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Abstract. 

Acetyl salicylic acid (ASA) and nonsteroidal anti-inflammatory drugs (NSAIDs) may 

have potential as adjunctive agents for sepsis. This review considers the large body of 

literature that indicates a basis for sepsis therapy with ASA and suggests an agenda for 

future intervention studies in sepsis prevention and treatment.  

ASA and NSAIDs have beneficial effects in numerous experimental models of sepsis. 

Low doses of ASA of 100 mg/day or less trigger synthesis of lipoxins that are anti-

inflammatory and aid in resolution of inflammation. Higher doses of ASA and NSAIDs 

act to reduce NF-kappaB stimulation and inhibit numerous septic pathways. While a 

previous randomised controlled trial of ibuprofen failed to show a reduction in mortality 

in sepsis it did reduce clinical manifestations of sepsis. More recent observational studies 

have shown reduction in sepsis or acute lung injury leading to lower mortality in ICU 

patients treated with ASA.  

Low-dose ASA appears to be beneficial in prevention and treatment of sepsis and SIRS. 

If proven, this intervention would have a major, cost effective impact on sepsis care.
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Introduction. 

Acetyl salicylic acid (ASA) or aspirin has had a profound effect on human health since its 

discovery in 1897 [1]. This nonspecific cyclo-oxygenase (COX) inhibitor isone of the 

most widely used drugs in the world due to its potent vascular disease prevention 

[2].ASA  contributes to systemic signalling in plants in response to parasitic invasion 

acting to limit infection severity[3]. 

ASA and other non-steroida lanti-inflammatory drugs (NSAIDs) have beneficial actions 

on inflammatory pathways contributing to sepsis. Low-doses of ASA (75-81 mg/day) 

trigger lipoxin synthesis [4], mediating both anti-inflammatory and inflammation-

resolving effects [5]. Additionally, the NF-kappaB (NF-B)cellular signalling pathway 

can be inhibited by ASA and NSAIDs [6].  

The full range of therapeutic effects of ASA in sepsis is unknown. NSAIDs were shelved 

as agents for the therapy of sepsis because of the negative result of the single randomised 

controlled trial in this area [7]. ASA has activity against numerous cellular pathways and 

cytokine mediators of sepsis and demonstrated benefits in animal models with treatment 

after establishment of sepsis or tissue injury. Human pharmacokinetics show 

pharmacological levels achieved with safe doses. Finally, numerous observational studies 

suggest benefits of ASA in sepsis.  

 

ASA triggers lipoxins, reducing and resolving inflammation. Figure 1. 

 

Lipoxin A4 is a natural lipid mediator that actively alters a variety of inflammatory 

processes including nitric oxide production [8], the inhibition of superoxide production 
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by neutrophils, and prevention of neutrophil/endothelial interactions (reviewed in [5]). 

ASA triggered 15-epi-lipoxin A4 (ATL) has the same activity as lipoxinA4 [9].  ASA is 

the only NSAID that can directly acetylate the COX2 site in endothelial and epithelial 

cells to induce the formation of ATL.  

Lipopolysaccharide (LPS) stimulated polymorphonuclear leukocytes (PMNs) exhibit 

delayed apoptosis contributing to ongoing inflammation in sepsis[10]. PMN apoptosis 

was reinstated by the addition of pharmacological concentrations of ASA and was 

mediated through both ATL production [11, 12] and NF-B inhibition [13], resulting in a 

reduction in proinflammatory cytokines [11]. ATL also reduces the secretion of TNF-

alpha by T lymphocytes [14]. Importantly, such ATL mediated actions are both anti-

inflammatory and contribute to the resolution of the sepsis cascade. Recent studies also 

demonstrate that ASA triggers synthesis of resolvins, a novel class of lipid mediators 

with activities that resemble ATL [5]. 

 

Salicylate and NSAID effects on inflammatory pathways, particularly NFκB 

pathway modulation. 

 

Investigators searching for potential antitumor effects of ASA determined its ability to 

inhibit NF-B activation, an anti-inflammatory pathway additional to COX inhibition. 

