
44

design patterns, internal software quality, quality assessment

Rafał WOJSZCZYK*

THE MODEL AND FUNCTION OF QUALITY

ASSESSMENT OF IMPLEMENTATION

OF DESIGN PATTERNS

Abstract

One of the ways of providing high internal software quality (that is a source

code) is using design patterns. The article aims at presenting a suggested

model which enables one to assess the quality of implementation of design

patterns. The model assumes verification of different aspects of the patterns

and a numeric expression of the obtained results. The analysis of the

obtained results may show the occurrence of certain problems which are

difficult to be identified during code review or testing.

1. INTRODUCTION

Software is an intangible product, therefore, as a product, it shares some

features with tangible products. The distinguishing feature in case of the two

mentioned types of products is, among others, the fact that software is not

subject to failure, wear or replacement. It seems that once software is produced it

could be used forever. Unfortunately, as the reality has shown many times,

software must undergo changes and be adjusted to this reality. An example

of forced changes was implementation of new VAT rates in Poland in 2011.

Not every software was prepared for this implementation without interfering into

the source code or using the help of an IT specialist. The mentioned situation

shows the importance of providing user-friendly enhancement or modification of

software.

A similar example is adapting software to the clients' needs. Large ERP

systems are very flexible, therefore, individual changes can be implemented by

skilled specialists without interfering into the source code. In case of software

produced by small companies, individual adjustment at the implementation stage

is often impossible and this leads to changes in the source code. In order to avoid

increased costs of these changes, it is necessary to implement suitable

* Department of Electronics and Computer Science, Koszalin University of Technology,

75-453 Koszalin, Poland, rafal.wojszczyk@tu.koszalin.pl

45

mechanisms which will allow for simple development, simultaneously, without

disturbing the rest of software. One of the trusty solutions to the mentioned

problems are design patterns.

Using design patterns is also very important at other stages of software

development cycle. Another example encountered in reality is discontinuation

of software development or a change of a development team responsible for

certain software. Design patterns are recognized in the community of pro-

gramming practitioners as a certain language of communication, therefore,

the code of software containing design patterns will be more recognizable and

under-standable than the one without the patterns.

2. SOFTWARE QUALITY AND DESIGN PATTERNS

Software quality is a very general notion, and a definition of the measure that

would directly determine this value is impossible to be provided. When ana-

lysing different models of software quality and, especially, maintainability

property included in the third part of ISO/IEC 9126 standard [6], one may

conclude that the internal software quality (that is software code quality)

is determined by the following features: easy development, easy modification,

easy-to-understand code. Using design patterns in programming promotes

positive values of the mentioned features (positive in a way that thanks to using

design patterns, software is easier to be developed, etc.) [3]. Therefore, one can

assume that the quality of design patterns implementation is one of the factors

determining software quality.

The quality of design patterns implementation, similar to the general software

quality, does not have any direct measure. Verification of correctness of the

implemented design pattern' structure (in relation to the general template) is only

one of the aspects of the process of assessment of design patterns. What is more,

there are many other features which influence the implementation quality,

e.g. distortion and bad smells, overlapping design patterns, typical errors, anti-

patterns, and improper intention of using the patterns. Additionally, in the very

structure of design patterns one can distinguish problems with verification,

namely, considerable diversity of implementations and the occurrence of many

variants of each pattern. There are yet many more problems connected with

analysing implementation of design patterns - these were presented, among

others, in [14] and [9]. These problems may lead to a misleading situation

which maintains structural correctness of the pattern implementation but the use

does not correspond with the intention or it does not serve its purpose.

46

The design patterns described in [3] are templates of ready-made mechanisms

which can be used to solve typical problems occurring cyclically in object-

oriented designing and programming. However, these are not ready-made

solutions since using each pattern requires its proper implementation according

to the software context.

