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Abstract
In Australia, asthma is a common respiratory disease with a significant health burden.

Our current understanding of the biological mechanisms behind asthma is incomplete.
It is not clear what makes a person more susceptible compared to another, nor is it clear
how determinants of asthma susceptibility interact to cause disease. Childhood wheeze
does not necessarily progress to asthma, and asthma itself is a heterogeneous condition
that encompasses many different phenotypes, each with potentially different biology.
However, we suspect that, for most affected individuals, the origins of asthma arise in
early childhood, as embodied by the “hygiene hypothesis”. Events like microbial and
allergen exposure in early life, as well as frequency and severity of respiratory infections,
may steer the child on a course towards asthma and disease. Early prediction of disease
susceptibility or severity is important because it may permit early intervention in young
children, which may then limit the progression of asthma or prevent it altogether.

My research thesis had three general aims:

1. To uncover hidden subgroups or “clusters” of children who share similar trajectories
of immune function and susceptibility to respiratory infection; and determine how
these relate to asthma and other related phenotypes.

2. To describe microbial communities in the upper respiratory tract of infants, specifically
distinct patterns of change or trajectories in the microbiome that emerge as the child
ages; and to determine how these relate to respiratory health, asthma, and related
phenotypes.

3. To identify novel genetic determinants of asthma and related phenotypes in early
childhood (including immunorespiratory clusters and microbiome trajectories), and
determine how these relate to each other.

Through this research, I hope to shed light on the complexity that is asthma pathogen-
esis. In particular, it may explain how the determinants of asthma are similar or different
between individuals. With my research, it may be possible to better characterise the inter-
locking events that lead from disruption of normal physiology to eventual disease. Future
studies can focus on the origins of asthma in specific subpopulations, as well as potential
treatment targets within each subgroup. The results of this research may open up the
potential for developing therapeutic and preventative measures for asthma, as well as
allow earlier intervention for infants at risk of developing asthma later in life.
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Preface

General orientation

This thesis is organised into six chapters:

1. Chapter 1 is a general introduction to the thesis.

2. Chapter 2 is a literature review.

3. Chapters 3, 4 and 5 are research chapters.

4. Chapter 6 is a final concluding chapter.

Contributions to Chapters 1 and 6

Howard HF Tang (the candidate) was the sole contributor to the introductory and con-
cluding chapters (Chapters 1 and 6).

Contributions to Chapter 2

Chapter 2 of the thesis, titled Systems biology and “big data” in asthma and allergy —
recent discoveries and emerging challenges, is a literature review of current systems-
based research in asthma and allergy research. The chapter was written by the candidate
under the guidance of supervisors Michael Inouye and Kathryn Holt. Further expert advice
and commentary was provided by Patrick Holt and Peter Sly to guide the candidate in
writing. There are plans to submit this chapter for review to the European Respiratory
Journal in early 2019.

Contributions to Chapter 3

Chapter 3, titled Trajectories of childhood immune development and respiratory health
relevant to asthma and allergy, was written in collaboration with investigators of the
Childhood Asthma Study (CAS), the Childhood Origins of Asthma Study (COAST) and
the Manchester Allergy and Asthma Study (MAAS). Howard HF Tang (the candidate)
was responsible for the majority (90%) of the biostatistical analysis and writing of the
manuscript. This included: mixture-model-based cluster analysis of CAS, and derivation
of the classifier model to apply to COAST and MAAS; analysis of demographics and
summary statistics in CAS; and all other secondary analyses in CAS. Shu Mei Teo prepared
the microbiome data in CAS, and edited the manuscript. Marta Brozynska also assisted in
editing the manuscript. Danielle CM Belgrave analysed phenotypic data and performed
replication analysis in MAAS. Michael Evans conducted the equivalent analysis in COAST.
The primary investigators of COAST were Daniel J Jackson, James E Gern and Robert
Lemanske; for MAAS they were Sebastian L Johnston, Angela Simpson and Adnan
Custovic; for CAS they were Merci MH Kusel, Peter D Sly and Patrick G Holt. Each of
these investigators made significant contributions in terms of: providing data for each
cohort; providing insight into unique properties of each respective cohort; and assisting
in interpretation of results. Kathryn E Holt and Michael Inouye provided supervision
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to the candidate, and were the primary instigators of the CAS/COAST/MAAS cross-
collaboration project, which integrated genomic, microbiomic and other phenotypic data.
This chapter has been published in its entirety in eLife on 15 October 2018, available here.

Contributions to Chapter 4

The research for Chapter 4, titled Diverging trajectories of nasopharyngeal microbiome
during early childhood are associated with asthma and asthma-related traits, was con-
ducted in collaboration with CAS and COAST investigators. Howard Tang was responsible
for the bulk (90%) of the analysis and writing —- in particular, processing and analysis of
the 16S microbiome data through the QIIME2 pipeline to derive amplicon sequence vari-
ants (ASVs); generation of microbiome profile groups (MPGs); derivation of microbiome
trajectories; and all other secondary analyses, including the meta-analyses. Shu Mei Teo
provided some of the initial methodology and protocol to prepare and analyse the micro-
biome data in CAS (specifically QIIME1), ran the initial FastSpar analyses, and advised
on the use of generalised linear models and estimating equations. Stephen Watts was the
author of the FastSpar software package which was used in the analysis of the microbiome
data. Louise M Judd was responsible for preparing the microbiome data (16S V4 rRNA
sequencing) for both CAS and COAST nasopharyngeal samples. Sebastian L Johnston,
Yury A Bochkov, Kristine Grindle and James E Gern provided viral typing for both CAS
and COAST samples. Michael D Evans and Anna (Ania) Lang provided phenotypic data
from COAST. They also performed other COAST-based analyses external to this thesis.
Merci MH Kusel, Danny Mok, Barbara J Holt, Michael Serralha and Niamh Troy provided
phenotypic data from CAS. Kathryn E Holt and Michael Inouye provided supervision to
the candidate. Other contributions were as given in the Chapter 3 description.

Preliminary results from the COAST-specific analyses were presented by Anna Lang
at the American Academy of Allergy Asthma and Immunology (AAAAI)/ World Allergy
Organization (WAO) Joint Congress, on 4 March 2018 at Orlando, Florida, United States
of America. The COAST-specific elements of this chapter will be compiled along with
ongoing research from COAST collaborators, and will be submitted in the near future
as a research paper with equal first-authorship between Howard Tang and Anna Lang.
The CAS-specific contents and meta-analysis results of this chapter will be submitted as a
separate paper following the COAST-centric submission.

Contributions to Chapter 5

The final research chapter of the thesis is titled The link between genetics of asthma
and allergic disease, and events in early childhood. The research for this chapter was
conducted in collaboration with CAS investigators. The candidate, Howard Tang, was
responsible for the majority (90%) of the analysis and writing, including: processing
and imputation of CAS genotype data using SHAPEIT/IMPUTE2 and 1000 Genomes
reference; genome-wide association scans (GWAS) with FaST-LMM, longitudinal GWAS
with RepeatABEL, and catalogue loci analyses; analyses with genome risk scores (GRS);
and all other secondary analyses, including modelling associations between GRS and
phenotypic traits. Shu Mei Teo formulated the GRS from the summary statistics data.
Qinqin Huang performed imputation using the Michigan Imputation Server; the results
of this imputation were then used for subsequent GRS calculations and analyses. Louise
M Judd was responsible for preparing the microbiome data (16S V4 rRNA sequencing)
for CAS nasopharyngeal samples. Oneil Bhalala and Lesley Raven provided preliminary

https://elifesciences.org/articles/35856
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scripts and advice for conducting imputation with SHAPEIT/IMPUTE2 and genome-
wide association analyses with FaST-LMM. Merci MH Kusel, Danny Mok, Barbara J Holt,
Michael Serralha and Niamh Troy provided phenotypic data from CAS. Kathryn E Holt
and Michael Inouye provided supervision to the candidate. Other contributions were as
given in the Chapters 3 and 4 descriptions.

Preliminary results from genome-wide analyses for CAS-specific traits of respiratory
health were presented by Howard Tang at the Lorne Genome Conference on February
2016 at Lorne, Victoria, Australia. At time of writing, there are plans to publish the GRS
analyses of this chapter as part of a manuscript authored by Howard Tang. The GWAS
analyses, if replicated in secondary independent cohorts (COAST, MAAS or others), may
also be published.

Other details

Prior to enrolment in the degree, the candidate performed some preliminary data checking,
processing and quality control of CAS data, while working in the capacity of research
assistant. Otherwise, none of the work presented in this thesis was carried out before
enrolment.

None of the work in this thesis was submitted for other qualifications.
The candidate acknowledges that the research for this thesis was almost entirely funded

by the NHMRC 2016 Clinical Postgraduate Research Scholarship, under the project title
“Understanding the pathogenesis, phenotypic variation and risk prediction of childhood
asthma using computational approaches” (NHMRC ID: 1114753).
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Chapter 1

Introduction

1.1 Overview of asthma and allergy

Asthma is a common and chronic medical condition, characterised by recurrent episodes of
respiratory wheeze, cough, and shortness of breath. These symptoms are caused by lower
airway obstruction due to airway inflammation, bronchial hyperreactivity and mucus
secretion [1, 2]. A feature that distinguishes asthma from other obstructive respiratory
diseases, such as chronic obstructive pulmonary disease (COPD), is the fact that this
obstruction is often partly-reversible, either spontaneously or with medication. Many
cases of asthma also feature allergy.

Allergy, or type I hypersensitivity, is an exaggerated and pathological immune re-
sponse where the body generates antibodies against what is usually a benign antigen.
These antigens or “allergens” are typically exogenous, being ingested or inhaled from the
environment. Allergy is a primary driver in many cases of asthma [1, 3, 4]; other conditions
with an allergic basis include hayfever (allergic rhinosinusitis, rhinoconjunctivitis); atopic
dermatitis or eczema; food allergy; eosinophilic oesophagitis; and anaphylaxis. Allergy is
heritable, and the term “atopy” is commonly used to describe the familial predisposition
to allergic responses. Atopic individuals often respond to multiple allergens [5, 6], and
multiple allergic conditions often co-occur in these individuals.

Over recent years, the incidence and health impact of both asthma and allergy have
steadily increased. Once a disease found predominantly in affluent populations, asthma
has become more prevalent in developing nations, possibly due to urbanisation and
other changes in living environment [7]. In Australia, asthma is the leading cause of
disease burden in children under the age of fourteen [8]. Medical interventions may
relieve symptoms or slow functional decline, but there is currently no cure for asthma, and
treatment response varies from person to person. In severe cases, uncontrolled asthma can
cause status asthmaticus, respiratory arrest and death [9, 10]. In spite of its health impact,
there remain many unknowns about the condition – what causes it, how these causes
interact with each other, how to best treat or prevent it, and why some people respond
better to treatment than others.

1.2 The variable contribution of genetics and environment to
asthma creates heterogeneity

To address these questions, one must explore the origins of disease. Most human diseases
are caused by a combination of genetic and environmental factors, and asthma and allergy
are no exceptions. There is a strong familial and heritable component to asthma [11],
but acute exacerbations of asthma are often triggered by environmental exposure to an
allergen or some other noxious stimulus [12, 13]. There is also evidence suggesting that the
development of asthma is influenced by exposures during the perinatal period and early
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infancy [14, 15]. Together, genetics and environment interact and contribute to biological
dysfunction, which manifests as symptomatic disease.

Asthma can also exist without evident allergy, and there are alternative non-allergic
mechanisms that contribute to recurrent respiratory wheeze: for example, airway inflam-
mation due to microbial infection or inhaled irritants [13, 16]. Like many other diseases,
the susceptibility and manifestation of asthma varies from individual to individual, due
to differences in underlying genetic architecture, environmental exposure, and physiology.
What these differences are remain unclear. Hence, a major research priority is discovering
how and why there is such heterogeneity in disease — a better understanding of this
can potentially allow scientists and clinicians to develop precise and personalised op-
tions for management of disease. To perform this in a quantified manner, comprehensive
and well-powered datasets are needed — beyond the standard clinical and pathological
investigations.

1.3 The arrival of big data and systems biology

Within the last two decades, the genomics revolution has swept in technological improve-
ments that have allowed scientists to extract exhaustive amounts of “big data” from
biological samples, such as genomic (DNA), transcriptomic (RNA) and proteomic data.
It was hoped that, by having a sufficiently-comprehensive collection of biological infor-
mation, one could definitively describe the functional and dysfunctional state of any
biological system, up to the scale of the entire human body [17]. However, the complexity
of biomolecular and cellular systems means that it is no trivial task to fully interpret these
large, “omic-sized” datasets.

That said, new and useful biological information could still be derived from big data.
Our traditional understanding of asthma and allergy was developed largely via exper-
imental, clinical, and epidemiological work with human and animal populations. This
understanding has recently been augmented by new methods that incorporate biostatistics,
bioinformatics and systems biology. Modern systems-based research has focused on the
genomics of disease; the transcriptomics of affected cells and tissue compartments; their
interaction with environmental exposures; and attempts at disentangling the heterogeneity
of diseases using clustering and classification methods.

1.4 Current knowledge of asthma and allergy

1.4.1 Theories of asthma and allergy

Historically, pre-big data, there were a number of theories and paradigms on asthma
pathogenesis. These ranged from a vague understanding of airway hyperreactivity in
Ancient Greece and China; to theories of possible neurological involvement during the
Renaissance; and finally to a modern understanding of asthma as having an inflammatory
and allergic basis, driven partly by genetics and partly by environment [18]. Allergy
was first used by von Pirquet to describe a change in reactivity of the immune system
exposed to foreign antigen, with over-reactivity causing disease — a controversial concept
at a time when immunity was thought to be exclusively protective [19]. The term now
refers specifically to a type of hypersensitivity: increased activity of type 2 helper T (Th2)
cells, which drive plasma cells to produce allergen-specific immunoglobulin E (IgE) [4].
However, what exactly triggers this increase in Th2 activity remains unclear; it may
be related to priming of immunological responses during early childhood or even the
perinatal period [20, 21]. Also, many but not all manifestations of asthma have an allergic
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basis, and the relative importance of allergy to pathogenesis may vary from person to
person. The definition of allergy or atopy is also troublesome: current clinical guidelines
use a threshold of specific IgE (0.35 kU/L) as an indicator of positive sensitisation, and yet
this threshold may not be ideal especially in younger age groups [22]. Current tests do not
use variable thresholds that take into account age or type of allergen being tested. There is
also a subtle distinction between mediators of chronic disease and acute exacerbations —
chronic airway inflammation may be driven by underlying allergic inflammation, while
acute insults such as respiratory infection and inhaled or ingested noxious agents may
trigger acute exacerbations [13, 18].

1.4.2 The atopic march

Given the observation that various allergic diseases often co-occurred in the one patient,
there were attempts to link the pathophysiology of these diseases together. The natural
history of atopic individuals sometimes abides by the following timeline: food sensitisation
and allergic eczema preceding wheeze and asthma, then asthma itself preceding allergic
rhinitis which tends to occur in adolescence and adulthood. Therefore, the “atopic march”
theory proposes that there must be some causal link amongst these three conditions
occurring in sequence — perhaps disruption to epithelial barriers (skin, gut) promotes
further allergen sensitisation, and accentuation of a systemic Th2 immune response,
which then elicit allergic inflammation in other tissue compartments [23]. However, recent
research has cast doubt on this theory as the disease progression described by the atopic
march is not as common as initially believed [24].

1.4.3 Exposures and the hygiene hypothesis

The atopic march alludes to the importance of early childhood events in determining later
disease. There is emerging evidence suggesting that other events in early childhood can
influence the development of asthma many years later. For example, recurrent wheezy
chest infections in the first year of life increases the risk of subsequent asthma [25–27].
Exposures (or lack thereof) to certain food products, and exposure to environmental
endotoxin, may also have an impact on allergy [28, 29]. Related to endotoxin is the link to
microbial exposure — the hygiene hypothesis posits that improved sanitation in developed
nations reduced overall microbial exposure, thus resulting in inappropriate priming of
a child’s developing immune system, and leading to increased prevalence of allergy in
affluent populations [30]. However, latest evidence suggests that the hygiene hypothesis is
an oversimplification of the narrative [31, 32], and it remains unclear how all these changes
in early-life exposures interact with each other in driving the pathology of asthma.

1.4.4 Studies incorporating omics-level data

In recent years, omics-based approaches have been employed to explore the pathogen-
esis of asthma and allergy. The genetics of asthma and allergy have been thoroughly
investigated, with seminal contributions from the likes of Ober [11] and the GABRIEL
Consortium [33]. Further studies have also been conducted examining the genetics of risk
factors for asthma, including early-life respiratory infections with rhinovirus [34]. Many
significant gene associations involve the Th2 immune pathway, and have been found to
regulate expression of genes and proteins relevant to immune function and inflammation.
This is consistent with existing knowledge of asthma pathogenesis. Recently, interesting
novel associations have also been identified, for example loci specific to certain ethnic
groups (e.g. PYHIN1 in those of African descent) [35]. Furthermore, researchers have
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explored transcriptomic, proteomic and metabolomic profiles for various tissues (e.g.
airway) in disease and health, in an effort to identify predictive biomarkers as well as
understand pathology. Finally, some studies have integrated measurements of environ-
mental exposures, such as diet and microbial exposure. In relation to host microbiota,
numerous recent studies have associated changes in the gut and airway metagenomes
with active asthma and asthma risk [36].

1.4.5 Exploring asthma heterogeneity with clustering and classification

The heterogeneity of asthma manifestations suggest that the disease may represent dif-
ferent states that all share wheeze as a common clinical feature, yet have fundamentally
different biological mechanisms. Because of this, researchers began to look within sub-
types of asthma, and assess them independently of one another. Asthma has often been
dichotomised into “atopic” or “extrinsic” (those with evidence of allergic pathophys-
iology) vs. “non-atopic” or “intrinsic” asthma (those without). Distinctions have also
been made for paediatric vs. adult-onset asthma, obesity-related asthma, exercise-induced
asthma, mixed asthma-COPD phenotypes and others [37]. With the advent of big data,
researchers have not only begun examining each of these sub-phenotypes for omic-level
differences, but have also begun interrogating the omic data itself in an “unsupervised”
systemic manner. This is the use of computerised, machine-learning methods to derive
sub-phenotypes based on data structure, with minimal human input or pre-supposed
expert knowledge. Given the molecular-level data from which they were derived, these
groupings can be presumed to relate somehow to underlying disease pathophysiology
— hence they have been given the label “endotype” [38–40]. With endotypes, we hope
to gain a better understanding of how asthma presents differently in different people,
thus making that first step towards personalised medicine. However, due to a number of
limitations (described in later chapters), it has remained a challenge to corroborate and
compare these endotypes.

1.5 Major gaps in knowledge

Given the above summary of asthma research, the major knowledge gaps that currently
exist can be summarised as follows:

• The nature and mechanisms of asthma heterogeneity remain poorly understood.
Although the distinction between allergic and non-allergic asthma is well-known,
it is probable that other categories or subcategories exist, especially given that het-
erogeneity also exists within these subtypes [37, 41]. Unsupervised methods of
clustering have uncovered some hidden or “latent” categories, and may aid in disen-
tangling the pathophysiology behind each category. However, although researchers
have performed both supervised and unsupervised derivations of asthma subphe-
notypes and endotypes, it is difficult to compare between them or apply them to
clinical practice. Obstacles include inconsistent definitions of supervised categories,
non-unified methods and variable types of input data used to establish categories,
and unaccounted variation across study populations.

• The existing definitions for allergy and atopy are imperfect. We refer to the di-
agnostic or screening criteria from pathology tests used to determine an allergic
predisposition such as IgE and skin prick or sensitisation tests (SPT). They have so
far been helpful in identifying certain high-risk or severely-unwell individuals in
a population. However, positive results are not always specific for disease, espe-
cially in young children. IgE levels also change with age, yet there are no validated
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age-adjusted thresholds or measures. The sensitisation profile in infants and young
children have been described by some studies [22, 42], but there has not yet been a
universally-accepted method for using these profiles to predict long-term allergic
disease. Also, the patterns or trajectories of IgE levels across different allergen speci-
ficities may be more relevant than the actual level itself, but such a hypothesis has not
yet been explored in depth. Finally, current measures of allergic sensitisation also do
not account for possible interactions between sensitisation and other environmental
exposures (e.g. viral infection).

• The contributions of events in early childhood to asthma pathogenesis remain
poorly understood — especially the contributions of the host’s airway microbiome,
in interaction with other factors. It is well-known that certain bacteria and viruses
are associated with general respiratory illness in young infants [43, 44]. However,
asymptomatic colonisation with these microbes may also impact on asthma risk and
progression, via mechanisms dependent or independent of the susceptibility and
severity of respiratory infections. Also, it is not clear how the microbiome relates to
other environmental influences, such as delivery method, seasonal changes, breast-
feeding and diet. Existing findings have so far been inconsistent or contradictory
[36, 43, 44]. Finally, the possibility of interaction between microbial exposure and
allergen sensitisation states has been hypothesised by many, but not fully elucidated.

• Most studies that examine the contributions of host microbiome to disease have
used operational taxonomic units (OTUs) to describe bacterial taxa. Newer methods
that surmise bacterial populations from metagenome samples generate amplicon
sequence variants (ASVs), which have their advantages over OTUs [45]. There
have far been no studies that use ASVs to describe airway microbiota and their
associations with asthma and childhood wheeze.

• Genetic contributions to asthma have been well-characterised. However there re-
mains much uncertainty as to how genetic risk relates to early-life risk factors of
infection and sensitisation, as well as how they interact with environmental factors.
In particular, measures that incorporate repeated or serial measures of a particular
phenotype (e.g. an asthma risk factor) may be better-powered to address certain
questions. In addition. methods that integrate multiple genetic signals, such as
genomic risk scores (GRS) for asthma and allergy, may provide a better predic-
tive or explanatory model of disease than individual disease-associated loci. While
GRSs have been developed for other complex polygenic diseases, few have been
constructed for asthma and allergy.

• It remains incredibly challenging to translate results from systems-based research
into clinical practice and public health interventions. This is likely due to the relative
nascency of systems- and omics-based approaches, as well as the underlying bio-
logical complexity being modelled. Numerous attempts have been made to derive
predictive and risk-stratifying models from biomarkers (genomic, transcriptomic,
and others), but these have been complicated by disease heterogeneity, incomplete
availability of relevant biomarkers, and limited consideration of gene-environment
interactions. Furthermore, we have not yet reached the stage of being able to formu-
late targeted management options for patients with asthma and allergy. Even if we
could quantify the risk of later asthma in a young child, it is not clear whether early
preventative use of bronchodilators or inhaled steroids will do anything to mitigate
this risk. Precision or personalised medicine will require concrete evidence that an
unwell individual has a specific flavour of disrupted pathophysiology that is being
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precisely targeted by a particular treatment option — and this level of information is
currently lacking.

1.6 Key research questions addressed by this thesis

To address some of the knowledge gaps listed above, I analysed data from the Childhood
Asthma Study (CAS) [46], a prospective birth cohort from Western Australia of about 200
children with comprehensive and serial measurements in a wide range of parameters.
These measurements include: records of respiratory disease (infections), measures of al-
lergy and immunopathology (antibody levels and skin sensitisation tests), descriptions of
nasopharyngeal microbiota (16S ribosomal RNA sequencing), lung function tests, and host
genetics (DNA microarray). Members of our laboratory and CAS have conducted studies
exploring the relationship of allergic diseases with early life events, including viral infec-
tions [47], allergen sensitisation [22], antibiotic use [48] and patterns in nasopharyngeal
microbiome [43, 49]. We also collaborated with investigators from the Childhood Origins
of Asthma Study (COAST) [50] and the Manchester Allergy and Asthma Study (MAAS)
[51], who have collected similar types of data in US and UK populations respectively.
These external datasets were used primarily for validation or replication of results from
CAS.

With these datasets, we attempted to address some of the existing knowledge gaps by
posing the following questions:

• Is it possible to use unsupervised clustering methods to derive clusters (presumed
endotypes) of childhood asthma and asthma susceptibility from clinicopathological
data? What do these clusters look like, and do they capture trajectories of childhood
development relevant to immune or respiratory health and disease?

• How do these immunorespiratory clusters relate to existing subgroups of asthma
susceptibility, or definitions of atopy and allergy? Do these clusters provide more
information than existing criteria for allergy?

• Do similar clusters exist across different populations? How do these compare?

• Does characterisation of nasopharyngeal microbiota using ASVs differ much from
using OTUs? Can similar findings be achieved to those of Teo et al [43] using
OTU-based results? Does the bacterial composition of nasopharyngeal microbiota
contribute to respiratory disease dependently or independently of other risk factors
such as season and viral detection?

• Are there clusters of individuals who share similar patterns of nasopharyngeal
microbiome that evolve with time and age? Do any of these “microbial trajectories”
relate to asthma risk?

• Are these associations between nasopharyngeal microbiome and respiratory disease
shared across different populations?

• Are there any loci in the genome that are associated with early-life risk factors for
asthma (e.g. frequency of lower respiratory infections, allergen-specific IgE levels)?
if so, have any of these been replicated?

• Does incorporating the longitudinal aspect of some GWAS phenotypes (e.g. repeated
measurements) grant more biologically-relevant information and hence generate
any new findings with longitudinal GWAS?
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• Does the genetic signal for allergy disease later in life, represented by genomic risk
scores (GRS), associate with early childhood traits such as allergic sensitisation, mi-
crobial colonisation, and wheezy respiratory infections? How do immunorespiratory
clusters, microbiome, and genomics interact with each other when contributing to
asthma risk?

1.7 Key research aims and thesis structure

Given all of the above, the aims or objectives of each research chapter are formulated as
follows, and as summarized in Figure 1.1.

Chapter 3 seeks to address questions pertaining to clusters based on clinicopathologi-
cal data. Specifically, it sets out to:

1. use non-parametric mixture models to discover latent clusters that define early
childhood trajectories of immune function and susceptibility to respiratory infection
in the CAS dataset;

2. investigate how these immunorespiratory clusters relate to differential profiles of
asthma susceptibility, and to existing definitions of atopy, in CAS;

3. identify risk factors for asthma within each cluster; and

4. externally validate the clusters in independent cohorts COAST and MAAS, by
applying the CAS-derived mixture models as classifiers to these cohorts.

Chapter 4 addresses questions relating to the nasopharyngeal microbiome of young
children and their relationship to respiratory disease. In this chapter, we:

1. apply an ASV-based bioinformatic pipeline to nasopharyngeal microbiome data
from CAS and COAST, to determine and compare profiles of microbial composition
between cohorts.

2. build on OTU-based results from Teo et al 2018 [43] by conducting a meta-analysis
of associations between microbial and asthma-related traits using both CAS and
COAST data;

3. using clustering methods that account for repeated measures, determine and com-
pare microbiome trajectories representing the evolving healthy nasopharyngeal
microbiota in CAS and COAST; and

4. describe how these trajectories relate to asthma-related traits, together with other
pathophysiologically-relevant factors.

The final research chapter, Chapter 5, explores the contribution of genetics and ge-
nomics to asthma and allergic disease in CAS. In brief, we:

1. perform a scan for genome-wide significant SNPs associated with early-life traits in
CAS, such as frequency and severity of respiratory infections, or levels of allergen-
specific antibodies;

2. test whether genome-wide significant loci known to be associated with asthma-
related traits (in a curated GWAS catalogue) are also linked to early-life traits in
CAS;

3. perform genome-wide analyses using longitudinal association models that incorpo-
rate the serial measurement of early-life CAS traits; and
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4. calculate GRS derived from larger meta-analyses for asthma and allergy-related
traits, and explore the association between GRS and early-life traits in CAS.

At this point, I would like to highlight that there are two themes common to each
research chapter:

1. The initial use of systems-based approaches (cluster analysis, dimension reduction)
to find patterns and simplify complex data.

2. The subsequent application of “traditional” association analyses on this simplified
data, to determine links between variaus pathophysiological entities (e.g. groups
generated by cluster analysis; variables within each cluster).

Before describing my research output, we will first begin with Chapter 2: a litera-
ture review of systems-based approaches applied to allergy and asthma, including the
examination of the major findings and limitations of such approaches.
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Chapter 2

Systems biology and “big data” in
asthma and allergy — recent
discoveries and emerging challenges

2.1 Introduction

The rising prevalence of asthma and allergy has been linked to changes in environment
and lifestyle [1, 2]. But while we know of several genetic and environmental determinants
of allergy and asthma, the potential interactions between these determinants remain
unclear. Furthermore, asthma and allergy are umbrella terms that describe a spectrum
of disease, with unexplained heterogeneity in clinical manifestations of disease. Finally,
with the development of high-throughput technologies, we may be able to unravel some
of this heterogeneity, but it remains challenging to process, analyse and interpret large
volumes of biological data that emerge from these technologies. All these challenges have
prompted researchers to search for new methods of inquiry more suited to these research
problems.

Systems biology is a recent development that addresses the growing complexity of
biomedical research questions . The term was coined in the 1960s to describe mathematical
modelling of physiological systems [3]. Today it embodies expertise across multiple fields,
including biology, mathematics, statistics, informatics and computer science. The “systems”
community is diverse and as such there is no singular definition of the term “systems
biology” [4]. However, it is commonly presented as the study of biomedical problems
involving complex systems and their interactions, by surveying and integrating high-volume
data that may cover wide spatiotemporal scales [3]. These “big datasets” typically originate
from “omics”, fields of study involving high-throughput measurement of biomolecules:
for instance, genomics for DNA, transcriptomics for RNA transcripts, and proteomics
for translated proteins (Figure 2.1). Mathematical and computational expertise is then
required to explore this high-volume data, using techniques such as dimension reduc-
tion; data- and text-mining; modified statistical analyses that account for spatiotemporal
complexity and multiple testing burden; machine learning; and mathematical modelling.
Therefore, systems biology is by its very nature multi- and inter-disciplinary.

The practice of systems biology follows two approaches: an unbiased, hypothesis-free
data-driven approach, where few a priori assumptions are made and models are learnt
from the data; and a hypothesis-driven approach, where model design and analysis are
guided by previous experiments and expert knowledge [5]. The data-driven approach is
becoming increasingly popular as it can uncover new knowledge on emergent behaviour
from complex data. Systems biology can also be dichotomised into top-down versus
bottom-up approaches, to describe the direction of enquiry in decreasing (big-to-small,
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FIGURE 2.1: “Omics” in allergy, and their interrelationships

A depiction of the various “omics” that can be found in allergy and asthma research. Lines connecting the
“omics” represent various biological relationships, associations or interactions that may exist. In systems
biology, bottom-up approaches progress from the molecular scale to the macroscopic scale, and vice versa for
top-down approaches.
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long-to-short, system-to-components) or increasing spatiotemporal scales (small-to-big
etc.), respectively (Figure 2.1) [6, 7].

On the surface, systems biology appears to be antithetical to the “reductionist paradigm”
of old. However, systems-based approaches can produce new insights on how to proceed
with reductionist experiments, and vice versa. Also, there are strengths and weaknesses
attached to each; while reductionist methods can over-simplify problems, their tests are
more appropriate in contexts such as causal inference. Nonetheless, systems approaches
are becoming indispensable to biomedical research; they allow us to better understand
disease phenomena, and form the basis for precision medicine, helping us improve the
screening and management of disease.

Asthma and allergy, as biomedical problems, are well-suited to systems approaches.
Allergic diseases have complex pathogenesis, with multiple tiers of biological complexity,
polygenicity and gene-environment interactions. Systems approaches used in allergy
research include: (1) discovery of disease associations within each omic field; (2) identifi-
cation of relationships within and across omic fields; (3) examination of heterogeneity of
disease states and phenotypes, typically by exploring the multidimensional structure of
omic data via clustering or classification; (4) investigation of inter-connections between
system components in omic data by network analysis; and (5) mathematical modelling
to model physiological systems or disease states, and to generate and test predictions
(Figure 2.2). Though the final approach is closest to the original formulation of systems
biology, our review will take a high-level look at all approaches, with a focus on the first
three.

2.2 Overview of omic findings in allergy and asthma

We begin our examination of systems biology from bottom up – from the molecular level of
genomes and transcriptomes, to the macroscopic level of observable phenotypes. We offer
high-level summaries of recent findings at each level of profiling. Of all allergy-related
diseases, asthma has come under the most scrutiny, so much of our discussion will revolve
around it.

2.2.1 Genomics

In allergic disease, the genome is the most-studied of all the omic fields. Asthma and
allergic disease are highly-heritable, with estimated heritability ranging from 35 to 95% [8].
In the last half-century, the quantitation of genetic variation has progressed from rough
“ballpark” measurements such as restriction fragment length polymorphisms (RFLP), to
precise single-nucleotide variants or polymorphisms (SNV/SNP) interrogated en masse
using DNA microarrays. More recently, there has been a move towards whole exome
(WES) and whole genome sequencing (WGS).

The complexity of genetic data analysis has grown in parallel, from candidate gene
studies, to genome-wide linkage studies within pedigrees, to genome-wide association
analyses (GWAS) involving case-cohort comparisons [9]. With GWAS and other omic-wide
analyses, statistical adjustments are made for multiple testing burden. But, although some
older candidate associations have been replicated by GWAS (e.g. IL13/IL4 and IL4R), most
have not. Furthermore, there is low concordance of significant results between genome-
wide linkage studies and GWAS. These suggest that (1) older findings may be plagued
by false positives; (2) each approach may have its own use: positional candidates from
linkage studies may flag variants determining intra-family disease risk, while GWAS flag
variants determining population-wide risk; and (3) rarer or weaker gene associations may
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be swamped by noise in GWAS, due to inadequate power from small sample sizes, and
heterogeneity within cases and controls.

In the last 10 years, GWAS have identified many replicable loci shared across multiple
allergic phenotypes, especially asthma, allergic rhinitis, atopic dermatitis and food allergy.
These likely represent genetic contributors to general allergy, and include: the HLA locus,
specifically HLA-DQ/DRB1, HLA-DQA1/2 and HLA-B/C (6p21.32-33); C11orf30/LRRC32
(11q13.5); IL13/IL4/RAD50 (5q31.1; IL1RL1/IL18R1 (2q12.1); and TSLP/WDR36 (5q22.1)
[9–12]. Some of these have plausible biological underpinnings; the HLA region encodes
major histocompatibility complex (MHC) Class II molecules that are responsible for
antigen presentation. IL13, IL4 and TSLP encode cytokines related to the Th2 pathway,
which is heavily implicated in allergy. Other associations remain uncertain or even dubious
in terms of pathophysiology, and require further investigation.

There are also disease-specific loci, especially those specific for asthma, which may
act independently of loci for general allergy. In particular, ORMDL3/GSDMB/LRRC3C
(17q21.1) is linked with asthma, especially of childhood-onset [13–15]. More recently,
there has been a focus on loci with ethnicity-specific effects – for instance, PYHIN1 is
significantly associated with asthma, but only in individuals of African ancestry [14]. There
is also an increasing focus on using admixture to map risk loci [8]. Finally, associations
distinct from disease-susceptibility loci have been identified for responsiveness to asthma
therapy with β2-agonist bronchodilators, leukotriene modifiers, and steroids [16, 17].
There are many other loci for related respiratory phenotypes, such as lung function and
viral respiratory infections [18–21]. Some of these are shared with allergy and asthma
phenotypes, suggesting shared mechanisms of pathogenesis.

Despite the large number of novel associations discovered using GWAS, these collec-
tively explain only a small proportion of the total heritability of asthma and allergy. The
use of significant SNPs as a predictive tool for disease is often limited [22]. The existing
criteria for genome-wide significance may not be sensitive for so-called “mid-hanging
fruit” [23]: loci that are not genome-wide significant but still have an incremental effect
on the phenotype. More recently, alternative strategies such as genomic or polygenic risk
scores have been employed to account for this missing signal. These use the summary
statistics from existing large-scale GWAS to generate scores from either the entire genome-
wide assortment of SNPs, or from a select few of high-predictive SNPs. Although it is
difficult to surmise any pathophysiology from the scores themselves, they have shown
promise as predictive or risk-stratifying tools for other chronic polygenic diseases such as
cardiovascular disease [22].

2.2.2 Transcriptomics

The transcriptome represents the entire repertoire of genes expressed in an organism or
cell. Mirroring the developments in genomics, there has been a move from investigation of
single-gene transcripts via traditional methods (e.g. Northern blotting), to genome-wide
methods involving oligonucleotide microarrays, and most recently to RNA sequencing
(RNA-seq, which involves reverse transcription to cDNA followed by deep sequencing)
[24]. Transcriptomes may be determined by aligning RNA-seq reads to transcripts anno-
tated in a reference genome, or assembling transcripts de novo, followed by quantification
based on abundance of reads per transcript.

Unlike the genome, the transcriptome varies across tissues and cell types, and changes
dynamically during development and in response to external stimuli. Common tissue
sources for transcriptomics include blood with or without cell sorting; bronchial epithe-
lium, smooth muscle, or sputum cells for asthma; nasal epithelium for allergic rhinitis;
and skin for atopic dermatitis. Different cell types may feature different associations, and
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this provides insight into how various genes contribute to the many manifestations of
allergy.

Recent studies of allergy have identified, across multiple tissue types, differential
expression of genes involved in innate and adaptive immunity, inflammatory and repair
responses, and epithelial integrity. Cytokines (Th2 and others), chemokines and their re-
ceptors, protease inhibitors (SERPINs) and other multifunctional regulatory proteins (S100
family) have been identified in multiple transcriptome analyses of allergic diseases [25–29].
Baines et al. [25] described transcriptional profiles specific for inflammatory phenotypes
in adult asthma, and found that IL1β and CXCR2 levels were predictive for neutrophilic
inflammation. Differential gene expression between case and control may be explained
by differences in relative numbers of immune cell populations, due to proliferation or
contraction [25, 30]. Otherwise, they may relate to actual differences in behaviour of
immune cell subsets, such as T cells (Th2, Th17, Treg), and cells of innate immunity (e.g.
eosinophils) [31–35]. Specifically, allergic rhinitis is associated with transcriptome profiles
representing exaggerated Th2 activity and aberrant Treg function, and treatment with
steroids may reverse some of these changes [35].

Some significant loci in genetic association studies are also differentially expressed
in allergic disease: for instance, genetic variants in Th2 cytokines (IL5, IL13 etc.) have
been associated with asthma in case-control studies, and IL13 is upregulated in a Th2-
dominated subphenotype of childhood asthma [31]. Other asthma-associated loci are
expression quantitative trait loci or SNPs (eQTLs/eSNPs); these influence expression of
nearby genes, for instance by altering the regulatory region of those genes (as cis-eQTLs)
[36]. Local eQTLs associated with allergy have been found in TSLP/WDR36 determining
TSLP expression; in ORMDL3/GSDMB/LRRC3C for GSDMA and GSDMB; and in IL1RL1
[37–40]. Yet many other genes are differentially expressed in asthmatics but have not
yet been linked to allergy- or asthma-related variants from GWAS. These may represent
manifestations of inflammatory pathology downstream of genetics; or they may represent
drivers of interactions with environmental exposures.

2.2.3 Epigenomics

The epigenome is the set of heritable biochemical modifications that change gene ex-
pression, but are not coded in the DNA sequence. Epigenetics functions as a bridge
between genome and transcriptome, providing mechanisms by which the micro- or macro-
environment can influence gene expression within each cell; and by which transgeneration
inheritance can occur after initial exposure to an epigenome-modifying environment [41,
42]. Epigenetic signals include: (1) DNA methylation at CpG islands, which silences ex-
pression of adjacent genes; (2) histone modifications (acetylation, methylation, and others),
whose effects vary depending on type and position of modification; and (3) non-coding
RNA such as microRNA (miRNA), which can silence genes by binding or degrading com-
plementary mRNA [43]. Together, these epigenetic markers cause changes in accessibility
of a local DNA segment to transcription or regulatory factors.

Low and high-throughput detection methods exist for each type of epigenetic sig-
nal. Methylation-sensitive restriction fingerprinting and microarrays for detecting 5-
methylcytosine have been used to describe the DNA “methylome”. Genome-wide hi-
stone modifications can be detected using chromatin immunoprecipitation (ChIP). Next-
generation sequencing options also exist (miRNA-seq, DNAse-seq, FAIRE-seq, ChIP-seq,
3C-seq), which function by isolating DNA fragments that are accessible or inaccessible
to a factor of interest, and sequencing those fragments to determine their identity [7].
Epigenome-wide association studies (EWAS) can then be performed to identify epigenetic
features for a given trait or disease. Finally, like the transcriptome, the epigenome is
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responsive to external stimuli and varies across cell types, and most epigenomic studies of
allergy have so far examined blood, skin, or airway samples.

There is evidence that development and maturation of T cell lineages is partly deter-
mined by epigenetic changes [41]. Th2 differentiation is driven by STAT6 and GATA3,
resulting in epigenetic changes (DNA methylation, histone acetylation) that induce Th2-
related (IL4/IL13), and suppress Th1-related (TBET, IFNG, IL-12/STAT4 pathway) expres-
sion; conversely, Th1 differentiation is driven by STAT4 and TBET to elicit the opposite
epigenetic changes; finally, Treg differentiation is driven by STAT5, with associated epi-
genetic changes in FOXP3 and the IL10 locus [41, 43]. Given the role of epigenetics in T
cell development, it is plausible that allergic disease may be linked to altered epigenetics
affecting this process. Epigenetic signals have been observed across multiple tissue types
in allergy. Changes to DNA methylation have been noted in loci related to Th2 function
and T cell development (IL4R, TSLP, IFNG, FOXP3, STAT5A) [42, 44–48], while other
significant loci control antigen presentation, eosinophil activity, lipid metabolism, and mi-
tochondrial function [49, 50]. The relationship between histone modifications and allergy
or asthma is less clear. Some studies have shown changes to global histone acetylation,
with reduced deacetylating-to-acetylating (HDAC-to-HAT) activity in asthmatic lungs
compared to normal [51–53]; while others suggest that HDAC inhibition can improve
the suppressive function of Tregs [54]. Similarly, certain miRNAs are known to influence
allergy risk. For example, Okoye et al. observed that miR-155 and miR-146 may be critical
in determining T cell differentiation towards Th2 versus Th1/Th17 [55]. Other relevant
miRNAs are reviewed elsewhere [56, 57]. Investigation of the full compendium of miRNA
species is progressing rapidly, and may lead to new targeted therapeutics.

An important aspect of epigenetics is the link to environmental exposures. Because
the development of the immune system begins in utero and continues through infancy,
environmental modifiers of epigenetic signals may have a stronger impact earlier in life.
Experimental and observational studies show that maternal exposures during pregnancy
and exposures during early childhood can modify the child’s epigenome. These exposures
include changes to diet, macro- and micro-nutrition, farm environments, infections and
microbes, animals, allergens, medications, pollutants, tobacco smoke, and even maternal
stress [43, 58, 59]. In particular, folate and Vitamin B12 are methyl donors that have a global
impact on DNA methylation [43]. Finally, genome associations have been identified for
methylation patterns as quantitative traits (meQTLs). These include the ORMDL3/GSDMB
locus, where a SNP behaves as both an eQTL and a meQTL [60], and others [49, 61, 62].
All these findings illustrate that certain perinatal exposures can act through genetics and
epigenetics to influence disease risk.

2.2.4 The microbiome

The microbiota is the community of microbes, including commensals and pathogens,
that reside within a host or environment, while the microbiome is the genomic content
that represents the microbiota. The “microbiota hypothesis”, a modern re-iteration of the
hygiene hypothesis, suggests that perinatal microbial exposure is vital to proper devel-
opment of immune functions, especially of tolerance [63–65]. Microbial exposures may
modify allergy susceptibility by initiating different trajectories of immune development
and function [58]. Epigenetic changes may also be involved in this process.

The primary interfaces for host-microbe interactions are the epithelial surfaces ex-
posed to the external environment – in the skin, respiratory, and gastrointestinal tracts
– so most studies on allergy microbiomes involve sampling at one of these sites directly
(biopsy or surface samples) or indirectly (faecal or sputum samples). The gut is home to
gut-associated lymphoid tissue (GALT), and its microbiome can influence disease at other
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mucosal surfaces, such as the respiratory tract [66, 67]. The respiratory microbiome may
also exert a direct influence on local inflammatory processes leading to asthma develop-
ment [68]. The environmental microbiome may drive restructuring of host microbiomes,
or modify allergy risk by other means; this may be particularly relevant in relation to
the protective effect of farming environments [58]. Description of the microbiome relies
mostly on quantification of DNA sequences encoding the 16S ribosomal RNA (rRNA)
gene, which is common to all bacteria but contains variable regions used to differentiate
taxa. The gene sequence is amplified using PCR and then examined using gel electrophore-
sis, terminal RFLP, microarrays, or sequencing. Recently there has been a transition to
deep metagenomic sequencing, which captures the genomes of all organisms present in a
sample, not just the 16S rRNA gene, and can be used to infer both taxonomic composition
and function of the microbial community.

Microbiome studies are complicated by the fact that host microbiomes can change with
age, season, time of day, site of sampling, and geographical location [69, 70]. However, a
number of consistent findings have been established for asthma and allergy. Features of
the gut microbiome associated with allergy include early-life reduction in microbial diver-
sity; reduced populations of Bifidobacteria, Lactobacilli and Bacteroidetes; and increased
coliforms and specific Firmicutes (Staphylococci, Enterococci) [66, 67, 71]. Reversing the
above changes, for instance by oral administration of certain Lactobacillus and Bifidobac-
terium species, may offer some protection against both the initial development of allergy
and further exacerbations of atopic disease [63]. Within the airway microbiome, asthma
development, symptoms and exacerbation have all been associated with increased Pro-
teobacteria populations (especially Haemophilus, Moraxella, Streptococcus and Neisseria spp.),
and reduced Bacteroidetes and Fusobacteria commensals [63, 64, 67, 68, 72]. Remarkably,
these associations begin during infancy: the detection of asthma-related bacteria in the first
few months of life has been associated with developing allergic asthma by primary school
age [64, 66]. Though it is unclear whether microbial changes represent a cause or effect of
underlying immune dysfunction, there is evidence of altered gut and airway microbial
communities preceding allergic sensitisation [68, 73, 74]. Ultimately, these findings suggest
two independent processes at work: microbiota, especially of the gut, exerting systemic
effects on immune maturation; and microbiota causing local inflammatory processes at
the sites they inhabit, including those associated with asthma in the respiratory tract.

Other recent studies have uncovered the potential role for non-bacterial microbes,
namely viruses such as human rhinovirus and respiratory syncytial virus (RSV), in causing
early childhood wheeze which often precedes full-blown asthma [68, 75, 76]. There is
evidence for the role of rhinovirus (RV), specifically RV-C, in causing severe respiratory
illnesses that are associated with increased asthma risk later in life. The pathophysiology
behind this may be related to chronic airway injury due to recurrent infection, possibly
interacting with allergic mechanisms, to elicit and maintain sustained inflammation [75].

2.2.5 The exposome and environmental exposures

Researchers have frequently explored the relationship between environmental exposures
and disease. The “exposome” builds on this idea by encapsulating all environmental
exposures that contribute to human health and disease. The environmental microbiome,
for instance, is just one type of exposure; even the host microbiome can be considered
an exposure when describing microbes residing on the skin, or on luminal surfaces of
hollow viscera exposed to the outside world. It is difficult to measure all exposures, let
alone on a high-throughput scale, and there are other challenges related to correlation,
confounding, and interaction amongst different exposures [77]. Instead, most studies have
so far quantified a limited set of relevant exposures via questionnaires and environmental
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sampling. North et al. is one of the first studies to adopt an exposomic approach to examine
multiple types of exposures simultaneously, in their search for associations with childhood
wheeze [78].

The environment can contribute to asthma and allergy pathogenesis in many ways.
As mentioned in the epigenomics section, these include mechanisms acting through diet
and nutrition, exposures to pets and animals, allergens, pollution, and tobacco smoke.
For some of these, it is possible to measure and perform high-throughput analyses on
proteomic and metabolomic data. Diet is one example: a protective effect against allergy
has been reported for polyunsaturated fatty acids (PUFAs) found in fish oil, and for their
metabolites [79]. So far, in allergy research, lipidomic analyses of fatty acids have been
limited to biological tissue samples. There has been slow adoption of similar analyses in
food [80], but in the future, it may be possible to scan the contents of an individual’s diet
in a high-throughput manner, construct a “foodome”, and search for de novo associations
with disease. Airborne pollutants may also be explored in a similar manner.

Environmental allergens can themselves be investigated by multiple omic approaches,
in relation to quantity of exposure, geography of exposure, and allergenicity of protein
structures. For instance, studies have identified that low environmental load of allergen
can be a risk factor for disease [81, 82]. Timing and route of allergen exposure may also
be relevant: early introduction of solids, including peanuts, may be protective, but only
within a specific time window [83]. Also, early exposure to peanut allergen through the
skin may promote sensitisation, while exposure through the gut may promote tolerance
[84]. Other studies have overlaid geographical maps of exposure with maps of disease, as
has been done for traffic-related air pollution and asthma [85]. Finally, it is still not clear
why allergens behave as allergens. The term “allergome” is typically used to describe the
proteomics-based discovery of allergenic protein structures within individual allergens –
discussion of this is deferred to the proteomics section.

As previously alluded to, environmental exposures can act through interactions with
host microbiome to modify disease risk [58, 66, 67]. Maternal and perinatal exposure
to rural environments confers some protection, possibly due to contact with microbial
products such as lipopolysaccharide (LPS), greater diversity in microbial exposure, or
environmental modification of host microbiota. Caesarean deliveries and perinatal use
of antibiotics may increase risk for allergy, possibly by disrupting neonatal microbial
colonisation. The protective effect of oral probiotics with Lactobacilli and Bifidobacterium spp.
has been reported, as noted previously, and they may also provide cross-organ protection,
reducing the incidence and severity of respiratory infections [67]. The use of dietary fibre as
prebiotics, with subsequent fermentation into short-chain fatty acids (SCFAs), may protect
from allergy via TLR and GPCR signalling or epigenetic modifications [63, 64]. Vitamin D
has potential immune and microbiome-modifying effects, and Vitamin D deficiency is a
suspected risk factor for allergy [86, 87]. Breastmilk contains immunoactive molecules and
may alter gut microbiota composition [63]. Finally, early-life viral respiratory infections
contribute to onset and progression of asthma, and may act synergistically with allergic
sensitisation to compound disease risk [75]. Colonisation with Moraxella, Streptococcus and
Haemophilus spp. is associated with more frequent infections [68], and there are patterns of
co-association between certain bacteria genera and viral pathogens [88]. Other microbe-
specific omics such as the virome and the (fungal) mycobiome may also be relevant [58,
89]. Altogether, these findings offer a glimpse into how multiple environmental exposures
may interact in a complex fashion to elicit disease.
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2.2.6 Proteomics, metabolomics, and lipidomics

The proteome is the repertoire of proteins produced by cells or tissues, reflecting the
molecular effectors and metabolic consequences of cell function. Common proteomic
technologies can be grouped into antibody-based (ELISA), peak-profiling mass spectrome-
try (MS)-based (“fingerprinting”), gel-MS based (1D/2DG, 2D-DIGE), and LC-MS-based
methods [90]. The general approach is to perform coarse separation of digested proteins
into “bands” or “spots”, and then further investigate each spot by MS. The MS steps are
often done in tandem (MS/MS) to achieve higher resolution. The information gained from
MS can then be used to identify the peptide, or construct its amino acid sequence. Sources
of proteomic samples include sites of pathology such as the airway, in the form of cellular
or fluid content from bronchoalveolar lavage (BAL), induced sputum, biopsies, or in vitro
cell cultures; or it may involve the usual blood or urine sample [91]. An accessible type of
specimen unique to asthma research is exhaled breath condensate (EBC), which provides
information on volatile compounds released from the airway.