NF-B contributes to activation of genes involved in cell cycle control (cyclin-D1)[15], 

inflammation (TNF-alpha, IL-6, COX) [6], and coagulation (tissue factor, TF) [16]. For 

example, there is a dose-dependent reduction in NF-κB gene transcription seen in LPS-

stimulated human monocytes treated with salicylates and NSAIDs [17]. 
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Cellular stimulation by various noxious stimuli, like tissue damage, infection or 

cytokines, releases NF-κB from binding to its inhibitory cytoplasmic protein complex, 

IκB, allowing NF-κB to translocate to the cell’s nucleus and transcribe genes as above. 

Salicylates and NSAIDs inhibit NF-B-activation by blocking ATP binding and 

phosphorylation of the cellular kinase IKK- [18], preserving expression of IκB [6]. It 

has been shown that ASA is a less potent inhibitor of NF-κB activation than many 

NSAIDs and other unrelated drugs including tamoxifen and curcumin [15]. ASA’s IC50 

for inhibition of TNF-alpha-induced NF-κB activation is 5.67 mM, 10-fold less potent 

than indomethacin, and 500 times less potent than the anti-estrogen agent, tamoxifen 

[15]. 

The in-vitro ASA concentration required for COX inhibition is 1000-fold less than the 

dose required for NF-κB inhibition [15]. Previous authors considering the potential of 

ASA as an NF-κB inhibitor in critical care therapeutics have raised concerns that 

potentially toxic, conventional anti-inflammatory doses are required [19]. However, low-

doses of ASA are required to produce ATL mediated anti-inflammatory effects [9].  

 

Salicylatesblock some of the microbial mediators of sepsis. 

Additional benefits of ASA therapy in sepsis may arise from demonstrated inhibition of 

prominent microbial mediators of sepsis particularly in gram-positive infection. Salicylic 

acid (SA), ASA’s major metabolite, has been shown to exert its in-vitro effects on S. 

aureus virulence through hyper-activation of the stress response regulon, sig B [20, 21]. 

This results in reduced expression of at least two staphylococcal structural genes crucial 

to pathogenesis, hla (the α-toxin gene) and fnbA (a major fibronectin-binding adhesin) 
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[22, 23]. As ASA and NSAIDs reduce NF-κB activation these drugs may have profound 

effects in endotoxaemia due to gram-negative sepsis. Cell associated bacteria like 

rickettsia also activate NFκB which when blocked by ASA, attenuated vascular 

endothelium infection[24]. 

 

S. aureus infective endocarditis (IE) may be a condition for which ASA has specific 

effects on microbial pathogenesis leading to improved patient outcomes. Recent insights 

into IE pathogenesis suggest how the presence of ASA in the early stages of IE may 

reduce the extent of valvular and perivalvular infection in IE. ASA-mediated, platelet-

dependent effects include a reduction in platelet aggregation, yielding smaller sterile 

vegetations, the platform upon which IE is initiated [25]. FnbA is a key determinant in 

both the initial vegetation colonization and persistence stages in IE [22, 23]. In contrast, 

hla is important in the post-colonization, progression phases of this infection [26]. 

 

In experimental animal models of staphylococcal-IE, improved microbiologic and 

embolic outcomes are seen, especially when ASA is provided to animals prior to their 

infectious challenge [27] or when S. aureus is pre-exposed to ASA prior to IV challenge 

[25].Importantly, improved microbiologic and embolic outcomes have also been seen in 

animals with staphylococcal-IE given ASA after the induction of experimental IE [21, 

25]. Recent human cohort study data [28, 29] indicate the benefits of ASA in S. aureus-

IE. Concerns relating to an increased risk of major bleeding in ASA treated patients with 

S. aureus-IE  [30] are not proven to date  
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The role of activated platelets in sepsis. 