The issues discussed in the research studies connected with design patterns

very often concern the problem of searching for instances of design patterns

in software [11, 10, 1]. The measure of the mentioned studies is presenting

a number of instances of design patterns in software, which is insufficient

to consider it as quality characteristics. What is more, there are studies

conducted which mainly aim at showing structural correctness of implement-

tation of the patterns [2], and those also provide too little information. Other

attempts of numeric expression of design patterns were introduced in [7] and [8],

and those consist in using existent object-oriented software metrics or author's

metrics for software containing design patterns. Many years of research on

metrics have provided the recommended values of metrics for the software

generic case, which obtainment shows high quality. On the other hand, in [4] it

was shown that the occurrence of design patterns does not have a positive

influence on the results obtained from metrics, therefore, one should perform

proper over-interpretation of metrics applied with the patterns, which was

presented in [12].

3. ASSESSMENT MODEL

3.1. General assumptions

Figure 1 shows the general concept of the offered model. The first stage is

acquiring software which will be subject to assessment of the quality of

implementation of design patterns. The acquiring consists in converting software

source code to a formal representation and, more specifically, to a proper data

structure based on the assumptions of the object-oriented programming

paradigm [13]. The analysis stage uses the acquired data solely in a form of the

formal representation, and independent variables which are definition model,

reference model and mechanisms used to verify the analysed software. The basic

result is the vector of assessment obtained from assessment function for the

analysed software. In the extended case, the result may include additional

information concerning artefacts in the analysed software which show possible

errors and change suggestions.

47

Fig. 1. General concept of the model [source: own study]

3.2. Definition model

The definition model is a hierarchical data structure describing the set of

features required for verification in the analysed software. Figure 2 shows

a symbolic hierarchy of the definition model. The root in the hierarchy is

a specific design pattern since, for each design pattern, one should have a proper

set of features. The first level of the hierarchy are general categories which

group the features. The level of features concerns specific aspects of design

patterns and the semantics of this level allows for defining relations "or", "and"

as well as "include" between the features. Each feature may be broken down into

elements describing the occurrence of detailed artefacts (that is, data types,

components, instructions and others).

Fig. 2. Symbolic representation of the definition model [source: own study]

48

Below, one can find an exemplary definition of Singleton design pattern:

– structure - type: non-abstract class, no inheritance; instance: private, static

field restored by public static property of type identical to the one of hold-

ing class, a suggested name is Instance; constructor: private,

– behavior - initialization: checking for object existence and creation at the

first utilization,

– utilization - at least one shareholder and no more than 1/2 of the sum of

classes and interfaces in the analysed software,

– connections to other patterns: abstract factory pattern,

– typical errors: other constructors than private ones are forbidden, there

should be only one element functioning as an instance,

– other: a proper number of components (fields, methods) included in the

pattern class, no inheritance from pattern class.

A principal role of the definition model is providing the description of the

features to be verified; still, this model cannot conduct the mentioned

verification. The definition model can only show one of the methods of the

verification. Thanks to separating verification methods (in other words: opera-

tional definitions) from the definition model, increasing effectiveness of this

verification is possible through selecting the most appropriate method.

Additionally, this approach give great development possibilities in case previous

verification methods turn out to be insufficient.

Features occurring in the definition model are diverse in relation to the

analysed design pattern, similarly to the occurred categories. An exception is the

structural correctness category which occur in every design pattern offered in

[3], therefore, one of the verification methods was developed especially for this

purpose. It is the verification of the analysed software in relation to the reference

model. The reference model includes a general, abstract description of the

structure of design patterns. It has been developed as an enhanced data structure

based on the assumptions of object-oriented programming paradigm. It enables

one to define different variants of the particular elements of design patterns with

determining the level of their adjustment to the assumed ideal. Verification in

relation to the reference model and other verification methods (e.g. making

queries for the obtained software) may be used to verify any features; it is

important for every method of verification to return proper result which then will

be interpreted by the assessment function. The result is returned in the

standardized form; it is the maximum in the interval scale; more specifically, it

falls within the range from 0 to 1, where 1 stands for total occurrence of the

analysed element. Table 1 presents a dataset of a single feature in the definition

model. Each feature belongs to a category. Data included in the category

is a name and assessment (identical to feature assessment).