In relation to allergy research, proteomic changes often depict non-specific pathology,
as in a general elevated inflammatory state, as well as underlying pathological mechanisms.
Therefore, while recent findings in allergy proteomics partly mirror transcriptomic changes,
they also reflect altered functions in immunity, inflammation and anti-protease activity:
affected proteins include defensins, α-1 antitrypsin, α-2 macroglobulin, SERPINs, S100-
family proteins, apolipoproteins and complement proteins [90–93]. Interestingly, few
recent studies have linked direct changes to Th2-specific cytokines on a proteome-wide
scale, although associations have been identified in low-throughput in vivo studies in the
past [94].

Another important contribution of proteomics to allergy research is allergen detection
and discovery [95]. Recent studies have investigated a compendium of epitopes for
aeroallergens such as house dust mite [96–98] and plant pollen [99–101], and for food
allergens in seafood and processed foods [95]; these have served both to confirm existing
epitopes and to identify new ones. Findings from these studies can be applied to non-
clinical settings, such as food processing and safety [95].

Metabolomics is the systems-level study of metabolites – the non-peptide macro-
molecules representing the substrates and end-products of cellular activity. The two
main technologies of measurement used in metabolomics are nuclear magnetic resonance
(NMR) – which provides a spectral “fingerprint” of a system’s metabolite constituents –
and mass spectrometry (MS). Like proteomics, most metabolomic studies focus on samples
of blood serum, EBC and urine from asthmatic patients [102–104]. Lipidomics is a subset of
metabolomics specifically dealing with lipid molecules, and lipidomic studies have shown
that allergic disease is typically associated with elevation of arachidonic acid metabolites
belonging to the LOX pathway, such as leukotrienes [105, 106]. Metabolomic associations
with asthma involve immune and inflammatory functions, oxidative stress and hypoxia,
cellular energy homeostasis, and lipid metabolism pathways [103]. These associations may
not be specific for allergy or asthma, but rather may simply reflect general biological stress
or inflammatory pathology. However, predictive and discrimination models based on
metabolomic findings have shown some promise [103]. Finally, proteomic, metabolomic
and lipidomic methods may be applied not just to host samples, but also to environmental
samples, as alluded to in our previous discussion.

2.2.7 The phenome and physiome

Our final section on omics concerns phenomics, a broad term encompassing all physical
or biochemical traits (phenotypes), observable in cells or individuals, that reflect states of
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disease or health (“physiome”). In the case of allergy and asthma, possible phenotypes
include cell types based on morphology and response (immunophenotyping); clinical
biomarkers, such as antibody assays and cell counts; and the extensive physical manifes-
tations of disease, embodied in clinical history, symptoms and signs, and investigation
results. These traits may be quantified and described in detail, though not necessarily
using high-throughput technologies.

Phenome-wide association analyses, where large sets of traits are screened for enrich-
ment of allergy-related genetic loci [107, 108], have been performed in the past, but have
yet to gain widespread popularity. Phenomes and phenotypes can also be analysed by
machine learning, whether it be comparison of known phenotypes (via supervised classifi-
cation) or construction of new phenotypes from omic or non-omic data (via unsupervised
cluster analysis). This will be discussed in further detail later.

The immunome is a subset of the physiome that is highly-relevant to allergy, and
where high-throughput technologies play a major role. Immunomics broadly describes
the systemic quantification of immune function by examining immune cell populations
and expression of immune mediators. It may use immunoglobulin [109–111] and cytokine
(proteomic or transcriptomic) arrays [112, 113] to quantify immune responses such as
sensitisation, in vivo or in vitro. It can also involve leukocyte immunophenotyping and
high-dimensional or mass cytometry [114–117]. The immunome is complex and varies
dramatically by sampled immune cell type, tissue or organ, age, and timing of sampling,
especially before and after sensitisation. Although it is well-known that allergy is a Th2-
driven phenomenon, it is still not clear how all the components interact to generate disease,
nor is it clear how disease heterogeneity is explained by immunome heterogeneity. Future
studies may be able to shed light on this.

2.3 Integration of omics data

Following our overview of the omics, we now discuss common techniques used to inte-
grate and interpret omics data in allergy and asthma research.

2.3.1 Exploring intra- and inter-omic relations

To understand disease pathogenesis, it is natural to compare findings across different
omics, and construct a multiomic model of pathophysiology that links these various
elements together. This may be a simple sequential model of causality, or a complex
network of interacting components. Many studies on omic associations with allergy and
asthma also search for inter and intra-omic relationships. Relationships can take the form
of direct associations, where one entity behaves as a trait for another; or an interactive
effect between two entities in relation to a third entity as the trait of interest. The study of
these relationships is the crux of modern systems biology.

Genomics, being the most well-studied system in allergy and asthma, features exten-
sively in intra-omic and inter-omic analyses. GWAS can be found not only for clinical
phenotypes (e.g. presence of allergic disease) as traits, but also for expression of transcripts
(eQTL analyses), epigenetic markers (meQTLs), and intermediate phenotypes such as
microbial exposures and immunomes. Recently, there has been a concerted move towards
integrative genomics, and genetic effects on gene expression are a pervasive component
of modern association studies – in the form of mandatory genome-wide eQTL analyses
or targeted measurements of gene transcripts [57]. Also coming into vogue is the use of
Mendellian randomisation, a technique which uses genomic information as instruments to
infer causal links between one trait or phenomenon and another, based on the assumption
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that allelic genotypes are randomly assigned as they are passed from parent to offspring
[118]. The traits being linked may themselves be related to gene loci or expressed genes
[119].

Analyses for interactive effects with other omics also feature heavily in allergy ge-
nomics. It is unlikely that genetic and environmental factors act independently in con-
ferring risk, so modern genomic studies often include interaction terms with exposure
variables. Scientists have explored interaction effects on asthma susceptibility between
genetics and exposures such as air pollution and tobacco smoke [120, 121]. Another exam-
ple is the impact of allergen exposure and genetics on immune cell gene expression [122].
Interaction analyses also extend beyond environmental effects. Gene-ethnicity interaction
has been investigated via admixture mapping [8]. Genetic-epigenetic interactions have
been reported; some genome-wide significant loci (e.g. IL4R) may interact with nearby
epigenetic signals to alter disease risk [48]. While investigation of gene-gene interaction
(epistasis) is of intense interest, the overwhelming number of active genes in the human
genome means that such analyses have a large statistical burden and hence remain difficult.
Therefore gene-gene interaction studies are so far limited to a few selected genes or SNPs.
Finally, interactive effects can be explored by means beyond using interaction terms in
regression models: for example, eQTL-weighted GWAS have been reported [123].

Given the strong links between environmental factors and asthma, interactions with
environment exposures have been explored to a degree. In particular, microbial and
pathogen exposures have been linked to differential gene expression; for instance, viral
infections are associated with changes to airway epithelial transcriptomics in asthma
[124, 125]. Unsurprisingly, the exposome and microbiome have been linked to epigenetic
changes, and the various exposures are intricately entwined in complex interactions.
For instance, a recent study has looked at the interaction between air pollution and the
allergenicity of ragweed pollen [126]. Another recent study has identified that maternal
phthalate exposure may promote allergy in subsequent generations via epigenetics [127].
Other examples concerning environmental interactions with diet and microbiome have
already been discussed.

Finally, a common application of integrative omics is the use of gene ontology analysis
to annotate discovered genes from genomic, transcriptomic, or epigenomic analyses [128].
This makes use of a pre-curated database of functional annotations for known genes,
based on existing literature, to segregate discovered genes into groups or pathways with
shared functions. An example is the Gene Ontology Consortium [129]. These databases of
functional annotations convey phenomic information, where cell phenotypes, functions
and behaviours are organised into discrete categories. In doing so, one aims to condense
diverse genome-wide findings into concise summaries of biological function that may
be easier to interpret when building a conceptual model of pathophysiology. Similar
annotation analyses exist for proteomics [130, 131]. A limitation of such techniques is that
the annotations may not always be certain, reliable, or up-to-date, and can often be vague
or uninformative.

Inter- and intra-omic relationships may be explored either by low-throughput pairings,
or by high-throughput assessment of larger networks [132, 133]. However, especially with
the latter, it may be difficult to account for non-causal correlations or confounders. For
example, despite the hygiene hypothesis, low socioeconomic status and impoverished
environments remain risk factors for the development and severity of asthma [67]. This
may be due to confounding factors that coexist with poverty, including urbanised envi-
ronments, exposure to allergen and pollutants, dietary intake, and access to health care.
There is no doubt that modifiers of allergy risk may co-occur together, but whether this
represents a causal link is another matter. Methods such as Mendelian randomisation (MR,
described previously) may be used to disentangle this, but one must be wary of violating
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the numerous assumptions that underlie MR. Also, given the high dimensionality of inter-
and intra-omic analyses, one may instead use dimension reduction and machine learning
to identify potentially robust signals of relevance to pathogenesis.

2.3.2 Machine learning, dimension reduction, and clustering

Machine learning is a set of methods that use computing to learn and formulate solutions
from supplied data, with or without explicit human input. It is already in common use with
various biomedical and ecological applications [134–136]; however, it is particularly useful
when dealing with complex, high-throughput, and multidimensional data — especially
in cases where pre-existing human knowledge may be unavailable or insufficient to
decipher the data. Machine learning methods are often used to subset data samples or
individuals into different groups or categories. This can either be done with cluster analysis
or classification. Cluster analysis is a data-driven approach, where omic data is used to
generate clusters in an unsupervised fashion. The clusters can then be interpreted for
hypothesis generation and testing. On the other hand, classification is a hypothesis-driven
approach: known phenotypes are used to determine a model of classification based on
training data, which can then be applied to other datasets, or examined to look for further
biological associations (Figure 2.3).

A drawback of machine learning is that there is little consensus or standardisation
of optimal methods, although there are certainly favoured approaches for each problem.
They are also intimidating for the regular clinician or biologist to adopt, and choice of
method often depends on a specialist understanding of nuances in the data. As an example:
when performing cluster analysis, many decisions need to be made prior to and during the
procedure. This includes how to deal with missing data; select the variables or “features”
for clustering; scale or normalise features; choose the algorithm to do the actual clustering;
pick the number of clusters; control for overfitting; and validate or replicate results [137].

In exploring the correlation structure and confounders in a dataset, one can use princi-
pal components analysis (PCA), or similar methods, to transform the dataset into uncor-
related variables or “principal components”. In doing so, one can observe which of the
original variables describe similar information (i.e. are highly-correlated with each other);
and by plotting principal components, one can visualise the data in a way that maximises
variability between samples or variables. By condensing our data to a limited selection of
principal components, we can reduce the number of dimensions and simplify the input
features for subsequent clustering or classification [138]. Feature selection can be limited
to a single omic entity, or cover multiple omics simultaneously, depending on the question
asked.

Cluster analysis involves separating samples in a dataset into discrete groups (clusters)
based on what can be learnt from data structure, without specifying training examples for
each group [137, 139]. Its objective is to minimise intra-group and maximise inter-group
differences. Measures of difference or dissimilarity may be distance- or correlation-based.
Common clustering techniques include hierarchical clustering, medoid-based methods,
and latent variable modelling. Cluster analysis allows one to identify homogeneous
groups within a heterogeneous dataset, and simplify analyses to comparisons between
clusters rather than across entire cohorts. Clustering can also expose confounders without
explicit adjustment for correlation, especially if clustering is “guided” by co-segregating
omic variables. Using molecular omic-based features, cluster analysis may allow us to
determine endotypes – subtypes of disease or health states – by common biomolecular
interactions and pathophysiology [140]. These can be compared with known phenotypes
to explore how variation in pathophysiological mechanisms are linked to variation in
disease manifestations. Cluster analysis can also be applied to phenome data to deal with
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heterogeneity in phenotypes. Using “cleaner” sub-phenotypes for association analyses
may improve the power and specificity of subsequent findings.

Classification methods determine a statistical model or decision-making algorithm
that allocates individuals of a training dataset into known groups (classes) [137]. The learnt
model or algorithm can then be applied to other test datasets for classification into classes.
Methods include regression analysis, discriminant analysis, support vector machines, and
partitioning or decision trees. The objective of classification varies with the method, but
mainly involves achieving the “best fit” – minimising differences between predicted and
actual class allocation for the training dataset – without compromising generalisability
to external datasets. Classification can be used to design diagnostic or risk stratification
algorithms from an omic dataset. Each sample is labelled as one of a predefined set of
phenotypes (e.g. allergic versus non-allergic asthma, eosinophilic vs. neutrophilic, severe
versus non-severe), then the algorithm seeks biomolecular or clinicophysiological features
that best define the phenotype [33, 141]. In the absence of predefined phenotypes, one may
combine both clustering and classification: generate clusters based on a training dataset,
then devise a classifier which can classify test datasets into the discovered clusters.

Both cluster analysis and classification have been used extensively in asthma research.
Major findings from such analyses include the discovery and characterisation of differ-
ent subsets of childhood and adult asthma. Childhood wheeze has been categorised, by
both traditional and machine-learning approaches, into persistent atopic wheeze of early
onset, transient remitting viral wheeze, and a mixed atopic/non-atopic phenotype of
variable onset [142–144]. Atopic wheeze appears to be characterised by Th2 activation,
early sensitisation to allergens, greater severity of respiratory disease, greater likelihood
of persistence to full-fledged allergic asthma, and concurrence of other atopic diseases.
In terms of adult asthma, there are subtypes based on lung function [145], as well as
atopic, non-atopic, mixed and other phenotypes [140]. Eosinophilic, neutrophilic and pau-
cigranulocytic airway inflammation can also be distinguished from sputum samples, and
accompanying transcriptomic, proteomic and immunomic data can provide some insight
into underlying pathophysiology for each phenotype [25, 141, 146, 147]. Neutrophilic,
Th1/Th17-dominant, and steroid-resistant asthma tend to co-occur together, suggesting a
common endotype. Asthma, COPD and mixed asthma/COPD phenotypes have also been
explored [148]. Other studies have looked at allergy phenotypes related to degree and
pattern of allergic sensitisation (mono- versus poly-sensitised; early versus late-sensitised)
[149, 150].

Clustering can be applied to other omic data, outside of phenotype data. In Teo et al
[68], hierarchical clustering was used to generate the microbiome profile groups (MPGs)
which categorised the infant nasopharyngeal microbiome into discrete clusters based on
microbial abundance. This facilitated simpler analysis and interpretation of what was
otherwise complex data.

2.3.3 Network analysis

Network analysis is the use of networks to model and investigate systems. Networks
are represented by graphs consisting of nodes and edges, where nodes represent entities
(e.g. biomolecule) and the edges between nodes indicate relationships between entities
(e.g. correlation, transition probability, molecular interaction). Edges can be undirected
(symmetrical) or directed (asymmetrical). Many types of network analyses involve use of
machine learning to generate a best-fitting network for a given dataset.

Networks are used to discover and visualise how different components in a system
relate to each other, whether they be abstract relations or actual molecular interactions.
Bayesian network analysis involves probabilistic modelling of a network, where edges
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are directed and annotated with a transition probability from one node to another. This
technique has been used frequently in asthma research, for instance to identify candidate
genes or SNPs associated with a bronchodilator response [151]; to quantify interactions
between measured pathophysiological variables related to asthma and allergy [152]; and
to describe gene regulatory networks using gene expression and GWAS data [38, 153].

Gene co-expression networks can be generated based on correlation between ex-
pression levels of different genes. High correlation reflects genes that are co-expressed
and hence may be co-regulated or share a common biochemical pathway. Nodes repre-
sent genes, while edges represent correlation between them. Furthermore, edges can be
weighted by degree of correlation, as in weighted gene co-expression network analysis
(WGCNA); and highly-connected or proximate subgraphs can be interpreted as gene mod-
ules of functional importance. WGCNA has been used to identify co-expression networks
underlying helper T cell responses to house dust mite stimulation [154]; transcription
networks in whole blood of asthmatics [155]; an IgE-signalling gene network associated
with blood lipids [133]; and co-methylation models that reflect asthma endotypes [60].

Other applications of network analysis exist. For example, Pillai et al. used bipartite
network analysis of cytokine expression to sort patients into distinct endotypes [156].
Hinks et al. constructed a network of asthmatic individuals based on similarity in clinico-
physiological parameters, then used topological data analysis (TDA) to assign nodes into
clusters [152].

Finally, the term “network analysis” has also been used to describe the application
of genomic, transcriptomic or proteomic data to existing networks stored in databases,
specifically protein-protein interaction (PPI) networks, or networks representing biomolec-
ular pathways. This is often done to generate subsets of the original interaction networks,
which are then examined for biological interpretation [157, 158]. Network databases con-
cerning other omics may be used to achieve a similar purpose (e.g. Ingenuity Pathway
Analysis, innateDB) [154, 159].

2.3.4 Mathematical modelling and prediction

The ultimate goal of integrative analyses is to generate models that reliably explain
biological phenomena. At the simplest level, one can use identified omic associations as
biomarkers; generate a model consisting of the strongest biomarkers; and test the model
on an external dataset. Many examples of such an approach exist in the literature [104, 160,
161]. At a deeper level, one can aggregate multiple biomarkers (potentially omic-wide)
into a risk score, such as a genomic risk score [162]. Finally, the classification and network
models discussed previously are themselves mathematical models that cover multiple
omic domains and are testable on external datasets. In some of these applications, the
models represent abstract attributions of risk, and strive to be useful as clinical predictive
tools, rather than to be accurate or comprehensive representations of pathophysiology.

Mathematical modelling can generate in silico models to describe a complete biological
subsystem in terms of components, interactions and functions; and then describe their
perturbation during allergy or disease. Modelling biological systems in such a manner is
challenging, as there are still many unknowns about its components. However, this has
not stopped researchers from trying: for example, Hofer et al. modelled the IL4-dependent
activation of GATA3 transcription in Th2 development [163]. Multi-scale approaches have
been used to describe multiple levels of biological function, from intracellular molecular
processes, to cell-to-cell communication, to organ-level function. For instance, Lauzon et
al. formulated a model of airway hyperresponsiveness that accounted for actin-myosin
mechanics; calcium signalling in airway smooth muscle (ASM) regulation; mechanical
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forces of airway narrowing; and time-dependent distribution of ASM contraction through-
out the lung [164]. Such approaches require knowledge of techniques that use differential
equations and state diagrams; a review of these approaches is provided elsewhere [165].
However, since such models are usually generated with data from in vitro systems or
animal models, it remains an ongoing challenge to test their relevance to in vivo human
systems, and they should therefore be treated with caution [166]. Upcoming projects such
as the Human Cell Atlas [167] seek to address some of these challenges, bridging the gap
between cell biology and clinical medicine.

2.4 Pitfalls and challenges

Many challenges remain for systems biology. There are methodological challenges associ-
ated with statistical power, even in large consortia. This is due to the sheer scale of omic
data, and the number of possible omic-omic comparisons or interactions. Next-generation
technologies are becoming cheaper and more efficient, but the amount of data they gener-
ate will continue to pose a statistical challenge. Furthermore, the theory behind statistical
and modelling methods still lags behind, and there is currently little consensus on the
optimal systems-level pipelines (e.g. RNA-seq). Although research groups have recently
been paying more attention to measurable environmental exposures in terms of their
impact on biological systems [78], the lack of environmental data – and the uncertainty
about which exposures actually matter – hinders examination of gene-environment in-
teractions. Finally, even if we have a sufficiently powered sample, there is a so-called
“Faustian bargain” [168], where large sample sizes introduce heterogeneity in cases and
controls, thus obscuring findings. There is also a similar problem of the “Winner’s Curse”
[169], where significant results in a ome-wide study tend to exhibit larger effect sizes than
what they are in reality.

Machine learning has been the go-to tool to handle phenotypic heterogeneity [170].
However, many biologists and clinicians remain sceptical of it, with concerns about its
“hype” or fad-like status, its opaque “black box” nature, and the perceived lack of clear,
consistent or immediately-applicable results [171]. Moore et al [145] were one of the first
groups to apply unsupervised cluster analysis to an adult asthma cohort, and identify
distinct clusters. While the clusters themselves proved useful in describing disease risk and
severity profiles in the discovery population, subsequent studies attempting to replicate
these clusters in other cohorts have had mixed results [172]. Numerous other studies have
identified different sets of clusters based on different parameters and populations [173].
Results of machine learning methods may vary significantly depending on the nature
of the input data, in terms of its quality; its relevance to the disease being studied; its
depth (resolution of data – categorical vs. continuous) and breadth (single vs. multiple
biological domains); and its balance (one domain prioritised over another vs. all treated
equally). The variability in research outcomes may suggest to some that machine learning
methods are ultimately unreliable; but the field is still growing, and we argue that it simply
illustrates the immense complexity of biomedical systems – complexity that will remain
impenetrable if we limit ourselves to traditional expert-driven approaches. Unsupervised
machine learning can serve as a springboard for future hypotheses: recently, Lazic et al
[174] used unsupervised latent class analysis to identify a high-risk multiple-sensitised
subgroup, whose pathophysiological origins in early life may be worth exploring in further
detail with hypothesis-driven approaches. Ultimately, a balance of human expertise and
machine learning will be necessary to make the right decisions about data input and
interpretation, and to transform big data into biomedically-relevant results.
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Systems biology is multidisciplinary, and with this comes another challenge: commu-
nication and collaboration between the various disciplines. There is often a conflict of
priorities: a clinician might be more interested in diagnosis, treatment and prognosis; an
immunologist in the pathophysiology of allergy and asthma; the biostatistician in making
sure that the statistics and modelling are sound; and the bioinformatician in generating
clean data and writing problem-free code. There may be residual scepticism amongst
some biologists or clinicians who perceive systems approaches as “data fishing” [7]. There
is some evidence to suggest that multidisciplinary research projects have greater difficulty
in getting funded or making a strong scientific impact [175], and this may reflect the
challenge of balancing multiple priorities and conveying different perspectives to a broad
audience, more so than the actual quality of the writing or research.

Multiple reviews have highlighted the ongoing inaccessibility of systems approaches to
many biologists and clinicians, and have recommended the creation of “biologist-friendly”
tools [114, 165, 176]. While this may indeed be helpful for common or simple analyses,
there remains an ongoing need for specialist input in developing and using new tools.
Tools are only useful if applied correctly, and a research group should not eschew specialist
statistics or informatics input, simply to save costs or “to keep things simple”. Also, as
one can clearly observe, systems biology is itself very diverse, covering multiple avenues
of inquiry. Subspecialties will likely emerge within the field, each focussing on specific
methodologies and their applications. It is likely that there will be a demand for specialists
and generalists alike, and the movement of tertiary institutions towards incorporating
mathematics, statistics, and informatics in undergraduate biomedical courses is certainly
a welcome one.

2.5 Future directions and concluding statements

The recent developments in systems biology exemplify the global drive towards systems
medicine [150, 177], and more broadly, “P4 medicine” – predictive, preventative, per-
sonalised and participatory [178]. Our ultimate objective is to achieve a critical level of
biomedical understanding that permits development of precise and personalised inter-
ventions for individual patients. Worldwide, there has been a push by many groups to
implement systems medicine, charting a path from wet lab to dry lab to bedside. Large
consortia, such as MeDALL in Europe [150] and STELAR from the UK [170], have been
established specifically to record and integrate multiomic data related to allergy and
asthma, and conduct well-powered systems-based analyses. Other smaller groups are
also involved in similar research via frequent cross-collaborations: these include CAS
(Australia) [68], U-BIOPRED (European) [30], COAST (US) [76], COPSAC (Danish) [11],
MAAS (UK) [149], SARP (US) [146] and others. In the modern age of systems biology, col-
laboration and data sharing is virtually mandatory when it comes to uncovering complex
associations such as gene-environmental interactions.

Overall, systems biology has yielded fruitful outcomes in allergy research, and promises
to deliver more in the future. At the moment, we are still a far way off from truly person-
alised medicine – being able to predict with reasonable accuracy the disease or prognosis
of an individual based on well-sampled data. However, we can only expect the field to
grow exponentially in the years to come.
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Chapter 3

Trajectories of childhood immune
development and respiratory health
relevant to asthma and allergy

NB: This chapter has been published in its entirety in eLife on 15 October 2018, available
at https://elifesciences.org/articles/35856.

3.1 Introduction

Asthma is a global health problem, and there is a pressing need for better understanding
of its pathogenesis [1]. Asthma is strongly associated with allergy, and both genetic and
environmental factors may be involved [2, 3]. The “hygiene hypothesis” proposes that
modern changes to hygiene, sanitation and living environment have modified human
exposures to microbes, with subsequent effects on early-life immune development [4].
However, the clinical presentation and prognosis of childhood wheeze is highly variable:
some children remit; others remit but relapse; and yet others have wheeze persisting into
adult asthma [5]. These differences suggest that the underlying causes of disease also differ
from person to person. For example, while asthma is commonly linked to allergy, not all
individuals with wheeze are sensitised to allergen, and vice versa [6]. As such, childhood
asthma is a heterogeneous condition [7, 8], and this greatly complicates the study of its
pathogenesis [9]. We postulate that there are subpopulations in early childhood, each
sharing similar patterns of pathophysiology, disease susceptibility and phenotype that
permit categorisation into clusters. If we can agnostically identify these clusters, then
we may explore the biological mechanisms that underlie them, and find targets for early
intervention that are specific for different asthma subtypes.

Previous attempts at subtyping asthma susceptibility relied on supervised classifica-
tion, using expert knowledge and cut-offs to define clusters. For example, criteria such as –
specific immunoglobulin E (IgE) ≥ 0.35 kU/L; wheal diameter ≥ 3 mm in a skin prick test
(SPT); or symptom score surpassing a threshold – may determine classification into a high-
risk profile [10, 11]. However, these cut-offs vary with age, gender or other parameters,
and may not accurately reflect true attribution of risk [12]. Hence, they often continue to
produce heterogeneous groups. Furthermore, previous studies tended to focus on a single
“domain”, for instance grouping only by immunological response [13], symptomatology or
timing of disease [14, 15]. Recently, researchers have turned to unsupervised approaches,
such as model-based cluster analysis and latent class analysis (LCA) [16–21]. These do not
require experts to supply cut-offs, but can instead “learn” boundaries from the data. They
can potentially uncover patterns of similarity not immediately obvious to the human eye.
Finally, these methods can cover a broader range of domains, incorporating measurements

https://elifesciences.org/articles/35856
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from multiple sources to determine clusters that are potentially informative of asthma
risk.

Here, we use a data-driven unsupervised framework together with a comprehensively-
phenotyped birth cohort, to define developmental trajectories during preschool years, a
period known to be critical to asthma pathogenesis. Specifically, we: 1) use non-parametric
mixture models to discover latent clusters that define early childhood trajectories of
immune function and susceptibility to respiratory infection; 2) investigate how these
clusters relate to differential profiles of asthma susceptibility, and to existing definitions of
atopy; 3) identify risk factors for asthma within each cluster; and 4) externally validate the
clusters in independent cohorts.

3.2 Results

To characterise the broad structure of an Australian dataset of young children (Child-
hood Asthma Study, CAS), we performed principal components analysis (Supplementary
Figure B.1). Afterwards, to explicitly model the heterogeneous data types of the cohorts
as well as explicitly identify clusters, we used non-paremetric expectation-maximiation
(npEM) mixture models (Methods, Section 3.4). By applying npEM-based clustering and
classification to CAS, we identified three distinct clusters from 217 individuals and 174
clustering features (Figure 3.1): low-risk CAS1 (N=88, 25% wheeze at age 5), low-risk
but allergy-susceptible CAS2 (N=107, 21% wheeze at age 5) and high-risk CAS3 (N=22,
76% wheeze at age 5). Forty-six individuals in CAS had excessive missing data and were
not classifiable. The CAS clusters satisfied basic measures of internal stability, and were
distinguishable on a PCA plot of the complete-case dataset (Supplementary Figure B.1).
A graphical summary of results for the CAS clusters is presented in Figure 3.2.

3.2.1 CAS1: low-risk, non-atopic cluster with transient wheeze

CAS1 was a low-risk cluster with infrequent and transient respiratory wheeze. Rates
of wheeze declined from 33% at age 1 to 12% by age 10 (Table 3.1; Figure 3.3). In this
cluster, Th2 cytokine responses of peripheral blood mononuclear cells (PBMCs) to allergen
stimulation were minimal; and rates of allergen sensitisation (as measured by IgE or skin
prick test, SPT) were the lowest among all groups (Table 3.2; Figure 3.4; Supplementary
Table B.3B-D). IgG and IgG4 were also low across all allergens.

Frequency of respiratory infection in CAS1 was low (Table 3.3). However, high fre-
quency of lower respiratory infections (LRIs) in childhood, especially wheezy LRIs (wLRIs),
was a risk factor for age-five wheeze – even after adjusting for sex, body mass index (BMI)
and parental history of asthma as demographic covariates (Table 3.4). Repeated-measures
ANOVA identified that LRI and wLRI frequency in the first three years were predictors for
age-five wheeze (Supplementary Table B.4); however, timepoint-specific analyses showed
that differences were only noticeable from age 3 onwards (Table 3.4; Figure 3.4A-B). A
multiple regression model with stepwise elimination yielded three significant variables:
age-three wLRI frequency (odds ratio OR 5.6 per unit increase, p = 0.0068); age-four
LRI frequency (OR 3.6, p = 0.018); and a protective effect from proportion of infection-
associated microbiome profile groups (MPGs; Streptococcus, Haemophilus, Moraxella) in
age-two-to-four healthy nasopharyngeal aspirate samples (NPAs; OR 0.19 per quartile,
p = 0.014).
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Cluster 1

Cluster 2

Cluster 3

Minimal atopic response
↓ IgG4 and IgE 

IgG4 & limited IgE response
↑ IgG4 (HDM)
↑ IgE (Phadiatop)

Early extensive IgG4 & IgE response
↑ IgG4 (HDM)
Early* ↑↑ IgE (peanut, HDM) 
Early* ↑ Th2 cytokine (HDM) 
Early* food allergen sensitization 
Early*, persistent atopic eczema 
↑ infection-associated MPGs
↑ LRIs, fLRIs
Male sex

↑ LRIs, wLRIs Non-atopic wheeze

Persistent atopic wheeze

No wheeze

No wheeze

Mixed/delayed wheeze

Birth

First 2.5 years of life Next 2.5 years of life By age 5

(Ongoing ↑ LRI frequency, severity)
(Ongoing ↑ IgE against multiple allergens)

~75%

~25%

~75%

~25%

~60%

No wheeze
~40%

~30%

~60%

~10% ↑ LRIs, wLRIs, ↑ fLRIs at age 2
Delayed ↑ IgE (HDM) 

(As a delayed 
presentation?)

↑  infection-associated MPGs

FIGURE 3.2: Graphical summary of proposed clusters.

*“Early” specifically refers to “within the first 6 months of life”.
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FIGURE 3.3: Incidence of multiple phenotypes, including parent-
reported wheeze (A), physician-diagnosed asthma (B), defined wheeze
phenotypes (C), in relation to food and inhalant sensitisation (D), strati-

fied by cluster and time in the CAS dataset.

Points indicate observed proportion; bars indicate 95% CI (binomial distribution). Wheeze phenotypes defined
as: no wheeze = no wheeze at ages 1 to 3, or age 5; transient wheeze = any wheeze at ages 1 to 3, but not age 5;
late wheeze = wheeze at age 5, but not ages 1 to 3; persistent wheeze = any wheeze at both ages 1 to 3 and age
5. Food sensitization defined as peanut IgE ≥ 0.35 kU/L at any age, or cow’s milk, egg white, peanut SPT > 2
or 3 mm for age ≤ 2 or > 2 respectively. Inhalant sensitization defined as HDM, cat, couchgrass, ryegrass,
mould or Phadiatop IgE ≥ 0.35 kU/L at any age, or mould SPT (Alternaria or Aspergillus spp.) > 2 or 3 mm for
age ≤ 2 or > 2 respectively.
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TABLE 3.1: Comparison of selected demographic and clinical variables
in CAS clusters

BMI = body mass index; feature? = whether variable was used as a clustering feature or not; geom. mean =
geometric mean; prop. = proportion. For categorical variables, associations were tested using Fisher exact
test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical
significance (p < 0.05); italics indicate near-significance (p < 0.10). *Not used as clustering feature, as BMI is
a derived variable. Height and weight at age 3 were used instead.

Variable Age
(y)

CAS1
(N=88)

CAS2
(N=107)

CAS3
(N=22)

P-value (unadjusted) Feature?

Prop. (95%
CI)

Prop. (95%
CI)

Prop. (95%
CI)

Overall 1 vs. 2 1 vs. 3 2 vs. 3

Sex = male 55%
(44%-65%)

51%
(42%-61%)

86%
(71%-100%)

7.3E-03 0.67 6.8E-03 3.7E-03 Yes

Maternal
asthma

51%
(40%-62%)

41%
(32%-51%)

59%
(37%-81%)

0.19 0.19 0.63 0.16 Yes

Paternal
asthma

22%
(13%-30%)

44%
(35%-54%)

23%
(3.7%-42%)

2.2E-03 1.3E-03 1 0.093 Yes

Wheeze 1 33%
(23%-43%)

30%
(21%-39%)

55%
(32%-77%)

0.092 0.76 0.084 0.046 No

5 25%
(15%-35%)

21%
(13%-30%)

76%
(56%-96%)

7.1E-06 0.59 2.6E-05 3.4E-06 No

10 12%
(3.4%-21%)

18%
(8.4%-27%)

50%
(24%-76%)

3.1E-03 0.46 1.5E-03 0.011 No

Asthma 5 15%
(7%-23%)

13%
(5.9%-20%)

52%
(29%-76%)

4.1E-04 0.83 7.7E-04 2.1E-04 No

10 10%
(2.3%-18%)

15%
(6.1%-23%)

56%
(30%-81%)

2.6E-04 0.59 1.8E-04 7.9E-04 No

Eczema 6m 39%
(28%-49%)

45%
(35%-54%)

91%
(78%-100%)

2.4E-05 0.47 7.9E-06 9.0E-05 Yes

1 34%
(24%-44%)

30%
(21%-39%)

82%
(64%-99%)

2.5E-05 0.54 7.2E-05 1.4E-05 Yes

5 28%
(18%-37%)

24%
(16%-33%)

71%
(50%-92%)

2.1E-04 0.73 3.3E-04 7.9E-05 No

Atopic
rhinocon-
junctivitis

5 30%
(20%-40%)

39%
(29%-49%)

76%
(56%-96%)

6.4E-04 0.21 2.7E-04 3.2E-03 No

Mean (95%
CI)

Mean (95%
CI)

Mean (95%
CI)

Overall 1 vs. 2 1 vs. 3 2 vs. 3

BMI (kg/m2) 3 16 (16-17) 16 (16-17) 16 (16-17) 0.86 0.65 0.68 0.8 No*
4 16 (16-17) 16 (16-16) 17 (16-17) 0.59 0.76 0.32 0.39 No
5 16 (16-16) 16 (16-16) 16 (15-17) 0.71 0.56 0.48 0.67 No
10 18 (17-19) 18 (17-18) 18 (17-19) 0.89 0.75 1 0.62 No

Number of
older
siblings

0 0.93
(0.72-1.1)

0.53
(0.38-0.69)

0.77
(0.32-1.2)

4.5E-03 1.0E-03 0.37 0.25 Yes

2 0.85
(0.66-1)

0.5
(0.34-0.65)

0.77
(0.32-1.2)

2.8E-03 6.5E-04 0.48 0.16 Yes

5 0.68
(0.5-0.85)

0.39
(0.25-0.54)

0.67
(0.23-1.1)

0.016 5.1E-03 0.75 0.12 No

Geom.
mean (95%
CI)

Geom.
mean (95%
CI)

Geom.
mean (95%
CI)

Overall 1 vs. 2 1 vs. 3 2 vs. 3

Vitamin D
(nmol/L)

1 60 (55-64) 59 (55-63) 59 (52-67) 0.93 0.98 0.76 0.7 No

2 57 (54-61) 58 (55-61) 47 (40-55) 0.012 0.82 5.4E-03 4.4E-03 No
5 89 (83-95) 84 (79-89) 77 (69-84) 0.057 0.46 0.016 0.056 No
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TABLE 3.2: Comparison of HDM-associated immunological variables in
CAS

Feature? = whether variable was used as a clustering feature or not; geom. mean = geometric mean; PBMC =
peripheral blood mononuclear cells; prop. = proportion; SPT = skin prick or sensitisation test. For categorical
variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-
Whitney-Wilcoxon. Bold text indicates statistical significance (p < 0.05); italics indicate near-significance
(p < 0.10). ^PBMC cytokine responses to HDM above unstimulated control; birth samples (age 0) taken from
cord blood (CBMC). *Not used as clustering features, as these were derived variables; the variables from
which they were derived (HDM IgE and IgG4) were used instead.

Variable Age CAS1
(N=88)

CAS2
(N=107)

CAS3
(N=22)

P-value (unadjusted) Feature?

Geom.
mean (95%
CI)

Geom.
mean (95%
CI)

Geom.
mean (95%
CI)

Overall 1 vs. 2 1 vs. 3 2 vs. 3

Total antibody
IgE (kU/L) 6m 1.2 (0.69-2) 2.2 (1.4-3.6) 21 (12-35) 1.2E-07 0.044 6.7E-08 2.2E-06 Yes

1 0.6
(0.29-1.3)

2 (1.1-3.7) 43 (17-109) 2.0E-09 0.019 4.3E-09 5.3E-08 Yes

2 6.6 (3.5-12) 17 (12-25) 187
(131-267)

1.2E-11 0.044 4.2E-11 1.4E-10 Yes

5 35 (23-55) 60 (46-80) 451
(278-731)

2.2E-08 0.096 1.9E-08 1.5E-07 No

10 85 (46-154) 150
(103-217)

800 (405-
1.6E+03)

1.4E-04 0.11 1.3E-04 2.8E-04 No

HDM antibody
IgE (kU/L) 6m 0.018

(0.016-0.02)
0.019
(0.016-
0.022)

0.033
(0.019-
0.059)

1.9E-03 0.47 7.9E-04 4.2E-03 Yes

1 0.019
(0.017-
0.023)

0.019
(0.016-
0.022)

0.26
(0.075-0.93)

1.3E-09 0.47 2.5E-07 4.5E-09 Yes

2 0.024
(0.019-
0.031)

0.042
(0.029-0.06)

7.1 (2.7-19) 2.6E-16 0.078 2.5E-15 3.5E-13 Yes

5 0.072
(0.041-0.13)

0.23
(0.12-0.45)

31 (7.8-127) 4.2E-09 0.015 3.8E-09 5.1E-07 No

10 0.37
(0.17-0.8)

1.3
(0.51-3.4)

52 (19-144) 2.9E-06 0.068 5.7E-07 9.7E-05 No

IgG (mg/L) 1 0.21
(0.2-0.23)

0.23
(0.21-0.25)

0.29
(0.21-0.39)

0.042 0.34 0.012 0.07 Yes

2 0.32
(0.27-0.37)

0.49
(0.41-0.59)

0.89
(0.57-1.4)

1.9E-06 2.1E-04 3.8E-06 7.0E-03 Yes

5 0.55
(0.42-0.7)

0.59
(0.46-0.74)

1.7
(0.88-3.3)

1.5E-03 0.67 6.4E-04 9.0E-04 No

10 1.6 (1.3-1.9) 2.1 (1.8-2.5) 2.8 (1.9-4.2) 1.0E-02 0.023 0.011 0.18 No
IgG4 (µg/L) 6m 1.5E-04

(1.5E-04-
1.5E-04)

1.7E-04
(1.3E-04-
2.1E-04)

4.6E-04
(9.0E-05-
2.4E-03)

4.9E-03 0.37 5.2E-03 0.024 Yes

1 1.5E-04
(1.5E-04-
1.5E-04)

6.9E-04
(3.2E-04-
1.5E-03)

0.081 (4.6E-
03-1.4)

1.8E-10 5.2E-04 6.6E-12 2.2E-05 Yes

2 3.4E-04
(1.8E-04-
6.6E-04)

4.8 (1.7-13) 61 (8.9-419) 1.8E-25 1.5E-22 8.6E-18 9.8E-05 Yes

5 2 (0.48-8.1) 168
(111-256)

539
(317-917)

1.1E-15 1.3E-12 1.0E-08 1.9E-04 No

HDM cytokine response^
IL-13 protein
(pg/ml)^

0 0.22
(0.066-0.73)

0.22
(0.076-0.63)

0.085
(0.011-0.66)

0.68 0.76 0.41 0.45 No

6m 0.064
(0.022-0.18)

0.06
(0.025-0.14)

19 (1.4-244) 4.6E-06 0.98 1.7E-05 4.1E-06 No

5 0.13
(0.046-0.37)

0.32
(0.11-0.87)

12 (1.2-117) 2.1E-04 0.29 7.7E-05 5.1E-04 No

IL-5 protein
(pg/ml)^

0 0.043
(0.018-0.11)

0.026
(0.013-
0.052)

0.018 (5.0E-
03-0.068)

0.44 0.36 0.29 0.57 No

6m 0.018 (9.2E-
03-0.034)

0.013 (8.9E-
03-0.02)

0.21
(0.012-3.7)

7.9E-04 0.4 8.1E-03 3.5E-04 No

5 0.028
(0.014-
0.057)

0.042
(0.02-0.087)

2.3
(0.25-22)

3.2E-06 0.45 5.7E-06 2.0E-05 No

IL-13 mRNA^ 0 1.7E-03
(1.1E-04-
0.026)

6.0E-03
(4.8E-04-
0.075)

6.7E-03
(3.3E-05-
1.4)

0.85 0.6 0.68 0.94 No

6m 1.0E-04
(8.8E-06-
1.1E-03)

3.2E-04
(3.8E-05-
2.6E-03)

2
(0.015-266)

3.2E-04 0.5 1.7E-04 3.8E-04 No

5 0.036 (1.6E-
03-0.8)

0.11 (8.8E-
03-1.4)

2.9E+03
(742-
1.1E+04)

6.8E-05 0.59 9.9E-05 2.5E-05 No

IL-4 mRNA^ 0 1.4E-06
(6.9E-07-
3.0E-06)

1.9E-06
(7.8E-07-
4.4E-06)

1.0E-06
(1.0E-06-
1.0E-06)

0.71 0.65 0.6 0.47 No

6m 4.6E-06
(1.0E-06-
2.1E-05)

5.1E-06
(1.4E-06-
1.8E-05)

0.54
(6.5E-03-44)

6.2E-09 0.94 4.7E-07 1.0E-07 No

Continued on next page
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Continued from previous page

Variable Age CAS1
(N=88)

CAS2
(N=107)

CAS3
(N=22)

P-value (unadjusted) Feature?

Geom.
mean (95%
CI)

Geom.
mean (95%
CI)

Geom.
mean (95%
CI)

Overall 1 vs. 2 1 vs. 3 2 vs. 3

5 2.3E-04
(1.7E-05-
3.0E-03)

4.7E-04
(5.3E-05-
4.3E-03)

5.3
(0.082-345)

4.9E-04 0.72 4.5E-04 3.2E-04 No

IL-5 mRNA^ 0 2.5E-04
(2.1E-05-
2.9E-03)

2.6E-04
(2.8E-05-
2.5E-03)

1.2E-05
(3.1E-07-
4.6E-04)

0.47 0.96 0.24 0.25 No

6m 5.2E-05
(5.6E-06-
4.8E-04)

3.1E-05
(5.2E-06-
1.8E-04)

0.33
(1.3E-03-83)

1.5E-04 0.85 2.3E-04 1.1E-04 No

5 0.021 (9.9E-
04-0.43)

0.07 (5.7E-
03-0.85)

246
(7-8.7E+03)

1.3E-04 0.49 7.1E-05 1.1E-04 No

Prop. (95%
CI)

Prop. (95%
CI)

Prop. (95%
CI)

Overall 1 vs. 2 1 vs. 3 2 vs. 3

HDM SPT past atopy threshold
Wheal ≥ 2mm 6m 2.3%

(0%-5.4%)
1.9%
(0%-4.5%)

14%
(0%-29%)

0.043 1 0.054 0.035 No*

2 10%
(3.8%-17%)

15%
(8.1%-22%)

86%
(71%-100%)

2.9E-12 0.39 8.2E-12 1.5E-10 No*

Wheal ≥ 3mm 5 13%
(5.2%-20%)

28%
(18%-37%)

81%
(63%-99%)

1.5E-08 0.022 4.6E-09 1.0E-05 No

10 36%
(23%-49%)

51%
(38%-63%)

78%
(57%-99%)

7.4E-03 0.11 2.7E-03 0.06 No

3.2.2 CAS2: low-risk cluster susceptible to atopic and non-atopic wheeze

Similar to CAS1, CAS2 was a low-risk cluster with infrequent allergic disease. Compared
to CAS1, Phadiatop and house dust mite (HDM) IgE were elevated at most timepoints
(Table 3.2; Figure 3.4A; Supplementary Table B.3B), with the exception of peanut IgE
(Wilcoxon, adjusted p = 0.99 at all timepoints;Figure 3.4D). CAS2 IgG and IgG4 were
intermediate between CAS1 and CAS3 levels; CAS2 IgG was closer to CAS1, while CAS2
IgG4 was closer to CAS3 (Table 3.2; Figure 3.4). Despite these antibody differences, yearly
rates of wheeze in CAS2 remained comparable to CAS1 (30% at age 1, declining to
18% at age 10; Table 3.1; Figure 3.3). Interestingly, compared to CAS1, individuals in
CAS2 had fewer older siblings living in the household at age 2, as well as more frequent
paternal history of asthma (adjusted p = 0.029 and 0.055, respectively; Supplementary
Table B.3A).

Predictive factors for age-five wheeze in CAS2 included: LRI, wLRI and febrile LRI
(fLRI) frequency (GLM; p = 2.7 × 10−3, 0.016 and 0.02 at age 3, respectively); HDM
IgE (p = 0.016 and 0.011 at ages 2 and 4, respectively); and Phadiatop IgE (p = 0.01 at
age 4) (Table 3.4). Repeated-measures ANOVA showed that HDM IgE and LRI-related
variables (LRI, wLRI, fLRI) from the first 3 years were significant predictors of age-five
wheeze (Supplementary Table B.4). Timepoint-specific analyses showed that differences
were observable in HDM IgE and fLRI from age 2 onwards, while in LRI and wLRI they
were only noticeable from age 3 (Table 3.4; Figure 3.5). A multiple regression model with
stepwise elimination identified three significant variables: age-two fLRI (OR 8 per unit
increase, p = 0.0075), age-four wLRI (OR 5.3, p = 0.0016), and age-four Phadiatop IgE
(OR 3.3, p = 0.0088). But although both IgE-related and infection-related risk factors
contributed to age-five wheeze, there was no significant evidence of interaction between
them (p = 0.36 within CAS2 alone, p = 0.92 across entire cohort, for age-four wLRI
frequency × Phadiatop IgE). Overall, CAS2 represented a low-risk trajectory susceptible
to, but not necessarily afflicted by, wheeze due to atopic and non-atopic risk factors. In this
cluster, atopic determinants of age-five wheeze were only active from age two onwards,
suggesting delayed atopic wheeze in this cluster. This duality of atopic and non-atopic
risk factors for wheeze in this cluster was further supported by decision tree analysis,
which identified that wheezy LRI frequency and HDM IgE best separated wheezers from
non-wheezers in CAS2 (Supplementary Figure B.9).
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TABLE 3.3: Comparison of selected respiratory disease-related variables
in CAS clusters

Feature? = whether variable was used as a clustering feature or not; geom. mean = geometric mean; ARI =
acute respiratory infection (lower or upper); LRI = lower respiratory infection; MPG = microbiome profile
group; NPA = nasopharyngeal aspirate; prop. = proportion; URI = upper respiratory infection; 7w = 7
weeks. For categorical variables, associations were tested using Fisher exact test; for continuous variables,
Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical significance (p < 0.05); italics
indicate near-significance (p < 0.10). *Not used as clustering features, as these were derived variables; the
variables from which they were derived (URI, LRI, wLRI, fLRI) were used instead.

Variable Age CAS1
(N=88)

CAS2
(N=107)

CAS3
(N=22)

P-value (unadjusted) Feature?