 

Activated platelets contribute to sepsis pathogenesis with benefits inherent in ASA 

therapy. Early animal models of endotoxaemia showed prolonged survival time in ASA 

pretreated animals through antiplatelet affects [31]. Organ sequestration of activated 

platelets plays an important role in sepsis, and pretreatment with ASA 30 minutes before 

endotoxin challenge in sheep reduced accumulation in the lungs and liver [32]. Platelet 

sequestration was not prevented, however, by indomethacin pretreatment in endotoxin 

challenged rats [33]. The thrombocytopenia commonly seen in patients with sepsis may 

similarly be contributed to by sequestration of platelets as has been demonstrated in 

human lungs, liver and intestines [34, 35]. Sepsis induces changes in platelet aggregation 

although reported changes have been inconsistent, potentially as a result of the different 

models studied [36]. In-vitro examination of Streptococcus pneumoniae induced platelet 

aggregation showed that this was dependent on toll-like receptor 2 [37]. 

Antiplatelet agents other than ASA may also improve sepsis mediators as clopidogrel 

given 5 days before endotoxin challenge reduced TNF-alpha and IL-6 levels in rats [38] 

and prevented thrombocytopenia in a mouse polymicrobial sepsis model[39]. 

 

Isolated organ and whole animal models showing the benefit of ASA and NSAIDs on 

organ specific and general effects of sepsis. 
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Bacterial virulence determinants contribute to depression of cardiac function in septic 

shock. Staphylococcal -toxin is known to reduce myocardial function, with this effect 

being prevented by indomethacin (100 mol/l) or ASA (500 mol/l) [40]. When isolated 

rat hearts were exposed to LPS, increases in myocyte-derived TNF-alpha induced a 

reduction in cardiac contractility but not coronary perfusion. Indomethacin was able to 

partially reverse this TNF-alpha-related impairment in myocardial function [41]. 

 

Alveolar macrophages (AM) become activated during experimental septic shock with 

increase in TNF-alpha production via the NF-κB pathway. Macrophage inhibitory 

protein-2 (MIP) production is also increased in activated AM leading to increased PMN 

migration into the pulmonary interstitium. NF-κB inhibition reduced both TNF-alpha and 

MIP production by LPS stimulated rat AM’s [42, 43]. Staphylococcal -toxin also 

produces ventilation perfusion mismatch in perfused rabbit lungs [44]. This exotoxin-

mediated process was inhibited by ASA. Importantly the vasculature changes resulting in 

pulmonary hypertension could also be potentiated by priming with endotoxin [45]. 

Activation of AM by LPS stimulation led to pulmonary vasoconstriction in a perfused 

rabbit lung model [46]. Here, rabbit lungs primed with LPS then exposed to arachidonic 

acid showed up to 3 fold increases in pulmonary artery pressure. This was completely 

reversed by pre-incubation with 1 µmol ASA. Resolution of LPS-induced acute lung 

injury (ALI) in mice was improved by treatment with ATL administered at the height of 

the inflammatory response [47]. ATL has been shown to be effective in treating as well 

as preventing ALI (carrageenan and LPS-induced) in mouse models [12, 47]. COX-2 

expression has been shown to mediate recovery of ALI in mice via reduced leukocyte 
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recruitment and resolution of epithelial integrity. Selective COX-2 inhibition blocked 

these effects, while non-selective COX inhibition via ASA did not [48]. 

 

Many animal models of sepsis have shown beneficial effects of ASA or NSAIDs, 

particularly with ibuprofen [49-52]. Rat-endotoxemia models showed that pretreatment 

with ASA [51] substantially reduced mortality. In an ovine endotoxic shock model, 

ibuprofen given before and after endotoxin infusion reduced early stage hypovolemia and 

hypoxia without effecting late changes [53]. Another canine endotoxic shock model 

mirrored the findings of isolated rat hearts described earlier as ibuprofen was shown to 

protect against depression of the cardiac index [52]. Finally, in a rabbit Group B 

streptococcal shock model, ibuprofen significantly improved short-term survival [54]. 

 

Not all animal model data on NSAIDs in experimental sepsis indicate a beneficial role. 

COX-2 inhibition increased mortality in a rodent CLP model whereas it improved 

survival in an endotoxaemia model [55]. The murine CLP model has been shown to have 

a different cytokine profile to endotoxaemia models with more prolonged elevation of 

TNF-alpha, IL-6 and MIP-2 [56]. These differences may account for conflicting results 

with NSAID intervention in the different models described above. 

 

Pharmacokinetic data relating to low-dose ASA. 