49

Tab. 1. Dataset included in the feature [source: own study]

Data name Description

Name Verbal determination of the feature, understandable to a human.

Feature

dependence

Indicating other feature and determining type of dependence

related to it: and, or, include.

Assessment Complex data structure used directly by the assessment function.

It includes: weighting factor, activation threshold and recom-

mended value, and, after verification is done, also the obtained

result.

Multiplicity Complex data structure containing information on the expected

number of occurrences of a particular feature in the analysed

software. It determines expected value in a form of the

following ranges: from to, greater than or equal, less than,

exactly.

Set of

elements

Complex data structure which indicates the detailed artefacts

and describes their possible variants. It includes: name

identifying an element, assessment, that is, the structure

identical to feature assessment, set of references to the reference

model or other verification method, and negating the element,

which means that all possibilities different from the indicated

one are allowed.

3.3. Working principle

The above-described definition model has one more important role – it

indicates subsequent stages of analysis. In the generic case, the process

of analysis assumes the following: for each category one should verify desired

features, while for each verified feature one should verify elements. Each stage

of verification gives a partial result even if it does not satisfy the activation

threshold. The final selection of results will be performed by the function

initializing the assessment. Each verification stage is encumbered with checking

for occurring restrictions, e.g. those connected with multiplicity (number)

of occurring elements and performance of required verification operations.

The partial results are added to assessments of the corresponding elements

(see Table 1 - Set of elements, Assessment). After conducting the required

verifications, the function initializing assessment and assessment function are

performed. Both functions are performed up the hierarchy, that is, initializing

assessment is performed on the basis of results obtained from verification

of elements; then, on the basis of a modified dataset, the assessment function

is performed, which result is a result for the feature. Subsequently, this process

is repeated for the features and, finally, for categories. The initializing functions

checks the activation threshold and selection on the basis of relations between

50

the features. If activation threshold is not satisfied then a particular element or

feature does not occur; in special case, if activation threshold is 0, then

occurrence of a particular element or feature is obligatory.

3.4. Execution

The offered model was executed as a prototype tool in Microsoft .NET

technology. The used technology allowed for improvement of the process of

acquisition of the analysed software, which consists in acquisition of object-

oriented structure from CIL managed code using one of the methods of the

reverse engineering, e.g. Mono.Cecil [13]. Using the managed code allowed for

avoiding typical syntactic errors occurring in the source code and removed

useless code fragments, e.g. unit test code, processor directives and other from

the analysed software. An additional advantage resulting from the used

technology is a possibility of applying the model to different programming

languages compiled to the managed code. Formal data representation containing

the acquired software was executed as a database in Microsoft SQL Server

environment.

The analysis of the features of design patterns takes place according to the

hierarchy described in the definition model which was also executed

as a database in Microsoft SQL Server environment, similarly to the above-

mentioned reference model. The worked out structure of the definition model

allowed for accessible implementation of the major loop in which the subsequent

features are iterated, and the analysis is conducted for each of those.

In case of "include" dependence, recurrence function is performed into the

hierarchy; this is presented by listing 1. Possibility of verifying features by

means of different mechanisms is a polymorphism property joining the

definition model with verification mechanisms. After conducting the analysis,

the results are recorded in an object-oriented data model creating the vector

of assessment. An exemplary result of calculation is shown in Figure 3. After

selecting a required category and then a feature (see Fig. 3), the software

displays additional information resulting from the particular feature analysis: the

partial results show attributes which occur for the analysed software (with level

of adjustment in brackets); way of presentation of partial results is dependent on

the used verification mechanism; in the symbolic representation of the analysed

software, one can find hints concerning better solutions and error messages with

improvement suggestions.

51

 Listing. 1. Major loop code

Fig. 3. Prototype execution [source: own study]

The main area of using the model is the whole process of software

implementation where it can be used simultaneously with other tools taking care

of generally understood quality, good practices and code cleanliness. It should

be especially useful in companies or development teams which take care of

providing high quality in the aspects of software maintenance and development.