Mean (95%
CI)

Mean (95%
CI)

Mean (95%
CI)

Overall 1 vs. 2 1 vs. 3 2 vs. 3

URI (events per y) 1 2.9 (2.4-3.3) 2.6 (2.2-3) 2.5 (1.7-3.3) 0.59 0.34 0.5 0.96 Yes
2 3.2 (2.6-3.7) 2.6 (2.2-3) 2.5 (1.2-3.8) 0.19 0.19 0.12 0.34 Yes
3 2.7 (2.2-3.2) 2.8 (2.4-3.3) 2.2 (1.3-3.2) 0.45 0.41 0.59 0.24 Yes
4 2.1 (1.7-2.6) 2.2 (1.8-2.7) 1.7

(0.77-2.7)
0.5 0.94 0.26 0.27 No

5 1.6 (1.1-2) 1.5 (1.2-1.9) 0.67
(0.2-1.1)

0.081 0.76 0.047 0.026 No

LRI (events per y) 1 1.6 (1.2-1.9) 0.98
(0.76-1.2)

2 (1.3-2.6) 4.0E-03 0.021 0.17 2.6E-03 Yes

2 1.4
(0.98-1.7)

1 (0.81-1.2) 2.2 (1.6-2.9) 2.5E-03 0.83 6.1E-03 2.0E-04 Yes

3 1 (0.76-1.3) 0.6 (0.4-0.8) 1.8 (1.1-2.6) 6.1E-04 0.02 0.039 2.7E-04 Yes
4 0.87

(0.52-1.2)
0.46
(0.3-0.63)

2 (1.1-2.8) 1.7E-05 0.3 3.5E-04 1.6E-06 No

5 0.42
(0.24-0.6)

0.36
(0.24-0.48)

0.86
(0.44-1.3)

0.019 1 0.011 7.5E-03 No

Wheezy LRI
(wLRI, events per
y)

1 0.47
(0.3-0.63)

0.24
(0.15-0.34)

0.64
(0.19-1.1)

0.054 0.036 0.61 0.065 Yes

2 0.68
(0.45-0.91)

0.41
(0.26-0.56)

1 (0.56-1.5) 5.2E-03 0.063 0.066 1.7E-03 Yes

3 0.59
(0.37-0.81)

0.3
(0.17-0.44)

1.4
(0.78-2.1)

4.6E-05 0.065 2.5E-03 6.6E-06 Yes

4 0.52
(0.25-0.79)

0.32
(0.18-0.46)

1.9
(0.95-2.8)

4.5E-08 0.86 9.3E-07 3.3E-08 No

5 0.28
(0.13-0.42)

0.23
(0.13-0.33)

0.76
(0.36-1.2)

2.3E-03 0.99 2.0E-03 1.2E-03 No

Febrile LRI (fLRI,
events per y)

1 0.36
(0.22-0.51)

0.28
(0.16-0.4)

0.55
(0.28-0.81)

0.025 0.24 0.071 6.4E-03 Yes

2 0.36
(0.23-0.5)

0.33
(0.22-0.43)

0.95
(0.46-1.4)

0.01 1 6.1E-03 3.8E-03 Yes

3 0.38
(0.21-0.55)

0.16
(0.09-0.23)

0.52
(0.13-0.92)

0.06 0.063 0.44 0.04 Yes

4 0.3
(0.13-0.47)

0.15
(0.064-0.24)

0.43
(0.16-0.7)

0.021 0.18 0.091 4.9E-03 No

5 0.19
(0.082-0.3)

0.14
(0.06-0.21)

0.19
(0-0.42)

0.83 0.55 0.91 0.8 No

Prop. (95%
CI)

Prop. (95%
CI)

Prop. (95%
CI)

Overall vs. 2 1 vs. 3 2 vs. 3

>20% Streptococcus
in first
infection-naive
NPA sample

7w 11% (0.34%-
23%)

15%
(3.3%-26%)

44%
(3.9%-85%)

0.081 0.75 0.042 0.065 No

6m 7.6%
(1.6%-14%)

18%
(10%-26%)

14%
(0%-31%)

0.12 0.045 0.39 1 No

% Healthy NPAs
with infection-
associated
MPGs

0-2 49%
(38%-59%)

32%
(24%-39%)

62%
(47%-76%)

1.2E-03 0.013 0.2 5.5E-04 No

2-4 46%
(37%-55%)

44%
(37%-51%)

45%
(29%-61%)

0.9 0.67 0.92 0.8 No
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TABLE 3.4: Analysis of selected predictors for age-five wheeze within
each CAS cluster, with demographic covariates (sex, BMI, parental his-

tory of asthma)

BMI = body mass index; HDM = house dust mite; LRI = lower respiratory infection. Association analyses
performed via generalised linear models (GLM) with demographic covariates: age-five wheeze ~ predictor +
sex (male) + BMI at age 3 + paternal history of asthma + maternal history of asthma. Bold text indicates
statistical significance (p < 0.05); italics indicate near-significance (p < 0.10). *Odds ratio (OR) is for every
unit increase in log10 IgE, IgG4 or IgG (i.e.10-fold increase in IgE, IgG4 or IgG).

Selected
predictors for
age-five wheeze

Age CAS1 (N=88) CAS2 (N=107) CAS3 (N=22) All (N=261)

OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value

LRI (events per y) 1 0.97
(0.71-1.3)

0.84 1 (0.61-1.5) 0.99 0.48
(0.13-1.1)

0.16 1 (0.81-1.2) 0.92

2 1.2
(0.88-1.6)

0.26 1.5
(0.97-2.5)

0.069 0.99
(0.34-2.6)

0.98 1.4 (1.1-1.7) 5.3E-03

3 2 (1.3-3.2) 2.3E-03 2.6 (1.5-5.3) 2.7E-03 0.98
(0.4-2.6)

0.96 2 (1.5-2.7) 3.8E-06

4 2 (1.4-3.4) 2.0E-03 3.6 (1.8-8.3) 6.5E-04 1.9
(0.57-8.4)

0.32 2.5 (1.8-3.6) 1.5E-07

Wheezy LRI
(events per y)

1 1.3
(0.68-2.4)

0.43 1.1 (0.35-3) 0.83 2.6
(0.62-58)

0.34 1.5
(0.98-2.3)

0.06

2 1.2 (0.8-2) 0.33 1.6
(0.89-2.9)

0.12 2.4
(0.67-16)

0.24 1.6 (1.2-2.2) 5.6E-03

3 2.8 (1.6-5.6) 1.3E-03 3 (1.4-8) 0.016 1.2
(0.43-4.6)

0.76 2.7 (1.8-4.2) 4.1E-06

4 2.5 (1.5-5) 4.0E-03 6.3 (2.5-21) 6.8E-04 7.1
(1.2-169)

0.1 3.9 (2.5-6.7) 5.4E-08

Febrile LRI
(events per y)

1 1.6
(0.77-3.6)

0.21 0.84
(0.28-1.9)

0.71 7.3
(0.78-178)

0.12 1.5
(0.93-2.4)

0.098

2 1 (0.44-2.2) 1 4.8 (1.8-15) 3.9E-03 1.6
(0.48-10)

0.5 2.3 (1.4-3.9) 1.2E-03

3 2 (1-4.8) 0.08 4.3 (1.2-15) 0.02 4.2
(0.55-519)

0.37 2.4 (1.4-4.3) 2.3E-03

4 1.8
(0.97-4.1)

0.092 2.6
(0.88-8.3)

0.082 1.1
(0.11-18)

0.93 2.2 (1.3-4) 5.9E-03

Quartile of %
healthy NPAs
with infection-
associated
MPGs

0-2 1 (0.54-1.8) 0.98 1.3
(0.72-2.4)

0.36 NA NA 1.3
(0.89-1.8)

0.19

2-4 0.45
(0.19-0.88)

0.035 1 (0.51-2.1) 0.9 NA NA 0.8
(0.53-1.2)

0.24

HDM IgE (log10
kU/L)*

6m 8 (0.85-94) 0.074 0.93
(0.14-3.6)

0.92 3.4
(0.26-180)

0.4 2.3
(0.99-5.8)

0.054

1 1.5
(0.22-7.8)

0.65 0.54
(0.039-2.3)

0.51 39
(2.5-22000)

0.082 2.7 (1.5-5) 0.00089

2 0.93
(0.28-2.5)

0.89 2 (1.2-3.7) 0.016 1.4
(0.38-4.8)

0.62 2 (1.5-2.8) 2.80E-05

3 1.4
(0.68-2.9)

0.32 1.5 (0.9-2.4) 0.12 1.5 (0.4-5.2) 0.55 1.7 (1.3-2.2) 1.00E-04

4 1.9
(0.94-4.1)

0.086 1.9 (1.2-3.1) 0.011 1.4
(0.31-5.5)

0.64 1.9 (1.5-2.5) 3.70E-06

HDM IgG4 (log10
µg/L)*

6m NA
(NA-NA)

0.55 0.053 (NA-
6.5e+24)

0.99 28 (1.7e-34-
NA)

0.99 1.4
(0.88-2.6)

0.17

1 NA
(NA-NA)

0.61 1.1 (0.8-1.5) 0.5 0.9
(0.58-1.3)

0.6 1.2 (1-1.4) 0.053

2 1.1
(0.71-1.6)

0.67 1.1
(0.85-1.4)

0.61 0.4
(0.038-1.2)

0.26 1.1 (1-1.3) 0.056

3 1.1
(0.85-1.5)

0.35 1.1 (0.77-2) 0.64 0.94
(0.19-2.3)

0.9 1.1
(0.98-1.2)

0.1

4 1.2
(0.98-1.5)

0.082 0.89
(0.7-1.1)

0.33 0.46
(0.031-5.4)

0.53 1.1 (1-1.3) 0.034

HDM IgG (log10
mg/L)*

1 25 (0.32-
1.6E+04)

0.19 3.3
(0.16-46)

0.38 5.6E-03
(8.4E-06-
0.57)

0.058 2 (0.31-11) 0.44

2 0.8
(0.15-3.5)

0.78 0.97
(0.24-3.7)

0.96 0.79
(0.031-18)

0.88 1.3 (0.6-2.9) 0.48

3 2.3
(0.14-35)

0.54 0.48
(0.057-2.5)

0.43 3.9
(0.26-96)

0.34 2.1 (0.89-5) 0.089
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FIGURE 3.5: LRI frequency (A), wheezy LRI (wLRI) frequency (B), and
HDM IgE (C), stratified by age-five wheeze status, cluster and time, in

the CAS dataset.

Points indicate means; bars indicate 95% CI (t-distribution). #p < 0.05 for repeated-measures ANOVA across
timepoints from the first 3 years of life (see Table 4). *p < 0.05 for Mann-Whitney-Wilcoxon comparison
within each timepoint.
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3.2.3 CAS3: high-risk atopic cluster with persistent wheeze

CAS3 was a “high-risk” cluster, where persistent respiratory wheeze and atopic disease
was seen in more than half the group throughout the first 10 years of life (Table 3.1;
Figure 3.3). This cluster was dominated by males (86%, Fisher exact test, unadjusted
p = 6.8× 10−3 compared to CAS1, Table 3.1), and appeared to represent an early- and
multi-sensitised atopic phenotype with persistent wheeze. CAS3 had elevated IgE, IgG,
and IgG4 responses to common allergens, especially Phadiatop, HDM and peanut IgE
from 6 months onwards (Table 3.2; Figure 3.4; Supplementary Table B.3B). SPTs were
also more frequently positive in CAS3, especially to HDM and food allergens (peanut,
cow’s milk and egg white, Supplementary Table B.3D).

No strong predictors for age-five wheeze were identified within CAS3 (Table 3.4): only
couch grass IgE at age 2 and acute respiratory infection (ARI) frequency at age 1 were
weakly significant (both p = 0.046). Neither of these reached statistical significance when
incorporated in the same model. However, the prolific IgE response, and the frequency
and severity of early-life LRIs in this cluster (Table 3.3), strongly suggest contribution
from both atopic and non-atopic causes of wheeze. Hence, CAS3 primarily represented
those with extreme levels of atopic sensitisation and infection. The relative paucity of
identifiable predictors may be explained by the small size of CAS3 (N=22), the intrinsically
high rate of wheeze in the cluster (76% with age-five wheeze), and saturation of risk from
high levels of IgE and frequent infections.

Unlike the antibody measurements, cytokine measurements were excluded as cluster-
ing features due to high missingness. Nonetheless, with post-hoc analyses, we found that
in vitro stimulation of PBMCs with HDM antigen elicited stronger Th2 cytokine responses
in CAS3 compared to other clusters (Table 3.2, Figure 3.6). These cytokines (IL-4, IL-5,
IL-13) were elevated from a very young age (Wilcoxon, adjusted p = 4.6× 10−5 for IL-4
mRNA at age 6m, compared to CAS1), coinciding with increase in HDM IgE and IgG4
responses. Weaker but similar differences were observed for peanut- and ovalbumin-
stimulated PBMCs at 6 months (unadjusted p < 0.05 for all, Supplementary Table B.3C).
There were no other significant differences for other non-Th2 cytokines (IFN-γ, IL-10), nor
were there specific differences for CAS1 or CAS2.

3.2.4 Comparison of measures of immunological response

Across all clusters, allergen-specific IgG4 and IgG were positively correlated with IgE
for the same allergen (especially HDM, Supplementary Figure B.5). As noted previously,
CAS2 and CAS3 were distinguished from CAS1 by high IgG4, and CAS3 had greater IgG4
than either CAS1 or CAS2 (Supplementary Table B.3B; Figure 3.4). Decision tree analysis
(Supplementary Figures B.7, B.8, B.9) confirmed that IgG4-type variables strongly sep-
arated CAS2 and CAS3 from CAS1, while IgE-type variables separated CAS3 from the
others.

Although previous literature suggests possible protection conferred by IgG4 [22] or
IgG [23], in this study there was no clear evidence of such protection against later wheeze
(Table 3.4). Furthermore, the protected status of CAS2 relative to CAS3 was unlikely to be
driven by IgG4, given that CAS3 had greater quantities of both IgE and IgG4.

Although they were highly correlated, IgE, IgG, Th2 cytokine and SPT responses
did not overlap perfectly. CAS3 was enriched for individuals with strong signals in all
modalities, but there remained individuals within CAS3 and the rest of the cohort who
were only responsive in some modalities and not others. Notably, the general direction
of IgE, IgG4, SPT and Th2 cytokine signals did not always coincide (Supplementary
Figure B.6).
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FIGURE 3.6: PBMC expression of IL-5 (A) and IL-4 mRNA (B), as well as
IL-13 protein (C), in response to stimulation HDM, stratified by cluster

and time (CAS).

Cord = cord blood sample collected at birth. Points indicate means; bars indicate 95% CI (t-distribution).



54 Chapter 3. Mixture-model clusters of asthma susceptibility

3.2.5 Comparison of clusters to existing criteria for atopy

The npEM-derived CAS clusters were partially consistent with traditional atopy thresholds
(i.e. any specific IgE≥ 0.35 kU/L or SPT≥ 2mm at age 2). When we compared CAS clusters
with supervised groups created using traditional thresholds (Supplementary Table B.5),
we found that CAS1 most closely matched a non-atopic phenotype (58 of 84 had no specific
IgE greater than 0.35 kU/L by age 2). Conversely, CAS2 and CAS3 partially matched
traditional criteria for atopy, with CAS3 being an extreme phenotype (all 22 children in
CAS3 had some specific IgE ≥ 0.35kU/L by age 2).

However, the CAS clusters outperformed IgE/SPT-defined atopy in terms of predicting
for age-five wheeze (likelihood ratio test for clusters vs. IgE/SPT, Chi-squared=23, p =
2.0× 10−6). In addition, at age 2, 68% of CAS3 were “sensitised” (any specific IgE ≥
0.35kU/L) to two or more allergens, compared to only 1% and 6% for CAS1 and CAS2
respectively. This emphasised CAS3 as an early- and multi-sensitised phenotype. Finally,
fewer members of CAS1 and CAS2 who were IgE- or SPT-responsive prior to age 5
maintained atopic wheeze at age 5 (23% or 24 of 103), compared to CAS3 (76% or 16 of
21). Therefore, the association of IgE and SPT with disease risk varied across clusters. This
suggests that fixed atopy thresholds are not sufficient to delineate risk profiles – instead,
an unsupervised clustering approach may be more informative.

3.2.6 Comparison of clusters to time-dependent wheeze phenotypes and atopic
disease

We mapped the npEM-derived clusters to pre-defined wheezing phenotypes (Figure 3.3C):
no wheeze (in the first three years of life, or at age 5), transient wheeze (only in first three
years), late wheeze (only at age 5), and persistent wheeze (both first three years and age
5). We found that CAS3 was enriched for persistent wheeze, while individuals in CAS1
or CAS2 tended to have transient or no wheeze. There were rarely any members of CAS
with late wheeze (approximately 10%).

In addition to persistent wheeze, CAS3 was also enriched for persistent food sensitisa-
tion (peanut IgE ≥ 0.35 kU/L, or positive egg white or cow’s milk SPTs) and persistent
eczema: 44% of CAS3 experienced all three (Supplementary Figure B.4). Almost all in-
dividuals in CAS3 had both eczema and food sensitisation from age 6m onwards, with
rates of food sensitisation and wheeze increasing with time (Figure 3.3D). In contrast,
CAS1 and CAS2 had low rates of food sensitisation, and declining rates of both eczema
and wheeze. These trends lend credence to recent suggestions that the “atopic march”
phenotype [24, 25] may only be present in a minority of the population (e.g. CAS3) [19].

3.2.7 Relationship with the nasopharyngeal microbiome

Previous studies suggest an association between asthma risk and early-life disruption of
the respiratory microbiome, especially colonisation with Streptococcus spp. in the first 7
weeks of life [26]. In this study, using the same data and definitions, we found that CAS3
was overrepresented by individuals who had >20% relative abundance of Streptococcus in
their first infection-naïve healthy NPA, within the first 7 weeks of life (44% versus 11%
and 15% in CAS1 and CAS2, respectively; Fisher exact test, unadjusted p = 0.042 and
0.065, respectively; Table 3.3).

Furthermore, Teo et al and others [26, 27] previously found that transient incursions
with certain MPGs (Streptococcus, Haemophilus, Moraxella spp.) were associated with in-
creased frequency and severity of subsequent LRIs and wheezing disease. Here, we found
that proportion of these infection-associated MPGs in healthy samples from age 0 to 2 was
greater in CAS3 (62% vs. 49% and 32% in CAS1 and CAS2, respectively; Fisher exact test,
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unadjusted p = 0.2 and 5.5× 10−4, respectively; Table 3.3). This finding was independent
of LRI and wLRI frequency (GLM; p < 0.05 for model predicting group membership,
with age-two LRI and wLRI as covariates). On the contrary, there were no associations
between cluster membership and health-associated MPGs (Corynebacterium, Alloiococcus,
Staphylococcus spp.; Supplementary Table B.3E).

Recent work by Teo et al [28] suggested that infection-associated MPGs in early life
were predictive for age-five wheeze in atopic children, while in non-atopic children they
were predictive for transient wheeze. In this study, with the same cohort, we noted a
similar trend for infection-associated MPGs from age 0 to 2, in relation to transient wheeze
in “non-atopic” CAS1 (GLM, OR 3.6 per percent, p = 0.17, with demographic covariates).
Surprisingly, there was evidence that infection-associated MPGs in later samples (from
age 2 to 4) were protective against age-five wheeze in CAS1 (OR 0.086 per percent, 0.45
per quartile, p = 0.034 and 0.035, respectively; Table 3.4). Infection- and health-associated
MPGs were otherwise not associated with age-five wheeze within the other clusters.

3.2.8 External replication of clusters in MAAS and COAST

The trajectories described by the CAS npEM clusters were replicated in two cohorts – the
Manchester Asthma and Allergy Study (MAAS) (N = 1085) [29] from Manchester, UK,
and the Childhood Origins of Asthma Study (COAST) (N = 289) from Wisconsin, USA
[30]. After applying our npEM classifier to these external cohorts (Methods, Section 3.4),
we found that individuals classified into “Cluster 3” (MAAS3/COAST3) had a persistent
disease phenotype extending into late adolescence, with consistently high rates of parent-
reported wheeze and physician-diagnosed asthma from birth to age 16. The other two
clusters (Cluster 1 = MAAS1/COAST1; Cluster 2 = MAAS2/COAST2) appeared to be
low-risk (Figure 3.7A,B,D).

MAAS3 and COAST3 exhibited stronger IgE expression (total, HDM, cat, dog) from
ages 1 to 8 (Figure 3.7C,E), compared to other clusters in each dataset. Like CAS3, COAST3
demonstrated elevated PBMC expression of Th2 cytokine protein (IL-5 and IL-13) in
response to HDM stimulation at age 3 (Figure 3.7F). This was not replicated in MAAS3, but
previous work in MAAS had identified that a strong PBMC Th2 response (IL-5, IL-13) to
HDM stimulation at age eight was associated with increased risk of HDM sensitisation and
asthma [21]. Nonetheless, MAAS3 was overrepresented in “early-sensitised” and “multiple
sensitised” phenotypes described by Lazic et al [17] from SPT and IgE data. Approximately
86% of individuals in MAAS3 belonged to either one of these two phenotypes, although
only 13% of individuals in these two phenotypes were accounted for by MAAS3.

Furthermore, when we explored potential predictors of wheeze phenotypes and
asthma diagnosis in later childhood, we found that the clusters in COAST were very
similar to those in CAS. In COAST1, LRI and wLRI frequency at age 2 were predictive
of asthma diagnosis at age six (GLMs with demographic covariates, p = 0.02 and 0.02,
respectively), while in COAST2, HDM IgE at age 3, and LRI, wLRI and fLRI frequencies at
age 2 were all predictive (GLMs, p < 0.05 for all) (Supplementary Figure B.10). Although
the timing and magnitude of associations differed between cohorts, this reaffirmed wheeze
in Cluster 1 as being primarily non-atopic in origin, while wheeze in Cluster 2 appeared
to be driven by both non-atopic and atopic factors.

We re-applied npEM classification to CAS using only those features present in MAAS
or COAST. For MAAS and COAST features respectively, the subsequent clusters bore 79%
and 72% concordance with the original CAS clusters,. In both cases, concordance was
excellent for Cluster 3 – all 22 members of the original CAS3 were correctly assigned to
Cluster 3 after re-applying npEM. Therefore, CAS3, COAST3 and MAAS3 likely represent
very similar phenotypes.
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FIGURE 3.7: Description of npEM-derived clusters in external cohorts:
in MAAS, incidence of wheeze (A), asthma diagnosis (B), and HDM
IgE levels (C); in COAST, incidence of asthma diagnosis (D), proportion
of individuals with detectable aeroallergen-specific IgE levels (E), and
PBMC protein expression of IL-13 following HDM stimulation above

unstimulated control (F).

MAAS cohort (N=934) was classified using npEM model from CAS, into MAAS1 (N=199, 21%), MAAS2
(N=692, 74%) and MAAS3 (N=43, 5%); these correspond to CAS clusters CAS1, 2 and 3, respectively. COAST
cohort (N=285) was similarly classified into COAST1 (N=105, 37%), COAST2 (N=151, 53%) and COAST3
(N=29, 10%).



3.2. Results 57

3.2.9 Internal stability and validity of CAS clusters

We checked the stability and validity of the CAS clusters with leave-one-out (LOO)
analysis, Jaccard indices and silhouette widths. The average Jaccard indices from leave-
one-individual-out analysis were 0.77, 0.76, and 0.85 for CAS1, 2 and 3, respectively. For
leave-one-feature-out analysis, the average indices were 0.65, 0.60, and 0.74, respectively.
This demonstrates that the clusters, especially CAS3, were relatively resilient to minor
changes in sampling or feature selection.

In relation to internal validity of the CAS clusters, average silhouette widths were
universally poor, at 0.05, 0.06 and 0.002 for CAS1, 2, 3, respectively, with an average for
all three clusters of 0.05 (Supplementary Figure B.2).Silhouette widths were particularly
suboptimal with CAS3, with at least half of those classified having negative values. The
overall poor internal validity of the clusters may be due to the large-scale and exploratory
nature of our approach – the metric may have been obscured by intra-cluster heterogeneity
in other variables that were not particularly important for determining cluster membership.
However, it must be noted that all clusters on average yielded positive silhouette widths,
and as observed in the rest of the results, they were all relatively homogeneous in terms of
the outcomes of interest (wheeze status, allergic disease phenotypes).

3.2.10 Decision tree analysis

Decision tree analysis on the CAS dataset, using all available predictors from all timepoints,
created a “Simple Tree” with two decision nodes and three end nodes (Supplementary
Figure B.7). This tree had 89% accuracy in retrieving cluster memberships from the original
npEM model, where accuracy is calculated as percentage overlap of tree clusters with
original CAS clusters. We found that membership in the CAS3-equivalent tree cluster was
a better predictor for age-five wheeze (likelihood ratio test, Chi-squared=19, p < 1× 10−5)
than traditional thresholds for atopy based on IgE and SPT measurements at age 2. IgG4-
related variables best separated CAS1 from other clusters, while IgE-related variables
best separated CAS2 and CAS3. Explicitly forcing the exclusion of Phadiatop variables
from tree analysis caused these thresholds to be replaced with allergen-specific assays
(HDM IgE for Phadiatop IgE, Supplementary Figure B.8) in a way that is consistent with
correlation patterns amongst IgE and IgG4 variables (Supplementary Table B.6).

We also constructed a “Comprehensive Tree” that best split individuals into six groups,
based on cluster membership crossed with age-five wheeze status (Supplementary Fig-
ure B.9). We thus identified nodes that were consistent with predictors for wheeze found
in the previous regression analyses (Table 3.4), combined with nodes from the Simple Tree
(Supplementary Figure B.7). The Comprehensive Tree had 77% accuracy in recovering
both cluster membership and wheeze status. In terms of identifying pure wheeze status at
age 5, the accuracy of the tree was 84%, with a positive predictive value (PPV, or precision)
of 72%, negative predictive value (NPV) of 88%, sensitivity (recall) of 71% and specificity of
89%. The Comprehensive Tree was more successful in flagging age-five wheeze (likelihood
ratio test, Chi-squared=60, p = 6.1× 10−13), compared to the traditional atopy thresholds
described previously.

We attempted to validate a modified version of CAS-derived Simple Tree in the MAAS
dataset, as that cohort contained measurements of both age-five HDM IgE and HDM
IgG4, which we used as surrogates for age-three HDM IgE and HDM IgG4. These features
comprised two decision-node features in the Phadiatop-free equivalent of the CAS Simple
Tree (Supplementary Figure B.8). COAST did not have any IgG4 measurements, so tree
validation was not attempted there. The performance of the Simple Tree when applied to
MAAS was poor, with only 20% accuracy in terms of overlap between tree clusters and
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npEM clusters, compared to 89% in CAS. Given the replication of the npEM model but
not the decision trees, this suggests that multiple allergy-related measurements provide
better prediction of disease state than singular measurements.

3.3 Discussion

We have used model-based cluster analysis to uncover clusters of children with differential
asthma susceptibility. Specifically, there was a high-risk group (Cluster 3) characterised by
very early allergen-specific Th2 activity; early sensitization to multiple allergens including
food allergens; and concurrent frequent respiratory infections – resulting in high incidence
of atopic persistent wheeze. We also found a lower-risk cluster (Cluster 2), with limited
or delayed elevation in IgE – this resulted in a lower incidence of mixed (atopic and non-
atopic) wheeze. Finally, there was a low-risk cluster (Cluster 1) which exhibited occasional
and transient infection-related wheeze, with minimal allergen sensitisation. These clusters
were replicated in external datasets, suggesting relevance across populations. Summaries
of key findings are given in Table 3.5 and Figure 3.2.

3.3.1 Cluster 3 is a high-risk, multi-sensitised, atopic phenotype

Cluster 3 represented a multi-sensitive or polysensitised phenotype [31]. In CAS3, not only
was total IgE elevated, but specific IgE were also raised for most allergens. Three in four
CAS3 individuals were sensitised (specific IgE≥0.35 kU/L) to two or more allergens. In
our external replication with MAAS, we observed a large overlap between our predicted
high-risk phenotype (MAAS3) and the multiple atopy phenotype from Lazic et al [17].
This was consistent with findings from other studies, where the severely atopic and
polysensitised subpopulation was at greater risk of both wheezing disease and reduced
lung function [32].

It is not currently known what is fundamentally producing the strong atopic predis-
position in Cluster 3. It is possible that inherited (genetic/epigenetic) or environmental
factors (including in utero or perinatal exposures) may be involved, and these should be
targets for future investigations. The overrepresentation of males in CAS3 is consistent
with the consensus that young boys are at greater risk for asthma than young girls; this
was traditionally believed to be due to intrinsic sex differences in airway diameter [33].
However, our cluster analysis did not employ any clustering features related to airway
size. This suggests that other sex-related factors could be involved, such as differences
in immunity and allergic susceptibility. Allergic sensitisation is more frequent amongst
prepubescent boys than girls [34, 35], and this may be linked to differences in cytokine
responsiveness. However, not all boys were clustered into Cluster 3; and sex was not
found to be a determinant for either IgE levels or cytokine response in CAS.

We did observe that CAS3 overlapped strongly with both persistent food sensitisation
and eczema, and that persistent wheeze co-occurred with early sensitisation and eczema.
This suggests that the “atopic march” may play a role in CAS3. Early disruption of the skin
barrier and exposure to certain food allergens may act in concert to promote and entrench
the atopic phenotype, through the activation of cytokine pathways involving TSLP, IL33
and IL25 [24, 25]. Although recent research has suggested that very few children actually
follow the disease trajectory of the atopic march [19], we hypothesise that it remains
relevant to a small but important high-risk subpopulation, who may potentially benefit
from early interventions targeted at halting the progression of disease.
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3.3.2 Role of early-life HDM hypersensitivity

In all three cohorts (CAS, MAAS, COAST), house dust mite (HDM) sensitivity was an
important determinant of atopic disease risk. HDM was a strong predictor for both CAS3
membership and later childhood wheeze in CAS2, as well as being a “dominant” allergen
in the Phadiatop Infant assays. CAS3 in particular exhibited early and extreme HDM
hypersensitivity, with prematurely-elevated HDM IgE, as well as PBMC Th2 response
(IL-4, 5, 9, 13) to HDM stimulation. Similar phenomena were seen with MAAS3 and
COAST3. The importance of HDM hypersensitivity in driving allergic disease in some
populations is well-described in the literature [36, 37]. Previous findings from MAAS
and a similar cohort RAINE [21] have shown a confluence of high HDM IgE, as well as
PBMC Th2 cytokine levels such as IL-13 and IL-5, in discrete subsets of the population.
However, we did observe that in other clusters (CAS1 and CAS2), some individuals with
purported HDM sensitisation (IgE > 0.35 kU/L) did not produce detectable Th2 responses;
the reverse was also true, where Th2 response did not necessarily result in high IgE. It
may be the case that there is high intra-individual variation in IgE and cytokine responses,
or stochastic variation in detectability of IgE or cytokine, which may obscure association
analyses. Regardless, early and strong Th2 cytokine responses against HDM indicate a
high-risk phenotype.

3.3.3 Role of early-life food and peanut sensitization

Interestingly, early-life peanut IgE was a strong delineator between high-risk CAS3 and
lower-risk CAS1 and 2. There is evidence in the literature for transmission of peanut
allergen in utero or via breastmilk [38, 39], as well as early sensitisation via home environ-
mental exposure, especially in those with concurrent eczema or a predisposing filaggrin
(FLG) mutation that may allow transcutaneous infiltration of allergen [40, 41]. The strong
correlation between Phadiatop and peanut IgE in the first year of life suggests that either
peanut reactivity is significant at this earlier timepoint, or that “peanut-specific IgE” is
cross-reactive and representative of some other allergen hypersensitivity. The fact that this
correlation exists within each cluster (Supplementary Table B.6) suggests that it is not
caused solely by differences between low and high-risk clusters (CAS1/CAS2 vs. CAS3).
There is a possibility that peanut IgE is a marker for a broader phenotype of early and
unremitting sensitisation to multiple food allergens (peanut, cow’s milk, eggwhite), as we
had observed in CAS3. However, it is unlikely that premature exposure to food allergen
is the lone driver for sensitisation and disease, given that well-timed oral exposures to
common food allergens (e.g. within 4 to 6 months of age) may actually be protective [42].
There is some evidence that quantity (minute vs. abundant), route (skin vs. oral) and
timing (early vs. late) of exposure are key modifiers of risk [25]. Ultimately, an underlying
atopic predisposition linked to early-life exposure to food allergen may be driving the
high-risk phenotype in Cluster 3.

3.3.4 IgG4 separates individuals susceptible to atopic wheeze from those who
are not

In our study, neither IgG nor IgG4 were strong predictors or protectors of wheeze. How-
ever, IgG4 was a strong delineator of cluster membership in CAS, with individuals from
CAS2 and CAS3 having elevated IgG4 across all specificities compared to CAS1. Vulnera-
bility to early IgE-driven respiratory disease (“atopic wheeze”) can be seen in these same
individuals –in CAS2 where HDM IgE is predictive for later wheeze, and in CAS3 where
both wheeze frequency and IgE are elevated. Hence, although there had previously been



60 Chapter 3. Mixture-model clusters of asthma susceptibility

doubt about the efficacy of IgG4 as a marker for atopy [43], our study suggests that IgG4
is still relevant for determining atopic risk, especially when used in combination with IgE.

The underlying biology behind the association of IgG4 with susceptibility to “atopic
wheeze” is unclear. Th2-related pathways drive production of both IgE and IgG4, with
IgG4 predominating when modified by concurrent IL-10 signalling [44]. In susceptible in-
dividuals, IgG4 production likely precedes isotype switching to frank IgE production [45].
Multiple studies have reported that IgG4 is correlated with induced tolerance following
desensitisation immunotherapy with high-dose allergen treatment [44]. However, based
on this study alone, we cannot observe any protection from naturally-elevated IgG4 levels.
Our group had previously suggested, using data from another cohort [23], that IgG and
specifically IgG1 may provide endogenous protection against IgE-associated wheeze in
children experiencing natural (low-level) exposure to aeroallergen. In this present study,
IgG1 was not measured.

3.3.5 The role of respiratory infection and nasopharyngeal microbiome in
childhood wheeze differs across different clusters

The co-occurrence of elevated IgE and LRI frequency in CAS3, as well as their predictive
effect in CAS2, are consistent with previous findings from CAS [26, 46, 47]. They lend
support to the theory that allergic and infective processes act additively to intensify airway
inflammation during respiratory pathogen clearance, which in turn drives progression
towards persistent wheeze [48]. In addition, our cluster analysis suggests that the patho-
logic effect of this interaction may be stratified in discrete subpopulations, rather than
acting in a strictly dose-dependent fashion across the entire cohort. There may be subsets
of children (CAS2 and CAS3) who are more susceptible to the effects of this viral-atopy
interaction. On the other hand, pathogen clearance in infected non-atopic (CAS1) subjects
may be more efficient, due to lack of susceptibility to the pro-inflammatory effects of
atopic co-stimuli. This produces lower levels of “bystander” inflammatory damage to
airway tissues, with opportunity for recovery, resulting in a less severe wheeze phenotype.

Of particular note is that, while both CAS1 and CAS2 have LRI and wLRI frequencies
as predictors for age-five wheeze, CAS2 also has fLRI, particularly at age two. This,
along with the general higher incidence of fLRI in CAS3, is consistent with previous
findings from CAS [26, 47]. It suggests that symptomatically-severe infections, correlating
with severe airway inflammation, may be more potent in causing persistence of wheeze,
specifically among those who are “atopic” (CAS2 and CAS3).

In addition, even during periods of good health, the upper respiratory microbiome
played a role in determining later childhood wheeze. Its effect interacted with cluster
membership, as well as the age at which the microbiome changes occurred.CAS3 was en-
riched for early-life infection-associated MPGs (Streptococcus, Moraxella, and Haemophilus).
This was consistent with the previous finding by Teo et al [28] that early-life infection-
associated MPGs were predictive of age-five wheeze only within atopic individuals (as
defined by IgE alone). Interestingly, in our current study, we found a protective effect
of infection-associated MPGs from age two to four in CAS1. We hypothesise that those
without atopy-related immune dysfunction are able to maintain a healthy trajectory by
responding appropriately to stimuli from potential pathogens that colonise the respiratory
tract, thus achieving protection against future (non-atopic) wheeze. This is akin to the
“hygiene hypothesis”: exposure to a greater repertoire of pathogen-derived antigens may
facilitate maturation of immune functions against said pathogens. Meanwhile, individuals
with a predisposing immune dysfunction (i.e. “atopy” manifesting in early-life allergic
sensitisation) may be responding in a maladaptive manner to these microbes [48]. This may
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result in inability to clear potential pathogenic bacteria, or shaping of aberrant immune
responses – with subsequent effects on airway inflammation and wheeze.

3.3.6 Implications for cluster analysis in asthma research

In this study, we applied mixture modelling to generate clusters from biological data.
Similar methods such as latent class analysis (LCA) have previously been used in asthma
research – for instance, LCA was applied to SPT and IgE measurements from MAAS
to determine different patterns of allergen sensitisation and subsequent disease [17].
However, LCA is limited to categorical clustering features, so measures of sensitisation in
that study were thresholded (e.g. IgE levels were split into <0.35 kU/L, 0.35 to 100 kU/L,
and >100 kU/L). The method also assumed that these thresholds have the same relevance
across all timepoints; that thresholds applied equally to all allergens; and that all allergens
contributed equally to disease susceptibility profiles. Mixture modelling is an extension
of LCA in that it does not require categorical variables or predetermined thresholds.
Furthermore, non-parametric mixture modelling (npEM) does not require input features
to have Gaussian distributions. Previous studies have used mixture models to explore
phenotypes in adult asthma based on clinical measurements [49–52], and one of our own
studies previously looked at cytokine expression patterns of PBMCs from children in
response to HDM stimulation [21]. Our study is the first to apply non-parametric mixture
modelling to data representing immune and respiratory health in early childhood, and to
investigate possible predictors of disease within each cluster.

Currently, mixture models are limited by an unproven “track record”; a lack of consen-
sus about best protocols for data processing and analysis; instability or inconsistency of
clusters; difficulty in interpretation of results; and uncertainty regarding the validity of
certain assumptions that accompany models [16]. Other methods of cluster analysis have
similar problems, and while they have been applied frequently to asthma research, they
have also produced a confusing myriad of phenotypes. The nature of cluster phenotypes
is highly dependent on the type of features entered into the clustering algorithm. Clus-
tering features that represent final clinical endpoints, such as markers of severity, may
produce more heterogeneous clusters, as different pathological trajectories can arrive at
similar endpoints. Some cluster phenotypes may contradict with each other, or may not be
easily interpreted. Recently, Schoos et al [53] identified that, unlike our study, asthma was
not as strongly associated with prominent HDM or peanut hypersensitivity in a Danish
birth cohort (COPSAC) as other patterns of sensitisation (especially cat, dog and horse).
However, we note that they used thresholded IgE >0.35 kU/L to build their clusters. Other
differences may emerge due to heterogeneity across different populations; geographical
differences in environmental exposures and allergen sensitisation; and differences in test-
ing procedures and phenotype definitions at different sites. COPSAC, CAS and COAST
were cohorts enriched for high-risk individuals – each child had at least one parent with a
history of atopic disease – while MAAS had no such recruitment criterion. Because of vari-
ability in findings, there has been wariness and scepticism among clinicians regarding the
utility of mixture models and machine learning [54]. Ultimately, one may argue that dis-
crepancies in our findings serve as a caution against the blind application of “algorithms”
without due consideration of subtleties in target population and environment.

Nonetheless, what we have demonstrated here is the vast potential of cluster analysis.
We have discovered clusters in an unsupervised and exploratory fashion, described them
comprehensively, replicated our findings in multiple datasets, and compared our clusters
with other existing phenotypes. In doing so, we have generated some new and interesting
insights about the nature of atopy and asthma risk. Our results build on previous findings
[11, 55] demonstrating that the concept of atopy, as an intrinsic or heritable predisposition
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TABLE 3.5: Key findings from cluster analysis.

Certain childhood populations may be broadly split into three clusters, each representing a unique trajectory
of immune function and susceptibility to respiratory infections: low-risk non-atopic Cluster 1 with transient
wheeze; low-risk but allergy-susceptible Cluster 2 with mixed wheeze; and strongly-atopic high-risk Cluster
3 with persistent wheeze.

Cluster 3 is consistent with an early-sensitised and multi-sensitised phenotype.

HDM hypersensitivity is an important predictor of wheeze in allergic or allergy-susceptible individuals.

Food and peanut hypersensitivities are important contributors to membership in high-risk Cluster 3. This
may be pathophysiologically related to eczema, multi-sensitisation and the atopic march.

In CAS, IgG4 flags for clusters with susceptibility to atopic disease (CAS2 and CAS3), while early and
multiple-allergen elevation in IgE predicts frank atopic disease. The pathophysiological role of IgG4 remains
unclear.

Allergic and infective processes act additively to intensify airway inflammation during respiratory pathogen
clearance. Some (Cluster 3) may be more susceptible to this effect than others that lack strong allergic
sensitisation (Cluster 1).

Tests for atopy (IgE, SPT, cytokines) do not overlap perfectly. Therefore, atopy may be better defined by the
composite result from a battery of tests encapsulated in a predictive model, rather than just a single test or
threshold.

The microbiome acts differently on asthma risk depending on cluster membership. In CAS, early-life asymp-
tomatic colonisation with infection-associated MPGs is associated with risk of persistent wheeze in allergy-
susceptible clusters (CAS2, CAS3), while it is potentially protective in non-atopic children (CAS1)

Different childhood populations may share similar trajectories of asthma susceptibility, but there may be
subtle differences in terms of the types of tests, allergens, or biological signals that are most informative (SPT,
IgE, cytokines, etc.).

to allergic disease, is more complicated than what could be described by dichotomies
or thresholds. We have also demonstrated that addressing subgroup differences via
cluster analysis allows for identification of intra-cluster disease predictors. In the future,
clusters may be further characterised by other aspects of asthma pathophysiology, such as
genomics, transcriptomics, and epigenomics.

3.3.7 Concluding statements

The results of our study strongly support the future use of predictive models with more
precise and subgroup-driven representations of atopy or other relevant pathophysiol-
ogy. We argue for ongoing collaboration between research groups in terms of refining
methodology, answering questions unique to certain populations, and comparing cluster
phenotypes arising from different algorithms and datasets. We believe that, as clustering
methods become more frequently used, we will gradually develop better consensus on
how such methods are best applied to biomedical phenomena. By continuing with these
approaches, we can hopefully move away from fixed thresholds to more sophisticated
formulations of risk, which will then improve future attempts at targeted screening, pre-
vention and treatment of asthma. These approaches are already being applied to other
heterogeneous diseases, and in the future computerised tools may be designed to embody
the sum knowledge from these approaches. Such approaches can eventually help clinicians
and scientists achieve a fuller understanding of pathophysiology, and hence better predict
and manage human disease.
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3.4 Methods

3.4.1 Patients and study design in CAS

Our discovery dataset was the Childhood Asthma Study (CAS), a prospective birth cohort
(N=263) operated by the Telethon Kids Institute from Perth, Western Australia [56]. The
goal of CAS was to describe the risk factors and pathogenesis of childhood allergy and
asthma. Further details of CAS have been reported previously [26, 47, 56–58].

In CAS, expectant parents were recruited from private paediatric clinics in Perth during
the period spanning July 1996 to June 1998. Each child who was born and subsequently
recruited had at least one parent with physician-diagnosed asthma or atopic disease
(hayfever, eczema). The child was then followed from birth till age 10 at the latest, with
routine medical examinations, clinical questionnaires, blood sampling at multiple time
points (6-7 weeks, 6 months, 1 year, 2, 3, 4, 5, and 10 years) and collection of nasopharyngeal
samples. Parents also kept a daily symptom diary for symptoms of respiratory infection
in their child. The data extracted from these samples and measurements covered multiple
“domains” of asthma pathogenesis, including respiratory infection, allergen sensitisation,
and clinical or demographic background.

3.4.2 Measurements in CAS

For each child and visit, the investigators of CAS recorded metrics related to suspected or
known modulators of asthma risk. These included markers of immune function: 1) IgG,
IgG4, and IgE Phadiatop ImmunoCAP antibodies (ThermoFisher, Uppsala, Sweden), cov-
ering common allergens such as house-dust mite (HDM, Dermatophagoides pteronyssinus),
mould, couch grass, ryegrass, peanut, cat dander; 2) IgE and IgG4 Phadiatop Infant and
Adult assays (ThermoFisher, Uppsala, Sweden) that target multiple allergens simultane-
ously [59]; 3) skin prick or sensitisation tests (SPT) for HDM, mould, ryegrass, cat, peanut,
cow’s milk and hen’s egg; and 4) cytokine responses (IL-4,5,9,13,10, IFN-γ) following in
vitro stimulation of extracted peripheral blood mononuclear cells (PBMCs) by multiple
antigen and allergen stimuli, including phytohaemaglutinin (PHA), HDM, cat, peanut
and ovalbumin [47, 57].

In addition, nasopharyngeal samples (swabs or aspirates, NPAs) were taken from
each child during healthy routine visits (healthy samples), and unscheduled visits where
parents presented with their child if they have a suspected respiratory infection (disease
samples). Frequency and severity of respiratory infections were measured accordingly.
NPAs were then screened for viral and bacterial pathogens using rtPCR and 16s rRNA
amplicon sequencing with Illumina MiSeq (San Diego, US), respectively [26]. These NPAs
had previously classified by Teo et al [26, 28], based on clustering of bacterial composition,
into microbiome profile groups (MPGs) that were associated with healthy respiratory states
(health-associated MPGs, e.g. Alloiococcus-, Staphylococcus- or Corynebacterium-dominated)
or infectious respiratory states (infection-associated MPGs, e.g. Moraxella-, Haemophilus-,
or Streptococcus-dominated).

Other collected data included: sex, height and weight; paternal and maternal history
of atopic disease; blood levels of basophils, plasmacytoid and myeloid dendritic cells
as measured by fluorescence-assisted cell sorting (FACS); and levels of vitamin D (25-
hydroxycholecalciferol, 25(OH)D) [58].

3.4.3 Identification of latent clusters and selection of clustering features

We adopted an exploratory approach to cluster analysis, whereby we attempted to interro-
gate as much of the existing dataset as possible, identifying latent clusters that arise from
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the underlying data structure of CAS. We then assessed how these latent clusters correlate
with risk of asthma or other markers of pathophysiology, such as degree of allergic sen-
sitisation. All data processing and analysis was done in R v3.3.1 (RRID:SCR_001905). A
graphical overview of the analytic process is displayed in Supplementary Figure B.3.

To identify latent clusters, we applied non-parametric expectation-maximisation
(“npEM”) mixture modelling to our discovery cohort CAS, using functions from the
R package “mixtools” [60]. This method assumes that frequency distributions of each
cluster can be represented by non-parametric density estimates learned from the data in
an iterative process. npEM was used because: 1) it was plausible to consider a population
as a mixture of subpopulations each with their own distributions; 2) it had advantages
over other unsupervised approaches [61] – for example, with LCA, continuous variables
cannot be handled appropriately; with hierarchical clustering, poor decisions made early
in the classifying process are not easily amended; 3) many variables were categorical
or non-Gaussian, so theoretically a non-parametric approach should be superior to a
Gaussian mixture model or k-means approach; and 4) inherent within mixture models is
an intuitive method for supervised classification of other datasets into similar clusters.

We used a largely non-selective approach to choosing features for cluster analysis, in
that we attempted to retain as many CAS individuals and variables as possible. However,
we did enforce certain quality-control measures such as excluding variables (“features”)
that had missing data for >20% subjects (442 variables removed), and subjects with missing
data for >30% of the remaining variables (39 subjects removed). Also excluded were fea-
tures pertaining to our primary outcomes of interest: incidence of parent-reported wheeze,
physician-diagnosed asthma and hayfever at all timepoints. We specifically excluded
these from feature selection so we could determine how subsequent clusters differ in
these outcomes, even when clustering was not explicitly driven by them. On the other
hand, eczema was not excluded because of evidence that infantile eczema may itself
influence the risk for subsequent sensitisation and asthma [62]. Frequency of wheeze in
the context of respiratory infection was also included, as it was a symptomatic marker
of infection severity. Variable reduction resulted in M = 174 variables remaining out
of an original 659. The complete list of variables included as clustering features is pro-
vided inSupplementary Table B.1, and importantly covers multiple domains including
demographic (family history of atopy, household size), clinical (incidence of childhood
eczema), immunological (IgE, IgG, IgG4, SPT) and microbiological (respiratory infections,
viral pathogens associated with infection) features. By virtue of study design and quality
control measures, many of the clustering features were related to immunological function
or respiratory infection in the first three years of life.

Highly-skewed features, such as antibody and cytokine levels, were subjected to loga-
rithmic (base 10) transformation. We also applied limited thresholding to some variables
(cytokine responses, antibody assays), based on best practice for the reported limit-of-
detection (LOD) of the measuring devices. The LOD for IgE was 0.03 kU/L; for IgG4,
0.0003 µg/L; for IgG, 0.4 mg/L. For these variables, we assigned any values below the
LOD to half the LOD (i.e. 0.015 kU/L, 0.00015 µg/L, and 0.2 mg/L, respectively). For
stimulated cytokine expression above unstimulated control, any zero or negative val-
ues (i.e. unstimulated control had equal, or greater, expression than stimulated), were
converted to 0.000001 units or 0.01pg/ml for mRNA and protein variables, respectively.
Positional standardisation scaling was then applied across all variables, to equally weight
the contributions of each feature to the mixture model. This involved replacing each value
xij for individual i of feature j, by:

xij −med(xj)

max(xj)−min(xj)
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where functions med, max and min refer to the median, maximum, and minimum for the
complete-case dataset for feature j, respectively.

3.4.4 Cluster analysis using non-parametric mixture modelling

The processed and scaled CAS dataset was further split into those subjects with no
missingness in the remaining variables (“complete-case”, 186 subjects, 174 variables);
versus those who had limited missingness of <30% variables (“low-missingness”, 36
subjects, 174 variables). Cluster analysis was performed initially in the complete-case CAS
subset to generate an npEM model.

The mathematical theory underpinning npEM has already been described extensively
in other sources [63]. In brief, it involves three steps: 1) an expectation or E-step, which
calculates the posterior probability of membership in cluster k, given the observed dataset,
estimated mixing proportions λk, and probability distribution for k; 2) a maximisation
or M-step, which calculates the mixing proportions λk from the cluster memberships
determined above; 3) a non-parametric kernel density estimation step, which calculates
the probability distribution based on a kernel density function for each cluster k and
clustering feature j. These steps were then iterated until the model converged to a point
where log-likelihood values were maximised.

As with any EM algorithm, an initial state must first be set prior to commencing
the iterative process. To do this, we used a constant seed state (“set.seed(1)”) to allow
reproducibility of results. Based on these pseudo-random centroids for a set number of
clusters L, the initial state was then determined by k-means clustering as in Benaglia
et al [63]. The other options in npEM were set to defaults. These included the use of
non-stochastic (deterministic) as opposed to a stochastic method; the use of a standard
normal density function as the kernel function; and the use of default constant bandwidths
for estimating kernel densities [63].

The ideal number of clusters L was determined by two methods. Firstly, we performed
hierarchical clustering on the complete-case dataset, and scrutinised the dendrogram as
well as a scree plot for an optimal cut-off using the “knee method” [61]. We observed that
this occurred at around L = 3 or 4. Secondly, we repeated npEM clustering for values of
L = 1, 2, ..., 20, and calculated the Bayesian information criterion (BIC) for each of these,
using the formula:

BIC = −2 log(P̂) + ν log(N)

where P̂ is the maximum likelihood, ν = L × M + (L − 1), and L, M, N are total
number of clusters, clustering features, and individuals respectively. The optimal number
of clusters was again determined to be around L = 3 or 4, based on minimum BIC
observed. For the sake of parsimony, we set the number of clusters to three.

3.4.5 Classification of test datasets using mixture model densities

The density functions generated by the resultant npEM model were then used to classify
as many subjects of the low-missingness subset as possible. This method relied on the
assumption that distributions observed in the “training” (complete-case) dataset were
representative of distributions that existed in “test” (low-missingness or external) datasets.