 

The in-vitro concentrations required to produce NF-κB inhibition indicate that 100mg 

ASA/day cannot mediate sepsis outcomes via this pathway. However, multiple clinical 
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trials in healthy hosts have shown that 81 mg of ASA per day is sufficient to increase 

ATL [57, 58]. The ASA concentration required in-vitro to achieve 50% inhibition of 

NFκB is 5.67 mM [15]. The steady state ASA blood concentration in healthy human 

volunteers following seven days of 160 mg ASA daily is only 0.31mM [59]. Maximal 

concentrations after seven days of the same dose were 2.99 mM [59]. Maximal ASA 

concentrations seen after a single dose of 325mg enteric coated ASA were3.99 – 7.92 

mM [60]. First order kinetics apply to ASA up to doses of 400mg [61]. The 

pharmacokinetics and pharmacodynamics of ASA in critically ill patients has not been 

defined as yet but a prospective trial is underway. 

(http://www.anzctr.org.au/trial_view.aspx?id=343088). As ASA absorption is rapidly 

achieved from the stomach, reduced splanchnic blood supply consequent on sepsis and 

hypotension will impact relatively minimally [62].  

 

Studies of ASA and NSAIDs in inflammation in humans. 

 

A recent human endotoxin challenge study showed that high dose ASA (425 mg bd) 

inhibited endotoxin-induced changes in platelet plug formation [63]. Other human-

endotoxin challenge studies failed to show benefits of ASA on different aspects of the 

sepsis cascade. LPS-induced coagulation was not inhibited by ASA with no reduction in 

thrombin formation or TF production [63, 64]. Expression of endothelial cell adhesion 

molecules such as e-selectin and von Willebrand factor antigen that recruit inflammatory 

cells were not reduced by pre-dosing with 1000mg ASA [65]. Mean serum ASA levels in 

the experimental subjects were ~0.2mM at the time of endotoxin challenge [64, 65], 

http://www.anzctr.org.au/trial_view.aspx?id=343088
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which is substantially lower than 5.67mM ASA concentration shown to block NF-κB 

activation in-vitro [15] but clearly in the range required for ATL activation. Interestingly, 

a placebo-controlled human endotoxaemia model study of ibuprofen use showed TNF-

alpha and IL-8 responses were significantly higher in ibuprofen treated subjects [66].  

 

Two randomised controlled studies have shown that low-doses of ASA trigger ATL. 

These studies have both been in healthy volunteers [57, 58]. The benefits of low-dose 

ASA (75mg) were recently illustrated using a human skin blister model of inflammation 

in healthy subjects [9]. In this model, low-dose ASA’s anti-inflammatory effect was due 

to reduced neutrophil migration mediated by ATL synthesis and nitric oxide secretion. 

Here, ATL was increased in blister fluid 24 hours after ASA dosing [9]. Other septic 

cascade pathways affected by ATL have not been adequately explored. 

 

Clinical experience of NSAIDs and ASA in sepsis. Table 1. 

 

A large scale randomised controlled sepsis trial of ibuprofen was performed involving 

septic patients treated with 48 hours of intravenous ibuprofen [7]. In the study, ibuprofen 

treatment led to substantial reductions in sepsis-induced prostacyclin and thromboxane 

excretion. Reductions in temperature, lactic acid levels and oxygen consumption were 

also shown in the ibuprofen-treated group. There was no significant improvement in the 

incidence or duration of septic shock but a non-significant, 3% absolute reduction in 

mortality was found in ibuprofen treated patients [7]. In a post hoc, sub-group analysis of 

the small group of patients who entered the study with hypothermic septic shock and who 
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had the highest mortality, ibuprofen was associated with a survival benefit (36% absolute 

risk reduction) [67]. Ibuprofen treated patients in the sub-analysis were significantly 

younger than placebo treated controls as there had been no randomisation stratification 

for temperature [67]. 