A very practical application would be integrating the model with programming

environments to follow and assess changes connected with implemented design

patterns on an ongoing basis. Finally, using the model in the opposite direction,

that is, with at least semi-automatic implementation of the patterns in software

on the basis of provided definitions is worth considering.

 public void AnalyzeAll(Definition definition)
 {
 foreach (Feature feature in definition.Features)
 AnalyzeRecursively(feature);
 }

 private void AnalyzeRecursively(Feature feature)
 {
 Verify(feature.Elements);
 if (feature.KindOfDependence == KindOfDependence.Contain)
 AnalyzeRecursively(feature.DependenceFeature);
 }

52

4. ASSESSMENT FUNCTION

The basic output of the offered model is vector of assessment of the

following form

 v = {af(c1), af(c2), ..., af(cn), (1)

where: af(c1), af(c2), ..., af(cn) is a result of assessment function for each

subsequent category c1, c2, ..., cn. The quality of each of those categories is

expressed by the following function

 af(c1) = af(f1, f2, ..., fn), (2)

where: f1, f2, ..., fn is a set of features belonging to c1. Quality of the particular

features in the generic case is determined by the following formula

 af(f1) = af(e1, e2, ..., en), (3)

where: e1, e2, ..., en is a set of elements belonging to a particular feature. In a

special case, where a particular feature is in "include" dependence in relation to

other feature, the quality may be determined by the following function

 af(f1) = af(e1, e2, ..., en, f1,1, f1,2, …, f1,n), (4)

where: e1, e2, ..., en is once again a set of elements belonging to a particular

feature, while f1,1, f1,2, …, f1,n are features of "include" dependence.

The basic formula describing the assessment function is








n

n

n

n

n

nn

w

wx

xaf

1

1

*

)(, (5)

where: n – sum of arguments,

xn – particular argument (that is, element, feature, category),

wn – argument weighting factor.

One can notice that it is the weighted mean. Means (arithmetic or weighted)

are often used in methods assessing software quality, e.g. in [5] or in recognized

CK object-oriented software metrics [12]. The offered model allows a possibility

of presenting other assessment function in case when the primary function turns

53

out to be insufficient. Weighting factors may initially be determined on the basis

of expert knowledge or by method for valuation. What is more, the possibility

of selecting proper weighting factors by means of artificial neural networks

is taken into consideration.

5. INTERPRETATION OF THE RESULTS

An example of the obtained assessments rounded to decimal for three

different occurrences of Singleton pattern was presented in Table 2.

Tab. 2. Exemplary results [source: own study]

 Case 1 Case 2 Case 3

Structure 1 0,4 1

Behavior 0,7 0,3 0,7

Utilization 0,6 0,9 0,1

Connection with

other patterns

1 1 0

Typical errors 1 0,5 1

Other 1 1 0,3

Implementation of Singleton pattern in case 1 may be considered as of good

quality. High structural correctness and connections with other patterns were

maintained. The maximum assessment in typical errors category shows that

these errors did not occur. Lower assessment in the behavior category results

from a lack of reference synchronization to Singleton instance in multithread

environments. Lower assessment in the utilization category results from too

many references to instance which may indicate too high responsibility of the

class with Singleton pattern.

Case no 2 showed low quality of implementation in the structural correctness,

typical errors and behavior categories. Software containing such implementation

may work improperly, e.g. there may be errors connected with data incompa-

tibility or the so-called runtime errors. These errors should be detected already at

the stage of software execution (testing stage) and repair cost should be on the

budget (for error recovery) in the general production process. However, one

should take into account that Singleton design pattern is considered to be one

of the simplest patterns, therefore, the repair costs may be higher in case of other

patterns.

Case no 3 showed low quality of implementation in categories of utilization,

connections with other patterns and other features connected with too many

components. The analysis of that case showed that the pattern was misused in

connection to the intention of its use or it was improperly understood by the

54

implementing developer. The problems resulting from such implementation are

difficult to be detected, both during code inspection and at testing stage.

The most noticeable problems will occur during software maintenance and

development. Repair costs are nearly unpredictable.