Classification was performed as follows: consider individual i of N; clustering feature
or coordinate j of M; and component or cluster k of L. For each individual i belonging to
known cluster k = K, let the kernel density function for coordinate j be f jK(xij). We now
assume that the coordinates j were independent of each other. Although this was not truly
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the case – for instance, weak correlation exists between IgE and IgG4 of different allergen
specificities in the CAS dataset [57] – we believed the assumption was justified given our
theory-naïve and exploratory approach. With this assumption, the joint distribution for
individual i in cluster K should be the product of density functions for all j given K. and
therefore the probability of individual with value xij belonging to cluster K was:

P(k = K|xij) =
λK ∏M

j=1 f jK(xij)

∑L
k=1 λk ∏M

j=1 f jk(xij)

In addition to this, we made two other assumptions: 1) if xij was missing, then the
density was assumed to be one, or f jK(xij) = 1 ; 2) else, if xij < min(xj), the minimum
value in feature j for which there was a non-zero density value, then the density was equal
to that of the minimum value, i.e. f jK(xij) = f jK(min(xj)). Likewise, if xij > max(xj)),
then f jK(xij) = f jK(max(xj)).

Individuals with membership probability greater than 90% for cluster K were classified
into K . Using this method, an additional 31 individuals from 36 were successfully classi-
fied into one of three clusters, for a total combined dataset of 217 classified individuals in
CAS.

Finally, we formally defined each CAS cluster using the composite of complete-case
and low-missingness datasets, and described each cluster in terms of key characteristics
and significant cluster-specific predictors for age-five wheeze. Importantly, variables that
were initially excluded from feature selection were treated as subsequent outcomes for
post-hoc comparison of clusters.

3.4.6 Replication cohorts

The study designs and measurements for the two replication cohorts – the Manchester
Asthma and Allergy Study (MAAS) (N = 1085) from Manchester, UK, and the Childhood
Origins of Asthma Study (COAST) (N = 289) from Wisconsin, USA – have been described
elsewhere [19, 29, 30, 64]. COAST, like CAS, was comprised of high-risk individuals with
a known family history of asthma or allergy; while MAAS included individuals without
family history.

In terms of matching variables for replication, all cohorts had measurements that
covered the three major “domains” of asthma pathogenesis: respiratory infection, allergen
sensitisation, and clinical or demographic background. COAST had a comprehensive
collection of respiratory infection and IgE-type measurements, but no IgG4 measurements.
MAAS had multiple measurements of IgE and SPT-type variables. Following consultation
with investigators from all three cohorts, clustering features were matched based on prox-
imity of timepoint and phenotype. Respiratory infection phenotypes (ARI, LRI, URI, fLRI,
wLRI) were generated in COAST and MAAS using recorded data, to approximate CAS
infection phenotypes as closely as possible. Specifically, LRI was defined as respiratory
infection with evidence of lower respiratory tract involvement in the form of chest sounds
(wheeze, rattle, whistle), or increased respiratory effort (retractions, tachypnea, cyanosis);
URI was defined as a cold-like infection limited to the upper respiratory tract, without
signs of LRI. IgE and IgG4 assays for MAAS and COAST were performed using Immuno-
CAP and UniCAP, respectively. Both replication cohorts recorded basic demographic
data, and exposures to pets, childcare, and tobacco smoke. The complete list of clustering
features and the matching scheme across cohorts is provided in Supplementary Table B.1.

The npEM clusters were described and validated in MAAS and COAST. This replica-
tion was performed by applying the density function-derived classifier used previously
for the low-missingness CAS subjects. Because these external cohorts did not necessarily



3.4. Methods 67

share the same clustering features or variables as CAS ( Supplementary Table B.1), we
assumed that the respective densities for these variables were f jK(xij) = 1 for the jth fea-
ture and Kth cluster. In doing so, this was effectively the same as using a model where the
missing features were excluded, and only those features common to both CAS and MAAS
(or COAST) were used; or equivalently, where we assumed that each member of MAAS
or COAST was missing values in those particular features. Because these “CAS-derived”
npEM models were non-identical to the original npEM models in CAS, we tested whether
“MAAS-like” and “COAST-like” algorithms (CAS-derived model as applied to MAAS
or COAST, respectively) generated similar clusters to the original CAS clusters, when
applied back onto CAS (Results, Section 3.2).

3.4.7 Cluster validity and stability

Internal validation of the clusters in the complete-case CAS dataset was performed by use
of silhouette widths. Briefly, we calculated the silhouette widths for each cluster as per
Rousseeuw et al [65]. For an individual, the closer the silhouette width is to one, the more
appropriate the cluster membership; while the closer it is to negative one, the more likely
it has been misclassified.

Cluster stability was assessed by performing leave-one-out (LOO) analysis – that is,
we applied the npEM algorithm to a subset of the complete-case dataset – an N − 1 by
M dataset (N = 186, M = 174) for a total of N times, leaving out an individual each
time. A similar process was repeated M times on an N by M− 1 dataset, leaving out one
clustering feature at a time. The Jaccard indices for each iteration were then calculated
in comparison to known clusters from the original complete-case N by M dataset, and
averaged across each assigned cluster. Cluster labels for each iteration were assigned
based on whichever complete-case cluster yielded the smallest Jaccard index. This whole
process was then repeated with 10 random seeds (“set.seed(1)” through to “set.seed(10)”)
for determining the initial state for npEM. The final averaged Jaccard indices for each
cluster thus represented the mean stability of each cluster.

3.4.8 Decision tree analysis

Decision tree analysis was performed using a number of different partitioning schemes.
Classification trees with recursive partitioning were built from CAS clusters using the
R package “rpart” [66], an open-source implementation of CART. The motivation for
decision trees was to identify the variables that most strongly separated the clusters and
wheezing status, and not necessarily variables that were most predictive.

For tree outcomes (end-nodes), we investigated both cluster membership and presence
of age-five wheeze given cluster membership. That is, decision trees were generated
to identify the biological features that most strongly distinguished each npEM cluster
(“Simple Tree”), as well as npEM cluster × age-five wheeze status (“Comprehensive
Tree”).

We used two different schemes for selecting predictors on which to base the partitions:
1) include all predictors that were used as clustering features in the original npEM model;
2) include only predictors from one timepoint (variables from age 6m, 1, 2 or 3). The
motivation for the latter was that we wanted to see whether measurements taken at a
specific timepoint in early infancy could strongly distinguish between clusters. For the
former scheme, we excluded all age-five features related to wheeze (e.g. LRIs, wheezy
LRIs at age 5) as decision nodes, because of definitional overlap with our primary outcome
of interest (age-five wheeze).
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Decision trees were then pruned based on the complexity parameter that minimised
cross-validated error. Final classification into tree clusters was manually performed based
on the pruned tree, and not by automatic classification using the “predict” function for
the “rpart” tree object – this was because, for the latter, individuals who are missing key
variables were re-classified based on the next best, non-missing, surrogate variable [66].
Thus, it resulted in children being erroneously classified into a tree cluster even when they
were missing key classifier variables.

The decision tree analyses generated thresholds which were then compared with
existing thresholds for atopy (any specific IgE at age 2 ≥ 0.35 kU/L, and/or any specific
SPT at age 2 ≥ 2mm) [11] in terms of predicting disease outcomes of interest.

3.4.9 Statistical analyses

We performed statistical analyses comparing clusters in terms of multiple variables, espe-
cially those not used as clustering features. Of interest to us were the primary outcomes of
asthma diagnosis and parent-reported wheeze at each timepoint. Where appropriate, we
used t-tests, Mann-Whitney-Wilcoxon tests, ANOVAs, Kruskal-Wallis tests, chi-squared
and Fisher exact tests; and logistic and linear regression. For summary statistics, multiple
testing adjustment was performed using the Benjamini-Yekutieli (BY) method, for all
across-cluster tests (Cluster × trait); and for all comparisons between clusters (CAS1 vs. 2,
1 vs. 3, and 2 vs. 3). The BY method was chosen as it accounted for positive dependency
across the highly-correlated variables in the CAS dataset [67]. For variables that underwent
logarithmic transformation for statistical analysis, we used geometric mean to describe
central tendency.

We then determined the predictors for age-five wheeze within each cluster. Repeated-
measures ANOVAs were performed for selected predictors of age-five wheeze. For each
potential predictor, generalised linear regression models (GLMs) were generated with
and without a base set of covariates (sex, family history of asthma, BMI where available).
The pool of variables found to be statistically-significant (at least p < 0.05) in the above
analyses were further restricted, such that strongly-collinear predictors were avoided,
and at most one timepoint was considered for each predictor type. Targeted multiple
regression models were then built by selecting predictors from this constrained pool.
Stepwise backward elimination was applied, in which the predictor with the largest p-
value was eliminated at each step, until all remaining predictors have significant p < 0.05.

Using the “lrtest” function from the R package “Epidisplay” [68], likelihood ratios
were examined to check how much cluster membership or classification improved upon
prediction of age-five wheeze compared to traditional makers of atopy.
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Chapter 4

Diverging trajectories of
nasopharyngeal microbiome during
early childhood are associated with
asthma and asthma-related traits

4.1 Introduction

There is increasing evidence for the involvement of host and environmental microbiota in
the pathogenesis of asthma and childhood wheeze. The original “hygiene hypothesis”,
formulated in 1989 by Strachan [1], has been largely supplanted by a “microflora” or
“microbiota hypothesis”. This revised hypothesis suggests that the narrative is not as
simple as “over-sanitation causes allergy” – but that changes to the living environment
not related to sanitation or hygiene may also be driving changes to microbial exposure
[2–4]. There is evidence that the impact of environmental microbiota on asthma or allergy
development may be dependent on the timing of exposure, or that it may be modulated by
genetics and other exposures [3]. Furthermore, early-life exposure to respiratory viruses
and alterations to host microbiota play important roles in determining respiratory health
[5, 6]. However, it remains unclear how viral and bacterial microbiota interact, with each
other or with other features of host and environment, to elicit health or disease. There is
also emerging interest in the host microbiome, not just in terms of microbial compositions
at a fixed timepoint, but also in terms of its evolution and transformation as the host ages.
A particular gap in our knowledge is the characterisation of certain patterns of change, or
trajectories, that may influence the host towards respiratory health or disease

The host microbiome is the entire genomic content of a microbiotic sample from a
host, typically at a host-environment interface such as the skin, gut or respiratory tract.
As such, it produces large complex datasets that are challenging to process and analyse.
To address this, techniques to analyse microbiome data have evolved rapidly within the
last decade. Improvements have been made not just in sequencing technology, but also in
quality control and extrapolation of reliable information from read sequences. For instance,
Quantitative Insights Into Microbial Ecology (QIIME) is a bioinformatics platform for
processing and analysing microbiome sequence data [7]. The developers of QIIME have
recently transitioned to a new version (QIIME2) [8] that reimplements many features from
the old platform, but distinctively facilitates and streamlines the use of denoising and
quality control packages such as DADA2 [9]. DADA2 corrects for common sequencing
errors, accurately inferring sequences down to a single nucleotide, and represents a
move towards amplicon sequence variants (ASVs), which are effectively 100%-identity
OTUs [10]. This produces read data with better biological interpretability and broader
applicability across datasets compared to older “<100%” OTU-picking methods [10],
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which rely on clustering of queried sequences into OTUs based on similarity to sequences
in a reference database such as Greengenes [11]. Pipelines that call exact sequence variants
may yield biological findings that build on those already discovered with traditional OTU-
picking methods – for example, we can identify new taxa and compositional patterns, or
more accurately pinpoint existing ones, that can then be linked with a particular health or
disease state.

For this study we accessed two comprehensive birth cohorts with similar study designs
– the Childhood Asthma Study (CAS) [12] and the Childhood Origins of Asthma Study
(COAST) [13]. Both cohorts yielded nasopharyngeal samples which were subjected to
microbiome-scale analyses. One of these cohorts had already been thoroughly investigated
using the older bioinformatic pipeline [14, 15]. Given this context, the aims of this current
study were four-fold: 1) to apply a QIIME2, DADA2/ASV-based pipeline to CAS and
COAST, determine profiles of nasopharyngeal microbiome composition, and compare
between the two cohorts; 2) to build on the results of Teo et al 2018 [15] by conducting
a meta-analysis of associations between microbial and asthma-related traits, using both
CAS and COAST data; 3) to determine microbiome trajectories in CAS and COAST using
cluster analysis, and compare between cohorts; and 4) to describe how these trajectories
relate to asthma-related traits, together with other pathophysiologically-relevant factors.

4.2 Methods

4.2.1 Study design and overview of measurements

The study employed data from two birth cohorts – the Childhood Asthma Study (CAS)
(N = 263) from Perth, Western Australia [12], and the Childhood Origins of Asthma Study
(COAST) (N = 289) from Wisconsin, USA [13]. Details on recruitment and sampling
within each cohort have been described elsewhere [16, 17]; the following paragraphs
provide a focused summary, with an emphasis on microbiome-related sampling and
measurements, as well as phenotyping of respiratory infections. Table 4.1 summarises the
key differences between the two cohorts.

The CAS population was comprised of 263 children of primarily Caucasian ethnicity,
recruited from private paediatric clinics around Perth, between July 1996 and June 1998.
Children were only included if they had at least one parent with diagnosed asthma or
other allergic disease (hayfever, eczema). Each child underwent routine collection of
nasopharyngeal samples via aspirate or swab, at timepoints of 2m, 6m, 1y, then every
half-year up to age 4y. Further non-routine samples were taken during any episode of
clinician-confirmed respiratory infection up to age five, and the symptoms experienced
during these infections were recorded.

The COAST cohort consisted of 283 children mostly of Caucasian or African-American
ethnicity, recruited from Madison, Wisconsin via the University of Wisconsin Hospital
and affiliated clinics, from November 1998 to May 2000. As for CAS, all recruited children
had at least one parent with diagnosed allergic disease. Routine nasopharyngeal sampling
was performed for children in COAST at timepoints of 2m, 4m, 6m, 9m, 1y, 1.5y and 2y.
Unlike CAS, non-routine samples up to age three were collected only if the child had a
symptom score exceeding a predefined threshold of five [16]. High scores were based
primarily on symptoms and signs of severe respiratory illness — such as wheeze, chest
retraction, dyspnoea or tachypnoea, and cyanosis. Because of this, non-routine samples
in COAST were overrepresented by relatively severe infections. Some routine samples
in COAST were also collected from mildly-unwell individuals with symptom scores <5,
while in CAS all routine samples were strictly from well individuals.
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TABLE 4.1: Key differences between CAS and COAST birth cohorts

CAS COAST

Population 263 children from Perth, Western
Australia, Australia; each with at
least one parent with history of
asthma or allergic disease

283 children from Madison,
Wisconsin, USA; each with at least
one parent with history of asthma or
allergic disease

Time range of birth
dates

July1996 - June 2003 November 1998 - May 2000

Ethnicity Caucasian Caucasian (N = 246, 87%),
African-American (N = 11, 4%),
mixed or other (N = 26, 9%)

Number of samples
sequenced

3439 across first 5yrs of life 3146 across first 3yrs of life

Number of samples
after QC

3120 2926 (some episodes had multiple
samples, and some samples had
multiple extractions)

Timing of routine
(usually healthy)
samples

Routine sampling at ages 2m, 6m,
1y, 1.5, 2, 2.5, 3, 3.5, 4y; only
collected if patient was healthy at
routine follow-up

Routine sampling at ages 2m, 4m,
6m, 9m, 1y, 1.5, 2y; some routine
samples may have been
accompanied by mild infectious or
respiratory symptoms

Timing of
non-routine (sick /
infectious) samples

Non-routine sampling of any
episode of respiratory infection,
confirmed by clinician, up to age 5y

Non-routine sampling of any
episode of respiratory infection, up
to age 3y; however, most of these
were sampled only if symptom
score ≥5

Definition of
harmonised infection
phenotypes

URI: cough or rhinorrhea, without
wheeze or rattle (i.e. not LRI);
LRI: wheeze or rattle

URI: cough or rhinorrhea, but not
LRI;
LRI: wheeze or cyanosis or
retractions or tachypnea (i.e.
symptom score ≥ 5)

Viral typing Performed only on samples from
age 0 to 3y, by different laboratory
(Johnston et al for Year 1; Gern et al
for Years 2-3)

Performed for most samples

Rhinovirus subtyping Performed only in LRI samples
(Year 1) or in LRI samples that
initially tested positive for RV (Years
2-3)

Performed for most samples

Children from both cohorts also had routine medical examinations and blood sampling
performed, and numerous demographic, serological, and clinical measurements were
conducted. CAS children were followed up to maximum age 10, while the maximum age
of follow-up for COAST was 16 years. Variables common to both cohorts included: formal
asthma diagnosis, respiratory infection severity and frequency; allergen-specific IgE,
family history of allergic disease, number of older siblings, and environmental exposures
(to tobacco smoke, childcare, pets) [17]. In CAS, we measured specific IgE against cat, couch
grass, house-dust mite (Dermatophagoides pteronyssinus), mould, peanut, and ryegrass; in
COAST, IgE against cat, dog, D. pteronyssinus, D. farinae, and Alternaria were measured.
Also, specific respiratory infection phenotypes were defined in CAS and COAST such that
they were comparable to CAS: an infection was defined as lower respiratory (LRI) if there
was wheeze or rattle in CAS; or if there was wheeze, retractions, dyspnoea/tachypnoea,
or cyanosis in COAST (Table 4.1). LRIs could be wheezy (wLRI), febrile (fLRI), or severe
(wheezy or febrile, sLRI). An upper respiratory infection (URI) was defined in both cohorts
if there was cough or rhinorrhea, without any other signs of LRI.
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4.2.2 Bacterial 16S profiling of nasopharyngeal samples, and annotation of
OTUs and ASVs

We performed 16S rRNA amplicon sequencing of nasopharyngeal samples (swab or
aspirate) using Illumina MiSeq (San Diego, US). Paired reads were sequenced from the 16S
V4 subregion with 515F/806R primers. Each paired read (excluding primers and barcodes)
was ~150 base pairs (bp) in length with ~46 bp overlap with its partner [18]. We applied
the same sample-processing and sequencing protocol to both CAS and COAST samples;
however, the cohorts were sequenced and processed separately across two distinct time
periods i.e. CAS and COAST samples were not intermingled on the same sequencer. Also,
for some COAST samples, we repeated runs or amplifications if the original run was of
poor quality (with systematic, ambiguous base calls) or of very low yield.

Based on the CAS dataset, we compared results from our old pipeline using QIIME1
(v1.7) and closed-reference operational taxonomic unit (OTU) picking, with the new results
using QIIME2 (v2017.10/12) and DADA2 with amplicon sequence variant (ASV) calling.
Details of the old pipeline were described in Teo et al 2018 [15], and is summarised as
follows: reads were merged; filtered by a set of quality criteria (≤3 low-quality base pairs
(bp), ≥189 consecutive high-quality bp, no N characters); and clustered into OTUs against
Greengenes 99% 16S rRNA reference (v13_05), for which OTUs with the same 16S V4
region sequence were merged as one OTU. Read counts were corrected for OTU-specific
copy number. Reads that could not be matched to a Greengenes taxon were ignored,
and samples with <3000 taxonomy-assigned reads were excluded. OTUs from CAS were
named with the smallest Greengenes taxon at genus or above, followed by the Greengenes
identifier (e.g. Alloiococcus.OTU886735).

Both CAS and COAST samples were processed using the new pipeline, albeit sepa-
rately by cohort. Details of the new pipeline are summarised in Supplementary Figure C.1.
In QIIME2, we determined a filtering and trimming protocol (5’-end trimmed at 10 bp,
3’-end truncated at 150 bp, for both CAS and COAST samples) based on visual inspection
of average read quality by base pair length, then applied to the paired reads via DADA2.
Subsequent joined reads were around 234 bp in length (both reads sum to ~300 bp, with
46 bp overlap, and 20 bp trimmed). We then used DADA2 to generate error models from
the quality data from each run, which were then used to denoise, correct and merge
paired sequences into ASVs. Finally, we used DADA2 to remove chimeras with the default
consensus method.

Each unique ASV sequence was assigned a unique 32-digit string identifier, which
was comparable across different runs and datasets. In addition, reads were assigned
a taxonomy using a naïve Bayes classifier trained on the 16S V4 (515F/806R) region
of Greengenes 99% OTU reference (v13_08). Unlike the old OTU-based pipeline, reads
without taxonomy assignment were not excluded. No correction was performed for ASV-
specific copy number, because prediction of copy number information remains challenging
for both ASVs and OTUs, especially those without pre-assigned Greengenes taxonomy
[19]. For simplicity, each ASV was annotated with the lowest Greengenes taxon at genus
level or above, followed by a suffix of the first 4 digits of its 32-digit identifier (e.g.
Alloiococcus.dd2e). The exact FASTA sequence of each ASV was also parsed through the
NCBI database using BLAST [20] to identify likely or potential candidates at the species
level.

All data processing subsequent to the QIIME2 steps, as well as statistical analyses,
were run on R v3.5.0 unless otherwise specified. Management of microbiome data was
performed primarily with the “phyloseq” [21] and “microbiome” R packages [22]. An
additional quality control pipeline was implemented within R as described in the lower
half of Supplementary Figure C.1. For COAST extractions that came from the same
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episode or were re-runs of the same amplified library (i.e. not reamplified), the reads were
combined to give an aggregate sample per episode per individual. Further quality control
measures were implemented in R as per Teo et al 2018 [15]: for each dataset, we removed
samples with read counts less than a threshold that excluded ~80% negative controls (for
CAS, <3000 reads; for COAST, <4000 reads). Finally, we ensured that samples were only
categorised as “well” or “healthy” if they had no preceding illness episode for four weeks
prior; otherwise they were excluded from analysis.

Certain ASVs were defined as “common” using pre-existing criteria applied to OTUs
in Teo et al 2018 [15]: having mean relative abundance >0.1% across all samples; present
in >20% samples; and dominating (>50%) at least one sample. “Non-rare” ASVs were
defined as those present (with at least one read) in >1% samples. These subsets of ASVs
were used for subsequent analyses: generation of microbiome profile groups (MPGs) and
FastSpar correlation analyses, for “common”and “non-rare” respectively.

4.2.3 Comparison of CAS microbiome data generated with old versus new
pipelines

The new ASV-based pipeline (Methods, Section 4.2) was applied to the CAS dataset,
producing 3120 quality-controlled samples with read data for 23441 distinct ASVs. This
yielded more samples and fewer unique taxa than the old OTU-based formulation of the
CAS dataset (3014 samples and 28230 OTUs as per Teo et al 2018 [15]).

The overall results generated with the new pipeline remain similar to the old pipeline.
Within CAS, the common QIIME1 OTUs and QIIME2 ASVs (as defined in the previous
section) were concordant (Supplementary Table C.1), mapping to shared sequences of
~230 bp in length. Some common QIIME1 OTUs matched with multiple QIIME2 ASVs;
however, there was always one “core” ASV which comprised the majority of that OTU,
and which was also common in the QIIME2 dataset — we determined that these were anal-
ogous. Two of the 13 common ASVs in QIIME2 did not have a common analogous QIIME1
OTU (Supplementary Table C.2): these were Gemellaceae.d800 and Escherichia.d2a4. Rel-
ative abundances of common OTUs and their analogous common ASVs were roughly
similar (Supplementary Table C.1, Supplementary Figure C.2A and B).

The remainder of this paper concerns results based on the new QIIME2 pipeline (CAS
and COAST). The results from CAS QIIME1 have been described in Teo et al 2018 [15].

4.2.4 Generation of microbiome profile groups (MPGs)

The nasopharyngeal samples were clustered into microbiome profile groups (MPGs) using
the method described in Teo et al 2015 and 2018 [14, 15]. This was performed separately for
each cohort and pipeline. In brief: hierarchical clustering (complete-linkage, Bray-Curtis
dissimilarity as distance metric) was conducted using R function “hclust”, on the relative
abundance data of a reduced subset of features. This reduced feature set consisted of the
following:

1. ASVs common in either CAS or COAST cohorts. The motivation for the latter was to
generate MPGs that had better comparability between CAS and COAST.

2. Rarer ASVs that were aggregated into one of seven major genera or families (Moraxella,
Streptococcus, Haemophilus, Alloiococcus, Corynebacterium, Staphylococcus, and Moraxel-
laceae family). These consisted of all other ASVs that belonged to a particular genus
or family, but were not “common”. These were annotated with a suffix “.rare”
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3. The aggregated read count of all other rare ASVs. This was named “others.rare”,
and comprised the remaining reads such that the sum relative abundances of all
considered features was equal to one for each sample.

The number of clusters or MPGs was chosen based on maximum average silhouette
width. MPGs were named after the dominant OTU or ASV, where applicable. Cluster
validity of MPGs was measured using average silhouette values and Bray-Curtis dis-
similarity within and between MPG groups, using the “vegan” R package. Note that all
quality-controlled samples from CAS (up to and including age 4) and COAST (up to and
including age 2) were used for this analysis.

4.2.5 Virus detection

In both CAS and COAST, nasopharyngeal samples up to age three were assessed for viral
presence using reverse transcriptase polymerase chain reactions (rt-PCR). The materials
and methods for this procedure have been described in previous publications [23–25]. A
general screen was performed for common viral pathogens, including human rhinoviruses
(RV), respiratory syncytial virus (RSV), and influenza. First-year CAS samples were anal-
ysed using assays and experimental conditions [23] which differed from the method used
for second- and third-year CAS samples and all COAST samples (Respiratory MultiCode
Assay, [24]) (Table 4.1). Some samples (LRI CAS samples, non-routine COAST samples)
were further screened for RV subtypes (A,B,C) [25].

4.2.6 Correlation among ASVs

We used FastSpar [26], an efficient implementation of SparCC [27] that calculates cor-
relations in compositional data and evaluates statistical significance. Unlike traditional
methods for correlation analysis, FastSpar and SparCC corrects for biases in compositional
data that obscure true correlations and generate false ones. Further details of SparCC are
found in Friedman et al 2012 [27]. As per Teo et al 2018 [15], we calculated the correlation
among all ASVs that were sufficiently “non-rare” (present in >1% samples), using uncor-
rected ASV read counts. However, for this paper, we only present the results of significant
correlations between the common ASVs. Statistical significance was determined based on
bootstrap correlations from 1000 random permutations of the data, with significance level
taken at 0.001.

4.2.7 Diversity measures and ecological analyses

Alpha (within-sample) diversity was assessed using Shannon’s diversity index measure,
which takes into account both the number of unique ASVs and their relative abundances.
This was calculated using the in-built “diversities” function of the “microbiome” package
[22]. GEE and GLM analyses were performed associating alpha diversity with age and
illness status of sample, within each cohort (CAS, COAST).

4.2.8 Dimension reduction and clustering into microbiome trajectories

We determined clusters of individuals who shared similar patterns of changing micro-
biome (“microbiome trajectories”) during healthy (asymptomatic, “baseline”) states. For
both cohorts, we used the relative abundances of common ASVs from healthy routine
nasopharyngeal samples, across the first two years of life, to determine distinct trajectories
of change. As we had restricted ourselves to routine samples only, each subject usually
yielded one sample at each timepoint of collection; if present, multiple samples were
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averaged. The list of common ASVs was identical to that used to generate MPGs (i.e.
including genera-level, family-level, and others.rare ASV groups). We created a relative
abundance-per-timepoint matrix, with subjects as rows, and ASV × timepoint as column
variables. The 1.5y timepoint was excluded due to excessive missingness in both cohorts.
For the remaining variables with missing values, mean imputation was conducted.

Then, we performed dimension reduction on this matrix using Multiple Factor Anal-
ysis (MFA) from the R package “FactoMineR” [28]. This method is similar to principal
components analysis (PCA), except it considers user-defined groupings (e.g. timepoint of
sample collection; e.g. 2m, 4m, up to and including 2y) of ASV× timepoint variables while
determining the dimensions. A standard PCA would have treated ASV abundances within
each timepoint independently of each other, while MFA accounted for shared timepoints
when weighting each variable to generate the dimensions. From the dimensions produced
by MFA, we extracted the number of dimensions that accounted for at least 80% variance
of the original dataset, and used this as the basis for clustering into trajectories.

K-means clustering was performed on the dimension-reduced dataset. We used the
function “KMeans_rcpp” function from R package “ClusterR (100 initialisations, 100
iterations, random seed for initialisation set at 1), which allows for selection of optimal
initialisation centroids based on the best within-cluster sum-of-squares error (SSE) [29].
The number of clusters K was chosen by supervised judgement, based on: maximum
average silhouette width from multiple hierarchical clusterings (Ward, Euclidean distance
metric) with increasing K; and the results of the function “Optimal_Clusters_Kmeans”
from “ClusterR” which uses silhouette width, within-cluster SSE and Bayesian Information
Criterion (BIC) to determine best K.

4.2.9 Association analyses and meta-analyses

Basic statistical tests were used to compare MPGs and MFA+K-means trajectories — Fisher
exact tests and Chi-square tests were used for categorical variables; while Kruskal-Wallis,
t-tests and ANOVAs were used for continuous variables.

We then performed statistical analyses looking for associations between the newly-
derived MPGs and important outcomes related to asthma and childhood respiratory
health, including: healthy or ill respiratory status at the time of sample collection (i.e.
absence or presence of respiratory infection); severity and symptoms of said infection;
presence of virus during infection; measures of ecological diversity; early allergic sensitisa-
tion; and wheeze phenotype (early/transient, late, persistent). Most of these associations
were performed as generalised estimating equation (GEE) models, adjusting for each child
as subject, and gender, age and season as covariates (the latter two as repeated measures).
Each MPG was modelled independently. Similar analyses were also performed at the
ASV level for all common ASVs; for different diversity measures; and for trajectories of
changing microbiome compositions (as described by the MFA+K-means results).

Due to the compositional nature of microbiome data, we expected the GEE models
to give overestimated and biased results for analyses of relative abundance (i.e. ASV).
Therefore, further ASV-level association analyses were performed using zero-inflated
Gaussian mixture models, with the function fitZIG from the R package “metagenomeSeq”
[30] — previously performed in Teo et al 2018 with the old pipeline data [15]. This method
accounts for biases in differential analyses that result from possible undersampling, but,
unlike GEE, does not account for subjects with repeated measures across timepoints. We
only analysed those ASVs which were common (as defined previously). Furthermore,
we applied log-transformation and cumulative-sum-scaling (CSS) to ASV read counts
prior to analysis. Outcomes of interest were as described above, with special attention
given to differences between healthy or illness status at the time of sample collection.
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We also analysed for differences in microbial composition between cohorts (CAS versus
COAST), although interpretation of these results was left open, due to the possibility of
batch differences and unexplained confounders between cohorts.

For associations with respiratory health and asthma-related traits, meta-analyses
(random-effects, inverse variance weights) were performed across CAS and COAST, using
the function “metagen” from the R package “meta” [31]. Meta-analysis of correlations was
performed with Fisher’s z transformation using the function “metacor” from the same
package.

4.3 Results

4.3.1 Composition of the nasopharyneal microbiome in CAS and COAST chil-
dren

The QIIME2 pipeline was applied to the COAST dataset, producing 2922 quality-controlled
samples with 12464 ASVs. There were substantially fewer unique ASVs in COAST com-
pared to CAS (3120 samples, 23441 ASVs); this might be related to differences between
batches, experimental procedure, geography, or some other uncontrolled difference.
Nonetheless, there was significant overlap amongst the top common ASVs in either
cohort (Supplementary Table C.2). In particular, both cohorts had the same common
taxa belonging to the top six genera; these were named according to their Greengenes
annotations as: Alloioccus.dd2e, Corynebacterium.cb50, Haemophilus.bc0d, Haemophilus.f579,
Moraxella.d253, Streptococcus.4060, Staphylococcus.29eb, and Streptococcus.3575. According
to NCBI BLAST, the sequences of each taxa most closely match: Alloiococcus otitis, Corynebac-
terium pseudodiphtheriticum, subtypes of Haemophilus influenzae, Moraxella catarrhalis, Strepto-
coccus pneumoniae, numerous species of Staphylococcus, and Streptococcus mitis, respectively
(Supplementary Table C.2). Both cohorts shared the same top 3 ASVs (Moraxella.d253,
Streptococcus.4060 and Alloioccus.dd2e) (Table C.2). Relative abundance of other ASVs were
comparable across both cohorts (Supplementary Table C.2, Supplementary Figure C.2A
and B), although there were some substantial differences: Pseudomonas.0925 was common
in CAS not COAST; while Moraxellaceae.a5a0, Neisseriaceae.03f4, Streptococcus.b069, Strep-
tococcus.be1b, and Veillonella.fb81 were common in COAST not CAS. Notably, although,
Streptococcus.3575 was a common taxon in both CAS and COAST, it was substantially more
so in COAST, and it comprised its own early-life microbiome trajectory (see Section 4.3.9
later). Again, it was unclear whether these differences were due to true geographical or
population effects, or because of variation in experimental procedure and design between
the two cohorts.

4.3.2 Microbiome profile groups (MPGs) in CAS and COAST

Hierarchical clustering was performed on CAS and COAST separately, to group na-
sopharyngeal samples with similar profiles (microbiome profile groups, MPGs). This
was performed on a subset of the data, comprising the following: 18 ASVs common to
both CAS and COAST; 7 rarer ASVs belonging to a major genus or family; and a single
“others.rare” feature consisting of all remaining ASVs combined (Methods, Section 4.2).
This gave a total of 26 features for clustering into MPGs (Figure 4.1).

The MPGs derived from CAS using QIIME2 were largely consistent with those derived
using QIIME1 (compared to MPGs described in Teo et al [15]). The COAST dataset yielded
13 MPGs, one fewer than CAS as it lacked the small Streptococcus.rare ASV-dominated
MPG (Supplementary Figure C.2B, Supplementary Figure C.4B). The other MPGs were
similar between CAS and COAST (Supplementary Figure C.4B). MPGs from both cohorts
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had adequate cluster validity, with average silhouette widths in CAS and COAST of 0.44
and 0.39 respectively. The average within- and between-group Bray Curtis dissimilarities
for CAS were 0.40 and 0.88; for COAST they were 0.43 and 0.87, respectively.

MPGs were named and colour-coded according to the dominant ASV within that
cluster (Supplementary Figure C.4). All other non-dominant ASVs had zero-inflated
distributions of relative abundance, and typically contributed sparingly to the overall read
count of each MPG. There were noteworthy exceptions: in both cohorts, the Alloioccus.dd2e
MPG also contained a significant proportion of Corynebacterium.cb50 in addition to the
dominant Alloiococcus ASV.

The others.rare MPG of the QIIME2 pipeline contained a mixed assortment of other
rare ASVs, primarily taxa from Neisseria, Prevotella, Veillonella, and (for COAST) Rothia
spp.. This was most consistent with the “others” or “Mixed 1” MPG in CAS QIIME1 as
described in Teo et al 2018 [15]. However, in COAST, the others.rare MPG also consisted
of a significant proportion of Streptococcus.3575 ASV (Supplementary Figure C.4B), the
significance of which is discussed later.

Those taxa (OTUs/ASVs) and MPGs that were previously identified to be associ-
ated with respiratory illness [15] remained so with the QIIME2 pipeline. For both CAS
and COAST, a number of specific taxa were overrepresented, at both the MPG and ASV
levels, in sick samples compared to healthy samples (Supplementary Figure C.2A-B,
Figure 4.2): these were Moraxella.d253 (Moraxella.OTU4398454), Streptococcus.4060 (Strepto-
coccus.OTU1059655), Haemophilus.f579 (Haemophilus.OTU240051) and Haemophilus.bc0d
(Haemophilus.OTU956702). In both cohorts, we observed that colonization with these
illness-associated MPGs or ASVs increased with age, before plateauing from age 2y on-
wards (Supplementary Figure C.2, Figure 4.2).

4.3.3 Correlation patterns between ASVs in CAS and COAST

Correlation analysis using SparCC and FastSpar identified patterns of inter-ASV cor-
relation in CAS (Figure 4.3A) that were similar to those discovered with QIIME1 (Teo
et al [15], see Figure 4A for comparison). Patterns of correlation were also similar be-
tween CAS and COAST (Figure 4.3B). In CAS, illness-associated taxa (Moraxella.d253,
Haemophilus.f579, Haemophilus.bc0d and Streptococcus.4060) were found to congregate
together more frequently than expected (SparCC correlation coefficient Rho = 0.1 to
0.24); while health-associated taxa (Streptococcus.3575, Staphylococcus.29eb) were negatively
correlated with most of these (Rho = -0.15 to -0.39; Figure 4.3A). Similar correlations
were identified in COAST, although to a lesser degree (Rho = 0.07 to 0.25; -0.1 to -0.43
respectively; Figure 4.3B) with fewer linked ASVs and fewer significant correlations.

Corynebacterium.cb50 and Alloiococus.dd2e were closely correlated in both CAS and
COAST (Rho = 0.62 and 0.6 respectively). This was consistent with the high relative abun-
dances of both ASVs in Corynebacterium.cb50 and Alloiococus.dd2e MPGs. Paradoxically,
these two taxa were also found to be more frequently associated with illness-associated
Moraxella.d253 in both cohorts (Rho = 0.21 and 0.24 for CAS; Rho = 0.1 and 0.19 for
COAST). In CAS, this relationship was confined to the later two years of life; however this
could also be observed in COAST samples which were predominantly collected at age
<2y, albeit with weaker correlation. Specific to COAST was a positive correlation between
the health-associated taxa Staphylococcus.29eb and Streptococcus.3575 (Rho = 0.39).
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4.3.4 Associations of nasopharyngeal microbiome with respiratory illness in
CAS and COAST

To identify significant associations between MPGs and concurrent respiratory illness, we
used generalised estimating equation (GEE) models – adjusting for each child as the sub-
jects factor, and for gender, age and season as covariates (Table 4.2). These reaffirmed that
members of Moraxella, Streptococcus and Haemophilus spp. were illness-associated in both
COAST and CAS. Strikingly, the direction and magnitude of associations are consistent
across both cohorts, as validated by meta-analysis of CAS and COAST MPGs (Figure 4.4).
Of the 10 MPGs with a significant association in CAS, eight were also significantly-
associated in COAST with the same direction of effect. Similar results were achieved with
GEE models constructed at the the level of individual ASVs (Supplementary Table C.3,
Supplementary Figure C.5).

A point of difference between CAS and COAST was the association between “oth-
ers.rare MPG” and respiratory illness. In COAST there was a significant negative as-
sociation, while in CAS there was no significant association (Table 4.2, Figure 4.4). We
previously noted that Streptococcus.3575 ASV was somewhat dominant in COAST oth-
ers.rare MPG, but not in CAS others.rare MPG. On further scrutiny, we identified that
it was specifically this ASV that was negatively associated with respiratory infection in
both cohorts (Table C.3, Supplementary Figure C.5). Further analyses using zero-inflated
Gaussian models identified that the direction and degree of association between other
ASVs and respiratory health status remained similar, even after adjusting for age, season,
sex, and the two most common pathogenic ASVs as covariates (Moraxella.d253, Streptococ-
cus.4060).

4.3.5 Associations of nasopharyngeal microbiome with seasonal changes in
CAS and COAST

In both cohorts, MPG proportions and ASV relative abundances tended to follow seasonal
trends, with illness-associated taxa (particular Moraxella.d253) being more common dur-
ing the winter months in both CAS and COAST (Figure 4.5, Supplementary Figure C.6).
Specifically, Moraxella.d253 and Streptococcus.4060 colonisation were more frequent in
winter months, while Alloiococcus.dd2e was less frequent (Supplementary Table C.4A,
C). For Moraxella.d253 and Alloiococcus.dd2e, this was partly independent of the increased
propensity for respiratory infections during colder seasons, as verified in GEE models
(season ~ MPG/ASV + gender + age +/- respiratory illness | subject; Supplementary Ta-
ble C.4B, D). Within COAST, the others.rare MPG (and specifically, the Streptococcus.3575
ASV) was more prevalent during summer and autumn, and less prevalent during winter
and spring (Supplementary Table C.4).

4.3.6 Viral detection patterns in CAS and COAST

The general distribution of virus samples in COAST was similar to CAS (Supplementary
Table C.5; see also Figure S4 of Teo et al 2015 [14]). In both cohorts, rhinovirus (RV),
parainfluenza virus and respiratory syncytial virus (RSV) were the most common viruses
found in the nasopharyngeal samples. Among rhinovirus (RV) subtypes, RV-A and RV-C
were equally common, while RV-B was rare. As expected, viruses of all varieties were
more frequently found in unwell samples than healthy samples, (Supplementary Fig-
ure C.7, Supplementary Table C.6), although there was still a substantial number of cases
of asymptomatic viral colonisation. In particular, we observed that the magnitude of
association between RSV and respiratory illness appeared stronger in COAST compared
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to CAS. There was otherwise no significant change to the frequency of virus detection as
each child aged.

In both CAS and COAST, we observed seasonal patterns to virus detections across all
samples (healthy or otherwise). The detection of RSV and influenza was more frequent in
winter, while rhinovirus (RV) detection was more frequent in autumn (Supplementary
Figure C.7A-B). Both of these trends were typically associated with illness samples in both
cohorts. However, when we looked at proportion of samples, we see that RV was dispro-
portionately more frequent in summer and autumn, but less frequent in winter compared
to the other viruses (Supplementary Figure C.7C-D, Supplementary Table C.7).

For many nasopharyngeal samples, there was often more than one virus detected.
However, in both cohorts, RV and RSV were less frequently found together compared
to with other viruses (Spearman correlation, Rho = -0.14 and -0.18 for CAS and COAST
respectively, p < 0.001 for both, Supplementary Figure C.8). This may be partially inde-
pendent of the seasonal patterns observed above, as these correlations remained significant
when considering only the samples from winter (Rho = -0.20 and -0.18 for CAS and COAST
respectively, p < 0.001 for both).

Generally, illness-associated taxa (Moraxella.d253, Streptococcus.4060, Haemophilus spp.)
more frequently co-occurred with viral colonization, and health-associated taxa (Alloio-
coccus, Corynebacterium) less frequently so (Supplementary Table C.8). This observation
was partially independent of co-occurrence with illness episodes or colder seasons, es-
pecially for the co-association of viruses with Streptococcus.4060, as well as the negative
co-association with Alloiococcus.dd2e. In particular, Streptococcus.4060 was significantly
co-associated with RSV and RV, even after adjusting for season and illness status (GEE
model; p < 0.05).

4.3.7 Combined association analysis for respiratory illness with multiple pre-
dictors and covariates

In each cohort, we generated GEE models with multiple variables (MPG, presence of virus
in sample, season of collection, gender, sex, age) predicting for respiratory illness as the
outcome. To keep the analysis well-powered, we combined the presence of any illness-
associated MPGs (Moraxella.d253, Streptococcus.4060, Haemophilus.f579, Haemophilus.bc0d,
Haemophilus.rare) into one group, and any health-associated MPGs (Staphylococcus.29eb,
Corynebacterium.cb50, Alloiococcus.dd2e) into another, as previously determined in Ta-
ble 4.2. We also grouped the presence of any virus, irrespective of virus strain, into one
group. By doing this, we found that colonisation with illness-associated MPGs, winter
season, and presence of viruses all semi-independently contributed to risk of respiratory
disease, even though they often co-occurred together (Table 4.3).

4.3.8 Trends in MPGs and ASVs before and after respiratory infections

There was some evidence that certain changes in the nasopharyngeal microbiome – specif-
ically, a subtle increase in Moraxella.d253 MPG and ASV – preceded symptoms of respira-
tory illness. We previously observed that in CAS QIIME1, there was a prodromic increase
in both MPG proportion and ASV relative abundance of Moraxella.d253, up to two weeks
before any LRI (see Figure 5C of Teo et al 2018 [15]). We repeated this analysis in CAS
QIIME2, and found similar results for the two-week period preceding either LRI or ARI
(any URI or LRI) (ARI results shown in Supplementary Figure C.9A). There was also a
mild elevation of Moraxella.d253 in healthy samples up to 1-2 months after the original
illness event.
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TABLE 4.3: Results of GEE model associating respiratory illness with
presence of virus, illness- or health-associated MPG, incorporating in-

teraction effects.

95% CI = 95% confidence interval; MPG = Microbiome profile group; OR = Odds ratio. The model for
analysis was a generalized estimating equation (GEE), of: respiratory illness ~ any illness-associated MPG
× any health-associated MPG × any virus × winter season + age (in years, not days) + sex | subject.
Statistically-significant associations are bolded.

Variable CAS COAST

OR (95% CI) p-value OR (95% CI) p-value

Any illness-associated MPG 7 (4.3-12) 1.20E-14 14 (8.5-22) 6.00E-27
Any health-associated MPG 0.45 (0.25-0.8) 0.0065 1 (0.58-1.8) 0.94
Any virus 2.6 (1.4-5) 0.0029 2.8 (1.3-6.2) 0.01
Season = Winter 3.1 (1.9-5) 2.60E-06 3.7 (2.1-6.3) 2.80E-06
Gender = Male 1.2 (0.97-1.5) 0.085 1.1 (0.9-1.3) 0.38
Virus × illness MPG 1.5 (0.72-3.1) 0.28 0.62 (0.32-1.2) 0.15
Virus × health MPG 1.2 (0.49-2.9) 0.68 0.52 (0.2-1.3) 0.18
Virus × Season 0.99 (0.39-2.5) 0.98 0.52 (0.17-1.6) 0.26
Health MPG × Season 0.99 (0.53-1.8) 0.96 0.93 (0.5-1.7) 0.83
Season × illness MPG 0.46 (0.21-1) 0.057 0.91 (0.35-2.3) 0.84
Virus × protective MPG ×
Season

0.29 (0.076-1.1) 0.072 2.9 (0.72-12) 0.13

Virus × risk MPG × Season 1.3 (0.43-3.9) 0.64 0.92 (0.29-2.9) 0.88

We performed the same type of analysis in COAST, but did not replicate these results
(Supplementary Figure C.9B). We note here that the general prevalence of Moraxella.d253
was lower in COAST compared to CAS (mean relative abundance 25% in COAST vs.
31% in CAS, Kruskal p = 3.7× 10−7, GLM p = 2.4× 10−9 adjusting for age and illness
status). The COAST samples only covered the first two years of life, wile Moraxella.d253
was observed to remain at high abundance for CAS samples collected during the later
years (age 3 to 5). It was noted that, in COAST, the relative abundance of Moraxella.d253
was extremely elevated for those baseline samples which were more than 12 months
after a preceding illness (Supplementary Figure C.9B). This may be explained by the fact
that all of these samples were exclusively taken at ages 2 years or above. This suggests
that hypothetical COAST samples beyond two years of age mirror those of CAS, with a
reservoir of high Moraxella.d253.

4.3.9 Trajectory analysis of the nasopharyngeal microbiome in CAS and COAST

For each cohort, we first used Multiple Factor Analysis (MFA, Methods, Section 4.2) to
perform dimension reduction on relative abundance data within healthy routine samples,
where mean relative abundances were given per common ASV, per timepoint of sampling
up to age 2. The dimensions were generated with equal weighting for each timepoint.
Then, we applied k-means clustering to this dimension-reduced dataset, to generate
clusters or “trajectories” of subjects whose microbiome followed similar trajectories across
time. These trajectories reflected patterns of change within the “healthy” (asymptomatic)
nasopharyngeal microbiome over the first two years of life. Note that routine samples
taken at age 1.5 were excluded from both cohorts due to low sampled number and high
missingness.

Both cohorts generated four trajectories, and similar patterns could be observed across
both cohorts (Supplementary Figure C.10). Generally, the trajectories followed one of
four patterns (Figure 4.6):

• “Trajectory A”, which featured early dominance of Alloiococcus.dd2e and Corynebac-
terium.cb50 ASVs that waned with time.
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• “Trajectory B”, which featured persistent moderate-high abundance of Moraxella.d253
ASV.

• “Trajectory C”, which featured very early domination of Staphylococcus.29eb ASV
during the first two to six months of life.

• “Trajectory D”, which was found only in COAST. This featured early-life domination
of Streptococcus.3575 and other Streptococcus ASVs, before returning to a Trajectory
A/B-like pattern from age 1 onwards.

Of the four trajectories in CAS, two shared similar patterns and were hence considered
subtypes of one Trajectory (C). In Trajectory C.1, Staphylococcus.29eb ASV was dominant
for only the first 2 months, while in Trajectory C.2 it remained dominant up to the age of
one year. Trajectory D was not observed in CAS.

Interestingly, the patterns observed in the trajectories, which were originally de-
rived from routine healthy samples, appeared to persist in illness samples (URI, LRI;
Supplementary Figure C.11). Illness-associated taxa (Moraxella.d253, Streptococcus.4060,
Haemophilus ASVs) were higher in the illness samples compared to the healthy samples;
however, the key identifying characteristic of each trajectory was preserved in the ill-
ness samples: for example, illness samples from Trajectory C individuals continued to
contain high Staphylococcus.29eb at 2mths, even though Staphylococcus.29eb was negatively-
associated with illness status (see previous Results).

4.3.10 Associations with later wheeze, asthma and related disease traits

We had previously found in CAS that colonization with illness-associated MPGs during
the first 2 years of life was associated with increased risk of persistent wheeze, but only
in those who were also early-sensitised [15]. Conversely, in individuals who were not
early-sensitised, illness-associated MPGs was associated with increased transient wheeze
(wheezing in the first 3 years of life, but not later). We repeated these analyses in CAS using
the QIIME2-based pipeline, and confirmed these results (Supplementary Table C.9A).
However, these findings were not replicated in COAST (Supplementary Table C.9B). We
used the same criterion across all available IgE assays in determining early-life sensitisation
(any specific IgE > 0.35kU/L at ages up to 2 years of age; Methods). Note however that
only aeroallergen antibody assays were measured in COAST, whereas CAS also included
food allergens; and the proportion of aeroallergen-sensitised individuals by age two in
COAST was 23%, compared to 55% of individuals allergen-sensitised in CAS.

Besides analysing MPGs at early timepoints, we were also interested in assessing
whether patterns of change in the nasopharyngeal microbiome, over the course of the first
three years of life, were associated with respiratory health and asthma-related outcomes.
The modelling of the microbiome as a transient, constantly-evolving entity rather than
a static one may yield further insights. In COAST, we found that the early Staphylococ-
cus(.29eb)-dominated trajectory (Traj. C) was associated with increased risk of later asthma
(GLM, p = 0.034 and 0.0085 for asthma at age 6 and 13 respectively). This association
was mostly independent of high-risk npEM cluster but not of early sensitisation status
(Table 4.4B). In CAS: whether by assessing Traj. C1 and C2 separately or by combining
them into one group, there was no relationship between any one of these and wheeze or
asthma diagnosis at age five or ten (GLM, p = 0.93 and 0.94 for wheeze at age 5 and 10
respectively; see also Table 4.4A — results shown for combined Traj. C1+2 phenotype).
Even when we specifically investigated the average proportion of Staphylococcus.29eb
MPG amongst CAS samples up to age 6 months, we did not identify any significant asso-
ciations with later wheeze outcomes (GLM models; p = 0.39 for wheeze at age 5; p = 0.77
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for wheeze at age 10). None of the other trajectories had any significant relationship with
risk of later asthma in either cohort.

