3 from neurons within the hidden layer and the output layer of the neural 

network have been calculated using the formula:       ,
15

1

 
j=

j)(i,d(j)d(i)d WX=Z  

with the notice that for d = 2 the index i belongs to the set {1, ..., 15}; and for  

d = 3 the index i belongs to the set {1, ..., 6}. The general formula of the output 

of the exponential activation function for the given input to the neural network  

T is the following: )exp( 2h=T(i)  , for i{1,...6} (h2 – was explained at the bottom 

of the 6th page of this article). The index i shows the row number within the 

matrix T. Values of errors E on neurons in the output layer have been calculated 

using the formula: (i)3(i)(i) YT=E  , for i{1,...6}. The value of the root-mean-

square error RMS1 has been determined according to the formula: 
 

  

6

6

1

2


 i

i

1

E

RMS  

 

It has been assumed that the process of learning of this neural network would 

end, when the following condition would be satisfied: 11 δ<RMS , where 1δ  is 

the experimentally assumed value during conducted simulations for the necessity 

of stopping the neural network learning process. 

  The correction of weights, carried out in the respective layers of this neural 

network has been calculated according to its general formula (Osowski, 1996): 

          jdbidj)(idjid XlWW  ,,
, with the notice that for d = 1 i{1, ..., 15} 

the index j {1, ..., 2048}; for d = 2 the index i  {1, ..., 15} and the index 

 j{1, ..., 15}; for d = 3 the index i  {1, ..., 6} and the index j  {1, ..., 15}, 

where: l – the learning coefficient of the neural network, l  [0, ..., 1],  
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))(( id
σ – the error value calculated in a given layer using the formula:  

     
15

1

111 ,
=i

(i))+(dj)(i,)+(d(i)did σWE with the notice that for d = 1 the indexes  

i and j belong to the set {1, ..., 15}; and for d = 2 the index i belongs to the set 

{1, ..., 15}, but the index j belongs to the set {1, ..., 6}. For d = 3 and for the 

index i belonging to the set {1, ..., 6} the error value in the third layer has been 

calculated using the formula:          (i)(i)(i)did YTE d3d1  . E(d)(i) – is the 

value of the derivative of the sigmoidal activation function, calculated on the i-th 

neuron within the layer d of the neural network T, using the formula: 

      (i)d(i)d(i)d YY=E  11 , with the notice that for d  {1, 2} the index i belongs 

to the set {1, ..., 15}; and for d = 3 the index i belongs to the set {1, ..., 6}.   

Pattern matrices Ww have been created for all tested physical quantities for the 

given group of tests. It has been noticed that creation of pattern matrices and 

tested matrices Wt with using the values of the W3 neural network weights matrix 

has allowed to obtain much better identification of the backlash zone width, 

compared to using weights matrix from other layers of this neural network. This 

has been noticed for all tested physical quantities for the given group of tests.  

Matrix W4 represents values of weights of the first neuron of the output layer 

W3, i.e.:    j13j4 W=W ,  for j {1, ..., 15}. The values of the pattern matrix Ww 

as well as the values of the tested matrix Wt, which have been applied in the 

process of identification of the backlash zone width have been obtained using 

the following formulas: j)4(i,j)w(i, WW  , for i  {1, ..., 6} and j  {1, ..., 15}; 

and 4(j)t(j) W=W , for j {1, ..., 15}. Then it has been created the matrix D in the 

following way:   
15

1=j

j)w(i,t(j)(i) WW=D  for i  {1, ..., 6}. Then, based on calculating 

the minimal value of the matrix D it has been determined the searched index nr5, 

nr5 = i, such that    
(i)nr DD min

5
 . The searched index i (i.e. called nr5) in the 

matrix D determines the column number in the matrix K, which contains the 

correct backlash zone width. 
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3.2. The results of the simulations of the diagnostic algorithm applied  

for identification of a backlash zone width in electromechanical system 

 

In the column named The results there have been presented assumed in the fault 

identification process of the backlash zones widths. In this column using bold 

font there have been distinguished obtained the final values of the matrix D, 

resulting from applying the identification procedure, which has allowed to obtain 

the fault identification of number. The tables 1 through 4 show all the values of 

all parameters that have been used in the tests. It could be noticed that for the neural 

network learning coefficient l changing within the [0.6...0.9] range and for the value 

of the variable 1δ , used for stopping the neural network learning process 

changing within the [0.07...0.08] range – for all analyzed physical quantities have 

been obtained satisfactory result concluded with finding the minimum value of 

the matrix D, which was determining the searched index nr5 (i.e. the column 

number in the matrix K, which contains the correct backlash zone width). 

 
Tab. 1. Exemplified in matrix D the results of tests for linear acceleration of the induction 

motor drive a1 

Applied in the test 

parameters 

The 

results 

Applied in the test 

parameters 
The results 

backlash zone = 0.0075, 

inertia moment  

J1 = 0.8917,  

c = 1.5, epochs = 11,  

l = 0.9, 1 = 0.08 

0.2736 

0.2727 

0.1933 

0.0006 

0.0116 

0.0791 

backlash zone = 0.0075, 

inertia moment  

J1 = 0.8917,  

c = 1.5, epochs = 12,  

l = 0.9, 1 = 0.07 

0.2693 

0.2684 

0.1864 

0.0006 

0.0122 

0.0824 

backlash zone = 0.0025, 

inertia moment  

J1 = 0.8482,  

c = 0.8, epochs = 12,  

l = 0.9, 1 = 0.08 

0.0020 

0.1912 

0.2786 

0.3581 

0.2390 

0.0238 

backlash zone = 0.0025, 

inertia moment  

J1 = 0.8482,  

c = 0.8, epochs = 15,  

l = 0.8, 1 = 0.07 

0.0021 

0.1733 

0.3289 

0.4099 

0.2226 

0.0262 
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Tab. 2. Exemplified in matrix D the results of tests for electromagnetic moment  