 

The failure of the ibuprofen study in sepsis [7] predominantly relates to its small sample 

size based on exaggerated estimates of reduction in mortalityas it was powered to show 

an unrealistic 35% reduction in mortality. Subsequent trials showing small mortality 

improvements in sepsis have required far greater sample size [68]. The study groups were 

well matched for disease severity [7]. Adequate therapy for proven blood stream 

infection was provided in both groups but there is no quantitation of the suitability of 

treatment for non-blood stream infection, which may have introduced a bias between the 

study groups. The two-day ibuprofen regimen may also have been insufficient. As is a 

perennial issue in sepsis trials, the inability to identify patients early in their disease may 

have limited the effect of ibuprofen as the effects of the established sepsis cascade may 

have been too great to respond to cyclo-oxygenase inhibition. Lastly, with subsequent 

knowledge of ATL’s inflammation resolving effects, it may be that ASA is a superior 

agent to ibuprofen for management of sepsis. 

 

A number of recent, observational studies have shown potential benefits of ASA or anti-

platelet drugs in patients with sepsis. Septic ICU patients with no increased bleeding risk 

were observed in a single centre study to have lesser mortality if they were treated with 

antiplatelet agents, most commonly ASA [69]. A smaller series of patients with 
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community-acquired pneumonia was studied by the same investigators, who showed 

reduced length of hospital stay in those treated with antiplatelet agents [70]. Fears that 

ASA or NSAIDs may predispose to severe sepsis do not seem to be borne out [71]. A 

large cohort study of ICU patients has shown an association between administration of 

ASA to patients within 24 hours of the onset of SIRS or sepsis and reduced mortality. 

These patients had been treated with ASA prior to hospitalisation [72]. These studies [69, 

70, 72] showed that 25% to 37% of patients in the ICU’s examined were administered 

ASA or antiplatelet agents. 

Recent studies have concentrated on the possibility that ASA may prevent ALI in patients 

at high risk for this manifestation of sepsis or trauma. A population-based study involving 

a tightly defined group showed reduced ALI and ARDS in patients admitted to medical 

ICU who had been receiving ASA [73]. A substantially larger study of a more 

heterogeneous ICU population from 22 US and Turkish hospitals failed to confirm this 

beneficial association although a trend to reduced ALI remained in ASA treated patients 

[74]. The apparent beneficial effects of statins in preventing sepsis and ALI in another 

ICU cohort were both potentiated by concomitant ASA use [75]. Studies to date, 

including the ibuprofen trial [7], provide evidence of clinical equipoise for the effect of 

ASA in critically ill patients.  

There may be deleterious effects of salicylates or NSAIDs in sepsis. Renal impairment is 

a common and serious side effect of NSAID use [76]. Increases in bleeding due to 

salicylates and ASA are also of major concern although they are not shown to increase 

following low-doses of ASA. For instance, there was no overall increase in 

gastrointestinal bleeding risk in large-scale primary prevention studies involving ASA in 
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participants taking ≤70 mg/day [77]. It is difficult to be precise about the risk of bleeding 

in ASA-treated critically ill patients due to a paucity of data.  

 

Potential treatment strategies for prevention or treatment of sepsis  

 

The substantial body of literature reviewed from cellular, animal models and the trends 

from human studies suggest that ASA and NSAIDs may have beneficial roles in sepsis, 

and that further study is warranted. Sepsis prevention and reduction of infectious disease 

mortality may be shown in planned analysis of current ASA primary prevention studies 

[78]. Targeted prevention could also be considered in high-risk populations such as 

hospital inpatients with the aim of reducing the frequency and severity of nosocomial 

sepsis. Finally, ASA may be shown in future interventional trials to be beneficial in 

treating established sepsis. The demonstrated impact of low-dose ASA on human models 

of inflammation [9] suggest that this agent, rather than other NSAIDs is probably the best 

agent to consider for sepsis interventions. ASA alone stimulates ATL’s with their anti-

inflammatory and pro-resolution effects on sepsis [5], avoiding the greater toxicity of 

NSAIDs in the critically ill and potential deleterious, pro-inflammatory effects of 

selective COX-2 inhibition [48]. Properly targeted treatment with low-dose ASA could 

hold promise as a relatively safe, extremely cheap agent to use in sepsis even if it is 

shown to have only modest overall clinical benefit. 
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Table 1. 