We explored possible confounders for the association between early-life Staphylococcal
colonisation and disease in COAST. Here, we observed that there was a positive association
between membership in Traj.C and allergic sensitisation by age two (41% sensitised in
Traj.C vs. 21% in other trajectories; Chi-square test, p = 0.04). This explained the loss
of association between Traj.C and asthma when accounting for sensitisation in COAST.
Notably, there was no association between Traj.C and sensitisation in CAS (p = 0.99 for Traj.
C1 or C2). In both CAS and COAST, there were no clear associations between microbiome
trajectory and the npEM clusters (immunorespiratory trajectories) from Chapter 3 (Chi-
squared tests, p = 0.074 and 0.91 for CAS and COAST respectively).

In COAST, there was no difference between vaginal delivery versus caesarean section
in terms of subsequent microbiome trajectory (Chi-square, p = 0.87). Traj. C was also not
related to virus detection among samples in the first six months of life, nor to frequency
of respiratory infections (GEE models of illness ~ trajectory + virus + age; p > 0.05 all).
However, Traj. C more frequently featured children who were born in winter months
(December to February in COAST) as opposed to other months (46% in winter vs. 25% in
other seasons; Chi-square p = 0.036).

4.3.11 Associations with microbiome alpha diversity

We described the alpha diversity of each nasopharyngeal sample in CAS and COAST
using Shannon’s diversity index. In doing so, we found that alpha diversity was lower in
infection samples than in healthy control samples (Figure 4.7). This was true in both CAS
and COAST (GEE of diversity ~illness status× age with subjects factor, p = 5.2× 10−4 and
2.4× 10−10 respectively), and was consistent with our previous observation that infection
samples tended to be overwhelmingly dominated by a single taxon or ASV — usually
a suspected respiratory pathogen (Moraxella.d253, Streptococcus.4060, Haemophilus.f579,
Haemophilus.bc0d).

We also observed that, in CAS, alpha diversity tended to dip slightly at age one,
then increase with age (Figure 4.7). In COAST, few samples were collected past age
two, and we were not able to identify any significant increase with age in the available
early-life samples. Within the first three years, alpha diversity was positively-associated
with increasing age in CAS (GEE model as above, p = 7.7× 10−7 for age association in
samples up to age three), but not in COAST (GEE model as above, p = 0.93). In addition,
alpha diversity was significantly lower in healthy samples labelled with illness-associated
MPGs (Moraxella.d253, Streptococcus.4060, Haemophilus.f579, Haemophilus.bc0d), compared
to other MPGs (GEE p = 2.1× 10−39 in CAS; p = 7.4× 10−30 in COAST).

For each individual in CAS and COAST, the average Shannon index across all healthy
early-life nasopharyngeal samples (up to age two) was calculated. We observed that this
microbial diversity in early life (during periods of health) varied across microbial trajecto-
ries in a manner that was consistent with previous results — individuals in trajectories
with higher prevalence of an illness-associated MPG such as Moraxella.d253 (i.e. Traj.B)
tended to have lower alpha diversity (Kruskal p = 0.002 compared to Traj.A in CAS;
p = 0.19 in COAST with consistent trend). Interestingly, Traj.D in COAST tended to have
higher alpha diversity (Kruskal p = 7.6× 10−7 vs. Traj.A), which was consistent with
the higher relative abundance of multiple rare ASVs (Streptococcus and others) in these
samples (Figure 4.6).

We then analysed whether early-life microbial diversity in healthy samples was associ-
ated with asthma-related outcomes, dependent or independent of other factors such as
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TABLE 4.4: GLM models associating wheeze and asthma outcomes with
trajectories based on MFA/k-means of microbiome data, from routine
healthy samples within first 2 years of life, and early sensitisation status,
as represented by high-risk npEM cluster or early-life allergen sensitisa-

tion by age two; (A) in CAS, (B) in COAST.

95% CI = 95% confidence interval; MPG = Microbiome profile group; OR = Odds ratio. The model for
analysis was GLM of respiratory illness ~ microbiome trajectory × sensitisation status or NPEM cluster.
Statistically-significant associations are bolded.

A.1. Outcome ~ Traj. C × high-risk npEM cluster CAS3 in CAS

Outcome Traj. C (C1+C2) CAS3 Interaction

OR (95% CI) p-value OR (95% CI) p-value p-value

Wheeze at age 5 0.71 (0.32-1.57) 0.39 6.8 (2.0-23.8) 0.0026 0.25
Asthma at age 5 0.93 (0.36-2.40) 0.88 5.2 (1.6-17.5) 0.0070 0.48
Wheeze at age 10 1.02 (0.37-2.80) 0.97 4.7 (1.2-18.0) 0.023 0.68
Asthma at age 10 0.76 (0.25-2.36) 0.64 5.2 (1.4-20.1) 0.016 0.25

A.2. Outcome ~ Traj. C × early allergen sensitisation by age two in CAS

Outcome Traj. C (C1+C2) Sensitisation Interaction

OR (95% CI) p-value OR (95% CI) p-value p-value

Wheeze at age 5 1.3 (0.46-3.9) 0.6 1.9 (0.86-4.1) 0.11 0.39
Asthma at age 5 1.5 (0.45-5.3) 0.49 1.7 (0.66-4.3) 0.28 0.48
Wheeze at age 10 1.9 (0.44-8.7) 0.38 3.9 (1.2-13) 0.027 0.31
Asthma at age 10 1.1 (0.23-5) 0.92 2.2 (0.71-6.9) 0.17 0.96

B.1. Outcome ~ Traj. C × high-risk npEM cluster COAST3 in COAST

Outcome Traj. C COAST3 Interaction

OR (95% CI) p-value OR (95% CI) p-value p-value

Asthma at age 6 1.35 (0.43-4.19) 0.60 2.97 (1.17-7.53) 0.022 0.99
Asthma at age 8 3.35 (1.09-10.3) 0.035 3.14 (1.15-8.55) 0.025 0.99
Asthma at age 11 4.14 (1.27-13.5) 0.019 3.56 (1.32-9.61) 0.012 0.99
Asthma at age 13 4.59 (1.35-15.5) 0.014 7.86 (2.56-24.2) 0.00032 0.99

B.2. Outcome ~ Traj. C × early aeroallergen sensitisation by age two in COAST

Outcome Traj. C Sensitisation Interaction

OR (95% CI) p-value OR (95% CI) p-value p-value

Asthma at age 6 1.1 (0.28-4.1) 0.91 2.7 (1.4-5.3) 0.0039 0.077
Asthma at age 8 1.7 (0.54-5.6) 0.35 2.5 (1.3-5.1) 0.0093 0.20
Asthma at age 11 2.1 (0.57-7.5) 0.27 3.3 (1.6-6.8) 0.0016 0.26
Asthma at age 13 2 (0.55-7.3) 0.29 3 (1.4-6.3) 0.0044 0.28
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frequency of respiratory infection, prevalence of illness-associated MPGs, and npEM clus-
ter. In doing so, we found that it was not associated with later wheeze or asthma diagnosis
in either CAS or COAST, after accounting for the above covariates (GLM, p = 0.60 for
wheeze at age five in CAS; p = 0.94 for asthma diagnosis at age six in COAST). Therefore,
we did not find any evidence of microbial diversity (or lack thereof) influencing asthma
outcomes in ways that were distinct from the other known effects of pathogen colonisation,
inflammation, and allergy.

4.4 Discussion

4.4.1 General trends in nasopharyngeal microbiome in early childhood – sim-
ilarities across different populations

In our study, we observed that the infant nasopharyngeal microbiome tended to be sparse
but highly-structured: for most nasopharyngeal samples, there was one grossly-dominant
taxon (ASV) present at high abundance compared to all other taxa. Nasopharyngeal
samples could be segregated into discrete clusters (microbiome profile groups, MPGs)
each dominated by a unique taxon. The advantage to analysis of categorical variables such
as MPGs is that it is relatively less complex and better-powered than using continuous
variables with zero-inflated or otherwise uncertain distributions. Also, as each MPG
represents a general pattern of microbial composition, MPGs may allow us to more
accurately model the composite biological signal of multiple taxa. The disadvantage of
using MPGs is that biologically-relevant information may be discarded by reducing read
abundances to yes/no categories: a rare taxon may have a significant biological effect
even at low abundances. The aim of our dual approach (using both MPGs and ASVs in
analysis) was to assess which findings were consistently identified with either approach,
and therefore achieve a deeper understanding of how the microbiome contributes to
health and disease.

In early childhood, there appear to be distinct patterns of nasopharyngeal microbiota
which are similar across multiple populations. Nasopharyngeal samples from both CAS
and COAST featured specific dominant taxa that did not only belong to the same genera,
but were also represented by the same amplicon sequence variants (ASVs). When these
were annotated with taxonomic terms, both the annotations provided by the Greengenes-
based naïve Bayes classifier, and those provided by NCBI BLAST, reflected common or
known inhabitants of the nasopharynx that had previously been reported for children
in this age group [15, 32, 33]. In our study, the most common ASVs (and their best-
matching BLAST species, in parentheses) were: Alloiococcus.dd2e (A. otitis/Dolosigranulum
pigrum), Corynebacterium.cb50 (C. pseudodiphthericum), Haemophilus.bc0d (H. influenzae),
Haemophilus.f579 (H. influenzae), Moraxella.d253 (M. catarrhalis), Staphylococcus.29eb (mul-
tiple Staphylococcus species including S. aureus and S. epidermidis), Streptococcus.4060 (S.
pneumoniae), and Streptococcus.3575 (S. mitis). In turn, each of these common ASVs were
dominant in their own MPG, and analogous MPGs shared similar compositional profiles
between CAS and COAST, with a few notable exceptions. For instance, the Moraxella.d253
MPG had a similar profile of ASV relative abundances in both CAS and COAST; while the
others.rare MPG had slightly different profiles between CAS and COAST, especially with
regards to the relative abundance of Streptococcus.3575 ASV. We return to the significance
of this finding later.
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4.4.2 Advantages and limitations of analyses using ASVs derived from 16S
V4 region

Our study was among the first to derive ASVs (equivalent to 100%-identity OTUs) from
nasopharyngeal microbiome data. Most other studies that used QIIME2 or DADA2 to
extract ASVs did so in the context of the gut microbiome [34], although one other study
also used derived ASV-level data from nasopharyngeal microbiota in adults [35]. Existing
comparisons between different denoising and read-calling pipelines suggest that DADA2
tends to identify a lower number of unique taxa, but otherwise gives comparable results
in terms of compositional profiles of each sample [34, 36]. ASV-guided methods offer
a number of advantages. With older OTU-picking methods, different reference OTUs
may share the same sequence at the 16S V4 region, and hence it is difficult to decide
which of these OTUs should be used to label the query read (i.e. the OTUs are non-
resolvable or ambiguous based on 16S V4 data alone). The reverse may also be true:
because the classification is based on <100% sequence similarity, reads placed in the same
OTU may not have identical sequences. By contrast, each ASV produced by DADA2 is
recalled with high certainty after quality control, and represents a distinct sequence with a
unique identifier that is universal across all studies and analyses (in this case, all studies
involving 16S V4 region). The advantages of ASVs over traditional “x%” OTUs is that
they encompass as much of the biological variation in the data as possible, and can be
comparable across datasets even if they were derived independently [10]. The reliability
of ASVs is demonstrated by our replication of key results from QIIME1-derived OTUs
[15] using QIIME2-derived ASVs in the same cohort (CAS).

There remain some significant limitations of using ASVs derived from 16S rRNA se-
quences. One of these is inherent in the nature of 16S sequencing: certain bacterial species,
especially Staphylococcus spp., cannot be distinguished from one another based on such
data alone. We see in both this study and our previous one [15] that the representative
sequence for Staphylococcus.29eb (or the equivalent OTU929976) is shared by multiple
species of Staphylococcus. This is important as different Staphylococcal species often have
very different effects on the biology and pathophysiology of their hosts: for example, S.
aureus is both a common commensal and a pathogen in multiple infections, whereas S.
epidermidis is a common skin commensal with occasional pathogenicity in the context of
immunocompromise and medical instrumentation [37]. We cannot distinguish between
such species based on 16S rRNA alone. In addition, ASVs do not give any information
about antimicrobial resistance (e.g. methicillin-sensitive versus resistant S. aureus). Given
that genes conferring resistance (e.g. mecA) are typically located outside the 16S region,
methods to distinguish between species, subspecies and strains based on antimicrobial
susceptibility must involve alternatives to 16S sequencing. One such emerging alternative
is whole genome and metagenome sequencing. As such technologies become more promi-
nent with future research, our understanding of microbial and antimicrobial effects on
respiratory health and disease will also improve.

4.4.3 Contributions of bacteria to acute respiratory illness

Our study replicated key results from previous studies [15, 32]: that nasopharyngeal
samples collected during respiratory illness were associated with high abundances of
known pathogenic taxa (Moraxella.d253 = M. catarrhalis, Streptococcus.4060 = S. pneumoniae,
Haemophilus.bc0d/f579 = H. influenzae), while the health-associated samples were linked to
nasopharyngeal commensals (Alloiococcus.dd2e = Alloiococcus/Dolosigranulum, Corynebac-
terium.cb50 = C. pseudodiphtheriticum) and the Staphylococcus genus (Staphylococcus.29eb).
These associations accounted for sex, age and subjects as covariates. The findings were
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confirmed using both MPG and ASV-level analyses; and they were replicated across both
CAS and COAST with meta-analysis. The consistency observed between cohorts was
striking, given that the two infant populations were geographically-distant, and were
exposed to drastically different climates as well as potentially different microbial ecologies
of both host and living environments.

Furthermore, in healthy samples, the relative abundance of Moraxella.d253 increased
with age, plateauing at around age one to two. This mirrored results from Biesbroek et
al [32], where children were observed to migrate towards and remain within a Moraxella-
dominated trajectory by age 2. In our study, all MFA/k-means-defined trajectories ap-
peared to approach a Moraxella-dominated composition as children reach two years of age.
Around half of all samples or reads belonged to Moraxella.d253 MPGs or ASVs respec-
tively, while the others were distributed amongst Staphylococcus.29eb, Alloiococcus.dd2e,
Corynebacterium.cb50, and other rarer (others.rare) MPGs or ASVs. The biological signifi-
cance of this trend towards increasing Moraxella remains unclear. It may be a consequence
of microbial resilience granted by Moraxella biofilms, or persistence following Moraxella-
associated respiratory infections, although we do not see this with other pathogenic taxa.
Furthermore, the current literature reports that this trend reverses once more during
later childhood and adolescence [38]. Upon reaching adulthood, nasopharyngeal micro-
biomes tend to have reduced Moraxella and increased Dolosigranulum, Corynebacterium and
Staphylococcus [39, 40].

We did not identify any significant associations between the Moraxella-dominated
Trajectory B and asthma outcomes. Biesbroek et al did identify that individuals with high
abundance of Moraxella, Dolosigranulum and Corynebacterium were relatively protected
from consecutive respiratory infections [32]. Conversely, we found that higher early abun-
dance of illness-associated taxa (including Morxaella.d253) was associated with increased
incidence of wheeze (transient or persistent) in later childhood, but only in CAS not
COAST. Meanwhile, Alloiococcus.dd2e and Corynebacterium.cb50 were both “protective” —
or at least, associated with healthy nasopharyngeal samples but not with asthma outcomes.
We suspect that the finding in Biesboek et al was more reflective of an absence of the
other pathogenic taxa (Streptococcus, Haemophilus) in peri-illness healthy samples, and
the potential protective effect of health-associated taxa (discussed later), rather than an
actual protective effect of Moraxella. However, we noted in our study that there were
positive correlations amongst Moraxella.d253, Corynebacterium.cb50 and Alloiococcus.dd2e
(Dolosigranulum) in both CAS and COAST, and this trend was more prominent beyond the
age of two [15]. In our trajectory analyses, those subjects with samples dominated by early
Alloiococcus/Corynebacterium (Traj.A) eventually adopted microbiome profiles that also
contained significant levels of Moraxella. The intrusion of Moraxella into later samples (after
age two) may be related to the persistence of Moraxella colonisation following frequent
respiratory infections before age two, as described above. Also, as hypothesised in our
previous publication [15], the co-occurrence of Moraxella, Alloiococcus and Corynebacterium
may be facilitated in part by Moraxella-derived biofilm protecting other commensals.

Interestingly, we observed that the Streptococcus.3575 ASV was negatively associated
with respiratory illness in both CAS and COAST, with the relative abundance in COAST
being high enough to comprise a large proportion of the others.rare MPG (and in turn
drive its negative association with illness at both ASV and MPG levels). By comparing the
representative FASTA sequences, we found that this ASV was analogous to Streptococcus
OTU1004451 reported in our previous paper [15], and was most similar to the NCBI
reference genome of S. mitis. Another Streptococcus taxon (OTU509773 = Streptococcus.a3a3
ASV = S. salivarius subsp. thermophilus) was previously reported to also have a negative
association with respiratory illness across the first five years of life (Teo et al 2018, Figure
3 [15]). We note that S. mitis and salivarius are known commensals with potential but
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uncommon pathogenicity (e.g. infective endocarditis, infections in immunocompromised
individuals) [41]. On the contrary, Streptococcus.4060 ASV was positively associated with
disease, and was closely aligned with known pathogen S. pneumoniae. Hence, even within
one genus or species, there are complex relationships between microbes and human health;
the pathogenicity of a microorganism may depend on many factors, including the timing
of colonization, the immune status of the host, and the presence or absence of other
microbes.

Health-associated taxa may reflect absence of illness-associated taxa rather than actual
protective effect. However there is some evidence that commensals such as C. pseudodiph-
theriticum may inhibit pathogenic growth via competitive pressure or some other means
[42, 43]. The associations of common taxa with respiratory illness (positive or negative)
remained significant after adjusting for the abundances of prominent pathogenic ASVs
(namely Moraxella.d253, and Streptococcus.4060). We had previously shown in Teo et al
that for QIIME1 OTUs in CAS, accounting for Moraxella OTU 4398454 (equivalent to
Moraxella.d253) as a covariate altered very few of the fold changes between illness and
healthy samples for the other OTUs [15]. This suggests that the impact of individual
microbial species on respiratory health, particularly dominant ones, is independent of the
rest of the microbiome.

4.4.4 Contributions of season and viruses to acute respiratory illness

It is well-known that respiratory infections tend to occur more frequently in winter. We
reaffirmed seasonal variation in respiratory infection rates in both CAS and COAST
(Table 4.3). Furthermore, we identified that both illness-associated bacteria (MPGs, ASVs)
and viruses were more frequently found in nasopharyngeal samples collected in win-
ter (Supplementary Table C.4, Supplementary Table C.6), irrespective of whether the
samples were from healthy or illness episodes.

In both CAS and COAST, most viruses tended to be more frequent in Winter, even
amongst healthy samples. In terms of raw frequency, rhinovirus (RV) was also more
frequent in Autumn and Winter, but was disproportionately less frequent in winter
compared to many of the other viruses. The epidemiology of RV infections in COAST was
previously reported in Lee et al 2012 [44]. There it was noted that, while the patterns of
RV colonization (symptomatic or asymptomatic) tended to peak in autumn, the rate of
RV causing moderate-severe infections remained higher in winter months. Also, while
illness samples often yielded more than one viral pathogen, the two most common viral
pathogens (RV, RSV) tended to “oppose” each other, as they were less frequently found
together even after taking into account seasonality. Overall, our findings suggest that:
1) rhinovirus was the most common viral pathogen in both cohorts, and had a more
“perennial” pattern of colonization and infection than other viruses; 2) the pathogenicity of
viruses is dependent on season, with many viruses being more prevalent and virulent in
winter; and 3) there may be mild oppositional effects between viruses, especially between
the two most prevalent pathogens RV and RSV.

Finally, when we combined all three risk factors (MPG, season and virus) in a model
for prediction of respiratory illness, these three predictors were semi-independently asso-
ciated with illness status (Table 4.3). That is, while illness-associated bacterial taxa, virus
(RSV, RV) and winter season often co-occurred together, each also made independent
contributions to disease risk. We found that certain MPGs, especially Moraxella.d253 and
Streptococcus.4060, were positively associated with viral colonization (Supplementary
Table C.8). This was consistent with previous studies; Rosas-Salazar et al identified that
RSV-infected samples were dominated by Streptococcus, Moraxella, and Haemophilus OTUs
[45]. In terms of timing of events: it is possible that pre-colonisation with certain bacterial
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pathogens (e.g. Moraxella) may increase the risk of superimposed viral infection, although
we were only able to identify this in CAS not COAST (Supplementary Figure C.9). In
addition, season may contribute to disease independently of microbes, and vice versa. For
instance, it is probable that winter somehow enhances the pathogenicity of both viruses
and bacteria; cold weather tends to promote congregation of human hosts in close proxim-
ity to one another (e.g. by spending time indoors), and thereby increase transmission risk
of respiratory pathogens. However, while it is a promoter of pathogen virulence, winter
season is not a necessary condition for respiratory illness. Similar statements can be made
for the other predictors (viral or bacterial).

4.4.5 Contributions of nasopharyngeal microbiota to later asthma outcomes

The nasopharyngeal microbiome may influence risk of later asthma and wheeze, and this
may be dependent on allergic sensitisation (as represented by sensitisation test results or
npEM cluster membership [17]). In CAS, colonisation with illness-associated MPGs during
the first 2 years of life was associated with increased risk of persistent wheeze in those who
were also early-sensitised, but not in those who were not. However, this was not replicated
in COAST. The reasons for this may be related to differences in sampling; differences in
allergen measurement, exposure or sensitisation; or to actual geographical or population-
driven differences in the way allergy and microbiome interact to elicit disease. In CAS,
ryegrass pollen was an important aeroallergen for which IgE was detected, while this
was not the case for COAST. Food allergen sensitivity was also measured in CAS but not
in COAST. This may have affected the power to detect microbiome-asthma associations
stratified by sensitisation state in COAST.

In our exploration of the relationship between microbiota and disease, we hypothesised
that the microbiota may contribute in more subtle ways – for instance, it may be the shift-
ing patterns of early-life microbiota, rather than the actual micro-organisms themselves,
that are relevant for disease. Therefore, we also described trends in the nasopharyngeal
microbiome in terms of trajectories, and attempted to relate these trajectories to asthma
outcomes. To our knowledge, we are the first researchers to attempt matching disease
outcomes to subpopulations of children with similar trajectories of microbiota, rather
than to individual microbial taxa or samples at single timepoints. By using a combined
dimension-reduction/clustering method, we were able to summarise each cohort into
subsets of individuals based on these microbial trajectories. In particular, three common
patterns emerged in both CAS and COAST; one of each dominated by early Alloiococ-
cus/Corynebacterium (Traj. A), persistent Moraxella (Traj. B); and early Staphylococcus (Traj.
C). There was also one pattern (early Streptococcus.3575 or Traj. D) which was found only
in COAST. Each of these trajectories may have differential effects on later asthma risk,
although the exact relationships remain unclear at this stage.

In COAST, the Staphylococcus-dominated trajectory (Traj.C) was associated with in-
creased risk of later asthma; this was not replicated in CAS. We note that the effect of Traj.
C on asthma in COAST was not independent of allergy-mediated effects, as represented
by aeroallergen sensitisation — but it was independent of membership in the high-risk
npEM cluster (Table 4.4). We also found a weak association with season of birth (with Traj.
C children being more frequently born during the winter months). How all these elements
are mechanistically-linked remains unclear. Staphylococci, especially S. aureus, are known
to generate superantigen which have potentiating effects on T cell activation and potential
immune-mediated disease [46]. Previous studies suggest that Staphylococcus spp., as skin
commensals, may be more commonly found in neonates birthed via Caesearean as op-
posed to transvaginal deliveries [47]. We were unable to identify any association between
Traj. C and delivery method in CAS or COAST. Recent evidence suggests that there may
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be interaction with prematurity – in that preterm infants carry with them other risk factors
that also promote allergic disease, or are more susceptible to persistent and aberrant
microbiota colonisation post-Caesarean. Almqvist et al found that, while Caesareans on
their own were not a risk factor for asthma diagnosis and medication, infants born from
emergency Caesareans were at-risk [48]. Pattaroni et al (private correspondence) found that
mode of delivery substantially impacts the respiratory microbiota of preterm infants only,
and not infants born at term. At time of writing, we had yet to perform analyses looking
at prematurity as a covariate in CAS or COAST, although this may be a future avenue of
enquiry.

It is also interesting to note that while Traj. C was associated with later asthma disease,
Staphylococcus.29eb itself was a health-associated microbe – in that it was found more fre-
quently in healthy than illness samples. Similarly, Alloiococcus.dd2e, Corynebacterium.cb50,
and Streptococcus.3575 (in COAST) were previously found to be negatively-associated
with respiratory illness, while Moraxella.d253 was positively-associated; and yet Traj. A, D
and B had no bearing on asthma outcomes (protective or risk-associated). Therefore, the
contributions of microbes to respiratory infection or illness may be independent of their
contribution to later asthma risk. This is surprising, given that frequent respiratory illness
during early infancy, especially symptomatically-severe ones, are known to contribute to
wheezing disease in later childhood [14]. It is therefore possible that microbes contribute to
asthma in ways beyond simply respiratory infections – perhaps via differences in priming
of host immunity, as was alluded to previously.

It is possible that dominance of one microbe to the deficit of other microbes may ad-
versely skew the maturation of host mechanisms for immune surveillance. We examined
whether differential microbial diversity, rather than specific microbial taxa, may be inde-
pendently affecting respiratory health outcomes. We observed that diversity was overall
reduced in illness-associated nasopharyngeal samples. A dip in diversity at around age
one to two corresponded to the general increase in respiratory infections around this time
in both CAS and COAST. We also found that for each individual, the average microbial
diversity amongst all early-life samples did not associate with asthma, after accounting
for previously-identified risk factors for asthma (number of infections, illness-associated
MPGs, trajectories, npEM cluster membership). Notably, we could not distinguish the
signal of diversity from the signal of early-life respiratory infections (a known risk factor
for later wheeze). However, given the small sample sizes and limitations of our datasets,
we cannot definitively argue that diversity does not play a role.

4.4.6 Concluding statements

We applied a new bioinformatic pipeline to nasopharyngeal microbiome data collected
from two separate childhood cohorts (CAS, COAST). In doing so we generated ASV-
based results similar to those previously generated for CAS in Teo et al [15]. In particular,
some microbes were associated with respiratory illness Moraxella.d253, Haemophilus.f579,
Haemophilus.bc0d, Streptococcus.4060) while others were health-associated (Alloiococcus.dd2e
/ Dolosigranulum, Corynebacterium.cb50, Staphylococcus.29eb, Staphylococcus.3575). Further
analysis revealed that these associations were independent of viral co-colonisation or
season, and a meta-analysis revealed strikingly consistent effect sizes across both cohorts.
These microbial associations also interacted with allergic sensitisation — in that illness-
associated microbes interacted with sensitisation to confer later asthma. We separated the
children into distinct trajectories based on their evolving healthy microbiome in early life.
Some of these trajectories bore similar patterns across both cohorts, although one type
of trajectory with high early-life Streptococcus.3575 was unique to COAST. A trajectory
dominated by early-life Staphylococcus.29eb was associated with later asthma diagnosis
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in COAST, but not in CAS. This association may be related to allergen sensitisation or
seasonality of childbirth, but the exact mechanisms remain unclear. Attempting to disen-
tangle these mechanisms and associations in greater detail may be an avenue for future
research, but was currently not possible in this study due to the limiting sample sizes of
both cohorts.

For this study we used data from two independent cohorts with similar properties.
However, there were some key issues that may have limited the power of our analyses
and interpretability of our results. Both cohorts had small samples, with the observa-
tional design of COAST having fewer cases of allergen sensitisation than the selected
high-risk individuals in CAS. The tested allergens in COAST (aeroallergens) were slightly
different from CAS (which included aeroallergens, food allergens and others). Geograph-
ical and demographic differences may also account for some of the discrepancies in
findings between cohorts. Finally, differences in findings may reflect limitations in sta-
tistical power, as mentioned above. However, despite these differences, there remained
extremely remarkable similarities especially in terms of key microbe-disease associations,
and microbe-to-microbe relationships.

In conclusion, the early-life nasopharyngeal microbiota may play a role in asthma
pathogenesis, in ways that are both dependent and independent of allergic sensitisation
and respiratory infection. Some microbial associations are shared across multiple popula-
tions; these tend to reflect common or well-known patterns of microbial colonisation and
pathogenicity. In addition, microbial mediators of acute respiratory disease (e.g. infection)
may differ from mediators of chronic ones, as evidenced by the results of the trajectory
analyses. Ultimately, the relationship between human microbiota and human disease is
complex, and further research is needed before we can effectively take advantage of the
microbiota as a potential avenue for treating and managing asthma and allergy.
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timepoint of collection in CAS vs. COAST.
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FIGURE 4.7: Alpha diversity of samples (measured by Shannon Diver-
sity index) by age and illness status of samples in CAS and COAST

Note that COAST samples were only collected up to a maximum of age three. A single illness sample for
COAST was collected at age greater than three — this outlier was removed from the above plot. Blue curves
indicate curves of best fit (LOESS), and grey regions indicate 95% confidence intervals around these curves.
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Chapter 5

The link between genetics of asthma
and allergic disease, and events in
early childhood

5.1 Introduction

Asthma and allergy are medical conditions with a known heritable component: an indi-
vidual with a family history of allergy is at greater risk of having an allergic condition [1].
Using genome-wide association studies (GWAS), researchers have so far identified single
nucleotide polymorphisms (SNPs) in the genome that are significantly-associated with
asthma. Significant SNPs include those located near IL13 (5q31) [2], TSLP/WDR36 (5q22)
[3, 4], IL33 (9p24) [5], CDHR3 (7q22) [6] and ORMDL3/GSDMB (17q21) [5]. The majority of
these findings were derived from adult populations, although the latter two loci (CDHR3
and ORMDL3/GSDMB) have been identified to be relevant for childhood-onset asthma.
However, it is well-known that the origins of asthma (both childhood- and adult-onset)
likely arise in early childhood, and many studies have linked early-life phenomena –
such as sensitisation to both food [7] and aeroallergens [8], respiratory infections espe-
cially with certain viral pathogens [9], breast-feeding [10] and endotoxin exposure [11]
– to later disease. There are currently only a few studies that have explored the genetic
origins of these early-life risk factors, for instance viral bronchiolitis in early childhood
[12, 13]. The gene CDHR3 has been linked to facilitating rhinovirus-C infection [14], a
known contributor to asthma and asthma severity [15–17]. Other studies have examined
genome-wide associations with total IgE levels, finding loci such as FCER1A, in both adult
and childhood populations [18, 19]. Nonetheless, for many potential risk factors in early
childhood (such as microbial colonisation of the nasopharynx, as described in Chapter
4), it remains unclear how the genetic determinants for these are connected to the genetic
basis for asthma itself.

Also, GWAS-derived SNPs account for only a small portion of the total genetic her-
itability of these diseases, which has been described to vary from about 35% to 95%
depending on the study [1]. There remains a large proportion of “missing” or “hidden
heritability”that is unexplained by the current list of genome-wide significant SNPs —
in one study, the top 31 published associations for asthma accounted for only 2.5% of
disease heritability [20]. Possible contributors to this missing heritability include: (1) the
involvement of environment and epigenetics in modulating risk; the possibility of which
is highlighted by the recent discovery of gene-environment interactions such as those
relating to exposure to endotoxin [11] and viral pathogens [9]; (2) the overestimation of
original heritability estimates, which may instead be attributable to shared environments
especially with heritability estimates from twin studies; (3) the presence of epistasis, or
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gene-gene interactions; (4) the contribution of rare variants not accounted for with SNP-
based analyses; and (5) the fact that many SNP associations that fail the genome-wide
significance threshold (5× 10−8) may still contribute to genetic risk – the so-called “mid-
hanging fruit” described by Ober [21]. For other polygenic diseases such as cardiovascular
disease and type-2 diabetes [22, 23], the aggregate contribution of SNPs spanning the
entire genome, embodied by a genomic or polygenic risk score (GRS/PRS), may serve as
a stronger predictor for disease than a limited selection of only genome-wide significant
SNPs. It is likely that a similar phenomenon exists for asthma – however, most recent
studies incorporating asthma GRS have constructed their scores from only a select number
of genome-wide significant SNPs [24, 25], thus potentially missing out on contributions
from the remaining parts of the genome [22]. Therefore we embarked on an approach
that incorporated both non-significant and significant SNPs from previous large-scale
GWAS analyses, to calculate GRS for asthma-related traits, and then relate these to early
childhood traits that may be relevant to asthma pathogenesis.

The primary objective of this study was to use genotype data from a prospective
birth cohort — the Childhood Asthma Study (CAS) — to identify whether the genetics
of early-life childhood traits were shared or otherwise linked with genetic mediators of
asthmatic or allergic disease. Specifically, there were four aims: (1) first we performed
a scan for genome-wide significant SNPs associated with early-life traits in CAS, such
as frequency and severity of respiratory infections, and allergen-specific antibodies; (2)
we repeated these genome-wide analyses using longitudinal association models that
also incorporated the serial measurement of early-life CAS traits; (3) we then tested
whether genome-wide significant loci previously associated with asthma-related traits
(from a curated GWAS catalogue) were linked to early-life traits in CAS; and finally (4) we
calculated GRS derived from larger meta-analyses for asthma and allergy-related traits,
and explored the association between GRS and early-life traits in CAS.

5.2 Methods

5.2.1 Samples, genotyping and imputation

The Childhood Asthma Study (CAS) was a prospective birth cohort (total N=263; geno-
typed N=215) from Perth, Western Australia. Details of sampling and data collection
in CAS have been extensively described elsewhere [26, 27]. The salient details relevant
to this study are as follows: each child was followed from birth to at most age 10, with
routine medical examinations, clinical questionnaires and blood sampling at regular time-
points (age 6 weeks, 6 months, then yearly). Serological tests were performed on blood
samples for antibodies specific for common allergens, including house-dust mite (HDM)
and peanut. Skin sensitisation tests (skin prick tests, SPT) were also conducted for these
same allergens. Nasopharygneal swabs were taken during both routine check-ups and
periods of respiratory illness – these swabs were tested for viral content via viral PCR, and
bacterial content via 16S V4 region rRNA sequencing with Illumina MiSeq (San Diego, US).
Details of how microbial compositional data was derived from these samples is explained
in Teo et al and Tang et al [26, 27] (also see previous Chapter 4). Virtually all individuals
in this cohort were of Caucasian ethnicity.

Genotyping was conducted on the blood samples using an Illumina Omni 2.5 mi-
croarray (San Diego, US), to generate 2 391 739 genotyped SNPs per individual, across
22 autosomes. Pre-imputation SNP filtering was performed with the following inclusion
criteria: individual missingness < 0.01, genotype SNP missingness < 0.01, minor allele
frequency (MAF) > 0.01, and Hardy Weinberg Equilibrium (HWE) test p-value > 1× 10−6.
This produced a total of 1 395 154 SNPs for 215 individuals in CAS.
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Imputation was then performed via two methods – one for GWAS and one for GRS:

• For GWAS (single-timepoint or repeated measures), we used genotype data imputed
from 1000 Genome Phase 3 reference panels [28] using pre-phasing with SHAPEIT
v2r644 [29] and IMPUTE2 v2.3.2 [30]. Post-imputation filtering was performed with
INFO metric > 0.4 and probability threshold 0.9, returning a total of 12 171 242 SNPs.
After removal of monomorphic SNPs in CAS, the final sample size was 8 057 203
SNPs amongst 215 individuals.

• For GRS, we used data imputed by the Michigan Imputation Server [31] with Haplo-
type Reference Consortium (HRC) r1.1 as the reference panel [32]. Post-imputation
filtering removed SNPs with low imputation accuracy (R2 < 0.3), yielding 12 684 109
SNPs in total. Actual number of SNPs used in the subsequent scoring of GRS in CAS
ranged from 357 574 to 2 215 305, depending on the availability of SNPs employed for
each GRS, as described later. The reason for this change in imputation scheme was
primarily due to future plans to associate these GRS scores with RNA microarray
data of cell-stimulated gene expression from CAS — the focus of a separate study
not related to this thesis (Huang et al, to be published).

For both imputation schemes, cosmopolitan reference panels were used. All genotyp-
ing and imputation was performed in reference to the GRCh37/hg19 assembly.

5.2.2 Single-timepoint association analyses

We conducted case-control association analyses with single-timepoint early-life traits
as outcomes, using Factored Spectrally-Transformed Linear Mixed Models (FaST-LMM
v0.207) [33] for genome-wide analyses (GWAS), and PLINK v1.90 [34] for simple candidate
SNP analyses.

FaST-LMM is a method that accounts for population and familial structure using
a realized or genomic relationship matrix (RRM/GRM) in a linear mixed model. In
calculating the GRM, Listgarten et al [35] recommended excluding SNPs that were near the
target SNP to avoid “proximal contamination” – excessive deflation and loss of statistical
power due to genetic linkage. Since calculating a distinct GRM each of 8 million SNPs
was computationally-intensive, we adopted an alternate approach described by Lippert
et al [33]: GRMs were calculated from SNPs in all other autosomes bar the one hosting
the target SNP, granting a total of 22 unique GRMs, one for each autosome. Sex was a
covariate for these analyses.

Outcomes of interest in these analyses included:

• Any occurrence (binary variable) and frequency (ordinal variable) of lower respira-
tory illness (LRIs), febrile LRIs and wheezy LRIs, in each year up to age 3

• Binary variable of yearly childhood wheezing as reported by the parent, and formal
asthma diagnosis by a physician, up to age 5; as well as presence of other allergic
diseases (eczema, rhinitis);

• HDM- and peanut-specific IgE levels and HDM SPT tests measured each year, both
as binary (IgE > 0.35 kU/L or similar threshold; SPT > 2 or 3 mm depending on
age) and continuous variables (IgE in log-transformed kU/L; SPT in mm).

• Average relative abundance of certain microbial taxa (represented by amplicon se-
quence variants, or ASVs) within nasopharyngeal samples as well as proportion of
such samples dominated by such taxa (represented by microbiome profile groups,



110 Chapter 5. Genetics of asthma and early childhood events

MPGs), in each year up to age 2 (see Chapter 4); as continuous variables). Due to
power limitations, only the top six common taxa with high relative abundances
(Alloiococcus.dd23, Corynebacterium.cb50 Staphylococcus.29eb, Moraxella.d253, Strepto-
coccus.4060, Haemophilus.f579; see Chapter 4) were examined.

• Membership in a particular subgroup, as determined by mixture-model cluster
analysis of immunorespiratory features [27] (also see Chapter 3); as binary variable.

For both the single-timepoint and the subsequent longitudinal GWAS: statistical sig-
nificance was set at the genome-wide threshold of 5× 10−8, while 1× 10−5 was regarded
as non-significant but suggestive. Manhattan plots, Q-Q plots and lambda statistics were
calculated using the R packages “qqman” [36] and “GenABEL” [37]. Manhattan plots were
also generated covering 500kb on either side of a significant or suggestive locus, using the
online tool LocusZoom [38]. SNP annotation was performed semi-automatically using the
Ensembl Variant Effect Predictor (VEP) [39] and UCSC Genome Browser (Feb 2009) with
the GRCh37/hg19 assembly [40]. Only collections of SNPs (loci) with convincing peaks
of association were reported; this was defined as the observation, on visual inspection
of the Manhattan plots, that SNPs in moderate-to-high LD with the lead SNP were also
significantly- or suggestively-associated. Otherwise, significant but lone SNPs were left
unreported.

Furthermore, GWAS catalogue SNPs were chosen based on summary statistics of
previous GWAS made available on the curated NHGRI-EBI GWAS catalogue [41] as
of November 2018. Genome-wide significant SNPs (5 × 10−8 in any reported study)
were selected from published GWAS for asthma-related phenotypes, including: asthma
including childhood-onset, allergy or atopy, allergic rhinitis including seaosnal, allergic
dermatitis or eczema, food allergy (peanut, egg, milk), IgE levels, COPD (including chronic
bronchitis or emphysema), and measures of lung function (FEV1, FEV1:FVC ratios). For
SNPs that were missing and not imputed in CAS, high-LD proxies were discovered using
the R package “proxiesnps” [42], with a 1000 Genomes Phase 3 pan-European reference
panel, window size of 500 bp, and R2 threshold of 0.8. These proxies were then used as
surrogates for the missing SNPs. All SNPs were then LD-pruned using PLINK with a
window size of 50 bp and pairwise R2 threshold of 0.8. The subsequent short-list of 416
unique SNPs was then tested for associations with early-life traits, using logistic and linear
models applied in PLINK, with sex as a covariate, and multiple testing correction via false
discovery rate (FDR-BH) [43] within each trait.

We also tested whether the p-values from the catalogue SNPs were significantly non-
uniform, using a one-sample Kolmogorov-Smirnov test against a uniform distribution.
Furthermore, we investigated for enrichment of lower p-values by visually inspecting
histograms and performing Fisher exact tests for p-values lower than some appropriate
threshold (e.g. p < 0.50). With each early-life CAS trait, these analyses were performed
twice, once for all catalogue SNPs, and once for similar-trait catalogue SNPs (e.g. eczema-
only SNPs for early-life eczema in CAS).

5.2.3 Longitudinal “repeated-measures” association analyses

We also conducted longitudinal GWAS that incorporated repeated measures for a particu-
lar outcome trait across multiple timepoints. To achieve this, we used the function “rGLS”
from the R package “repeatABEL” [44], which like FaST-LMM integrates a GRM in a linear
mixed model. However, unlike FaST-LMM, rGLS also models repeated measurements
as a random effect. rGLS calculates the GRM using a method distinct from Listgarten
and Lippert, described elsewhere [44, 45]. Outcome traits for the longitudinal GWAS
were as described in the single-timepoint analyses, except similar traits across multiple
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timepoints were now incorporated into the model as a single outcome of interest, with sex
and timepoint as covariates.

5.2.4 Genomic risk scores (GRS)

Genomic risk scores were derived from publicly-available summary statistics of recent
GWAS and meta-analyses conducted for asthma and asthma-related traits. Specifically,
we constructed scores for each of the following phenotypes and studies:

• Any allergic disease, as determined by presence of asthma, hayfever or eczema, from
a meta-analysis of 12 datasets primarily of European origin, excluding 23andMe
(N = 9.7× 104 cases vs. 1.5× 105 controls); from Ferreira et al [46]. Average number
of scoring SNPs for each CAS individual was 1 625 705.

• Asthma, from a sub-study restricted to a European subpopulation (N = 1.9× 104

cases vs. 1.1× 105 controls); from Demenais et al [47]. Average number of scoring
SNPs was 357 574.

• Childhood-onset (age < 12) asthma, as well as adult-onset asthma (ages 26 to 65)
from the UK Biobank (N = 2.2× 104 childhood cases and 9.4× 103 adult cases vs.
3.2× 105 controls who were never diagnosed with either); from Pividori et al [48].
Each asthma subtype was treated independently. Average number of scoring SNPs
was 820 627 and 820 603 for childhood and adult asthma respectively.

• Allergic rhinitis and non-allergic rhinitis from a meta-analysis of 17 studies, again
restricted to those of European ancestry, and excluding 23andMe (N = 1.1× 104

allergic cases vs. 2.8× 104 controls; 2.0× 103 non-allergic cases vs. 9.6× 103 controls);
from Waage et al [49]. Here, the definition of allergy was based on questionnaire
reports, and did not necessitate formal diagnosis. Each of these rhinitis subtypes
was also treated independently. Average number of scoring SNPs was 1 461 794 and
2 215 305 for allergic and non-allergic rhinitis respectively.

• For comparison, we also derived scores for chronic obstructive airways disease or
pulmonary disease (COAD/COPD) from the UK Biobank (N = 3.4× 105 subjects in
total) [50]. Average number of scoring SNPs was 820 646.

For all meta-analyses involving 23andMe [46, 49], the summary statistics made avail-
able to us were re-calculated with 23andMe samples excluded. Also, to reduce redundancy
in contributing SNP signals, LD thinning was applied to all contributing SNPs from each
set of summary statistics prior to scoring. Criterion for LD thinning was R2 = 0.9 based
on the linkage patterns observed in the UK Biobank population [50]. In the absence of a
training set, this threshold of R2 = 0.9 was chosen as it performed well for a wide range of
other highly-polygenic traits which had been tested in UKB by our laboratory (not shown).
Then, using PLINK v1.90 [34], we calculated phenotype-specific scores for each subject
in CAS, based on their imputed genotype data (imputed with the Michigan Imputation
Server [31], as described previously). The score for each individual was then standardised
to produce a distribution of values within each phenotype with mean zero and standard
deviation one.

We then analysed for associations between these standardised phenotype-specific
scores and early-life traits. Due to correlation analysis showing moderate correlation
amongst GRS (see later Results, Section 5.3), we also constructed scores based on the
simple linear summation of all standardised GRS (“combined GRS”), as well as the first
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principal component (PC1) from a principal components analysis (PCA) of the standard-
ised GRS. We then associated these with early-life traits in CAS. As per the GWAS reported
above, these outcome traits of interest included frequency of respiratory infections, parent-
reported wheezing, diagnosis of allergic disease, IgE levels and bacterial compositions in
nasopharyngeal samples. In addition we also searched for associations with membership
in particular microbiome trajectories, as determined by MFA and k-means cluster analysis
described in Tang et al (see Chapter 4). Analytic models included generalised linear mod-
els (GLMs) for single-timepoint outcome variables , and generalised estimating equations
(GEEs) for mult-timepoint (longitudinal) outcome variables for which we wished to adjust
for timepoint. All models included sex or gender as a covariate, and the significance
threshold was set at p < 0.05 for all tests unless otherwise specified.

5.3 Results

5.3.1 GWAS for early-life childhood traits relevant to asthma

Using a linear mixed model adjusting for sex and genetic relatedness, we identified
several genome-wide significant or near-significant SNPs for a few single-timepoint
early-life traits (Table 5.1). Most of these analyses yielded acceptable lambda inflation
factors (close to 1.00). The presence of parent-reported wheeze at age one was significantly
associated with an intronic locus in the gene encoding the enzyme mannosidase endo-
alpha MANEA (le SNP rs76781147, odds ratio (OR) 1.98 for effect allele C vs. T, p =
6.72× 10−9; Figure 5.1). Meanwhile, wheeze at age four was associated with a locus at
the glutamate receptor subunit GRIN2B (lead SNP rs2268113, OR 1.28 for effect allele T
vs. C, p = 1.1× 10−8; Figure 5.2). Wheeze at age five was suggestively-associated with
a locus in DPP10 (lead SNP rs9646928, OR 1.26 for effect allele T vs. C, p = 4.5× 10−7;
Supplementary Figure D.1).

The occurrence of any wheeze during LRIs (wLRIs) in the first year of life was
suggestively-associated with variants in the dynein subunit DNAH5 (lead SNP rs7710301,
OR 1.26 for effect allele T vs. C, p = 8.6× 10−8; Supplementary Figure D.2). Similarly,
year-one febrile LRIs (fLRIs) were suggestively-associated with cullin-3 or CUL3, a key
component of E3 ubiquitin ligase (lead SNP rs113820259, OR 1.34 for effect allele T vs.
C, p = 3.6× 10−7). In the first year of life, the occurrence of any rhinovirus-C associated
LRIs was significantly linked to a variant in the 3’UTR of the Frizzled-5 receptor gene
FZD5 (lead SNP rs74471859, OR 1.76 for effect allele T vs. A, p = 1.2× 10−9; Supple-
mentary Figure D.3). The presence of year-one LRIs testing positive for rhinovirus-A was
suggestively-associated with SNPs in apolipoprotein L3 or APOL3 (lead SNP rs132651,
OR 1.37 for effect allele A vs. C, p = 8.2× 10−8; Supplementary Figure D.4).

With the possible exception of MANEA [51] and DPP10 [52], none of these loci had
been previously identified in association analyses for asthma-related traits. We noted that
the literature associations with MANEA and DPP10 were not included in the NHGRI-EBI
GWAS catalogue, and were not among the catalogue SNPs selected for further analysis
in the next section. Huang et al 2015 [51] found the association with MANEA using a
family-based integrative approach that incorporated gene expression and eQTL data;
while the association with DPP10 had been identified using positional cloning approaches
[52].

Analyses did not produce significant results for other early-life traits, including less-
frequent traits such as infections associated with specific viral pathogens at later time-
points; membership in clusters as determined by Tang et al 2018 [27]; and quantitative
traits such as IgE levels and microbial relative abundances.
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A.

B.

MANEA

FIGURE 5.1: Manhattan plots of genome-wide association scans for
parent-reported wheeze at age 1 in CAS.

(A) General Manhattan plot; red line indicates threshold for genome-wide significance (5× 10−8); blue line
indicates threshold for suggestive association (1× 10−5). (B) LocusZoom plot [38] focusing on the locus of
interest at Chromosome 6 near MANEA. LD R2 values and recombination rates given as per hg19/1000
Genomes Nov 2014 EUR reference genome.
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A.

B.

GRIN2B

FIGURE 5.2: Manhattan plots of genome-wide association scans for
parent-reported wheeze at age 4 in CAS.

(A) General Manhattan plot; red line indicates threshold for genome-wide significance (5× 10−8); blue line
indicates threshold for suggestive association (1× 10−5). (B) LocusZoom plot [38] focusing on the locus of
interest at Chromosome 12 near GRIN2B. LD R2 values and recombination rates given as per hg19/1000
Genomes Nov 2014 EUR reference genome.
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5.3.2 Association analyses of GWAS catalogue SNPs for childhood asthma-
related traits

We found that none of the GWAS catalogue SNPs or their proxies were associated with
asthma in CAS at the significance threshold adjusted for multiple comparisons (FDR-BH
threshold α = 0.05 for each trait; adjusted p-value pi.adj = pi × 416/i for the ith p-value
in ascending order). At the unadjusted threshold (p < 0.05), SNP or loci that most fre-
quently featured across multiple early-life traits included those located in genes for asthma
(ZPBP2, SMAD3, GATA3, CLEC16A), allergy (PLCL1, RERE), eczema (LCE3E/CRCT1),
COPD (CHRNA3/4/5, RAB4B) and lung function (SERPINA1) (Supplementary Table D.1).
We observed that for some SNPs, the significantly-associated early-life traits were some-
what correlated with the original phenotype for that SNP (Supplementary Figure D.5).
SNPs associated with lung function (e.g. rs28929474 near SERPINA1) were associated
with wheezing disease in CAS, but not with allergen-specific IgE measures. Conversely,
SNPs associated with allergy (e.g. rs4908769 near RERE) were linked to allergen-specific
sensitization but not respiratory infections.