6. SUMMARY

The article briefly explains the influence of quality of implementation

of design patterns on internal quality of software and presents selected research

studies connected with verification of implementation of design patterns.

It discusses the proposal of the model which allows for numeric expression

of design patterns. The model consists of the hierarchical definition model and

mechanisms responsible for verifying features of patterns. The result of the offe-

red model is a vector of assessment which is obtained through the assessment

function. The assessment function uses partial results acquired in the verification

process and weighting factors from the definition model. The analysis of the

vector of assessment and detailed results enables one to predict possible

problems connected with software development and its improper working.

Further works related to the model include development of dependences

of definitions occurring in the model (e.g. set of artefacts which satisfies

requirements of a certain feature may be an input set for other feature),

development of verification mechanisms and possibilities of analysing the results.

REFERENCES

[1] BINUN A.: High Accuracy Design Pattern Detection. PhD Thesis, Rheinischen

Friedrich Wilhelms Universitat Bonn, 2012.

[2] BLEWITT A.: HEDGEHOG: Automatic Verification of Design Patterns in Java. PhD

Thesis, University of Edinburgh, 2006.

[3] GAMMA E. et al.: WZORCE PROJEKTOWE. Elementy oprogramowania wielokrot-

nego użytku. Helion, Gliwice, 2010.

[4] HERNANDEZ J. et al.: Selection of Metrics for Predicting the Appropriate Application

of design patterns. 2nd Asian Conference on Pattern Languages of Programs, 2011.

[5] HOŁODNIK-JANCZURA G.: Badanie jakości produktu informatycznego metodą

wartościowania. Badania Operacyjne i Decyzje, Oficyna Wydawnicza Politechniki

Wrocławskiej, ISSN 1230-1868, Wrocław 2007, pp. 55-69.

[6] ISO/IEC TR 9126-3, Software Engineering – Part 3: Internal metrics, ISO/IEC 2003.

[7] KHAER Md. A. et al.: An Empirical Analysis of Software Systems for Measurement of

Design Quality Level Based on Design Patterns. Computer and information technology,

IEEE, 2007.

[8] MASUDA G., SAKAMOTO N., USHIJIMA K.: Evaluation and Analysis of Applying

Design Patterns. IWPSE - International Workshop on Principles of Software Evolution,

1999.

[9] RASOOL G.: Customizable Feature based Design Pattern Recognition Integrating

Multiple Techniques. PhD Thesis, Technische Universitat Ilmenau, Ilmenau 2010.

55

[10] SINGH RAO R., GUPTA M.: Design Pattern Detection by Greedy Algorithm Using

Inexact Graph Matching. International Journal Of Engineering And Computer Science,

Vol. 2, No. 10, 2013, pp. 3658-3664.

[11] TSANTALIS N. et al.: Design Pattern Detection Using Similarity Scoring. IEEE

Transactions on Software Engineering, Vol. 32, No. 11, 2006, pp. 896-908.

[12] WOJSZCZYK R.: Zestawienie metryk oprogramowania obiektowego opartych na

statycznej analizie kodu źródłowego. Zarządzanie projektami i modelowanie procesów,

Zeszyty Rady Naukowej Polskiego Towarzystwa Informatycznego, ISBN 978-83-7518-

599-7, Warszawa 2013, pp. 95-107.

[13] WOJSZCZYK R.: Pozyskiwanie struktury obiektowej z kodu zarządzanego przy

wykorzystaniu metod inżynierii odwrotnej. Inżynieria oprogramowania: badania

i praktyka, Zeszyty Rady Naukowej Polskiego Towarzystwa Informatycznego, ISBN

978-83-63919-15-3, Warszawa 2014, pp. 199-213.

[14] WOJSZCZYK R.: Koncepcja hybrydowej metody do oceny jakości zaimplementowanych

wzorców projektowych. Zeszyty Naukowe Wydziału Elektroniki i Informatyki nr 7,

Wydawnictwo Uczelniane Politechniki Koszalińskiej, ISSN 1897-7421, Koszalin 2015,

pp. 17-26.