 

Study design Comparison  Sample size Outcomes associated with 

ASA/NSAID/antiplatelet 

treatment. 

Reference 

Randomised 

controlled trial.  

    

Multicentre, ICU 

trial, USA. Patients 

with sepsis. 

Indomethacin 10 mg/kg IV qid vs. 

placebo for 48 hours  

455 No significant reduction in 30-day 

mortality. No adverse effects of 

ibuprofen 

[7] 

Observational 

studies. 

    

Single centre, 

Germany 

Consecutive ICU 

admissions. 

Antiplatelet agents (25% of cohort) 

vs. none. ASA< 160mg/day was 

antiplatelet agent in 80% 

615 Reduction in death during ICU 

admission. Odds ratio 0.19 (95% CI 

0.12 to 0.33) on multivariable 

analysis 

[69] 

Single centre, 

Germany. 

Consecutive 

community acquired 

pneumonia hospital 

admissions. 

Antiplatelet agents (20% of cohort) 

vs. none. ASA in 84% 

224 Reduced hospital length of stay. 

Trend to reduced need for ICU 

admission 

[70] 

Single centre, 

Australia. 

Consecutive ICU 

admissions. 

ASA vs. none. 37% cohort on ASA, 

<150mg in 96%  

7945 Propensity analyses showed reduced 

mortality among patients with SIRS 

-6.2% (-9.5 to -3.5%); with sepsis -

14.8%, (-18.9 to -8.6%). Increased 

risk of renal injury 3.3% (2.5 to 

5.0%) 

[72] 

Single centre, USA. 

Consecutive ICU 

admissions. 

Antiplatelet (49% of cohort) agents 

vs. none. ASA in 90% 

161 Reduced acute lung injury in 

patients with at least one major risk 

factor for condition. Odds ratio 0.34 

(0.13 – 0.88) 

[73] 

Multicentre, USA 

and Turkey. 

Consecutive ICU 

admissions. 

ASA (25% of cohort) vs. none.  3855 No reduction in acute lung injury 

after propensity analysis for ASA 

use performed 

[74] 

Multicentre, USA. 

Consecutive ICU 

admissions. 

Statin and ASA vs. ASA alone 575 ASA potentiated effect of statins in 

reducing acute lung injury and 

sepsis 

[75] 
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Table and Figure headings. 

 

Table 1. Summary of clinical studies on associations between SIRS / sepsis outcomes 

and acetyl salicylic acid (ASA) / NSAID / antiplatelet agent use. The observational 

studies all involved patients who had been taking the agents listed prior to hospitalisation. 

 

Figure 1. Pathways and effects of aspirin-triggered lipoxin synthesis. Aspirin 

promotes the generation of 15R-hydroxyeicosatetraenoic acid (HETE) from arachidonic 

acid via the acetylation of COX-2. HETE is rapidly metabolized through the action of 5-

lipoxygenase (5-LOX), leading to production of 15-epi lipoxin A4. This aspirin-triggered 

lipoxin (ATL) pathway mirrors classic lipoxin synthesis and function. ATL then mediates 

anti-inflammatory effects via reduced proinflammatory cytokines formed directly by 

stimulated lymphocytes as well as effects on phagocytes that contribute to additional pro-

resolution effects on inflammation. Inhibition of plasma derived growth factor (PDGF), 

epidermal growth factor (EGF) and leukotriene D4 (LTD4) mediated signalling in 

neutrophils leads to reduced migration and promotes apoptosis while increasing 

phagocytosis in macrophages. The combined effects promote resolution of inflammation. 

 



23 
 

 

 

 



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Eisen, DP

 

Title: 

Manifold beneficial effects of acetyl salicylic acid and nonsteroidal anti-inflammatory drugs on

sepsis

 

Date: 

2012-08-01

 

Citation: 

Eisen, D. P. (2012). Manifold beneficial effects of acetyl salicylic acid and nonsteroidal anti-

inflammatory drugs on sepsis. INTENSIVE CARE MEDICINE, 38 (8), pp.1249-1257.

https://doi.org/10.1007/s00134-012-2570-8.

 

Persistent Link: 

http://hdl.handle.net/11343/223971

 

File Description:

Accepted version