Compared to uniform distribution, the combined p-value distribution of GWAS cat-
alogue SNPs was significantly enriched for lower p-values in association with eczema
at 6 months of age (Kolmogorov-Smirnov p = 0.0002, comparing catalogue p-value dis-
tribution with uniform, Supplementary Figure D.6). Enrichment was not observed for
any other traits. When we performed similar analyses looking exclusively at catalogue
SNPs associated with traits similar to the one studied in CAS (i.e. eczema-associated
SNPs for early-life eczema in CAS; asthma-associated SNPs for asthma or wheeze in CAS;
and atopy/IgE-associated SNPs for HDM and peanut IgE and SPT), we did not find any
evidence for enrichment (Kolmogorov-Smirnov p > 0.05 for all comparisons).

The development of later chronic respiratory disease may be influenced by genetics
modifying one’s susceptibility to early childhood events. The adenosine (A) allele at
rs1663687 near GATA3 was associated with fewer LRIs and less wheezing in CAS; this
same allele has been shown to be protective for asthma in Demanais et al [47]. Some SNPs
associated with later-onset chronic diseases (e.g. SNPs near RAB4B for COPD [53]) were
also associated with early-life respiratory conditions (wheeze and respiratory infections
at age three). Notably, we did not find any association between rs6967330 of CDHR3,
previously implicated in the mechanism of RV-C cell invasion [14], and actual RV-C
infection in CAS. For both parent-reported wheeze and asthma diagnosis at age five, the
top catalogue SNPs that were associated at an unadjusted threshold (p < 0.05) are listed
in Supplementary Table D.2.

5.3.3 Repeated-measures GWAS for early-life childhood traits, and meta-analysis
for microbial traits

Given the small sample size of CAS and the limitations of the previous analyses, we
wished to see whether statistical power could be improved by combining phenotype
information from multiple timepoints. Using repeated-measures GWAS, we examined
the relationship between SNPs and longitudinal traits such as yearly presence of wheeze,
frequency of respiratory infections, allergen-specific IgE levels, and relative abundances or
proportion of samples with certain microbial taxa across the first three to five years of life.
Furthermore, for microbial traits, we repeated similar analyses in an another birth cohort
(COAST), and performed meta-analyses combining results from both CAS and COAST.

The top hits for repeated-measures GWAS of early-life traits in CAS are shown in
Supplementary Table D.3. We did not replicate many hits from the GWAS of single-
timepoint phenotypes, or from the catalogue SNP analyses. One previously-identified
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locus at APOL3 was suggestively associated with both occurrence of RV-A LRI at age one
year, and frequency of RV-A LRI across the first three years of life. This may be related to
respiratory infections being far more frequent in the first year of life. Other genes with
significant or suggestive loci in the repeated-measures GWAS included ZBTB20 for asthma
diagnosis from age three to five, and LINGO2 and FAM81A for wheezy LRIs in the first
three years of life. The same loci near KBTBD7 and EMCN were associated with both LRI
and wheezy LRI in the first three years of life – this is likely due to wheezy LRIs being a
subset of the overall LRI phenotype.

We performed similar longitudinal GWAS for early-life traits related to the nasopha-
ryngeal microbiome in CAS. We and others have previously reported that the microbiome
of the upper respiratory tract during early infancy is intimately related to respiratory
health later in life [26, 54]. In particular, as reported by Teo et al [26], colonization with
certain illness-associated bacteria or pathogens (Haemophilus, Moraxella, Streptococcus) was
associated with later asthma in allergen-sensitised individuals. We wanted to see whether
genetic determinants for microbial colonization and asthma are distinct or shared, and
also whether genetics and microbial exposure interact to elicit disease. Performing longi-
tudinal GWAS using repeatABEL, we identified several loci for certain traits related to the
early-life microbiome (Supplementary Table D.4). None of these overlapped with the loci
identified previously. Notably, some associations were observed for HLA-related gene loci,
such as Class I MHC molecule HLA-A for Staphylococcus.29eB, and Class II MHC molecule
HLA-DRB1 for Streptococcus.4060. A locus near IFNG-AS1 was suggestively-associated
with Alloiococcus.dd23 colonisation. We also identified associations with a couple of genes
that interact with the Ras superfamily of proteins (TBC1D22A for Alloiococcus.dd23, and
GDI2 for Streptococcus.4060).

5.3.4 Genomic risk scores (GRS) for asthma-related traits, and their relation-
ships to early-life childhood events

Finally, we generated standardised risk scores (GRS) from multiple GWAS for asthma-
and COPD-related traits. As described in the Methods, these GWAS were manually-
curated from large-scale studies and meta-analyses, and included studies for asthma
(adult/childhood), allergic disease, rhinitis (allergic/non-allergic), and COPD. We calcu-
lated scores for each individual in CAS in relation to these GWAS traits, then tested for
associations between GRS and our early-life childhood traits in CAS.

We found that many of the GRS for allergic phenotypes (presence of any allergic
disease, adult and childhood asthma, allergic rhinitis) were slightly correlated in CAS
(Figure 5.3). Interestingly, the GRS for allergic rhinitis was significantly correlated with that
for non-allergic rhinitis (Pearson correlation Rho = 0.33, p = 8.2× 10−7); we note that the
summary statistics behind the scores for allergic and non-allergic rhinitis originated from
the same study and population [49]. Also, the GRS for COPD was negatively-correlated
with that for allergic sensitisation (Rho = −0.16, p = 0.022).

We performed multiple analyses using GLM (with sex as a covariate) to associate CAS
phenotypes with GRS. Each GRS was tested independently. In doing so, we found that
among the GRS, the GRS for any allergic disease was strongly associated with early-life
allergic phenotypes, including allergic sensitisation and asthma diagnosis at both age 5 and
10 (Figure 5.4). The GRS for allergic disease was also associated with the high-risk npEM
cluster, Cluster 3 or CAS3 as described in Chapter 3 — with this high-risk cluster generally
having a higher score compared to the others (Figure 5.5A). Furthermore, allergic disease
GRS was associated with early asymptomatic colonisation of nasopharyngeal samples
with illness-associated bacteria (Haemophilus, Streptococcus and Moraxella genera) in the
first two years of life (Figure 5.5B). Meanwhile, few of the GRS for individual subtypes
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of allergic diseases were associated with the examined early-life traits. The GRS for any
particular allergic phenotype (e.g. childhood asthma, allergic rhinitis) was not significantly
associated with the actual trait in CAS; this is most likely due to limitations in statistical
power. However, adult and childhood asthma GRS were both negatively-associated with
transient wheeze. The COPD GRS was not correlated with any respiratory-infection
associated traits, and was weakly negatively-correlated with total IgE > 100 kU/L at
age two (p = 0.048). No significant associations were identified with the microbiome-
based trajectories from Chapter 4. After performing a PCA on the collection of GRS
(including non-allergic rhinitis and COPD), we found that there was no clear segregation
of individuals into discrete patterns of genetic risk (Supplementary Figure D.7), and no
clear separation between the npEM clusters discovered in Chapter 3.

We found that PC1 of the GRS PCA most closely represented an “atopic vector”,
with high loadings amongst all allergy-related GRS, but not COPD GRS (Supplementary
Figure D.8). We interpreted this PC as a dimension-reduced signal that incorporated
genetic risk for allergic disease from multiple studies. Like the allergic disease GRS of
Ferreira et al [46], the PC1 of all GRS was strongly associated with allergic sensitisation,
asthma diagnosis, and membership in the high-risk atopic npEM cluster (“Cluster 3”);
while being negatively-associated with the transient wheeze phenotype (Figure 5.4).

In addition, we repeated the above GLM analyses with membership in the high-risk
npEM cluster [27] as a covariate. In doing so, we found that many of the associations
between GRS and early-life allergic traits (Supplementary Figure D.9) were diminished
after accounting for this covariate. Conversely, the direction or effect sizes of associations
between Cluster 3 and early-life traits remained relatively unchanged when GRS was a
covariate (Supplementary Figure D.10).

Finally, we performed similar analyses using GEE models, accounting for repeated
measures of certain early-life traits (e.g. parent-reported wheeze, asthma diagnosis, early-
life respiratory infections; Figure 5.6). Again we found that the GRS for any allergic disease
was most strongly associated with early-life allergy-related traits. Interestingly, the GRS
for childhood asthma was associated with both the frequency of wLRIs (p = 0.016) and
specifically rhinovirus-associated wLRIs (p = 0.033).

5.4 Discussion

We performed analyses with data from a pediatric cohort (CAS) to assess the link between
genetics and early-life traits related to respiratory health, allergy, and asthma. From these
analyses we identified a number of loci associated both with early-life traits in CAS, and
asthma-related phenotypes in previous GWAS. However, due to the small size and limited
power of our sample, traditional genome-wide methods yielded few significant results,
even when using longitudinal methods with repeated measures. On the contrary, when we
constructed genomic risk scores from GWAS summary statistics, then applied the scoring
to CAS individuals, we were able to demonstrate that the genetic contributors to early-life
respiratory and immune health are collectively shared with asthma and allergic disease.
Although it remains unclear which genetic loci are implicated in both early-life events
and later asthma, there is evidence that part of the genetic signal for multiple allergic
conditions is associated with early-life allergic sensitisation, respiratory infection and
nasopharyngeal microbiome composition.
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GLM of early-life trait ~ GRS + sex. Presented in each tile are the odds ratio of the association with each GRS;
the heatmap fill colour represents the effect size of association (as log10(odds ratio)). Grayed tiles represent
non-significant associations. The “npEM” clusters are clusters derived from non-parametric mixture models
as in Tang et al [27]. Illness MPGs refer to those MPGs associated with respiratory illness (Moraxella.d253,
Streptococcus.4060, Haemophilus.bc0d, Haemophilus.f579), as described in the previous chapter (Chapter 4).
Trajectories (“traj.”) are clusters generated from nasopharyngeal microbiome data, also described in Chapter 4.
Combined GRS refers to simple summation of all GRS, while PC1 of all GRS refers to the first principal
component following PCA of all GRS.
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FIGURE 5.5: Graphs showing relationships between GRS for allergic dis-
ease and (A) the high-risk npEM cluster from Tang et al; and (B) presence

of illness-associated MPGs in healthy samples up to age two.

Violin plots and scatterplot of allergic disease GRS vs. specific phenotypes; for both panels, each point
represents an individual from CAS. GRS = genomic risk score for allergic disease derived from Ferreira et
al [46]. npEM clusters derived from Tang et al [27] (also Chapter 3); proportion of illness-associated MPGs
treated as a binary variable of individuals that have low (<40%) vs. high (≥40%) proportion of all healthy
samples clustered into illness-associated MPG, as reported in Chapter 4. Results of statistical analyses for
both phenotypes (using GLMs) were statistically-significant (p = 0.0075 for Cluster 3 and p = 0.031 for
illness-associated MPG, as previously reported in Figure 5.4).
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5.4.1 Some genetic associations with early-life traits were shared with known
associations for asthma

Genome-wide scans of early-life traits – such as wheezy lower respiratory infections,
rhinovirus-associated infections, and parent-reported wheeze – identified a few possible
loci of interest. Some of these (DPP10, MANEA) had previously been linked to asthma
traits, [51, 52] albeit not in studies with conventional GWAS experimental designs. Others
were novel, and may be related to pathophysiology specific to infection or to bronchial
obstruction due to inflammation. For instance, the link between DNAH5 and wheezy
LRIs may be explained by the role of dynein in providing motility to respiratory cilia,
driving the mucociliary escalator and keeping the small airways clear of obstructions
[55]. Other DNAH5 variants, particularly those causing complete loss of function, have
been implicated in primary ciliary dyskinesia (PCD), a disease similar to cystic fibrosis
with mucus plugging and recurrent chest infections [56, 57]. It is possible that partial
disruption to expression, localisation or function of DNAH5 may be a common genetic
variant that causes a mild wheezy phenotype in young infants, but without any of the
serious detrimental effects seen in PCD. With regards to the suggestive link between
APOL3 and rhinovirus-A infection: various subtypes of apolipoprotein-L have been linked
to immune functions, as well as inhibition of viral agents [58, 59]. APOL1, 2 and 3 are all
highly-expressed in the lung, suggesting roles specialised to that organ [60]. Furthermore,
it is known that some subtypes of rhinovirus-A rely on the LDL receptor for cell inva-
sion [61], thus providing another possible link between mediators of lipid metabolism
(apolipoprotein) and infection susceptibility.

Repeated-measures GWAS identified a few other new loci. A locus at ZBTB20 was
associated with asthma diagnosis in CAS: ZBTB20 has been implicated in promoting
plasma cell longevity and long-term antibody production [62]. LINGO2 was associated
with wLRIs in CAS, and elsewhere it has been linked to susceptibility for airway respon-
siveness in COPD [63]. Also associated with wLRIs in CAS was FAM81A, which had been
found to be differentially expressed both in asthma and in response to RV-A16 infection
[64]. Loci in the HLA region were associated with degree of nasopharyngeal colonisation
by certain taxa, with HLA-A for Staphylococcus.29eb and HLA-DRB1 for Streptococcus.4060.
Similar relationships between MHC genes and microbial colonisation have been iden-
tified in the context of intestinal microbiota in mouse models, with subsequent links to
altered physiological responses (IgA antibody production) and disease outcomes related
to infection (Salmonella enteritis) [65] and autoimmunity (Type 1 diabetes) [66]. It is not
improbable that similar relationships exist for nasopharyngeal microbiota and respiratory
health, although it is beyond the scope of the current study to explore these ideas further.

We observed that many of the loci associated with asthma-related and microbiome-
related traits were somehow related to proteins that interact with the Ras superfamily of
proteins (Ras, Rho, Rab, Ran, Arf). These proteins are small GTPases that modulate a broad
range of cellular and intracellular processes, including cell proliferation, movement, and
vesicular trafficking [67]. For example: TBC1D22A was associated with Alloiococcus.dd23
and encodes a GTPase-activating protein (GAP) for Rab GTPase [68]; and GDI2 encodes
a GDP dissociation inhibitor (GDI) that regulates Rab levels [69]. CUL3 was associated
with year-one febrile illnesses in the GWAS, while KBTBD7 was associated with lower
respiratory illness in the repeated-measures GWAS. Together the protein products CUL3
and KBTBD7 form part of a E3 ubiquitin ligase complex that regulates guanine nucleotide
exchange factor (GEF) TIAM1, which in turn regulates the signalling of Rho GTPase RAC1
[70]. The biological significance of these findings remain unclear, and may simply be
related to the ubiquity of Ras superfamily proteins in physiological processes.
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5.4.2 Genomic risk scores for later asthma-related traits were linked to early-
life events, suggesting a route of pathology for genetic susceptibility to
asthma

To work around the limited sample size of the CAS genetic data, we shifted our analysis
to using genomic risk scores (GRS) derived from other larger GWAS. We selected specific
GWAS that assessed phenotypes of allergic disease in large, (mostly) adult populations
of similar ethnicity, such as the UK Biobank – hence our GRS represent cumulative
genetic risk for later disease. The advantage of this method was that it leveraged genetic
information from higher-powered studies, incorporating signal from the entire genome as
well as possible epistatic effects between genes; and that it allowed us to temporally-link
early-life events in CAS to risk of later disease in adulthood.

In doing so, we found that many GRS for allergic diseases and traits were associated
with allergic sensitization and asthma diagnosis in early childhood, as expected. GRS for
specific phenotypes (e.g. childhood asthma, allergic rhinitis) may not necessarily be corre-
lated even with its own trait in CAS. This is likely due to a power limitation — the sample
sizes of the GWAS used to generate GRS for these individual disease phenotypes were
smaller than the “any allergic disease” GWAS of Ferreira et al [46]. Instead, a “composite
GRS” — whether it be the allergic disease GRS from Ferreira et al, or the first PC of all GRS
representing a condensed atopic signal — was associated with multiple early-life traits
linked to asthma and allergy. The allergic disease GRS was negatively-associated with
transient wheeze (wheezing up to age 3, but not at age 5), further reinforcing the transient
wheeze phenotype as one distinct from entrenched asthma. The GRS was positively asso-
ciated with later wheeze at ages five and ten. This was consistent with similar findings
observed by Spycher et al, where a score based on the top 45 SNPs from the GABRIEL
cohorts, applied to the ALPSAC cohort, yielded strong associations with persistent wheeze
and not with transient early wheeze [25].

The allergic disease GRS was also associated with overabundance of illness-associated
bacteria in healthy samples (Haemophilus, Streptococcus, Moraxella) – a known putative
risk factor for later asthma. With a repeated-measures GEE model, we found that the
GRS specifically for childhood asthma was associated with wLRI frequency in infancy,
especially wLRIs positive for rhinovirus. All these findings painted a consistent portrait:
that the genetic risk for asthma and allergic disease is likely acting in part through genetic
susceptibility to complications from certain environmental exposures in early life, such as
microbial colonization, respiratory infection, and contact with allergen.

Interestingly, we found a moderate correlation between GRS for allergic and non-
allergic rhinitis. This correlation may be explained by the fact that: (1) tests commonly
used to measure allergy (IgE levels, skin sensitisation tests) may produce false negatives;
and (2) a majority of so-called “non-allergic” rhinitis may actually exhibit entopy – an
allergic response due to localised IgE production in the nasal mucosa without systemic
elevation in serum IgE [71].

The combined effect of genetics and environment may be represented by clusters
discovered using non-parametric mixture models (npEM) in our previous publication
[27] (see Chapter 3). Although principal components analysis failed to show any clear
segregation between npEM clusters in terms of genetic risk for allergic disease, it was likely
that some measure of this risk was still present within the npEM clusters. For instance, we
found that the GRS for allergic disease was itself significantly-associated with membership
in the high-risk npEM cluster (“Cluster 3”); the high-risk cluster corresponded to slightly
higher allergic disease GRS. When we analysed for associations with early-life traits, with
GRS and npEM cluster membership as predictors, we found that the inclusion of npEM
cluster information diminished the effect of GRS, but not vice versa. This suggested that
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the effect of GRS on early-life traits was partially-accounted for by cluster membership.
It was likely that the npEM clusters included both polygenic and environmental signals,
as the features used to determine the clusters incorporated susceptibility to respiratory
infection and degree of allergen sensitisation [27]. Another possibility is that the npEM
clusters embody epigenetic signals which have not been examined in this study, and are
beyond our present scope.

5.5 Conclusions

Using data from a small but comprehensively-surveyed birth cohort, we examined the
possible link between the genetics of asthma and allergic disease, and events in early
childhood. In doing so, we found possible connections amongst early-life sensitization, res-
piratory infection (especially with rhinovirus), nasopharyngeal colonization with certain
microbes, and genetic risk for allergy and asthma. Although we were unable to precisely
pinpoint the genetic loci that contributed to these links, it is probable that asthma is the
consequence of many genes interacting with each other; rather than a singular culprit as
in Mendelian disease, or a small subset of genes acting in isolation. Based on analyses
with genomic risk scores, we were able to conclude that asthma is likely the result of both
polygenic and environmental factors, acting in concert to bring about early-life events,
which then promote or protect against the development of disease as the child ages.

It is possible that certain environmental exposures in early life, such as tobacco smoke,
diet, pets and other allergens, modulate the effect of genetics on disease pathology. How-
ever, it remains a challenge to integrate such information to study gene-environmental
interactions in a well-powered manner. Further investigations of environmental covari-
ates will likely require larger sample sizes, careful experimental design and specialized
analytical methods.
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Chapter 6

Conclusions

6.1 Summary of findings

The research output in this thesis can be summarised as follows:

6.1.1 Chapter 3: Mixture-model clusters of asthma susceptibility

In this chapter, we applied an unsupervised mixture-model-based method of cluster anal-
ysis, to a prospective birth cohort (CAS) with featured data relating to immunorespiratory
traits. By doing so, we found that:

• There were three groups of individuals with differential phenotypes, particularly
in terms of prevalence or risk of later asthma, as well as predictors or potential
pathophysiological drivers for asthma.

• In particular, there was a high-risk cluster (Cluster 3) with a phenotype consistent
with very early sensitisation (particularly to house dust mite and peanuts), multiple
allergen sensitisation, and persistent wheeze. This group had the greatest incidence
of asthma as well as other allergic comorbidities. This high-risk cluster was also
replicated in other cohorts (COAST and MAAS), for which the analogous clusters
shared similar properties with the Cluster 3 observed in CAS.

• A low-risk cluster (Cluster 1) was characterised by low rates of wheeze. Those who
had wheeze otherwise exhibited an early transient wheeze phenotype associated
with respiratory infections.

• Another low-risk cluster (Cluster 2) was associated with IgG4 allergen sensitisation,
with persistent wheeze being associated with both respiratory infections and IgE
sensitisation to house dust mite (HDM).

• Allergic and infective processes acted additively to contribute to respiratory wheeze
in early childhoood.

• IgE levels fluctuated with age. Therefore, to describe or define atopy and disease
risk, a method that incorporated multiple input variables such as one represented
by a mixture model may be more appropriate than a single test that relied on fixed
clinical thresholds for atopy (e.g. specific IgE).

6.1.2 Chapter 4: Nasopharyngeal microbiome and asthma

In this chapter, we analyses the nasopharyngeal microbiome from two separate cohorts
(CAS and COAST). From both healthy and illness-associated samples, we used an ASV-
based bioinformatic pipeline to process 16S rRNA sequencing data into taxon-specific
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relative abundances, which were then analysed with cluster analysis and association
analyses. In doing so, we found that:

• The nasopharyngeal microbiome in young children was highly-structured, and was
remarkably consistent between two independent populations (CAS and COAST).
In both of these cohorts, the nasopharygneal samples were dominated by taxa
from six primary genera: Alloiococcus/Dolosigranulum, Corynebacterium, Haemophilus,
Moraxella, Staphylococcus, and Streptococcus.

• In both CAS and COAST, illness-associated taxa representing the species M. catarrhalis,
S. pneumoniae, and H. influenzae, were found more frequently in illness samples, con-
firming the findings from Teo et al [1]. These taxa tended to co-occur with winter
season and colonisation with respiratory viruses. However, all three entities con-
tributed semi-independently to risk of respiratory illness. These findings were shared
between both CAS and COAST, with similar effect sizes for these associations.

• Patterns of correlation between individual bacterial taxa were also shared between
CAS and COAST, with illness-associated bacteria tending to co-occur together, and
likewise for health-associated bacteria.

• The nasopharyngeal microbiome followed distinct patterns or trajectories, each
dominated by a unique taxa from an early age. One of these trajectories (e.g. early-
life domination by Staphylococcus.29eb) was associated with later asthma, but only in
COAST. The mechanism of association may be dependent on allergic sensitisation. In
both cohorts, the healthy microbiome may be linked to later wheeze via abundance
of illness-associated bacteria interacting with early allergic sensitisation.

• Despite frequent respiratory infections being a risk factor for asthma, the contribu-
tions of microbes to respiratory infection may be distinct from their contributions to
later asthma risk.

6.1.3 Chapter 5: Genetics of asthma and early childhood events

Finally, in this research chapter, we performed a number of genome-related analyses,
including GWAS on CAS data; and GRS from larger meta-analyses being calculated in
CAS, followed by association tests between GRS and certain early-life traits in CAS. In
doing so, we found that:

• A number of loci associated with lower respiratory infections or wheeze in early
life included those previously associated with asthma traits, antibody production,
and rhinovirus infection. Some loci in the HLA region were associated with na-
sopharygneal colonisation by certain bacterial taxa (e.g. HLA-A for Staphylococ-
cus.29eb, and HLA-DRB for Streptococcus.4060) There were a number of genome-
wide associations with genes and proteins interacting with the Ras superfamily. The
significance of this remains unclear. Further research with larger sample sizes may
be needed.

• A genomic risk score (GRS) for any allergic disease was associated with multiple
early-life traits linked to asthma and allergy in CAS.

• Patterns of association with GRS suggest that genetic risk for asthma and allergic
disease is in part imposed via susceptibility to complications from certain environ-
mental exposures in early life, such as microbial colonization, respiratory infection,
and contact with allergen.
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• The genetic risk embodied in allergic disease GRS is associated with, but does
not account for all, the risk associated with the high-risk mixture-model cluster
discovered in Chapter 3.

6.2 Overall contribution to knowledge

6.2.1 Revisiting the key questions

In Chapter 1, a number of key research questions were posed for this thesis. For ease of
reference, these have been repeated below:

• Is it possible to use unsupervised clustering methods to derive clusters (presumed
endotypes) of childhood asthma and asthma susceptibility from clinicopathological
data? What do these clusters look like, and do they capture trajectories of childhood
development relevant to immune or respiratory health and disease?

• How do these immunorespiratory clusters relate to existing subgroups of asthma
susceptibility, or definitions of atopy and allergy? Do these clusters provide more
information than existing criteria for allergy?

• Do similar clusters exist across different populations? How do these compare?

• Does characterisation of nasopharyngeal microbiota using ASVs differ much from
using OTUs? Can similar findings be achieved to those of Teo et al using OTU-based
results? Does the bacterial composition of nasopharyngeal microbiota contribute
to respiratory disease dependently or independently of other risk factors such as
season and viral detection?

• Are there clusters of individuals who share similar patterns of nasopharyngeal
microbiome that evolve with time and age? Do any of these “microbial trajectories”
relate to asthma risk?

• Are these associations between nasopharyngeal microbiome and respiratory disease
shared across different populations?

• Are there any loci in the genome that are associated with early-life risk factors for
asthma (e.g. frequency of lower respiratory infections, allergen-specific IgE levels)?
if so, have any of these been replicated?

• Does incorporating the longitudinal aspect of some GWAS phenotypes (e.g. repeated
measurements) grant more biologically-relevant information and hence generate
any new findings with longitudinal GWAS?

• Does the genetic signal for allergy disease later in life, represented by genomic risk
scores (GRS), associate with early childhood traits such as allergic sensitisation, mi-
crobial colonisation, and wheezy respiratory infections? How do immunorespiratory
clusters, microbiome, and genomics interact with each other when contributing to
asthma risk?

6.2.2 Insights from this thesis

We applied an unsupervised clustering method incorporating mixture models (npEM) and
machine learning to CAS, a paediatric dataset with measurements related to immunores-
piratory health. In doing so, we generated three clusters, each with a unique risk profile
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for asthma as well as distinct pathophysiological mechanisms for each. These clusters,
particularly the high-risk one, were replicated in other cohorts (COAST, MAAS), demon-
strating a degree of universality to our findings. Overall, our mixture-model clusters were
informative of the nature of asthma heterogeneity, and gave some insight into the cause of
this heterogeneity — variable degrees of allergic sensitisation and respiratory infection,
likely driven in part by genetics and environmental exposures. Because the mixture mod-
els represent an amalgamation of risk contributed by multiple inputs, they were better
representations of disease risk than fixed thresholds of atopy (“positive” results on IgE or
SPT). It remains a challenge to simplify or modify these mixture models into a condensed
algorithm that is clinically useful; for instance, decision trees derived from CAS npEM
clusters did not replicate well in external cohorts, and hence could not be applied broadly
as simple decision-making algorithms for risk stratification. However, the mixture model
does provide a flexible means to make predictions in external datasets based on parame-
ters learned from a training set. The future may see the rise of machine-assisted diagnosis
or screening methods, driven by complex models such as mixture model classification
or neural networks rather than simple decision trees. These complex models incorporate
multiple biometric inputs covering a broad range of domains (genomics, immunomics,
microbiome) to produce a clinically-interpretable output (e.g. probability of disease, or
membership in a particular risk profile).

Using an ASV-based taxonomy, we were able to describe the nasopharyngeal micro-
biome of children in COAST as being structured and very similar to CAS, with the same
associations existing between illness-associated taxa (Moraxella, Streptococcus, Haemophilus)
and respiratory infections in early childhood. Our findings were consistent with those
of OTU-based CAS analyses reported in Teo et al 2018. Furthermore, we identified that
although these taxa often co-occurred with viral infection (rhinovirus, RSV) and winter
season, they all contributed semi-independently to the pathology of respiratory infection.
There was also evidence to suggest that certain trajectories of healthy nasopharyngeal mi-
crobiome, as well as very early colonisation with certain taxa, were linked to later asthma
outcomes. However, these associations with microbiome trajectory were inconsistent be-
tween CAS and COAST. Overall, we were able to at least confirm that the nasopharyngeal
microbiome may be linked to respiratory health in young children, via mechanisms which
may interact with early allergic sensitisation. å Finally, we attempted to determine genetic
contributions to asthma and asthma-related risk factors in the CAS dataset. Although
we had limited statistical power, we were able to identify both previously-known loci as
well as novel loci for asthma and related traits. There were suggestive links to loci near
biologically-plausible genes: for example, genes that determine function of respiratory
cilia (DNAH5), viral susceptibility (APOL3, FAM81A), asthma and airway responsiveness
(ZBTB20, LINGO2), and microbial colonisation (HLA region). In addition, when we used
summary statistics from large-scale GWAS to generate genomic risk scores (GRS) for aller-
gic disease, and applied these to CAS, we found that these scores were associated with
multiple early-life traits. These included both expected associations with allergic sensitisa-
tion, and unexpected ones involving illness-associated microbial taxa and membership in
the high-risk npEM cluster.

6.3 The future

This thesis has provided a demonstration of system-based approaches at work, in uncover-
ing the pathogenesis of complex diseases such as asthma and allergy. We were able to show
that an unsupervised mixture model can provide informative risk profiling that is more
nuanced than existing methods. We were also able to draw a connection to nasopharyngeal
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microbiota, and demonstrate both similarities and differences in microbial-disease associ-
ations between two birth cohorts from different geographical regions. Finally, we were
able to show that genetics plays an important role in asthma pathogenesis, by increasing
susceptibility to early-life sensitisation as well as nasopharyngeal microbial colonisation.
These genetic factors likely interact with environmental factors such as climate (geography,
season), exposure to allergen and exposure to respiratory pathogens, to modify childhood
susceptibility to persistent wheeze and asthma. As a whole, the thesis thoroughly explored
the genetics, microbiomics, immunology and pathophysiology of early childhood asthma
and allergy, and was thus able to identify key factors that significantly modified the risk
of later disease. The contents of this thesis will hopefully aid future researchers in further
examinations of the pathogenesis of asthma and allergy: for instance, one may begin by
deriving similar npEM clusters in their own datasets using a classifier or similar tool,
then comparing them in terms of other “omics”-based datasets not yet measured in CAS
— such as the epigenomics and transcriptomics of specific cell compartments including
immune cell lineages and airway epithelium.

The common theme amongst all three research chapters was the demonstrable utility
and versatility of clustering methods to simplify data and potentially identify hidden in-
formation. This was shown by the use of unsupervised cluster analysis to generate clusters
of children with differential disease risk (npEM clusters representing immunorespira-
tory trajectories); clusters of nasopharyngeal samples with similar patterns of microbial
composition (MPGs); and clusters relating to child-specific patterns of nasopharyngeal
microbiome that evolved with age (microbial trajectories). This was often followed by
the more targeted use of association analyses to determine links between physiological
entities, whether it be to quantify differences between clusters, or to search for disease
associations within clusters. Similar methods may be applied to other biomedical problems
beyond asthma and allergy, especially those related to diseases with complex aetiology
and pathophysiology such as cardiovascular disease, diabetes and cancer.

Since the commencement of this thesis, there have been numerous recent developments
in omics-based technology as well as biostatistical and bioinformatics methodology. In
particular, there has been a shift towards whole-genome and exome sequencing, with its
associated improvement in fidelity of bioinformatic signal. In addition, there has been an
emphasis on exploring epigenomics and its impact on modifying gene expression and
hence phenotype. There have also been further developments in inference of causality and
drawing of connections between biological entities: methods such as mediation analysis
and Mendelian randomisation have become more commonplace in recent years. In other
words, there are now a host of new systems-based tools that we can use to build on the
results of this thesis, and further our examination of complex disease.

In time, it is hoped that technological and methodological advancements can reach a
stage where we may be able to accurately describe the “omic” status of an individual. Using
clustering or dimension reduction methods, we may then be able to generalise or categorise
the physiologic state of each individual as a “profile”. Further analyses within each profile
or individual may allow us to determine relevant pathways of pathophysiology, including
critical points of the pathway that may act as possible “railroad switches” for medical
intervention. From these critical switches, we can then determine appropriate means of
medical treatment and risk modification unique to each profile. All of these developments
represent early steps towards the ultimate goal of precision or personalised medicine.
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Appendix A

ePrint of Chapter 3

Chapter 3 was published in eLife on October 2018. The ePrint and its supplementary
material can be found at https://elifesciences.org/articles/35856. The following
pages are a facsimile of the paper published online.

Summary statistics for several analyses can be found at https://figshare.com/
articles/Supplementary_File_1_1/6934052 and
https://figshare.com/articles/Supplementary_File_1_2/6934055.

The rest of this page has been intentionally left blank.
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Abstract Events in early life contribute to subsequent risk of asthma; however, the causes and

trajectories of childhood wheeze are heterogeneous and do not always result in asthma. Similarly,

not all atopic individuals develop wheeze, and vice versa. The reasons for these differences are

unclear. Using unsupervised model-based cluster analysis, we identified latent clusters within a

prospective birth cohort with deep immunological and respiratory phenotyping. We characterised

each cluster in terms of immunological profile and disease risk, and replicated our results in

external cohorts from the UK and USA. We discovered three distinct trajectories, one of which is a

high-risk ‘atopic’ cluster with increased propensity for allergic diseases throughout childhood.

Atopy contributes varyingly to later wheeze depending on cluster membership. Our findings

demonstrate the utility of unsupervised analysis in elucidating heterogeneity in asthma

pathogenesis and provide a foundation for improving management and prevention of childhood

asthma.

DOI: https://doi.org/10.7554/eLife.35856.001

Introduction
Asthma is a global health problem, and there is a pressing need for better understanding of its path-

ogenesis (Global Initiative for Asthma, 2015). Asthma is strongly associated with allergy, and both

genetic and environmental factors may be involved (Ober and Yao, 2011; Dick et al., 2014). The

‘hygiene hypothesis’ proposes that modern changes to hygiene, sanitation and living environment
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have modified human exposures to microbes, with subsequent effects on early-life immune develop-

ment (Okada et al., 2010). However, the clinical presentation and prognosis of childhood wheeze is

highly variable: some children remit; others remit but relapse; and yet others have wheeze persisting

into adult asthma (Morgan et al., 2005). These differences suggest that the underlying causes of

disease also differ from person to person. For example, while asthma is commonly linked to allergy,

not all individuals with wheeze are sensitised to allergen, and vice versa (Spycher et al., 2010). As

such, childhood asthma is a heterogeneous condition (Hekking and Bel, 2014; Wenzel, 2012), and

this greatly complicates the study of its pathogenesis (Anderson, 2008). We postulate that there are

subpopulations in early childhood, each sharing similar patterns of pathophysiology, disease suscep-

tibility and phenotype that permit categorisation into clusters. If we can agnostically identify these

clusters, then we may explore the biological mechanisms that underlie them, and find targets for

early intervention that are specific for different asthma subtypes.

Previous attempts at subtyping asthma susceptibility relied on supervised classification, using

expert knowledge and cut-offs to define clusters. For example, criteria such as – specific immuno-

globulin E (IgE) �0.35 kU/L; wheal diameter �3 mm in a skin prick test (SPT); or symptom score sur-

passing a threshold –may determine classification into a high-risk profile (Castro-Rodrı́guez et al.,

2000; Frith et al., 2011). However, these cut-offs vary with age, gender or other parameters, and

may not accurately reflect true attribution of risk (Linden et al., 2011). Hence, they often continue

to produce heterogeneous groups. Furthermore, previous studies tended to focus on a single

‘domain’, for instance grouping only by immunological response (Prescott et al., 1999), symptom-

atology or timing of disease (Martinez et al., 1995; Kurukulaaratchy et al., 2003). Recently,

researchers have turned to unsupervised approaches, such as model-based cluster analysis and

latent class analysis (LCA) (Deliu et al., 2016; Lazic et al., 2013; Simpson et al., 2010;

Belgrave et al., 2014; Belgrave et al., 2013; Wu et al., 2015). These do not require experts to sup-

ply cut-offs, but can instead ‘learn’ boundaries from the data. They can potentially uncover patterns

of similarity not immediately obvious to the human eye. Finally, these methods can cover a broader

eLife digest Asthma causes wheezy and troubled breathing, and can be life-threatening.

Scientists and doctors understand that asthma begins in early childhood. Chest infections, exposure

to bacteria, viruses, and allergies may cause or trigger asthma. One person with asthma may not

have the same origins as another. But it is not yet clear how various triggers may interact to trigger

or exacerbate asthma.

To disentangle how these factors contribute to asthma, experts have tried to group people with

asthma into subgroups. Unfortunately, the groups often vary from expert to expert. Now, some

scientists are using computers to sort patients with asthma. The scientists let the computers decide

the best criteria for sorting patients. This way the machines may identify patterns that are not

obvious to humans.

Using this computer-based approach, Tang et al. sorted Australian children with asthma into 3

groups based on their early life allergies and respiratory health. One group has high-risk asthma

with frequent chest infections and strong allergic responses. The other two groups are low-risk, but

they respond differently to allergy and infection. Common tests used by doctors to diagnose

patients with allergy or asthma may not work the same with all three groups. The bacteria found in

the nose influence the risk of asthma, even in patients who are well, and the way this occurs varies

by group. Similar groups were also found among children with asthma in the United States and the

United Kingdom.

Learning more about subgroups of patients with asthma may help other scientists and doctors

design better ways to diagnose, treat, or prevent asthma. Working together with scientists around

the world to determine how to best describe subgroups of people according to asthma type and

risk is a critical step in the process. Tang et al. hope other scientist will test whether these three

groups are also found in people from other parts of the world.

DOI: https://doi.org/10.7554/eLife.35856.002
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range of domains, incorporating measurements from multiple sources to determine clusters that are

potentially informative of asthma risk.

Here, we use a data-driven unsupervised framework together with a

comprehensively phenotyped birth cohort, to define developmental trajectories during preschool

years, a period known to be critical to asthma pathogenesis. Specifically, we (1) use non-parametric

mixture models to discover latent clusters that define early childhood trajectories of immune func-

tion and susceptibility to respiratory infection; (2) investigate how these clusters relate to differential

profiles of asthma susceptibility, and to existing definitions of atopy; (3) identify risk factors for

asthma within each cluster; and (4) externally validate the clusters in independent cohorts.

Results
To characterise the broad structure of an Australian dataset of young children (Childhood Asthma

Study, CAS), we performed principal components analysis (Figure 1—figure supplement 1). After-

wards, to explicitly model the heterogeneous data types of the cohorts as well as explicitly identify

clusters, we used non-paremetric expectation-maximiation (npEM) mixture models

(Materials and methods). By applying npEM-based clustering and classification to CAS, we identified

three distinct clusters from 217 individuals and 174 clustering features (Figure 1): low-risk CAS1

(N = 88, 25% wheeze at age 5), low-risk but allergy-susceptible CAS2 (N = 107, 21% wheeze at age

5) and high-risk CAS3 (N = 22, 76% wheeze at age 5). Forty-six individuals in CAS had excessive

missing data and were not classifiable. The CAS clusters satisfied basic measures of internal stability

and were distinguishable on a PCA plot of the complete-case dataset (Figure 1—figure supplement

1). A graphical summary of results for the CAS clusters is presented in Figure 2.

CAS1: low-risk, non-atopic cluster with transient wheeze
CAS1 was a low-risk cluster with infrequent and transient respiratory wheeze. Rates of wheeze

declined from 33% at age 1% to 12% by age 10 (Table 1; Figure 3). In this cluster, Th2 cytokine

responses of peripheral blood mononuclear cells (PBMCs) to allergen stimulation were minimal; and

rates of allergen sensitisation (as measured by IgE or skin prick test, SPT) were the lowest among all

groups (Table 2; Figure 4; Supplementary file 1 – table supplement 3B-D). IgG and IgG4 were also

low across all allergens.

Frequency of respiratory infection in CAS1 was low (Table 3). However, high frequency of lower

respiratory infections (LRIs) in childhood, especially wheezy LRIs (wLRIs), was a risk factor for age-5

wheeze – even after adjusting for sex, body mass index (BMI) and parental history of asthma as

demographic covariates (Table 4). Repeated-measures ANOVA identified that LRI and wLRI fre-

quency in the first 3 years were predictors for age-5 wheeze (Supplementary file 1 – table supple-

ment 4); however, timepoint-specific analyses showed that differences were only noticeable from

age 3 onwards (Table 4; Figure 5A–B). A multiple regression model with stepwise elimination

yielded three significant variables: age-three wLRI frequency (odds ratio OR 5.6 per unit increase,

p=0.0068); age-four LRI frequency (OR 3.6, p=0.018); and a protective effect from proportion of

infection-associated microbiome profile groups (MPGs; Streptococcus, Haemophilus, Moraxella) in

age-two-to-four healthy nasopharyngeal aspirate samples (NPAs; OR 0.19 per quartile, p=0.014).

CAS2: low-risk cluster susceptible to atopic and non-atopic wheeze
Similar to CAS1, CAS2 was a low-risk cluster with infrequent allergic disease. Compared to CAS1,

Phadiatop and house dust mite (HDM) IgE were elevated at most timepoints (Table 2; Figure 4A;

Supplementary file 1 – table supplement 3B), with the exception of peanut IgE (Wilcoxon, adjusted

p=0.99 at all timepoints; Figure 4D). CAS2 IgG and IgG4 were intermediate between CAS1 and

CAS3 levels; CAS2 IgG was closer to CAS1, while CAS2 IgG4 was closer to CAS3 (Table 2; Figure 4).

Despite these antibody differences, yearly rates of wheeze in CAS2 remained comparable to CAS1

(30% at age 1, declining to 18% at age 10; Table 1; Figure 3). Interestingly, compared to CAS1,

individuals in CAS2 had fewer older siblings living in the household at age 2, as well as more fre-

quent paternal history of asthma (adjusted p=0.029 and 0.055, respectively; Supplementary file 1 –

table supplement 3A).

Predictive factors for age-5 wheeze in CAS2 included: LRI, wLRI and febrile LRI (fLRI) frequency

(GLM; p=2.7 � 10�3, 0.016 and 0.02 at age 3, respectively); HDM IgE (p=0.016 and 0.011 at ages 2
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and 4, respectively); and Phadiatop IgE (p=0.01 at age 4) (Table 4). Repeated-measures ANOVA

showed that HDM IgE and LRI-related variables (LRI, wLRI, fLRI) from the first 3 years were significant

predictors of age-5 wheeze (Supplementary file 1 – table supplement 4). Timepoint-specific analy-

ses showed that differences were observable in HDM IgE and fLRI from age 2 onwards, while in LRI

and wLRI they were only noticeable from age 3 (Table 4; Figure 5). A multiple regression model

with stepwise elimination identified three significant variables: age-2 fLRI (OR eight per unit increase,

p=0.0075), age-4 wLRI (OR 5.3 p=0.0016), and age-4 Phadiatop IgE (OR 3.3, p=0.0088). But

although both IgE-related and infection-related risk factors contributed to age-5 wheeze, there was

no significant evidence of interaction between them (p=0.36 within CAS2 alone, p=0.92 across entire

cohort, for age-4 wLRI frequency �Phadiatop IgE). Overall, CAS2 represented a low-risk trajectory

susceptible to, but not necessarily afflicted by, wheeze due to atopic and non-atopic risk factors. In

Figure 1. Non-parametric mixture-model-based clustering of CAS dataset, based on 174 features. SPT = skin prick test. White spaces within the

heatmap indicate missing data. Rows represent individuals; columns represent clustering features with general categories as labelled on grey

background. Variables with grey background are clustering features ordered by category or type of variable first (e.g. all HDM IgE-related variables

grouped together), then by timepoint (earlier to later, from left to right). Variables with lilac background indicate resultant cluster membership and

outcome variable (age-5 wheeze). Heatmap values are scaled relative to range and median values for each feature; the median is coloured beige-

yellow, the median +range red, and median – range blue. For sex, �1/blue = female, 0/yellow (median) = male.

DOI: https://doi.org/10.7554/eLife.35856.003

The following figure supplements are available for figure 1:

Figure supplement 1. Scatterplot of principal components analysis (PCA) of the complete-case CAS dataset (N = 186), with points coloured by npEM

clusters Each point represents an individual.

DOI: https://doi.org/10.7554/eLife.35856.004

Figure supplement 2. Silhouette widths of clusters generated by npEM.

DOI: https://doi.org/10.7554/eLife.35856.005

Figure supplement 3. Overview of study methodology.

DOI: https://doi.org/10.7554/eLife.35856.006
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this cluster, atopic determinants of age-5 wheeze were only active from age 2 onwards, suggesting

delayed atopic wheeze in this cluster. This duality of atopic and non-atopic risk factors for wheeze in

this cluster was further supported by decision tree analysis, which identified that wheezy LRI fre-

quency and HDM IgE best separated wheezers from non-wheezers in CAS2 (Figure 5—figure sup-

plement 3).

CAS3: high-risk atopic cluster with persistent wheeze
CAS3 was a ‘high-risk’ cluster, where persistent respiratory wheeze and atopic disease was seen in

more than half the group throughout the first 10 years of life (Table 1; Figure 3). This cluster was

dominated by males (86%, Fisher exact test, unadjusted p=6.8 � 10�3 compared to CAS1, Table 1),

and appeared to represent an early- and multi-sensitised atopic phenotype with persistent wheeze.

CAS3 had elevated IgE, IgG, and IgG4 responses to common allergens, especially Phadiatop, HDM

and peanut IgE from 6 months onwards (Table 2; Figure 4; Supplementary file 1 – table supple-

ment 3B). SPTs were also more frequently positive in CAS3, especially to HDM and food allergens

(peanut, cow’s milk and egg white, Supplementary file 1 – table supplement 3D).

No strong predictors for age-5 wheeze were identified within CAS3 (Table 4): only couch grass

IgE at age 2 and acute respiratory infection (ARI) frequency at age 1 were weakly significant (both

p=0.046). Neither of these reached statistical significance when incorporated in the same model.

However, the prolific IgE response, and the frequency and severity of early-life LRIs in this cluster

(Table 3), strongly suggest contribution from both atopic and non-atopic causes of wheeze. Hence,

CAS3 primarily represented those with extreme levels of atopic sensitisation and infection. The rela-

tive paucity of identifiable predictors may be explained by the small size of CAS3 (N = 22), the intrin-

sically high rate of wheeze in the cluster (76% with age-5 wheeze), and saturation of risk from high

levels of IgE and frequent infections.

Unlike the antibody measurements, cytokine measurements were excluded as clustering features

due to high missingness. Nonetheless, with post-hoc analyses, we found that in vitro stimulation of

PBMCs with HDM antigen elicited stronger Th2 cytokine responses in CAS3 compared to other clus-

ters (Table 2, Figure 6). These cytokines (IL-4, IL-5, IL-13) were elevated from a very young age (Wil-

coxon, adjusted p=4.6 � 10�5 for IL-4 mRNA at age 6 m, compared to CAS1), coinciding with

increase in HDM IgE and IgG4 responses. Weaker but similar differences were observed for peanut-

and ovalbumin-stimulated PBMCs at 6 months (unadjusted p<0.05 for all, Supplementary file 1 –

Figure 2. Graphical summary of proposed clusters *‘Early’ specifically refers to ‘within the first 6 months of life’.

DOI: https://doi.org/10.7554/eLife.35856.007
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table supplement 3C). There were no other significant differences for other non-Th2 cytokines (IFN-

g, IL-10), nor were there specific differences for CAS1 or CAS2.

Comparison of measures of immunological response
Across all clusters, allergen-specific IgG4 and IgG were positively correlated with IgE for the same

allergen (especially HDM, Figure 4—figure supplement 1). As noted previously, CAS2 and CAS3

were distinguished from CAS1 by high IgG4, and CAS3 had greater IgG4 than either CAS1 or CAS2

(Supplementary file 1 – table supplement 3B; Figure 4). Decision tree analysis (Figure 5—figure

supplement 1 to 3) confirmed that IgG4-type variables strongly separated CAS2 and CAS3 from

CAS1, while IgE-type variables separated CAS3 from the others.

Although previous literature suggests possible protection conferred by IgG4 (Okamoto et al.,

2012) or IgG (Holt et al., 2016), in this study there was no clear evidence of such protection against

Table 1. Comparison of selected demographic and clinical variables in CAS clusters

Variable Age (y) Cas1 (N = 88) Cas2 (N = 107) Cas3 (N = 22) P-value (unadjusted) Feature?