of the induction motor drive mel 

Applied in the test 

parameters 

The 

results 

Applied in the test 

parameters 
The results 

backlash zone = 0.009, 

inertia moment 

 J1 = 0.8265,  

c = 1.5, epochs = 22,  

l = 0.9, 1 = 0.08 

0.0616 

0.0106 

0.0081 

0.0082 

0.0004 

0.0068 

 

backlash zone = 0.009, 

inertia moment  

J1= 0.8265,  

c = 1.5, epochs = 26,  

l = 0.9, 1 = 0.07 

0.0172 

0.0466 

0.0087 

0.0088 

0.0004 

0.0073 

backlash zone = 0.0025, 

inertia moment  

J1 = 0.9135,  

c = 0.8, epochs = 19,  

l = 0.9, 1 = 0.08 

0.0038 

0.2669 

0.2659 

0.2584 

0.2514 

0.2501 

backlash zone = 0.0025, 

inertia moment  

J1 = 0.9135,  

c = 0.8, epochs = 25,  

l = 0.8, 1 = 0.07 

0.0041 

0.3013 

0.3002 

0.2921 

0.2528 

0.2514 

 

Additionally, as a result of decreasing a previously set up range of the variable 

1δ , used for stopping the neural network learning process to the range from 0.08 

to 0.07, by lowering the range of the neural network learning coefficient l to the 

range from 0.9 to 0.6, it has been noticed a big increase in number of epochs  

of the neural network learning process. All this is visible in all four tables, that 

present the results of the analysis. 

 
Tab. 3. Exemplified in matrix D the results of tests for angular speed of the rotor  

of the induction motor drive 1 

 

Applied in the test 

parameters 

The 

results 
.10-3 

Applied in the test 

parameters 

The 

results 
.10-3 

backlash zone = 0.0025, 

inertia moment  

J1 = 0.8047,  

c = 0.8, epochs = 22,  

l = 0.9, 1 = 0.08 

0.3001 

0.1935 

0.0185 

0.2341 

0.4384 

1.2073 

backlash zone = 0.0025, 

inertia moment  

J1 = 0.8047,  

c = 0.8, epochs = 25,  

l = 0.8, 1 = 0.08 

0.3008 

0.1939 

0.0185 
0.2346 

0.4393 

1.2098 

backlash zone = 0.01, inertia 

moment  

J1 = 0.87,  

c = 1.25, epochs = 22,  

l = 0.9, 1 = 0.08 

0.2754 

0.3908 

0.1967 

0.0907 

0.1643 

0.0244 

backlash zone = 0.01, 

inertia moment  

J1 = 0.87,  

c = 1.25, epochs = 39,  

l = 0.6, 1 = 0.07 

0.2937 

0.4168 

0.2099 

0.0966 

0.1751 

0.0260 
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Tab. 4. Exemplified in matrix D the results of tests for linear acceleration of the mass a2 

 

Applied in the test 

parameters 

The 

results 
.10-3 

Applied in the test 

parameters 

The 

results 
.10-3 

backlash zone = 0.005, 

inertia moment  

J1 = 0.7612,  

c = 0.8, epochs = 22,  

l = 0.9, 1 = 0.08 

0.1350 

0.0792 

0.0258 

0.1070 

0.1759 

0.1584 

backlash zone = 0.005, 

inertia moment  

J1 = 0.7612,  

c = 0.8, epochs = 25,  

l = 0.8, 1 = 0.08 

0.1353 

0.0794 

0.0258 

0.1072 

0.1762 

0.1588 

backlash zone = 0.0075, 

inertia moment  

J1 = 0.7612,  

c = 1.5, epochs = 22,  

l = 0.9, 1 = 0.08 

0.2145 

0.1587 

0.1052 

0.0276 

0.0964 

0.0790 

backlash zone = 0.0075, 

inertia moment  

J1 = 0.7612,  

c = 1.5, epochs = 27,  

l = 0.9, 1 = 0.07 

0.2337 

0.1729 

0.1147 

0.0300 
0.1050 

0.0860 

 

 

4. CONCLUSIONS 
 

The executed simulation tests of not established states of a complex model  

of an electromechanical system containing heavy nonlinearities have confirmed 

that using time-frequency methods with multistage decomposition of signal,  

or by a method of three-layer backpropagation neural network – these methods 

have been proved to be the effective research tools. 

Using wavelet and neural network to analyze non-stationary signals of the tested 

electromechanical system enables effective limitation of possible losses resulting 

from consequences of increasing ranges of faults, which could lead to occurrence  

of a breakdown. Together with a simulation modeling this approach should be 

sufficient to enable complex verification process of the diagnostic algorithm. 

Information contained in non-stationary diagnostic signals can be extracted 

from them both, through distributions of wavelet decomposition of coefficients 

as well as through values of weights of the neural network first layer for chosen 

parameters of a state, which describe physical quantities. This information may 

determine the type and place of occurrence of undesirable states of a complex 

nonlinear electromechanical system. Therefore, there is a possibility of obtaining 

correct diagnostic results concerning a system containing changing value of a vis-

cous friction c for the given value of discontinuity in zero of the absorbing 

characteristics (c1). 
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