Prop. (95% CI) Prop. (95% CI) Prop. (95% CI) Overall
Cas1 vs.
2

Cas1 vs.
3

Cas2 vs.
3

Sex = male 55% (44–65%) 51% (42–61%) 86% (71–100%) 7.3E-03 0.67 6.8E-03 3.7E-03 Yes

Maternal asthma 51% (40–62%) 41% (32–51%) 59% (37–81%) 0.19 0.19 0.63 0.16 Yes

Paternal asthma 22% (13–30%) 44% (35–54%) 23% (3.7–42%) 2.2E-03 1.3E-03 1 0.093 Yes

Wheeze 1 33% (23–43%) 30% (21–39%) 55% (32–77%) 0.092 0.76 0.084 0.046 No

5 25% (15–35%) 21% (13–30%) 76% (56–96%) 7.1E-06 0.59 2.6E-05 3.4E-06 No

10 12% (3.4–21%) 18% (8.4–27%) 50% (24–76%) 3.1E-03 0.46 1.5E-03 0.011 No

Asthma 5 15% (7–23%) 13% (5.9–20%) 52% (29–76%) 4.1E-04 0.83 7.7E-04 2.1E-04 No

10 10% (2.3–18%) 15% (6.1–23%) 56% (30–81%) 2.6E-04 0.59 1.8E-04 7.9E-04 No

Eczema 6m 39% (28–49%) 45% (35–54%) 91% (78–100%) 2.4E-05 0.47 7.9E-06 9.0E-05 Yes

1 34% (24–44%) 30% (21–39%) 82% (64–99%) 2.5E-05 0.54 7.2E-05 1.4E-05 Yes

5 28% (18–37%) 24% (16–33%) 71% (50–92%) 2.1E-04 0.73 3.3E-04 7.9E-05 No

Atopic
rhinoconjunctivitis

5 30% (20–40%) 39% (29–49%) 76% (56–96%) 6.4E-04 0.21 2.7E-04 3.2E-03 No

Mean (95% CI) Mean (95% CI) Mean (95% CI) Overall Cas1 vs.
2

Cas1 vs.
3

Cas2 vs.
3

BMI (kg/m2) 3 16 (16–17) 16 (16–17) 16 (16–17) 0.86 0.65 0.68 0.8 No*

4 16 (16–17) 16 (16–16) 17 (16–17) 0.59 0.76 0.32 0.39 No

5 16 (16–16) 16 (16–16) 16 (15–17) 0.71 0.56 0.48 0.67 No

10 18 (17–19) 18 (17–18) 18 (17–19) 0.89 0.75 1 0.62 No

Number of older
siblings

0 0.93 (0.72–1.1) 0.53 (0.38–0.69) 0.77 (0.32–1.2) 4.5E-03 1.0E-03 0.37 0.25 Yes

2 0.85 (0.66–1) 0.5 (0.34–0.65) 0.77 (0.32–1.2) 2.8E-03 6.5E-04 0.48 0.16 Yes

5 0.68 (0.5–0.85) 0.39 (0.25–0.54) 0.67 (0.23–1.1) 0.016 5.1E-03 0.75 0.12 No

Geom. mean (95%
CI)

Geom. mean (95%
CI)

Geom. mean (95%
CI)

Overall Cas1 vs.
2

Cas1 vs.
3

Cas2 vs.
3

Vitamin D (nmol/L) 1 60 (55–64) 59 (55–63) 59 (52–67) 0.93 0.98 0.76 0.7 No

2 57 (54–61) 58 (55–61) 47 (40–55) 0.012 0.82 5.4E-03 4.4E-03 No

5 89 (83–95) 84 (79–89) 77 (69–84) 0.057 0.46 0.016 0.056 No

BMI = body mass index; feature?=whether variable was used as a clustering feature or not; geom. mean = geometric mean; prop. = proportion. For cate-

gorical variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates

statistical significance (p<0.05); italics indicate near-significance (p<0.10). *Not used as clustering feature, as BMI is a derived variable. Height and weight

at age three were used instead.

DOI: https://doi.org/10.7554/eLife.35856.013

Tang et al. eLife 2018;7:e35856. DOI: https://doi.org/10.7554/eLife.35856 6 of 31

Research article Computational and Systems Biology



later wheeze (Table 4). Furthermore, the protected status of CAS2 relative to CAS3 was unlikely to

be driven by IgG4, given that CAS3 had greater quantities of both IgE and IgG4.

Although they were highly correlated, IgE, IgG, Th2 cytokine and SPT responses did not overlap

perfectly. CAS3 was enriched for individuals with strong signals in all modalities, but there remained

individuals within CAS3 and the rest of the cohort who were only responsive in some modalities and

not others. Notably, the general direction of IgE, IgG4, SPT and Th2 cytokine signals did not always

coincide (Figure 4—figure supplement 2).

Comparison of clusters to existing criteria for atopy
The npEM-derived CAS clusters were partially consistent with traditional atopy thresholds (i.e. any

specific IgE �0.35 kU/L or SPT � 2 mm at age 2). When we compared CAS clusters with supervised

groups created using traditional thresholds (Supplementary file 1 – table supplement 5), we found

that CAS1 most closely matched a non-atopic phenotype (58 of 84 had no specific IgE greater than

0.35 kU/L by age 2). Conversely, CAS2 and CAS3 partially matched traditional criteria for atopy,

Figure 3. Incidence of multiple phenotypes, including parent-reported wheeze. (A) Physician-diagnosed asthma (B) defined wheeze phenotypes (C) in

relation to food and inhalant sensitisation (D) stratified by cluster and time in the CAS dataset. Points indicate observed proportion; bars indicate 95%

CI (binomial distribution). Wheeze phenotypes defined as: no wheeze = no wheeze at ages 1 to 3, or age 5; transient wheeze = any wheeze at ages 1 to

3, but not age 5; late wheeze = wheeze at age 5, but not ages 1 to 3; persistent wheeze = any wheeze at both ages 1 to 3 and age 5. Food

sensitisation defined as peanut IgE �0.35 kU/L at any age, or cow’s milk, egg white, peanut SPT > 2 or 3 mm for age �2 or>2 respectively. Inhalant

sensitisation defined as HDM, cat, couchgrass, ryegrass, mould or Phadiatop IgE �0.35 kU/L at any age, or mould SPT (Alternaria or Aspergillus spp.)>2

or 3 mm for age �2 or>2, respectively.

DOI: https://doi.org/10.7554/eLife.35856.008

The following figure supplement is available for figure 3:

Figure supplement 1. Relationship of clusters to food sensitisation, eczema and wheeze.

DOI: https://doi.org/10.7554/eLife.35856.009
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Table 2. Comparison of HDM-associated immunological variables in CAS clusters

Variable Age
Cas1
(N = 88)

Cas2
(N = 107)

Cas3
(N = 22) P-value (unadjusted) Feature?

Geom.
mean (95% CI)

Geom.
mean (95% CI)

Geom.
mean (95% CI) Overall Cas1 vs. 2 Cas1 vs. 3 Cas2 vs. 3

Total antibody

IgE (kU/L) 6m 1.2
(0.69–2)

2.2
(1.4–3.6)

21
(12–35)

1.2E-07 0.044 6.7E-08 2.2E-06 Yes

1 0.6
(0.29–1.3)

2
(1.1–3.7)

43
(17–109)

2.0E-09 0.019 4.3E-09 5.3E-08 Yes

2 6.6
(3.5–12)

17
(12–25)

187
(131–267)

1.2E-11 0.044 4.2E-11 1.4E-10 Yes

5 35
(23–55)

60
(46–80)

451
(278–731)

2.2E-08 0.096 1.9E-08 1.5E-07 No

10 85
(46–154)

150
(103–217)

800
(405–1.6E + 03)

1.4E-04 0.11 1.3E-04 2.8E-04 No

HDM antibody

IgE (kU/L) 6m 0.018
(0.016–0.02)

0.019
(0.016–0.022)

0.033
(0.019–0.059)

1.9E-03 0.47 7.9E-04 4.2E-03 Yes

1 0.019
(0.017–0.023)

0.019
(0.016–0.022)

0.26
(0.075–0.93)

1.3E-09 0.47 2.5E-07 4.5E-09 Yes

2 0.024
(0.019–0.031)

0.042
(0.029–0.06)

7.1
(2.7–19)

2.6E-16 0.078 2.5E-15 3.5E-13 Yes

5 0.072
(0.041–0.13)

0.23
(0.12–0.45)

31
(7.8–127)

4.2E-09 0.015 3.8E-09 5.1E-07 No

10 0.37
(0.17–0.8)

1.3
(0.51–3.4)

52
(19–144)

2.9E-06 0.068 5.7E-07 9.7E-05 No

IgG (mg/L) 1 0.21
(0.2–0.23)

0.23
(0.21–0.25)

0.29
(0.21–0.39)

0.042 0.34 0.012 0.07 Yes

2 0.32
(0.27–0.37)

0.49
(0.41–0.59)

0.89
(0.57–1.4)

1.9E-06 2.1E-04 3.8E-06 7.0E-03 Yes

5 0.55
(0.42–0.7)

0.59
(0.46–0.74)

1.7
(0.88–3.3)

1.5E-03 0.67 6.4E-04 9.0E-04 No

10 1.6
(1.3–1.9)

2.1
(1.8–2.5)

2.8
(1.9–4.2)

1.0E-02 0.023 0.011 0.18 No

IgG4 (mg/L) 6m 1.5E-04
(1.5E-04–1.5E-04)

1.7E-04
(1.3E-04–2.1E-04)

4.6E-04
(9.0E-05–2.4E-03)

4.9E-03 0.37 5.2E-03 0.024 Yes

1 1.5E-04
(1.5E-04–1.5E-04)

6.9E-04
(3.2E-04–1.5E-03)

0.081
(4.6E-03–1.4)

1.8E-10 5.2E-04 6.6E-12 2.2E-05 Yes

2 3.4E-04
(1.8E-04–6.6E-04)

4.8
(1.7–13)

61 (8.9–419) 1.8E-25 1.5E-22 8.6E-18 9.8E-05 Yes

5 2
(0.48–8.1)

168
(111–256)

539
(317–917)

1.1E-15 1.3E-12 1.0E-08 1.9E-04 No

HDM cytokine
responsê

IL-13 protein (pg/ml)̂ 0 0.22
(0.066–0.73)

0.22
(0.076–0.63)

0.085
(0.011–0.66)

0.68 0.76 0.41 0.45 No

6m 0.064
(0.022–0.18)

0.06
(0.025–0.14)

19 (1.4–244) 4.6E-06 0.98 1.7E-05 4.1E-06 No

5 0.13
(0.046–0.37)

0.32
(0.11–0.87)

12 (1.2–117) 2.1E-04 0.29 7.7E-05 5.1E-04 No

IL-5 protein (pg/ml)̂ 0 0.043
(0.018–0.11)

0.026
(0.013–0.052)

0.018
(5.0E-03–0.068)

0.44 0.36 0.29 0.57 No

6m 0.018
(9.2E-03–0.034)

0.013
(8.9E-03–0.02)

0.21 (0.012–3.7) 7.9E-04 0.4 8.1E-03 3.5E-04 No

Table 2 continued on next page
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with CAS3 being an extreme phenotype (all 22 children in CAS3 had some specific IgE �0.35 kU/L

by age 2).

However, the CAS clusters outperformed IgE/SPT-defined atopy in terms of predicting for age-5

wheeze (likelihood ratio test for clusters vs. IgE/SPT, Chi-squared = 23, p=2.0 � 10�6). In addition,

at age 2, 68% of CAS3 were ‘sensitised’ (any specific IgE �0.35 kU/L) to two or more allergens, com-

pared to only 1% and 6% for CAS1 and CAS2 respectively. This emphasised CAS3 as an early- and

multi-sensitised phenotype. Finally, fewer members of CAS1 and CAS2 who were IgE- or SPT-

responsive prior to age 5 maintained atopic wheeze at age 5 (23% or 24 of 103), compared to CAS3

(76% or 16 of 21). Therefore, the association of IgE and SPT with disease risk varied across clusters.

This suggests that fixed atopy thresholds are not sufficient to delineate risk profiles – instead, an

unsupervised clustering approach may be more informative.

Table 2 continued

Variable Age
Cas1
(N = 88)

Cas2
(N = 107)

Cas3
(N = 22) P-value (unadjusted) Feature?

Geom.
mean (95% CI)

Geom.
mean (95% CI)

Geom.
mean (95% CI) Overall Cas1 vs. 2 Cas1 vs. 3 Cas2 vs. 3

5 0.028
(0.014–0.057)

0.042
(0.02–0.087)

2.3
(0.25–22)

3.2E-06 0.45 5.7E-06 2.0E-05 No

IL-13 mRNÂ 0 1.7E-03
(1.1E-04–0.026)

6.0E-03
(4.8E-04–0.075)

6.7E-03
(3.3E-05–1.4)

0.85 0.6 0.68 0.94 No

6m 1.0E-04
(8.8E-06–1.1E-03)

3.2E-04
(3.8E-05–2.6E-03)

2
(0.015–266)

3.2E-04 0.5 1.7E-04 3.8E-04 No

5 0.036
(1.6E-03–0.8)

0.11
(8.8E-03–1.4)

2.9E + 03
(742–1.1E + 04)

6.8E-05 0.59 9.9E-05 2.5E-05 No

IL-4 mRNÂ 0 1.4E-06
(6.9E-07–3.0E-06)

1.9E-06
(7.8E-07–4.4E-06)

1.0E-06 (1.0E-06–1.0E-06) 0.71 0.65 0.6 0.47 No

6m 4.6E-06
(1.0E-06–2.1E-05)

5.1E-06
(1.4E-06–1.8E-05)

0.54 (6.5E-03–44) 6.2E-09 0.94 4.7E-07 1.0E-07 No

5 2.3E-04
(1.7E-05–3.0E-03)

4.7E-04
(5.3E-05–4.3E-03)

5.3 (0.082–345) 4.9E-04 0.72 4.5E-04 3.2E-04 No

IL-5 mRNÂ 0 2.5E-04
(2.1E-05–2.9E-03)

2.6E-04
(2.8E-05–2.5E-03)

1.2E-05 (3.1E-07–4.6E-04) 0.47 0.96 0.24 0.25 No

6m 5.2E-05
(5.6E-06–4.8E-04)

3.1E-05
(5.2E-06–1.8E-04)

0.33 (1.3E-03–83) 1.5E-04 0.85 2.3E-04 1.1E-04 No

5 0.021 (9.9E-04–0.43) 0.07
(5.7E-03–0.85)

246 (7–8.7E + 03) 1.3E-04 0.49 7.1E-05 1.1E-04 No

Prop. (95% CI) Prop. (95% CI) Prop. (95% CI) Overall Cas1 vs. 2 Cas1 vs. 3 Cas2 vs. 3

HDM SPT past
atopy threshold

Wheal � 2 mm 6m 2.3%
(0–5.4%)

1.9%
(0–4.5%)

14%
(0–29%)

0.043 1 0.054 0.035 No*

2 10%
(3.8–17%)

15%
(8.1–22%)

86%
(71–100%)

2.9E-12 0.39 8.2E-12 1.5E-10 No*

Wheal � 3 mm 5 13%
(5.2–20%)

28%
(18–37%)

81%
(63–99%)

1.5E-08 0.022 4.6E-09 1.0E-05 No

10 36%
(23–49%)

51%
(38–63%)

78%
(57–99%)

7.4E-03 0.11 2.7E-03 0.06 No

Feature?=whether variable was used as a clustering feature or not; geom. mean = geometric mean; PBMC = peripheral blood mononuclear cells;

prop. = proportion; SPT = skin prick or sensitisation test. For categorical variables, associations were tested using Fisher exact test; for continuous varia-

bles, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical significance (p<0.05); italics indicate near-significance (p<0.10). P̂BMC cyto-

kine responses to HDM above unstimulated control; birth samples (age 0) taken from cord blood (CBMC). *Not used as clustering features, as these were

derived variables; the variables from which they were derived (HDM IgE and IgG4) were used instead.

DOI: https://doi.org/10.7554/eLife.35856.014
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Comparison of clusters to time-dependent wheeze phenotypes and
atopic disease
We mapped the npEM-derived clusters to pre-defined wheezing phenotypes (Figure 3C): no

wheeze (in the first 3 years of life, or at age 5), transient wheeze (only in first 3 years), late wheeze

(only at age 5), and persistent wheeze (both first 3 years and age 5). We found that CAS3 was

enriched for persistent wheeze, while individuals in CAS1 or CAS2 tended to have transient or no

wheeze. There were rarely any members of CAS with late wheeze (approximately 10%).

In addition to persistent wheeze, CAS3 was also enriched for persistent food sensitisation (peanut

IgE �0.35 kU/L, or positive egg white or cow’s milk SPTs) and persistent eczema: 44% of CAS3

experienced all three (Figure 3—figure supplement 1). Almost all individuals in CAS3 had both

eczema and food sensitisation from age 6 m onwards, with rates of food sensitisation and wheeze

increasing with time (Figure 3D). In contrast, CAS1 and CAS2 had low rates of food sensitisation,

and declining rates of both eczema and wheeze. These trends lend credence to recent suggestions

that the ‘atopic march’ phenotype (Bantz et al., 2014; Han et al., 2017) may only be present in a

minority of the population (e.g. CAS3) (Belgrave et al., 2014).

Figure 4. HDM IgE (A), IgG (B) and IgG4 (C); and peanut IgE (D) and IgG4 (E) stratified by cluster and time, in the CAS dataset Points indicate means;

bars indicate 95% CI (t-distribution).

DOI: https://doi.org/10.7554/eLife.35856.010

The following figure supplements are available for figure 4:

Figure supplement 1. Correlation patterns between IgE vs IgG4 (A) and IgE vs IgG (B) at age five *p<0.05 for Spearman correlation with Holm

correction for multiple testing.

DOI: https://doi.org/10.7554/eLife.35856.011

Figure supplement 2. Distinct biological signals of HDM IgE, IgG4, SPT, and Th2 cytokine (IL-13).

DOI: https://doi.org/10.7554/eLife.35856.012
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Table 3. Comparison of selected respiratory-disease-related variables in CAS clusters

Variable
Age
(y)

Cas1
(N = 88)

Cas2
(N = 107)

Cas3
(N = 22) P-value (unadjusted) Feature?

Mean (95%
CI)

Mean (95%
CI)

Mean (95%
CI) Overall

Cas1 vs.
2

Cas1 vs.
3

Cas2 vs.
3

URI (events per y) 1 2.9 (2.4–3.3) 2.6 (2.2–3) 2.5 (1.7–3.3) 0.59 0.34 0.5 0.96 Yes

2 3.2 (2.6–3.7) 2.6 (2.2–3) 2.5 (1.2–3.8) 0.19 0.19 0.12 0.34 Yes

3 2.7 (2.2–3.2) 2.8 (2.4–3.3) 2.2 (1.3–3.2) 0.45 0.41 0.59 0.24 Yes

4 2.1 (1.7–2.6) 2.2 (1.8–2.7) 1.7 (0.77–2.7) 0.5 0.94 0.26 0.27 No

5 1.6 (1.1–2) 1.5 (1.2–1.9) 0.67 (0.2–1.1) 0.081 0.76 0.047 0.026 No

LRI (events per y) 1 1.6 (1.2–1.9) 0.98 (0.76–
1.2)

2 (1.3–2.6) 4.0E-03 0.021 0.17 2.6E-03 Yes

2 1.4 (0.98–1.7) 1 (0.81–1.2) 2.2 (1.6–2.9) 2.5E-03 0.83 6.1E-03 2.0E-04 Yes

3 1 (0.76–1.3) 0.6 (0.4–0.8) 1.8 (1.1–2.6) 6.1E-04 0.02 0.039 2.7E-04 Yes

4 0.87 (0.52–
1.2)

0.46 (0.3–
0.63)

2 (1.1–2.8) 1.7E-05 0.3 3.5E-04 1.6E-06 No

5 0.42 (0.24–
0.6)

0.36 (0.24–
0.48)

0.86 (0.44–
1.3)

0.019 1 0.011 7.5E-03 No

Wheezy LRI (wLRI, events per y) 1 0.47 (0.3–
0.63)

0.24 (0.15–
0.34)

0.64 (0.19–
1.1)

0.054 0.036 0.61 0.065 Yes

2 0.68 (0.45–
0.91)

0.41 (0.26–
0.56)

1 (0.56–1.5) 5.2E-03 0.063 0.066 1.7E-03 Yes

3 0.59 (0.37–
0.81)

0.3 (0.17–
0.44)

1.4 (0.78–2.1) 4.6E-05 0.065 2.5E-03 6.6E-06 Yes

4 0.52 (0.25–
0.79)

0.32 (0.18–
0.46)

1.9 (0.95–2.8) 4.5E-08 0.86 9.3E-07 3.3E-08 No

5 0.28 (0.13–
0.42)

0.23 (0.13–
0.33)

0.76 (0.36–
1.2)

2.3E-03 0.99 2.0E-03 1.2E-03 No

Febrile LRI (fLRI, events per y) 1 0.36 (0.22–
0.51)

0.28 (0.16–
0.4)

0.55 (0.28–
0.81)

0.025 0.24 0.071 6.4E-03 Yes

2 0.36 (0.23–
0.5)

0.33 (0.22–
0.43)

0.95 (0.46–
1.4)

0.01 1 6.1E-03 3.8E-03 Yes

3 0.38 (0.21–
0.55)

0.16 (0.09–
0.23)

0.52 (0.13–
0.92)

0.06 0.063 0.44 0.04 Yes

4 0.3 (0.13–
0.47)

0.15 (0.064–
0.24)

0.43 (0.16–
0.7)

0.021 0.18 0.091 4.9E-03 No

5 0.19 (0.082–
0.3)

0.14 (0.06–
0.21)

0.19 (0–0.42) 0.83 0.55 0.91 0.8 No

Prop. (95%
CI)

Prop. (95%
CI)

Prop. (95%
CI)

Overall Cas1 vs.
2

Cas1 vs.
3

Cas2 vs.
3

>20% Streptococcus in first infection-naive
NPA sample

7w 11% (0.34–
23%)

15% (3.3–
26%)

44% (3.9–
85%)

0.081 0.75 0.042 0.065 No

6m 7.6% (1.6–
14%)

18% (10–26%) 14% (0–31%) 0.12 0.045 0.39 1 No

% Healthy NPAs with infection-associated
MPGs

0–2 49% (38–
59%)

32% (24–39%) 62% (47–
76%)

1.2E-03 0.013 0.2 5.5E-04 No

2–4 46% (37–
55%)

44% (37–51%) 45% (29–
61%)

0.9 0.67 0.92 0.8 No

Feature?=whether variable was used as a clustering feature or not; geom. mean = geometric mean; ARI = acute respiratory infection (lower or upper);

LRI = lower respiratory infection; MPG = microbiome profile group; NPA = nasopharyngeal aspirate; prop. = proportion; URI = upper respiratory infection;

7w = 7 weeks. For categorical variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wil-

coxon. Bold text indicates statistical significance (p<0.05); italics indicate near-significance (p<0.10). *Not used as clustering features, as these were derived

variables; the variables from which they were derived (URI, LRI, wLRI, fLRI) were used instead.
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Table 4. Analysis of selected predictors for age-5 wheeze within each CAS cluster, with demographic covariates (sex, BMI, parental

history of asthma)

Selected predictors for age-5
wheeze

Cas1 (N = 88)
Or (95% CI)

P-
value

Cas2 (N = 107)
Or (95% CI)

P-
value

Cas3 (N = 22)
Or (95% CI)

P-
value

Or (95%
CI) P-value

LRI (events per y) 1 0.97 (0.71–1.3) 0.84 1 (0.61–1.5) 0.99 0.48 (0.13–1.1) 0.16 1 (0.81–1.2) 0.92

2 1.2 (0.88–1.6) 0.26 1.5 (0.97–2.5) 0.069 0.99 (0.34–2.6) 0.98 1.4 (1.1–1.7) 5.3E-03

3 2 (1.3–3.2) 2.3E-
03

2.6 (1.5–5.3) 2.7E-
03

0.98 (0.4–2.6) 0.96 2 (1.5–2.7) 3.8E-06

4 2 (1.4–3.4) 2.0E-
03

3.6 (1.8–8.3) 6.5E-
04

1.9 (0.57–8.4) 0.32 2.5 (1.8–3.6) 1.5E-07

Wheezy LRI (events per y) 1 1.3 (0.68–2.4) 0.43 1.1 (0.35–3) 0.83 2.6 (0.62–58) 0.34 1.5 (0.98–
2.3)

0.06

2 1.2 (0.8–2) 0.33 1.6 (0.89–2.9) 0.12 2.4 (0.67–16) 0.24 1.6 (1.2–2.2) 5.6E-03

3 2.8 (1.6–5.6) 1.3E-
03

3 (1.4–8) 0.016 1.2 (0.43–4.6) 0.76 2.7 (1.8–4.2) 4.1E-06

4 2.5 (1.5–5) 4.0E-
03

6.3 (2.5–21) 6.8E-
04

7.1 (1.2–169) 0.1 3.9 (2.5–6.7) 5.4E-08

Febrile LRI (events per y) 1 1.6 (0.77–3.6) 0.21 0.84 (0.28–1.9) 0.71 7.3 (0.78–178) 0.12 1.5 (0.93–
2.4)

0.098

2 1 (0.44–2.2) 1 4.8 (1.8–15) 3.9E-
03

1.6 (0.48–10) 0.5 2.3 (1.4–3.9) 1.2E-03

3 2 (1–4.8) 0.08 4.3 (1.2–15) 0.02 4.2 (0.55–519) 0.37 2.4 (1.4–4.3) 2.3E-03

4 1.8 (0.97–4.1) 0.092 2.6 (0.88–8.3) 0.082 1.1 (0.11–18) 0.93 2.2 (1.3–4) 5.9E-03

Quartile of % healthy NPAs with
infection-associated MPGs

0–
2

1 (0.54–1.8) 0.98 1.3 (0.72–2.4) 0.36 NA NA 1.3 (0.89–
1.8)

0.19

2–
4

0.45 (0.19–0.88) 0.035 1 (0.51–2.1) 0.9 NA NA 0.8 (0.53–
1.2)

0.24

HDM IgE (kU/L)* 6m 8 (0.85–94) 0.074 0.93 (0.14–3.6) 0.92 3.4 (0.26–180) 0.4 2.3 (0.99–
5.8)

0.054

1 1.5 (0.22–7.8) 0.65 0.54 (0.039–2.3) 0.51 39 (2.5–22000) 0.082 2.7 (1.5–5) 0.00089

2 0.93 (0.28–2.5) 0.89 2 (1.2–3.7) 0.016 1.4 (0.38–4.8) 0.62 2 (1.5–2.8) 2.80E-
05

3 1.4 (0.68–2.9) 0.32 1.5 (0.9–2.4) 0.12 1.5 (0.4–5.2) 0.55 1.7 (1.3–2.2) 1.00E-
04

4 1.9 (0.94–4.1) 0.086 1.9 (1.2–3.1) 0.011 1.4 (0.31–5.5) 0.64 1.9 (1.5–2.5) 3.70E-
06

HDM IgG4 (mg/L)* 6m NA (NA-NA) 0.55 0.053 (NA-
6.5e + 24)

0.99 28 (1.7e-34-NA) 0.99 1.4 (0.88–
2.6)

0.17

1 NA (NA-NA) 0.61 1.1 (0.8–1.5) 0.5 0.9 (0.58–1.3) 0.6 1.2 (1–1.4) 0.053

2 1.1 (0.71–1.6) 0.67 1.1 (0.85–1.4) 0.61 0.4 (0.038–1.2) 0.26 1.1 (1–1.3) 0.056

3 1.1 (0.85–1.5) 0.35 1.1 (0.77–2) 0.64 0.94 (0.19–2.3) 0.9 1.1 (0.98–
1.2)

0.1

4 1.2 (0.98–1.5) 0.082 0.89 (0.7–1.1) 0.33 0.46 (0.031–5.4) 0.53 1.1 (1–1.3) 0.034

HDM IgG (mg/L)* 1 25 (0.32–
1.6E + 04)

0.19 3.3 (0.16–46) 0.38 5.6E-03 (8.4E-06–
0.57)

0.058 2 (0.31–11) 0.44

2 0.8 (0.15–3.5) 0.78 0.97 (0.24–3.7) 0.96 0.79 (0.031–18) 0.88 1.3 (0.6–2.9) 0.48

3 2.3 (0.14–35) 0.54 0.48 (0.057–2.5) 0.43 3.9 (0.26–96) 0.34 2.1 (0.89–5) 0.089

BMI = body mass index; HDM = house dust mite; LRI = lower respiratory infection. Association analyses performed via generalised linear models (GLM)

with demographic covariates: age-5 wheeze ~predictor + sex (male) +BMI at age 3 + paternal history of asthma +maternal history of asthma. Bold text

indicates statistical significance (p<0.05); italics indicate near-significance (p<0.10). *Odds ratio (OR) is for every 10-fold increase in IgE, IgG4 or IgG.
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Tang et al. eLife 2018;7:e35856. DOI: https://doi.org/10.7554/eLife.35856 12 of 31

Research article Computational and Systems Biology



Figure 5. LRI frequency (A), wheezy LRI (wLRI) frequency (B), and HDM IgE (C), stratified by age-5 wheeze status, cluster and time, in the CAS dataset.

Points indicate means; bars indicate 95% CI (t-distribution). #p<0.05 for repeated-measures ANOVA across timepoints from the first 3 years of life (see

Table 4). *p<0.05 for Mann-Whitney-Wilcoxon comparison within each timepoint.

DOI: https://doi.org/10.7554/eLife.35856.015

The following figure supplements are available for figure 5:

Figure supplement 1. A ‘simple’ decision tree generated by recursive partitioning from CAS data, with breakdown of tree clusters by actual CAS

npEM-derived clusters.

DOI: https://doi.org/10.7554/eLife.35856.016

Figure supplement 2. Decision tree generated by recursive partitioning from CAS data, excluding Phadiatop assay variables.

DOI: https://doi.org/10.7554/eLife.35856.017

Figure supplement 3. A ‘comprehensive’ decision tree generated by recursive partitioning from CAS data, given CAS npEM-derived clusters and age-

5 wheezing status.

DOI: https://doi.org/10.7554/eLife.35856.018

Figure supplement 4. Comparison of predictors for age-5 wheeze in CAS and COAST clusters.

DOI: https://doi.org/10.7554/eLife.35856.019
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Relationship with the nasopharyngeal microbiome
Previous studies suggest an association between asthma risk and early-life disruption of the respira-

tory microbiome, especially colonisation with Streptococcus spp. in the first 7 weeks of life

(Teo et al., 2015). In this study, using the same data and definitions, we found that CAS3 was over-

represented by individuals who had >20% relative abundance of Streptococcus in their first infec-

tion-naive healthy NPA, within the first 7 weeks of life (44% versus 11% and 15% in CAS1 and CAS2,

respectively; Fisher exact test, unadjusted p=0.042 and 0.065, respectively; Table 3).

Furthermore, Teo et al and others (Teo et al., 2015; Bisgaard et al., 2007) previously found that

transient incursions with certain MPGs (Streptococcus, Haemophilus, Moraxella spp.) were associ-

ated with increased frequency and severity of subsequent LRIs and wheezing disease. Here, we

found that proportion of these infection-associated MPGs in healthy samples from age 0 to 2 was

greater in CAS3 (62% vs. 49% and 32% in CAS1 and CAS2, respectively; Fisher exact test,

Figure 6. PBMC expression of IL-5. (A) and IL-4 mRNA (B), as well as IL-13 protein (C), in response to stimulation HDM, stratified by cluster and time

(CAS) Cord = cord blood sample collected at birth.Points indicate means; bars indicate 95% CI (t-distribution).

DOI: https://doi.org/10.7554/eLife.35856.022
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unadjusted p=0.2 and 5.5 � 10�4, respectively; Table 3). This finding was independent of LRI and

wLRI frequency (GLM; p<0.05 for model predicting group membership, with age-2 LRI and wLRI as

covariates). On the contrary, there were no associations between cluster membership and health-

associated MPGs (Corynebacterium, Alloiococcus, Staphylococcus spp.; Supplementary file 1 –

table supplement 3E).

Recent work by Teo et al., 2017) suggested that infection-associated MPGs in early life were pre-

dictive for age-5 wheeze in atopic children, while in non-atopic children they were predictive for

transient wheeze. In this study, with the same cohort, we noted a similar trend for infection-associ-

ated MPGs from age 0 to 2, in relation to transient wheeze in ‘non-atopic’ CAS1 (GLM, OR 3.6 per

percent, p=0.17, with demographic covariates). Surprisingly, there was evidence that infection-asso-

ciated MPGs in later samples (from age 2 to 4) were protective against age-5 wheeze in CAS1 (OR

0.086 per percent, 0.45 per quartile, p=0.034 and 0.035, respectively; Table 4). Infection- and

health-associated MPGs were otherwise not associated with age-5 wheeze within the other clusters.

External replication of clusters in MAAS and COAST
The trajectories described by the CAS npEM clusters were replicated in two cohorts – the Manches-

ter Asthma and Allergy Study (MAAS) (N = 1085) (NAC Manchester Asthma and Allergy Study

Group et al., 2002) from Manchester, UK, and the Childhood Origins of Asthma Study (COAST)

(N = 289) from Wisconsin, USA (Lemanske, 2002). After applying our npEM classifier to these exter-

nal cohorts (materials and methods), we found that individuals classified into ‘Cluster 3’ (MAAS3/

COAST3) had a persistent disease phenotype extending into late adolescence, with consistently

high rates of parent-reported wheeze and physician-diagnosed asthma from birth to age 16. The

other two clusters (Cluster 1 = MAAS1/COAST1; Cluster 2 = MAAS2/COAST2) appeared to be low-

risk (Figure 7A,B,D).

MAAS3 and COAST3 exhibited stronger IgE expression (total, HDM, cat, dog) from ages 1 to 8

(Figure 7C,E), compared to other clusters in each dataset. Like CAS3, COAST3 demonstrated ele-

vated PBMC expression of Th2 cytokine protein (IL-5 and IL-13) in response to HDM stimulation at

age 3 (Figure 7F). This was not replicated in MAAS3, but previous work in MAAS had identified that

a strong PBMC Th2 response (IL-5, IL-13) to HDM stimulation at age 8 was associated with increased

risk of HDM sensitisation and asthma (Wu et al., 2015). Nonetheless, MAAS3 was overrepresented

in ‘early-sensitised’ and ‘multiple sensitised’ phenotypes described by Lazic et al. (2013) from SPT

and IgE data. Approximately 86% of individuals in MAAS3 belonged to either one of these two phe-

notypes, although only 13% of individuals in these two phenotypes were accounted for by MAAS3.

Furthermore, when we explored potential predictors of wheeze phenotypes and asthma diagno-

sis in later childhood, we found that the clusters in COAST were very similar to those in CAS. In

COAST1, LRI and wLRI frequency at age 2 were predictive of asthma diagnosis at age 6 (GLMs with

demographic covariates, p=0.02 and 0.02, respectively), while in COAST2, HDM IgE at age 3, and

LRI, wLRI and fLRI frequencies at age were all predictive (GLMs, p<0.05 for all) (Figure 5—figure

supplement 4). Although the timing and magnitude of associations differed between cohorts, this

reaffirmed wheeze in Cluster 1 as being primarily non-atopic in origin, while wheeze in Cluster 2

appeared to be driven by both non-atopic and atopic factors.

We re-applied npEM classification to CAS using only those features present in MAAS or COAST.

For MAAS and COAST features, the subsequent clusters bore 79% and 72% concordance with the

original CAS clusters, respectively. In both cases, concordance was excellent for Cluster 3 – all 22

members of the original CAS3 were correctly assigned to Cluster three after re-applying npEM.

Therefore, CAS3, COAST3 and MAAS3 likely represent very similar phenotypes.

Internal stability and validity of CAS clusters
We checked the stability and validity of the CAS clusters with leave-one-out (LOO) analysis, Jaccard

indices and silhouette widths. The average Jaccard indices from leave-one-individual-out analysis

were 0.77, 0.76, and 0.85 for CAS1, 2 and 3, respectively. For leave-one-feature-out analysis, the

average indices were 0.65, 0.60, and 0.74, respectively. This demonstrates that the clusters, espe-

cially CAS3, were relatively resilient to minor changes in sampling or feature selection.

In relation to internal validity of the CAS clusters, average silhouette widths were universally poor,

at 0.05, 0.06 and 0.002 for CAS1, 2, 3, respectively, with an average for all three clusters of 0.05
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Figure 7. Description of npEM-derived clusters in external cohorts: in MAAS, incidence of wheeze. (A), asthma diagnosis (B), and HDM IgE levels (C); in

COAST, incidence of asthma diagnosis (D), proportion of individuals with detectable aeroallergen-specific IgE levels (E), and PBMC protein expression

of IL-13 following HDM stimulation above unstimulated control (F) MAAS cohort (N = 934) was classified using npEM model from CAS, into MAAS1

Figure 7 continued on next page
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(Figure 1—figure supplement 2). Silhouette widths were particularly suboptimal with CAS3, with at

least half of those classified having negative values. The overall poor internal validity of the clusters

may be due to the large-scale and exploratory nature of our approach – the metric may have been

obscured by intra-cluster heterogeneity in other variables that were not particularly important for

determining cluster membership. However, it must be noted that all clusters on average yielded pos-

itive silhouette widths, and as observed in the rest of the results, they were all relatively homoge-

neous in terms of the outcomes of interest (wheeze status, allergic disease phenotypes).

Decision tree analysis
Decision tree analysis on the CAS dataset, using all available predictors from all timepoints, created

a ‘Simple Tree’ with two decision nodes and three end nodes (Figure 5—figure supplement 1). This

tree had 89% accuracy in retrieving cluster memberships from the original npEM model, where accu-

racy is calculated as percentage overlap of tree clusters with original CAS clusters. We found that

membership in the CAS3-equivalent tree cluster was a better predictor for age-5 wheeze (likelihood

ratio test, Chi-squared = 19, p<1 � 10�5) than traditional thresholds for atopy based on IgE and SPT

measurements at age 2. IgG4-related variables best separated CAS1 from other clusters, while IgE-

related variables best separated CAS2 and CAS3. Explicitly forcing the exclusion of Phadiatop varia-

bles from tree analysis caused these thresholds to be replaced with allergen-specific assays (HDM

IgE for Phadiatop IgE, Figure 5—figure supplement 2) in a way that is consistent with correlation

patterns amongst IgE and IgG4 variables (Supplementary file 1 – table supplement 6).

We also constructed a ‘Comprehensive Tree’ that best split individuals into six groups, based on

cluster membership crossed with age-5 wheeze status (Figure 5—figure supplement 3). We thus

identified nodes that were consistent with predictors for wheeze found in the previous regression

analyses (Table 4), combined with nodes from the Simple Tree (Figure 5—figure supplement 1).

The Comprehensive Tree had 77% accuracy in recovering both cluster membership and wheeze sta-

tus. In terms of identifying pure wheeze status at age 5, the accuracy of the tree was 84%, with a

positive predictive value (PPV, or precision) of 72%, negative predictive value (NPV) of 88%, sensitiv-

ity (recall) of 71% and specificity of 89%. The Comprehensive Tree was more successful in flagging

age-5 wheeze (likelihood ratio test, Chi-squared = 60, p=6.1 � 10�13), compared to the traditional

atopy thresholds described previously.

Discussion
We have used model-based cluster analysis to uncover clusters of children with differential asthma

susceptibility. Specifically, there was a high-risk group (Cluster 3) characterised by very early aller-

gen-specific Th2 activity; early sensitisation to multiple allergens including food allergens; and con-

current frequent respiratory infections – resulting in high incidence of atopic persistent wheeze. We

also found a lower risk cluster (Cluster 2), with limited or delayed elevation in IgE – this resulted in a

lower incidence of mixed (atopic and non-atopic) wheeze. Finally, there was a low-risk cluster (Clus-

ter 1) which exhibited occasional and transient infection-related wheeze, with minimal allergen sensi-

tisation. These clusters were replicated in external datasets, suggesting relevance across

populations. Summaries of key findings are given in Table 5 and Figure 2.

Cluster three is a high-risk, multi-sensitised, atopic phenotype
Cluster 3 represented a multi-sensitive or polysensitised phenotype (Bousquet et al., 2015). In

CAS3, not only was total IgE elevated, but specific IgE were also raised for most allergens. Three in

four CAS3 individuals were sensitised (specific IgE �0.35 kU/L) to two or more allergens. In our

external replication with MAAS, we observed a large overlap between our predicted high-risk phe-

notype (MAAS3) and the multiple atopy phenotype from Lazic et al., 2013). This was consistent

Figure 7 continued

(N = 199, 21%), MAAS2 (N = 692, 74%) and MAAS3 (N = 43, 5%); these correspond to CAS clusters CAS1, 2 and 3, respectively. COAST cohort

(N = 285) was similarly classified into COAST1 (N = 105, 37%), COAST2 (N = 151, 53%) and COAST3 (N = 29, 10%).
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with findings from other studies, where the severely atopic and polysensitised subpopulation was at

greater risk of both wheezing disease and reduced lung function (Hose et al., 2017).

It is not currently known what is fundamentally producing the strong atopic predisposition in Clus-

ter 3. It is possible that inherited (genetic/epigenetic) or environmental factors (including in utero or

perinatal exposures) may be involved, and these should be targets for future investigations. The

overrepresentation of males in CAS3 is consistent with the consensus that young boys are at greater

risk for asthma than young girls; this was traditionally believed to be due to intrinsic sex differences

in airway diameter (Almqvist et al., 2008). However, our cluster analysis did not employ any cluster-

ing features related to airway size. This suggests that other sex-related factors could be involved,

such as differences in immunity and allergic susceptibility. Allergic sensitisation is more frequent

amongst prepubescent boys than girls (Gabet et al., 2016; Kim et al., 2014), and this may be linked

to differences in cytokine responsiveness. However, not all boys were clustered into Cluster 3; and

sex was not found to be a determinant for either IgE levels or cytokine response in CAS.

We did observe that CAS3 overlapped strongly with both persistent food sensitisation and

eczema, and that persistent wheeze co-occurred with early sensitisation and eczema. This suggests

that the ‘atopic march’ may play a role in CAS3. Early disruption of the skin barrier and exposure to

certain food allergens may act in concert to promote and entrench the atopic phenotype, through

the activation of cytokine pathways involving TSLP, IL33 and IL25 (Bantz et al., 2014; Han et al.,

2017). Although recent research has suggested that very few children actually follow the disease tra-

jectory of the atopic march (Belgrave et al., 2014), we hypothesise that it remains relevant to a

small but important high-risk subpopulation, who may potentially benefit from early interventions

targeted at halting the progression of disease.

Role of early-life HDM hypersensitivity
In all three cohorts (CAS, MAAS, COAST), house dust mite (HDM) sensitivity was an important deter-

minant of atopic disease risk. HDM was a strong predictor for both CAS3 membership and later

childhood wheeze in CAS2, as well as being a ‘dominant’ allergen in the Phadiatop Infant assays.

CAS3 in particular exhibited early and extreme HDM hypersensitivity, with prematurely-elevated

HDM IgE, as well as PBMC Th2 response (IL-4, 5, 9, 13) to HDM stimulation. Similar phenomena

were seen with MAAS3 and COAST3. The importance of HDM hypersensitivity in driving allergic dis-

ease in some populations is well-described in the literature (Thomas et al., 2010; Calderón et al.,

2015). Previous findings from MAAS and a similar cohort RAINE (Wu et al., 2015) have shown a

confluence of high HDM IgE, as well as PBMC Th2 cytokine levels such as IL-13 and IL-5, in discrete

subsets of the population. However, we did observe that in other clusters (CAS1 and CAS2), some

Table 5. Key findings from cluster analysis

Certain childhood populations may be broadly split into three clusters, each representing a unique trajectory of immune function and susceptibility to
respiratory infections: low-risk non- atopic Cluster 1 with transient wheeze; low-risk but allergy-susceptible Cluster 2 with mixed wheeze; and strongly-
atopic high-risk Cluster 3 with persistent wheeze.

Cluster 3 is consistent with an early-sensitised and multi-sensitised phenotype.

HDM hypersensitivity is an important predictor of wheeze in allergic or allergy -susceptible individuals.

Food and peanut hypersensitivities are important contributors to membership in high-risk Cluster 3. This may be pathophysiologically related to eczema,
multi-sensitisation and the atopic march.

In CAS, IgG4 flags for clusters with susceptibility to atopic disease (CAS2 and CAS3), while early and multiple-allergen elevation in IgE predicts frank
atopic disease. The pathophysiological role of IgG4 remains unclear.

Allergic and infective processes act additively to intensify airway inflammation during respiratory pathogen clearance. Some (Cluster 3) may be more
susceptible to this effect than others that lack strong allergic sensitisation (Cluster 1).

Tests for atopy (IgE, SPT, cytokines) do not overlap perfectly. Therefore, atopy may be better defined by the composite result from a battery of tests
encapsulated in a predictive model, rather than just a single test or threshold.

The microbiome acts differently on asthma risk depending on cluster membership. In CAS, early-life asymptomatic colonisation with infection-associated
MPGs is associated with risk of persistent wheeze in allergy-susceptible clusters (CAS2, CAS3), while it is potentially protective in non-atopic children
(CAS1)

Different childhood populations may share similar trajectories of asthma susceptibility, but there may be subtle differences in terms of the types of tests,
allergens, or biological signals that are most informative (SPT, IgE, cytokines, etc.).
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individuals with purported HDM sensitisation (IgE >0.35 kU/L) did not produce detectable Th2

responses; the reverse was also true, where Th2 response did not necessarily result in high IgE. It

may be the case that there is high intra-individual variation in IgE and cytokine responses, or stochas-

tic variation in detectability of IgE or cytokine, which may obscure association analyses. Regardless,

early and strong Th2 cytokine responses against HDM indicate a high-risk phenotype.

Role of early-life food and peanut sensitisation
Interestingly, early-life peanut IgE was a strong delineator between high-risk CAS3 and lower-risk

CAS1 and 2. There is evidence in the literature for transmission of peanut allergen in utero or via

breastmilk (Vadas et al., 2001; DesRoches et al., 2010), as well as early sensitisation via home envi-

ronmental exposure, especially in those with concurrent eczema or a predisposing filaggrin (FLG)

mutation that may allow transcutaneous infiltration of allergen (Brough et al., 2013; Brough et al.,

2014). The strong correlation between Phadiatop and peanut IgE in the first year of life suggests

that either peanut reactivity is significant at this earlier timepoint, or that ‘peanut-specific IgE’ is

cross-reactive and representative of some other allergen hypersensitivity. The fact that this correla-

tion exists within each cluster (Supplementary file 1 – table supplement 6) suggests that it is not

caused solely by differences between low- and high-risk clusters (CAS1/CAS2 vs. CAS3). There is a

possibility that peanut IgE is a marker for a broader phenotype of early and unremitting sensitisation

to multiple food allergens (peanut, cow’s milk, eggwhite), as we had observed in CAS3. However, it

is unlikely that premature exposure to food allergen is the lone driver for sensitisation and disease,

given that well-timed oral exposures to common food allergens (e.g. within 4 to 6 months of age)

may actually be protective (Koplin et al., 2010). There is some evidence that quantity (minute vs.

abundant), route (skin vs. oral) and timing (early vs. late) of exposure are key modifiers of risk

(Han et al., 2017). Ultimately, an underlying atopic predisposition linked to early-life exposure to

food allergen may be driving the high-risk phenotype in Cluster 3.

IgG4 separates individuals susceptible to atopic wheeze from those
who are not
In our study, neither IgG nor IgG4 were strong predictors or protectors of wheeze. However, IgG4

was a strong delineator of cluster membership in CAS, with individuals from CAS2 and CAS3 having

elevated IgG4 across all specificities compared to CAS1. Vulnerability to early IgE-driven respiratory

disease (‘atopic wheeze’) can be seen in these same individuals –in CAS2 where HDM IgE is predic-

tive for later wheeze, and in CAS3 where both wheeze frequency and IgE are elevated. Hence,

although there had previously been doubt about the efficacy of IgG4 as a marker for atopy

(EAACI Task Force et al., 2008), our study suggests that IgG4 is still relevant for determining atopic

risk, especially when used in combination with IgE.

The underlying biology behind the association of IgG4 with susceptibility to ‘atopic wheeze’ is

unclear. Th2-related pathways drive production of both IgE and IgG4, with IgG4 predominating

when modified by concurrent IL-10 signalling (Davies and Sutton, 2015). In susceptible individuals,

IgG4 production likely precedes isotype switching to frank IgE production (Aalberse, 2011). Multi-

ple studies have reported that IgG4 is correlated with induced tolerance following desensitisation

immunotherapy with high-dose allergen treatment (Davies and Sutton, 2015). However, based on

this study alone, we cannot observe any protection from naturally elevated IgG4 levels. Our group

had previously suggested, using data from another cohort (Holt et al., 2016), that IgG and specifi-

cally IgG1 may provide endogenous protection against IgE-associated wheeze in children experienc-

ing natural (low-level) exposure to aeroallergen. In this present study, IgG1 was not measured.

The role of respiratory infection and nasopharyngeal microbiome in
childhood wheeze differs across different clusters
The co-occurrence of elevated IgE and LRI frequency in CAS3, as well as their predictive effect in

CAS2, are consistent with previous findings from CAS (Holt et al., 2010; Teo et al., 2015;

Kusel et al., 2007). They lend support to the theory that allergic and infective processes act addi-

tively to intensify airway inflammation during respiratory pathogen clearance, which in turn drives

progression towards persistent wheeze (Holt and Sly, 2012). In addition, our cluster analysis sug-

gests that the pathologic effect of this interaction may be stratified in discrete subpopulations,
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rather than acting in a strictly dose-dependent fashion across the entire cohort. There may be sub-

sets of children (CAS2 and CAS3) who are more susceptible to the effects of this viral-atopy interac-

tion. On the other hand, pathogen clearance in infected non-atopic (CAS1) subjects may be more

efficient, due to lack of susceptibility to the pro-inflammatory effects of atopic co-stimuli. This produ-

ces lower levels of ‘bystander’ inflammatory damage to airway tissues, with opportunity for recovery,

resulting in a less severe wheeze phenotype.

Of particular note is that, while both CAS1 and CAS2 have LRI and wLRI frequencies as predictors

for age-5 wheeze, CAS2 also has fLRI, particularly at age 2. This, along with the general higher inci-

dence of fLRI in CAS3, is consistent with previous findings from CAS (Holt et al., 2010; Teo et al.,

2015). It suggests that symptomatically severe infections, correlating with severe airway inflamma-

tion, may be more potent in causing persistence of wheeze, specifically among those who are

‘atopic’ (CAS2 and CAS3).

In addition, even during periods of good health, the upper respiratory microbiome played a role

in determining later childhood wheeze. Its effect interacted with cluster membership, as well as the

age at which the microbiome changes occurred. CAS3 was enriched for early-life infection-associ-

ated MPGs (Streptococcus, Moraxella, and Haemophilus). This was consistent with the previous find-

ing by Teo et al., 2017) that early-life infection-associated MPGs were predictive of age-5 wheeze

only within atopic individuals (as defined by IgE alone). Interestingly, in our current study, we found

a protective effect of infection-associated MPGs from age 2 to 4 in CAS1. We hypothesise that those

without atopy-related immune dysfunction are able to maintain a healthy trajectory by responding

appropriately to stimuli from potential pathogens that colonise the respiratory tract, thus achieving

protection against future (non-atopic) wheeze. This is akin to the ‘hygiene hypothesis’: exposure to a

greater repertoire of pathogen-derived antigens may facilitate maturation of immune functions

against said pathogens. Meanwhile, individuals with a predisposing immune dysfunction (i.e. ‘atopy’

manifesting in early-life allergic sensitisation) may be responding in a maladaptive manner to these

microbes (Holt and Sly, 2012). This may result in inability to clear potential pathogenic bacteria, or

shaping of aberrant immune responses – with subsequent effects on airway inflammation and

wheeze.

Implications for cluster analysis in asthma research
In this study, we applied mixture modelling to generate clusters from biological data. Similar meth-

ods such as latent class analysis (LCA) have previously been used in asthma research – for instance,

LCA was applied to SPT and IgE measurements from MAAS to determine different patterns of aller-

gen sensitisation and subsequent disease (Lazic et al., 2013). However, LCA is limited to categorical

clustering features, so measures of sensitisation in that study were thresholded (e.g. IgE levels were

split into <0.35 kU/L, 0.35 to 100 kU/L, and >100 kU/L). The method also assumed that these thresh-

olds have the same relevance across all timepoints; that thresholds applied equally to all allergens;

and that all allergens contributed equally to disease susceptibility profiles. Mixture modelling is an

extension of LCA in that it does not require categorical variables or predetermined thresholds. Fur-

thermore, non-parametric mixture modelling (npEM) does not require input features to have Gauss-

ian distributions. Previous studies have used mixture models to explore phenotypes in adult asthma

based on clinical measurements (Janssens et al., 2012; Newby et al., 2014; Burte et al., 2015),

and one of our own studies previously looked at cytokine expression patterns of PBMCs from chil-

dren in response to HDM stimulation (Wu et al., 2015). Our study is the first to apply non-paramet-

ric mixture modelling to data representing immune and respiratory health in early childhood, and to

investigate possible predictors of disease within each cluster.

Currently, mixture models are limited by an unproven ‘track record’; a lack of consensus about

best protocols for data processing and analysis; instability or inconsistency of clusters; difficulty in

interpretation of results; and uncertainty regarding the validity of certain assumptions that accom-

pany models (Deliu et al., 2016). Other methods of cluster analysis have similar problems, and while

they have been applied frequently to asthma research, they have also produced a confusing myriad

of phenotypes. The nature of cluster phenotypes is highly dependent on the type of features

entered into the clustering algorithm. Clustering features that represent final clinical endpoints, such

as markers of severity, may produce more heterogeneous clusters, as different pathological trajecto-

ries can arrive at similar endpoints. Some cluster phenotypes may contradict with each other, or may

not be easily interpreted. Recently, Schoos et al. (2017) identified that, unlike our study, asthma
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was not as strongly associated with prominent HDM or peanut hypersensitivity in a Danish birth

cohort (COPSAC) as other patterns of sensitisation (especially cat, dog and horse). However, we

note that they used thresholded IgE >0.35 kU/L to build their clusters. Other differences may

emerge due to heterogeneity across different populations; geographical differences in environmen-

tal exposures and allergen sensitisation; and differences in testing procedures and phenotype defini-

tions at different sites. COPSAC, CAS and COAST were cohorts enriched for high-risk individuals –

each child had at least one parent with a history of atopic disease – while MAAS had no such recruit-

ment criterion. Because of variability in findings, there has been wariness and scepticism among clini-

cians regarding the utility of mixture models and machine learning (Chen and Asch, 2017).

Ultimately, one may argue that discrepancies in our findings serve as a caution against the blind

application of ‘algorithms’ without due consideration of subtleties in target population and

environment.

Nonetheless, what we have demonstrated here is the vast potential of cluster analysis. We have

discovered clusters in an unsupervised and exploratory fashion, described them comprehensively,

replicated our findings in multiple datasets, and compared our clusters with other existing pheno-

types. In doing so, we have generated some new and interesting insights about the nature of atopy

and asthma risk. Our results build on previous findings (Frith et al., 2011; Klink et al., 1990) dem-

onstrating that the concept of atopy, as an intrinsic or heritable predisposition to allergic disease, is

more complicated than what could be described by dichotomies or thresholds. We have also dem-

onstrated that addressing subgroup differences via cluster analysis allows for identification of intra-

cluster disease predictors. In the future, clusters may be further characterised by other aspects of

asthma pathophysiology, such as genomics, transcriptomics, and epigenomics.

Concluding statements
The results of our study strongly support the future use of predictive models with more precise and

subgroup-driven representations of atopy or other relevant pathophysiology. We argue for ongoing

collaboration between research groups in terms of refining methodology, answering questions

unique to certain populations, and comparing cluster phenotypes arising from different algorithms

and datasets. We believe that, as clustering methods become more frequently used, we will gradu-

ally develop better consensus on how such methods are best applied to biomedical phenomena. By

continuing with these approaches, we can hopefully move away from fixed thresholds to more

sophisticated formulations of risk, which will then improve future attempts at targeted screening,

prevention and treatment of asthma. These approaches are already being applied to other hetero-

geneous diseases, and in the future computerised tools may be designed to embody the sum knowl-

edge from these approaches. Such approaches can eventually help clinicians and scientists achieve a

fuller understanding of pathophysiology, and hence better predict and manage human disease.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Biological sample
(Homo sapiens)

Childhood Asthma
Study (CAS)

DOI: 10.1016/j.jaci.2005.06.038 Microbiome sequencing
data: NCBI
GenBank SRP056779

Biological sample
(Homo sapiens)

Childhood Origins
of Asthma Study
(COAST)

PMID:12688623 NA

Biological sample
(Homo sapiens)

Manchester Asthma
and Allergy Study (MAAS)

PMID:12688622 NA

Software,
algorithm

The R project for
Statistical Computing

ISBN:3-900051-07-0 RRID:SCR_001905

Software,
algorithm

ggplot2 ISBN:978-3-319-24277-4 RRID:SCR_014601

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Software,
algorithm

mixtools DOI: 10.18637/jss.v032.i06 NA

Software,
algorithm

rpart Therneau and Atkinson, 2015.
Package ’rpart’.
URL:
https://cran.r-project.org
/web/packages
/rpart/rpart.pdf

NA

Software,
algorithm

epiDisplay Chongsuvivatwong, 2015.
Package ’epiDisplay’
URL:
https://cran.r-project.org
/web/packages
/epiDisplay/epiDisplay.pdf

NA

Patients and study design in CAS
Our discovery dataset was the Childhood Asthma Study (CAS), a prospective birth cohort (N = 263)

operated by the Telethon Kids Institute from Perth, Western Australia (Kusel et al., 2005). The goal

of CAS was to describe the risk factors and pathogenesis of childhood allergy and asthma. Further

details of CAS have been reported previously (Kusel et al., 2005; Hollams et al., 2009; Holt et al.,

2010; Teo et al., 2015; Hollams et al., 2017).

In CAS, expectant parents were recruited from private paediatric clinics in Perth during the

period spanning July 1996 to June 1998. Each child who was born and subsequently recruited had

at least one parent with physician-diagnosed asthma or atopic disease (hayfever, eczema). The child

was then followed from birth till age 10 at the latest, with routine medical examinations, clinical

questionnaires, blood sampling at multiple time points (6–7 weeks, 6 months, 1 year, 2, 3, 4, 5, and

10 years) and collection of nasopharyngeal samples. Parents also kept a daily symptom diary for

symptoms of respiratory infection in their child. The data extracted from these samples and meas-

urements covered multiple ‘domains’ of asthma pathogenesis, including respiratory infection, aller-

gen sensitisation, and clinical or demographic background.

Measurements in CAS
For each child and visit, the investigators of CAS recorded metrics related to suspected or known

modulators of asthma risk. These included markers of immune function: (1) IgG, IgG4, and IgE Pha-

diatop ImmunoCAP antibodies (ThermoFisher, Uppsala, Sweden), covering common allergens such

as house-dust mite (HDM, Dermatophagoides pteronyssinus), mould, couch grass, ryegrass, peanut,

cat dander; (2) IgE and IgG4 Phadiatop Infant and Adult assays (ThermoFisher, Uppsala, Sweden)

that target multiple allergens simultaneously (Ballardini et al., 2006); (3) skin prick or sensitisation

tests (SPT) for HDM, mould, ryegrass, cat, peanut, cow’s milk and hen’s egg; and (4) cytokine

responses (IL-4,5,9,13,10, IFN-g) following in vitro stimulation of extracted peripheral blood mononu-

clear cells (PBMCs) by multiple antigen and allergen stimuli, including phytohaemaglutinin (PHA),

HDM, cat, peanut and ovalbumin (Hollams et al., 2009; Holt et al., 2010).

In addition, nasopharyngeal samples (swabs or aspirates, NPAs) were taken from each child dur-

ing healthy routine visits (healthy samples), and unscheduled visits where parents presented with

their child if they have a suspected respiratory infection (disease samples). Frequency and severity of

respiratory infections were measured accordingly. NPAs were then screened for viral and bacterial

pathogens using rtPCR and 16 s rRNA amplicon sequencing with Illumina MiSeq (San Diego, US),

respectively (Teo et al., 2015). These NPAs had previously classified by Teo et al. (2015); Teo et al.

(2017), based on clustering of bacterial composition, into microbiome profile groups (MPGs) that

were associated with healthy respiratory states (health-associated MPGs, for example Alloiococcus-,

Staphylococcus- or Corynebacterium-dominated) or infectious respiratory states (infection-associ-

ated MPGs, for example Moraxella-, Haemophilus-, or Streptococcus-dominated).

Other collected data included: sex, height and weight; paternal and maternal history of atopic

disease; blood levels of basophils, plasmacytoid and myeloid dendritic cells as measured by
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fluorescence-assisted cell sorting (FACS); and levels of vitamin D (25-hydroxycholecalciferol, 25(OH)

D) (Hollams et al., 2017).

Identification of latent clusters and selection of clustering features
We adopted an exploratory approach to cluster analysis, whereby we attempted to interrogate as

much of the existing dataset as possible, identifying latent clusters that arise from the underlying

data structure of CAS. We then assessed how these latent clusters correlate with risk of asthma or

other markers of pathophysiology, such as degree of allergic sensitisation. All data processing and

analysis were done in R v3.3.1 (RRID:SCR_001905). A graphical overview of the analytic process is

displayed in Figure 1—figure supplement 3.

To identify latent clusters, we applied non-parametric expectation-maximisation (‘npEM’) mixture

modelling to our discovery cohort CAS, using functions from the R package ‘mixtools’

(Benaglia et al., 2009a). This method assumes that frequency distributions of each cluster can be

represented by non-parametric density estimates learned from the data in an iterative process.

npEM was used because: (1) it was plausible to consider a population as a mixture of subpopulations

each with their own distributions; (2) it had advantages over other unsupervised approaches

(Tan et al., 2005) – for example, with LCA, continuous variables cannot be handled appropriately;

with hierarchical clustering, poor decisions made early in the classifying process are not easily

amended; (3) many variables were categorical or non-Gaussian, so theoretically a non-parametric

approach should be superior to a Gaussian mixture model or k-means approach; and (4) inherent

within mixture models is an intuitive method for supervised classification of other datasets into simi-

lar clusters.

We used a largely non-selective approach to choosing features for cluster analysis, in that we

attempted to retain as many CAS individuals and variables as possible. However, we did enforce cer-

tain quality-control measures such as excluding variables (‘features’) that had missing data for >20%

subjects (442 variables removed), and subjects with missing data for >30% of the remaining variables

(39 subjects removed). Also excluded were features pertaining to our primary outcomes of interest:

incidence of parent-reported wheeze, physician-diagnosed asthma and hayfever at all timepoints.

We specifically excluded these from feature selection so we could determine how subsequent clus-

ters differ in these outcomes, even when clustering was not explicitly driven by them. On the other

hand, eczema was not excluded because of evidence that infantile eczema may itself influence the

risk for subsequent sensitisation and asthma (Gustafsson et al., 2000). Frequency of wheeze in the

context of respiratory infection was also included, as it was a symptomatic marker of infection sever-

ity. Variable reduction resulted in M = 174 variables remaining out of an original 659. The complete

list of variables included as clustering features is provided in Supplementary file 1 – table supple-

ment 1, and importantly covers multiple domains including demographic (family history of atopy,

household size), clinical (incidence of childhood eczema), immunological (IgE, IgG, IgG4, SPT) and

microbiological (respiratory infections, viral pathogens associated with infection) features. By virtue

of study design and quality control measures, many of the clustering features were related to immu-

nological function or respiratory infection in the first 3 years of life.

Highly skewed features, such as antibody and cytokine levels, were subjected to logarithmic

(base 10) transformation. We also applied limited thresholding to some variables (cytokine

responses, antibody assays), based on best practice for the reported limit-of-detection (LOD) of the

measuring devices. The LOD for IgE was 0.03 kU/L; for IgG4, 0.0003 mg/L; for IgG, 0.4 mg/L. For

these variables, we assigned any values below the LOD to half the LOD (i.e. 0.015 kU/L, 0.00015 mg/

L, and 0.2 mg/L, respectively). For stimulated cytokine expression above unstimulated control, any

zero or negative values (i.e. unstimulated control had equal, or greater, expression than stimulated),

were converted to 0.000001 units or 0.01 pg/ml for mRNA and protein variables, respectively. Posi-

tional standardisation scaling was then applied across all variables, to equally weight the contribu-

tions of each feature to the mixture model. This involved replacing each value xij for individual i of

feature j, by:

xij�med xj
� �

max xj
� �

�min xj
� �
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where functions med, max and min refer to the median, maximum, and minimum for the com-

plete-case dataset for feature j, respectively.

Cluster analysis using non-parametric mixture modelling
The processed and scaled CAS dataset was further split into those subjects with no missingness in

the remaining variables (‘complete-case’, 186 subjects, 174 variables); versus those who had limited

missingness of <30% variables (‘low-missingness’, 36 subjects, 174 variables). Cluster analysis was

performed initially in the complete-case CAS subset to generate an npEM model.

The mathematical theory underpinning npEM has already been described extensively in other

sources (Benaglia et al., 2009b). In brief, it involves three steps: (1) an expectation or E-step, which

calculates the posterior probability of membership in cluster k, given the observed dataset, esti-

mated mixing proportions lk, and probability distribution for k; (2) a maximisation or M-step, which

calculates the mixing proportions lk from the cluster memberships determined above; (3) a non-

parametric kernel density estimation step, which calculates the probability distribution based on a

kernel density function for each cluster k and clustering feature j. These steps were then iterated

until the model converged to a point where log-likelihood values were maximised.

As with any EM algorithm, an initial state must first be set prior to commencing the iterative pro-

cess. To do this, we used a constant seed state (‘set.seed(1)’) to allow reproducibility of results.

Based on these pseudo-random centroids for a set number of clusters L, the initial state was then

determined by k-means clustering as in Benaglia et al (Benaglia et al., 2009b). The other options in

npEM were set to defaults. These included the use of non-stochastic (deterministic) as opposed to a

stochastic method; the use of a standard normal density function as the kernel function; and the use

of default constant bandwidths for estimating kernel densities (Benaglia et al., 2009b).

The ideal number of clusters L was determined by two methods. Firstly, we performed hierarchi-

cal clustering on the complete-case dataset, and scrutinised the dendrogram as well as a scree plot

for an optimal cut-off using the ‘knee method’ (Tan et al., 2005). We observed that this occurred at

around L = 3 or 4. Secondly, we repeated npEM clustering for values of L = 1,2,. . .,20, and calculated

the Bayesian information criterion (BIC) for each of these, using the formula:

BIC¼�2 log p̂ð Þþ n log Nð Þ

where P is the maximum likelihood, n¼ L�Mþ L� 1ð Þ, and L, M, N are total number of clusters,

clustering features, and individuals respectively. The optimal number of clusters was again deter-

mined to be around L = 3 or 4, based on minimum BIC observed. For the sake of parsimony, we set

the number of clusters to three.

Classification of test datasets using mixture model densities
The density functions generated by the resultant npEM model were then used to classify as many

subjects of the low-missingness subset as possible. This method relied on the assumption that distri-

butions observed in the ‘training’ (complete-case) dataset were representative of distributions that

existed in ‘test’ (low-missingness or external) datasets.

Classification was performed as follows: consider individual i of N; clustering feature or coordi-

nate j of M; and component or cluster k of L. For each individual i belonging to known cluster k=K,

let the kernel density function for coordinate j be fjK xij
� �

. We now assume that the coordinates j

were independent of each other. Although this was not truly the case – for instance, weak correlation

exists between IgE and IgG4 of different allergen specificities in the CAS dataset [23] – we believed

the assumption was justified given our theory-naive and exploratory approach. With this assumption,

the joint distribution for individual i in cluster K should be the product of density functions for all j

given K. and therefore the probability of individual with value xij belonging to cluster K was:

P k¼Kjxij
� �

¼
lK

QM
j¼1

fjK xij
� �

PL
k¼1

lk

QM
j¼1

fjk xij
� �

In addition to this, we made two other assumptions: (1) if xij was missing, then the density was

assumed to be one, or fjK xij
� �

¼ 1; (2) else, if xij < min(xj), the minimum value in feature j for which
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there was a non-zero density value, then the density was equal to that of the minimum value,

that is fjK xij
� �

¼ fjK min xj
� �� �

. Likewise, if xij > max(xj), then fjK xij
� �

¼ fjK max xj
� �� �

.

Individuals with membership probability greater than 90% for cluster K were classified into K.

Using this method, an additional 31 individuals from 36 were successfully classified into one of three

clusters, for a total combined dataset of 217 classified individuals in CAS.

Finally, we formally defined each CAS cluster using the composite of complete-case and low-miss-

ingness datasets, and described each cluster in terms of key characteristics and significant cluster-

specific predictors for age-5 wheeze. Importantly, variables that were initially excluded from feature

selection were treated as subsequent outcomes for post-hoc comparison of clusters.

Replication cohorts
The study designs and measurements for the two replication cohorts – the Manchester Asthma and

Allergy Study (MAAS) (N = 1085) from Manchester, UK, and the Childhood Origins of Asthma Study

(COAST) (N = 289) from Wisconsin, USA – have been described elsewhere (Belgrave et al., 2014;

Gern et al., 2002; NAC Manchester Asthma and Allergy Study Group et al., 2002;

Lemanske, 2002). COAST, like CAS, was comprised of high-risk individuals with a known family his-

tory of asthma or allergy; while MAAS included individuals without family history.

In terms of matching variables for replication, all cohorts had measurements that covered the

three major ‘domains’ of asthma pathogenesis: respiratory infection, allergen sensitisation, and clini-

cal or demographic background. COAST had a comprehensive collection of respiratory infection

and IgE-type measurements, but no IgG4 measurements. MAAS had multiple measurements of IgE

and SPT-type variables. Following consultation with investigators from all three cohorts, clustering

features were matched based on proximity of timepoint and phenotype. Respiratory infection phe-

notypes (ARI, LRI, URI, fLRI, wLRI) were generated in COAST and MAAS using recorded data, to

approximate CAS infection phenotypes as closely as possible. Specifically, LRI was defined as respi-

ratory infection with evidence of lower respiratory tract involvement in the form of chest sounds

(wheeze, rattle, whistle), or increased respiratory effort (retractions, tachypnea, cyanosis); URI was

defined as a cold-like infection limited to the upper respiratory tract, without signs of LRI. IgE and

IgG4 assays for MAAS and COAST were performed using ImmunoCAP and UniCAP, respectively.

Both replication cohorts recorded basic demographic data, and exposures to pets, childcare, and

tobacco smoke. The complete list of clustering features and the matching scheme across cohorts is

provided in Supplementary file 1 – table supplement 1.

The npEM clusters were described and validated in MAAS and COAST. This replication was per-

formed by applying the density-function-derived classifier used previously for the low-missingness

CAS subjects. Because these external cohorts did not necessarily share the same clustering features

or variables as CAS (Supplementary file 1 – table supplement 1), we assumed that the respective

densities for these variables were fjK xij
� �

¼ 1 for the jth feature and Kth cluster. In doing so, this was

effectively the same as using a model where the missing features were excluded, and only those fea-

tures common to both CAS and MAAS (or COAST) were used; or equivalently, where we assumed

that each member of MAAS or COAST was missing values in those particular features. Because these

’CAS-derived’ npEM models were non-identical to the original npEM models in CAS, we tested

whether ’MAAS-like’ and ’COAST-like’ algorithms (CAS-derived model as applied to MAAS or

COAST, respectively) generated similar clusters to the original CAS clusters, when applied back

onto CAS (Results).

Cluster validity and stability
Internal validation of the clusters in the complete-case CAS dataset was performed by use of silhou-

ette widths. Briefly, we calculated the silhouette widths for each cluster as per Rousseeuw (1987).

For an individual, the closer the silhouette width is to one, the more appropriate the cluster mem-

bership; while the closer it is to negative one, the more likely it has been misclassified.

Cluster stability was assessed by performing leave-one-out (LOO) analysis – that is, we applied

the npEM algorithm to a subset of the complete-case dataset – an N-1 by M dataset (N = 186,

M = 174) for a total of N times, leaving out an individual each time. A similar process was repeated

M times on an N by M-1 dataset, leaving out one clustering feature at a time. The Jaccard indices

for each iteration were then calculated in comparison to known clusters from the original complete-
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case N by M dataset, and averaged across each assigned cluster. Cluster labels for each iteration

were assigned based on whichever complete-case cluster yielded the smallest Jaccard index. This

whole process was then repeated with 10 random seeds (‘set.seed(1)’ through to ‘set.seed(10)’) for

determining the initial state for npEM. The final averaged Jaccard indices for each cluster thus repre-

sented the mean stability of each cluster.

Decision tree analysis
Decision tree analysis was performed using a number of different partitioning schemes. Classification

trees with recursive partitioning were built from CAS clusters using the R package ‘rpart’

(Therneau and Atkinson, 2015), an open-source implementation of CART. The motivation for deci-

sion trees was to identify the variables that most strongly separated the clusters and wheezing sta-

tus, and not necessarily variables that were most predictive.

For tree outcomes (end-nodes), we investigated both cluster membership and presence of age-5

wheeze given cluster membership. That is, decision trees were generated to identify the biological

features that most strongly distinguished each npEM cluster (‘Simple Tree’), as well as npEM

cluster �age-5 wheeze status (‘Comprehensive Tree’).

We used two different schemes for selecting predictors on which to base the partitions: 1) include

all predictors that were used as clustering features in the original npEM model; 2) include only pre-

dictors from one timepoint (variables from age 6 m, 1, 2 or 3). The motivation for the latter was that

we wanted to see whether measurements taken at a specific timepoint in early infancy could strongly

distinguish between clusters. For the former scheme, we excluded all age-5 features related to

wheeze (e.g. LRIs, wheezy LRIs at age 5) as decision nodes, because of definitional overlap with our

primary outcome of interest (age-5 wheeze).

Decision trees were then pruned based on the complexity parameter that minimised cross-vali-

dated error. Final classification into tree clusters was manually performed based on the pruned tree,

and not by automatic classification using the ‘predict’ function for the ‘rpart’ tree object – this was

because, for the latter, individuals who are missing key variables were re-classified based on the

next best, non-missing, surrogate variable (Therneau and Atkinson, 2015). Thus, it resulted in chil-

dren being erroneously classified into a tree cluster even when they were missing key classifier

variables.

The decision tree analyses generated thresholds which were then compared with existing thresh-

olds for atopy (any specific IgE at age 2 � 0.35 kU/L, and/or any specific SPT at age 2 � 2 mm)

(Frith et al., 2011) in terms of predicting disease outcomes of interest.

Statistical analyses
We performed statistical analyses comparing clusters in terms of multiple variables, especially those

not used as clustering features. Of interest to us were the primary outcomes of asthma diagnosis

and parent-reported wheeze at each timepoint. Where appropriate, we used t-tests, Mann-Whitney-

Wilcoxon tests, ANOVAs, Kruskal-Wallis tests, chi-squared and Fisher exact tests; and logistic and

linear regression. For summary statistics, multiple testing adjustment was performed using the Benja-

mini-Yekutieli (BY) method, for all across-cluster tests (Cluster � trait); and for all comparisons

between clusters (CAS1 vs. 2, 1 vs. 3, and 2 vs. 3). The BY method was chosen as it accounted for

positive dependency across the highly correlated variables in the CAS dataset (Benjamini and Yeku-

tieli, 2001). For variables that underwent logarithmic transformation for statistical analysis, we used

geometric mean to describe central tendency.

We then determined the predictors for age-5 wheeze within each cluster. Repeated-measures

ANOVAs were performed for selected predictors of age-5 wheeze. For each potential predictor,

generalised linear regression models (GLMs) were generated with and without a base set of covari-

ates (sex, family history of asthma, BMI where available). The pool of variables found to be

statistically significant (at least p<0.05) in the above analyses were further restricted, such that

strongly collinear predictors were avoided, and at most one timepoint was considered for each pre-

dictor type. Targeted multiple regression models were then built by selecting predictors from this

constrained pool. Stepwise backward elimination was applied, in which the predictor with the largest

p-value was eliminated at each step, until all remaining predictors have significant p<0.05.
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Using the ‘lrtest’ function from the R package ‘Epidisplay’ (Chongsuvivatwong, 2015), likelihood

ratios were examined to check how much cluster membership or classification improved upon pre-

diction of age-5 wheeze compared to traditional makers of atopy.
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Appendix B

Supplementary Figures and Tables
for Chapter 3
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FIGURE B.1: Scatterplot of principal components analysis (PCA) of the
complete-case CAS dataset (N = 186, with points coloured by npEM

clusters

Each point represents an individual. The first two PCs (shown) account for 16.7% of the total variance.
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0
Average silhouette width :  0.05

n = 186 3  clusters  Cj

j : nj | avei∈Cj  si

1 :   75  |  0.05

2 :   90  |  0.06

3 :   21  |  0.002

FIGURE B.2: Silhouette widths of clusters generated by npEM.

j = cluster number; nj= cluster size; avei∈Cj si = average silhouette width among members i of cluster Cj.
Overall average silhouette width across all clusters is also given.
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FIGURE B.3: Overview of study methodology.

Dashed arrows indicate non-critical elements of our method.
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FIGURE B.4: Relationship of clusters to food sensitisation, eczema and
wheeze.

Percentages denote proportion of cluster displaying phenotype (numbers in brackets denote actual sample
numbers). Food sensitization defined as peanut IgE ≥ 0.35 kU/L at any age, or cow’s milk, egg white, peanut
SPT > 2 or 3 mm for age ≤ 2 or > 2 respectively. Subphenotypes defined for food sensitization, eczema and
wheeze as: no phenotype = phenotype absent at all ages; transient = any incidence of phenotype at the earlier
ages (1 to 3 for wheeze, 6m to 3 for eczema, 6m to 2 for sensitization), but not age 5; late = phenotype at age 5,
but not the earlier ages; persistent = any incidence of phenotype at both earlier ages and age 5.
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* p<0.05 for Spearman correlation with Holm correction for multiple testing. Note the slightly stronger heat
along the main diagonals of both heatmaps, especially for HDM.
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FIGURE B.6: Distinct biological signals of HDM IgE, IgG4, SPT, and Th2
cytokine (IL-13).

(A) Th2 cytokine (IL-13) to HDM stimulation of PBMCs in vitro, vs. HDM IgE responses in vivo, stratified by
age of testing, and SPT result (positive denoted by ≥ 2mm at age <2 or 3mm at age 5). Dotted line represents
traditional threshold for HDM IgE positive result (0.35 kU/L). Note the significant number of individuals on
either side of the dotted line for both HDM SPT-positive and negative subgroups. (B) Th2 cytokine (IL-13) to
HDM stimulation of PBMCs in vitro, vs. HDM IgG4 responses in vivo, stratified by age of testing and HDM
IgE result (positive denoted by ≥ 0.35 kU/L).
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FIGURE B.7: A “simple” decision tree generated by recursive partition-
ing from CAS data, with breakdown of tree clusters by actual CAS
npEM-derived clusters (A); scatterplot showing separation of CAS clus-

ters by decision split thresholds (B).

Percentages in Panel A may not sum up to 100%, because some individuals have missing values for decision
node variables, hence making them impossible to classify. In Panel B, note that left-most column of points
represent values of HDM IgG4 that were less than the limit-of-detection (LOD) for that assay (0.0003 µg/L),
and were subsequently assigned to half the LOD (0.00015 µg/L). Most of these points belonged to individuals
from CAS1.
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FIGURE B.9: A “comprehensive” decision tree generated by recursive
partitioning from CAS data, given CAS npEM-derived clusters and age-

five wheezing status.

CAS1.x, 2.x, and 3.x, and tree cluster 1.x, 2.x and 3.x, refer to the intersection of npEM-generated clusters and
age-five wheeze status, and their analogous decision tree cluster, respectively. The second digit (x.0 or x.1)
refers to age-five wheeze status, with “1” = present wheeze and “0” = no wheeze. Boxes, bars and digits with
red outline indicate those with predicted (tree cluster) or actual (CAS npEM cluster) age-five wheeze. Note
that the tree did not predict for non-wheezing CAS3, so there is no tree cluster 3.0, and all CAS3 individuals
were automatically assigned to a wheezing tree cluster.
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FIGURE B.10: Comparison of predictors for age-five wheeze in CAS and
COAST clusters.

Colour coding and numbers in cells indicate odds ratio (OR) of predictor for age-five wheeze in GLM, with
sex, maternal and paternal history of asthma, and (for CAS) BMI as covariates. Non-grey cell with number
indicates statistically-significant association (p<0.05). Grey cell with number indicates non-significant (p>0.05);
grey non-numbered cell indicates test not done due to lack of data.
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TABLE B.1: List of clustering features

*Used as surrogate measure for values at different timepoints. Age 5 values substituted for age 3; age 3 for age
2; age 1 for age 6m, as indicated. ^Mixed grass SPT used as surrogate for ryegrasss SPT. Blue and Y indicates
feature present in dataset; yellow and Y indicates present, but only for some time-points (as indicated by
numbers in brackets); red and N indicates feature absent from dataset.

Feature Present?

CAS MAAS COAST

Sex Y Y Y

Respiratory infection-related variables
Frequency of upper respiratory illnesses (URIs) at ages 1, 2, 3 Y Y (1,3) Y
Frequency of lower respiratory illnesses (LRIs) at ages 1, 2, 3 Y N Y
Frequency of wheezy LRIs (wLRIs) at ages 1, 2, 3 Y Y (1,3) Y
Frequency of febrile LRIs (fLRIs) at ages 1, 2, 3 Y N Y
Number of URIs, LRIs, wLRIs, and fLRIs with respiratory syncytial virus (RSV)
detected, at ages 1, 2, 3

Y N Y

Number of URIs, LRIs, wLRIs, and fLRIs with influenza detected, at ages 1, 2, 3 Y N Y
Number of LRIs, wLRIs, and fLRIs with human rhinovirus A (HRVA) detected,
at ages 1, 2, 3

Y N Y

Number of LRIs, wLRIs, and fLRIs with human rhinovirus B (HRVB) detected,
at ages 1, 2, 3

Y N Y

Number of LRIs, wLRIs, and fLRIs with human rhinovirus C (HRVC) detected,
at ages 1, 2, 3

Y N Y

IgE variables
Total IgE (kU/L), with log10 transformation, at age 6m, 1, 2 and 3 Y Y (1,3) Y (1,2,3)
House dust mite (HDM)-specific IgE (kU/L), with log10 transformation, at age
6m, 1, 2 and 3

Y Y (1,3) Y (1,2,3)

Cat-specific IgE (kU/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y Y (1,3) Y (1,2,3)
Peanut-specific IgE (kU/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N Y (1,2,3)
Couch grass-specific IgE (kU/L), with log10 transformation, at ages 6m, 1, 2 and
3

Y N N

Ryegrass-specific IgE (kU/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N N
Mould-specific IgE (kU/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N N
Phadiatop Infant IgE (kU/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N N

IgG4 variables
HDM-specific IgG4 (µg/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y Y (5*) N
Cat-specific IgG4 (µg/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y Y (5*) N
Peanut-specific IgG4 (µg/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N N
Couch grass-specific IgG4 (µg/L), with log10 transformation, at ages 6m, 1, 2
and 3

Y N N

Ryegrass-specific IgG4 (µg/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N N
Mould-specific IgG4 (µg/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N N
Phadiatop Infant IgG4 (µg/L), with log10 transformation, at ages 6m, 1, 2 and 3 Y N N

IgG variables
HDM-specific IgG (mg/L), with log10 transformation, at ages 1,2, and 3 Y Y (5*) N
Cat-specific IgG (mg/L), with log10 transformation, at ages 1,2, and 3 Y Y (5*) N
(Timothy) Grass-specific IgG (mg/L), with log10 transformation, at ages 1,2, and
3

Y N N

SPT variables
Histamine-specific skin sensitisation or skin prick test (SPT) response, diameter
of wheal (mm) at ages 6m, 2

Y N N

HDM-specific SPT response, diameter of wheal (mm) at ages 6m, 2 Y Y (1*,3*) N
Cat-specific SPT response, diameter of wheal (mm) at ages 6m, 2 Y Y (1*,3*) N
Ryegrass-specific SPT response, diameter of wheal (mm) at ages 6m, 2 Y Y

(1*,3*)^
N

Alternaria-specific SPT response, diameter of wheal (mm) at ages 6m, 2 Y N N
Aspergillus-specific SPT response, diameter of wheal (mm) at ages 6m, 2 Y Y (3*) N
Cow’s milk-specific SPT response, diameter of wheal (mm) at ages 6m, 2 Y Y (1*,3*) N
Egg white-specific SPT response, diameter of wheal (mm) at ages 6m, 2 Y Y (1*,3*) N

Family history of asthma or atopy
Maternal and paternal history of atopy as determined by SPT ≥ 3mm to any
allergen

Y Y Y

Maternal and paternal history of physician-diagnosed asthma Y Y Y
Maternal and paternal history of physician-diagnosed atopic disease besides
asthma (eczema, hayfever)

Y Y Y

Continued on next page
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Continued from previous page

Feature Present?

CAS MAAS COAST

Other
Child ever exposed to cigarette smoke at ages 1, 2 and 3 Y Y (1,3) Y
Child ever attended childcare at ages 1, 2, and 3 Y Y (2,3) Y
Child ever exposed to cat at ages 1, 2 and 3 Y Y Y
Number of children (age<16) living in the same household at ages 1, 2, and 3 Y Y Y
Number of children older than the proband, living in the same household at
ages 0, 1, 2, and 3

Y Y Y

Height (cm) at age 3 Y Y Y
Weight (kg) at age 3 Y Y Y
25-Hydroxy Vitamin D (nmol/L) in mothers’s serum at 6 weeks postpartum Y N N
Physician-diagnosed eczema or atopic dermatitis at ages 6m, 1, 2, and 3 Y Y (1,3) Y

TABLE B.2: Terminology used to describe groupings produced by vari-
ous clustering and classification methods on different datasets

CAS = Childhood Asthma Study, Perth, Australia; COAST = Childhood Origins of Asthma Study,
Wisconsin, US; MAAS = Manchester Asthma and Allergy Study, Manchester, UK; npEM = non-parametric
expectation-maximisation mixture modelling.

Dataset Method Terminology

Cluster 1 Cluster 2 Cluster 3

CAS (discovery) npEM clustering for complete-case subset;
npEM-based classification for
low-missingness subset

CAS1 CAS2 CAS3

MAAS (replication) CAS npEM-based classification of MAAS,
using only features common to MAAS and
CAS

MAAS1 MAAS2 MAAS3

COAST (replication) CAS npEM-based classification of COAST,
using only features common to COAST and
CAS

COAST1 COAST2 COAST3
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TABLE B.3: Comparison of selected demographic and clinical variables
in CAS clusters

See next pages.
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TABLE B.4: Repeated-measures ANOVA for selected predictors, in the
first three years of life (timepoints at ages 6m, 1, 2, and 3)

P-value for predictor, following repeated-measures ANOVA within each cluster

Predictor CAS1 CAS2 CAS3

HDM IgE 0.97 8.1E-03 0.059
Phadiatop IgE 0.24 0.78 0.47
LRI 0.048 2.4E-03 0.18
wLRI 0.011 0.015 0.97
fLRI 0.28 0.011 0.97

TABLE B.5: Comparison of the three clusters generated by npEM, with
other clustering or classification schemes.

A. npEM vs. atopy as defined by specific IgE or SPT past atopic threshold by age 2. *Any specific IgE ≥
0.35kU/L, or any SPT ≥ 2mm, at any timepoint less than two years of age.

Atopic*

npEM No Yes

CAS1 39 46
CAS2 30 75
CAS3 0 22

B. npEM vs. atopy as defined only by specific IgE past atopic threshold by age 2. *Any specific IgE ≥
0.35kU/L at any timepoint less than two years of age.

Atopic*

npEM No Yes

CAS1 58 26
CAS2 40 65
CAS3 0 22
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TABLE B.6: Correlation between Phadiatop vs. allergen-specific IgE and
IgG4 in CAS.

A. Phadiatop vs. allergen-specific IgE. *Assay used at age 5 was the adult version, not Phadiatop infant.
Bold indicates allergen with strongest correlation in timepoint and cluster.

All clusters CAS1 CAS2 CAS3

Age
(y)

Allergen Rho P-value Rho P-value Rho P-value Rho P-value

6m HDM 0.38 2.7E-09 0.27 0.012 0.37 1.2E-04 0.21 0.34
Cat 0.37 5.3E-09 0.37 4.6E-04 0.38 7.3E-05 0.34 0.12
Peanut 0.67 2.1E-32 0.57 9.0E-09 0.5 4.7E-08 0.77 2.9E-05
Mould 0.18 5.3E-03 0.4 1.1E-04 0.25 0.012 -1.1E-01 0.61
Couch grass 0.19 3.3E-03 0.33 2.2E-03 0.23 0.017 -1.4E-02 0.95
Ryegrass 0.21 9.8E-04 0.34 1.2E-03 0.29 3.1E-03 0.016 0.94

1 HDM 0.52 6.3E-18 0.28 9.1E-03 0.29 2.4E-03 0.35 0.11
Cat 0.43 8.4E-12 0.22 0.04 0.31 1.1E-03 0.23 0.31
Peanut 0.71 6.4E-37 0.54 1.1E-07 0.49 6.3E-08 0.69 3.5E-04
Mould 0.11 0.083 0.16 0.14 0.072 0.46 NA NA
Couch grass 0.27 3.6E-05 0.27 0.011 0.18 0.069 0.14 0.54
Ryegrass 0.21 1.3E-03 0.21 0.057 0.17 0.078 0.015 0.95

2 HDM 0.79 7.4E-47 0.64 2.3E-11 0.59 5.1E-11 0.43 0.046
Cat 0.46 7.5E-13 0.39 1.6E-04 0.29 2.8E-03 0.13 0.55
Peanut 0.67 1.2E-29 0.4 1.5E-04 0.37 1.1E-04 0.6 3.5E-03
Mould 0.2 2.4E-03 0.11 0.29 0.21 0.032 0.13 0.57
Couch grass 0.45 2.0E-12 0.33 1.8E-03 0.12 0.21 0.24 0.29
Ryegrass NA NA NA NA NA NA NA NA

3 HDM 0.84 1.2E-57 0.81 1.5E-20 0.7 4.2E-16 0.81 4.2E-06
Cat 0.45 9.0E-12 0.5 1.5E-06 0.23 0.019 0.022 0.92
Peanut 0.61 8.3E-23 0.56 3.7E-08 0.26 8.8E-03 0.44 0.039
Mould 0.36 7.7E-08 0.5 1.2E-06 0.13 0.2 0.46 0.031
Couch grass 0.51 5.0E-15 0.5 1.3E-06 0.19 0.052 0.42 0.049
Ryegrass 0.57 1.2E-19 0.59 3.3E-09 0.25 0.012 0.61 2.3E-03

4 HDM 0.88 6.1E-63 0.79 5.7E-18 0.83 6.5E-24 0.85 1.1E-06
Cat 0.52 3.0E-14 0.45 4.3E-05 0.4 9.5E-05 -8.0E-04 1
Peanut 0.58 1.3E-18 0.54 3.1E-07 0.33 2.0E-03 0.38 0.09
Mould 0.33 4.2E-06 0.26 0.023 0.28 8.3E-03 0.27 0.23
Couch grass 0.57 6.5E-18 0.48 7.5E-06 0.35 7.1E-04 0.4 0.075
Ryegrass 0.63 1.5E-22 0.55 2.1E-07 0.38 2.8E-04 0.51 0.018

5* HDM 0.93 1.1E-73 0.88 3.3E-23 0.9 8.0E-30 0.98 4.8E-12
Cat 0.58 1.9E-16 0.45 1.3E-04 0.52 1.1E-06 0.18 0.48
Peanut 0.59 2.9E-17 0.61 3.7E-08 0.43 7.1E-05 0.24 0.34
Mould 0.39 2.8E-07 0.37 1.8E-03 0.26 0.019 0.33 0.18
Couch grass 0.66 5.2E-22 0.63 8.4E-09 0.5 3.3E-06 0.52 0.028
Ryegrass 0.67 6.5E-23 0.59 1.2E-07 0.53 6.1E-07 0.56 0.016

B. Phadiatop vs. allergen-specific IgG4. * Assay used at age 5 was the adult version, not Phadiatop infant.

All clusters CAS1 CAS2 CAS3

Age
(y)

Allergen Rho P-value Rho P-value Rho P-value Rho P-value

6m HDM 0.14 0.029 NA NA 0.053 0.59 0.38 0.081
Cat 0.38 2.7E-09 0.35 9.2E-04 0.29 2.8E-03 0.55 8.1E-03
Peanut 0.084 0.2 NA NA NA NA 0.19 0.39
Mould 0.064 0.33 0.18 0.1 -2.7E-02 0.78 0.28 0.21
Couch grass 0.14 0.028 NA NA 0.13 0.19 0.28 0.21
Ryegrass 0.1 0.12 NA NA NA NA 0.28 0.21

1 HDM 0.27 3.1E-05 NA NA 0.31 1.1E-03 0.43 0.047
Cat 0.43 6.1E-12 0.29 6.1E-03 0.44 1.8E-06 0.58 4.5E-03
Peanut 0.22 5.8E-04 0.13 0.25 0.078 0.42 0.52 0.014
Mould 0.085 0.19 NA NA NA NA 0.25 0.26
Couch grass 0.3 3.2E-06 0.11 0.33 0.36 1.7E-04 0.44 0.04
Ryegrass 0.15 0.023 0.056 0.61 0.088 0.37 0.33 0.13

2 HDM 0.4 1.4E-09 0.057 0.6 0.26 9.0E-03 0.013 0.95
Cat 0.53 1.8E-17 0.43 3.5E-05 0.2 0.04 0.67 6.6E-04
Peanut 0.43 3.6E-11 0.28 9.4E-03 0.23 0.018 0.56 7.1E-03
Mould 0.16 0.02 NA NA 0.18 0.062 0.13 0.57

Continued on next page
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Continued from previous page

All clusters CAS1 CAS2 CAS3

Age
(y)

Allergen Rho P-value Rho P-value Rho P-value Rho P-value

Couch grass 0.31 3.5E-06 0.13 0.23 0.21 0.035 0.44 0.039
Ryegrass 0.2 2.4E-03 -1.1E-01 0.31 0.13 0.19 0.3 0.18

3 HDM 0.49 2.6E-14 0.25 0.025 0.29 2.8E-03 -1.3E-02 0.95
Cat 0.56 1.9E-18 0.44 3.4E-05 0.35 2.7E-04 0.85 4.5E-07
Peanut 0.35 1.5E-07 0.14 0.21 0.019 0.85 0.23 0.31
Mould 0.22 1.4E-03 0.14 0.22 0.36 2.1E-04 0.15 0.49
Couch grass 0.49 5.2E-14 0.3 5.2E-03 0.49 2.7E-07 0.64 1.5E-03
Ryegrass 0.24 3.5E-04 NA NA 0.18 0.071 0.042 0.85

4 HDM 0.49 1.5E-12 0.34 2.2E-03 0.39 2.1E-04 0.17 0.47
Cat 0.58 2.0E-18 0.51 2.0E-06 0.45 1.3E-05 0.62 2.7E-03
Peanut 0.35 5.4E-07 0.19 0.087 0.19 0.072 0.61 3.4E-03
Mould 0.25 6.5E-04 0.17 0.14 0.38 2.4E-04 0.49 0.024
Couch grass 0.56 9.6E-17 0.44 6.7E-05 0.6 5.1E-10 0.69 4.8E-04
Ryegrass 0.27 1.7E-04 0.13 0.25 0.28 8.0E-03 0.53 0.014

5* HDM 0.56 2.1E-15 0.37 1.6E-03 0.53 5.7E-07 0.81 3.9E-05
Cat 0.47 1.6E-10 0.34 3.9E-03 0.45 2.9E-05 0.97 1.5E-11
Peanut 0.5 2.7E-12 0.4 6.6E-04 0.19 0.1 0.94 4.2E-09
Mould 0.44 1.8E-09 0.19 0.11 0.34 2.0E-03 0.53 0.023
Couch grass 0.57 8.1E-16 0.25 0.035 0.58 2.8E-08 0.98 3.9E-13
Ryegrass 0.68 4.5E-24 0.64 3.1E-09 0.59 1.2E-08 0.74 4.6E-04

TABLE B.7: Complete version of Table 4: Predictors for age-five wheeze
within each CAS cluster, with demographic covariates (sex, BMI,

parental history of asthma.

BMI = body mass index; HDM = house dust mite; LRI = lower respiratory infection. Association analyses
performed via generalised linear models (GLM) with demographic covariates: age-five wheeze ~ predictor
+ sex (male) + BMI at age 3 + paternal history of asthma + maternal history of asthma. Bold text indicates
statistical significance (p < 0.05); italics indicate near-significance p < 0.10). *Odds ratio (OR) is for every
10-fold increase in IgE, IgG4 or IgG.

Selected
predictors for
age-five
wheeze

Age CAS1 (N=88) CAS2 (N=107) CAS3 (N=22) All (N=261)

OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value

ARI (events per
y)

1 1.1
(0.88-1.5)

0.36 1.1
(0.87-1.3)

0.51 0.57
(0.29-0.93)

0.046 1 (0.89-1.2) 0.76

2 1.1
(0.94-1.3)

0.22 1 (0.81-1.3) 0.82 0.43
(0.077-0.89)

0.12 1 (0.93-1.2) 0.44

3 1.1
(0.87-1.3)

0.58 1.1
(0.91-1.4)

0.3 0.67
(0.36-1)

0.1 1 (0.93-1.2) 0.48

4 1.2
(0.99-1.4)

0.074 1.2 (1-1.5) 0.032 0.63
(0.27-1.1)

0.15 1.2 (1-1.3) 0.013

LRI (events per
y)

1 0.97
(0.71-1.3)

0.84 1 (0.61-1.5) 0.99 0.48
(0.13-1.1)

0.16 1 (0.81-1.2) 0.92

2 1.2
(0.88-1.6)

0.26 1.5
(0.97-2.5)

0.069 0.99
(0.34-2.6)

0.98 1.4 (1.1-1.7) 5.3E-03

3 2 (1.3-3.2) 2.3E-03 2.6 (1.5-5.3) 2.7E-03 0.98
(0.4-2.6)

0.96 2 (1.5-2.7) 3.8E-06

4 2 (1.4-3.4) 2.0E-03 3.6 (1.8-8.3) 6.5E-04 1.9
(0.57-8.4)

0.32 2.5 (1.8-3.6) 1.5E-07

Wheezy LRI
(events per y)

1 1.3
(0.68-2.4)

0.43 1.1 (0.35-3) 0.83 2.6
(0.62-58)

0.34 1.5
(0.98-2.3)

0.06

2 1.2 (0.8-2) 0.33 1.6
(0.89-2.9)

0.12 2.4
(0.67-16)

0.24 1.6 (1.2-2.2) 5.6E-03

3 2.8 (1.6-5.6) 1.3E-03 3 (1.4-8) 0.016 1.2
(0.43-4.6)

0.76 2.7 (1.8-4.2) 4.1E-06

4 2.5 (1.5-5) 4.0E-03 6.3 (2.5-21) 6.8E-04 7.1
(1.2-169)

0.1 3.9 (2.5-6.7) 5.4E-08

Febrile LRI
(events per y)

1 1.6
(0.77-3.6)

0.21 0.84
(0.28-1.9)

0.71 7.3
(0.78-178)

0.12 1.5
(0.93-2.4)

0.098

2 1 (0.44-2.2) 1 4.8 (1.8-15) 3.9E-03 1.6
(0.48-10)

0.5 2.3 (1.4-3.9) 1.2E-03

3 2 (1-4.8) 0.08 4.3 (1.2-15) 0.02 4.2
(0.55-519)

0.37 2.4 (1.4-4.3) 2.3E-03

4 1.8
(0.97-4.1)

0.092 2.6
(0.88-8.3)

0.082 1.1
(0.11-18)

0.93 2.2 (1.3-4) 5.9E-03

% Healthy
NPAs with
infection-
associated
MPGs

0-2 0.9
(0.13-5.7)

0.91 2.6
(0.43-16)

0.3 NA NA 2.3
(0.79-6.7)

0.13

Continued on next page
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Continued from previous page

Selected
predictors for
age-five
wheeze

Age CAS1 (N=88) CAS2 (N=107) CAS3 (N=22) All (N=261)

OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value

2-4 0.086 (6.8E-
03-0.71)

0.034 0.8
(0.077-7.5)

0.85 4.4E+03
(2.1-
2.5E+12)

0.13 0.49
(0.14-1.6)

0.24

Quartile of %
healthy NPAs
with infection-
associated
MPGs

0-2 1 (0.54-1.8) 0.98 1.3
(0.72-2.4)

0.36 NA NA 1.3
(0.89-1.8)

0.19

2-4 0.45
(0.19-0.88)

0.035 1 (0.51-2.1) 0.9 NA NA 0.8
(0.53-1.2)

0.24

HDM IgE
(kU/L)*

6m 8 (0.85-94) 0.074 0.93
(0.14-3.6)

0.92 3.4
(0.26-180)

0.4 2.3
(0.99-5.8)

0.054

1 1.5
(0.22-7.8)

0.65 0.54
(0.039-2.3)

0.51 39
(2.5-22000)

0.082 2.7 (1.5-5) 0.00089

2 0.93
(0.28-2.5)

0.89 2 (1.2-3.7) 0.016 1.4
(0.38-4.8)

0.62 2 (1.5-2.8) 2.80E-05

3 1.4
(0.68-2.9)

0.32 1.5 (0.9-2.4) 0.12 1.5 (0.4-5.2) 0.55 1.7 (1.3-2.2) 1.00E-04

4 1.9
(0.94-4.1)

0.086 1.9 (1.2-3.1) 0.011 1.4
(0.31-5.5)

0.64 1.9 (1.5-2.5) 3.70E-06

Peanut IgE
(kU/L)*

6m 2.5 (0.78-9) 0.13 1.5
(0.54-3.8)

0.41 1.1 (0.3-3.7) 0.92 2.3 (1.4-3.9) 0.0014

1 1.7
(0.48-6.3)

0.39 2.2
(0.65-6.9)

0.19 0.47
(0.095-1.6)

0.27 2.2 (1.4-3.6) 0.00098

2 0.51
(0.097-2)

0.37 3 (0.74-12) 0.12 2 (0.51-13) 0.37 2.7 (1.6-4.9) 0.00046

3 1.7
(0.46-5.5)

0.37 0.53
(0.015-3.8)

0.61 3.3
(0.94-26)

0.13 2.6 (1.6-4.8) 0.00068

4 0.2
(0.00073-
2.9)

0.36 0.96
(0.19-3.2)

0.95 1.4
(0.49-6.5)

0.54 2.1 (1.3-3.7) 0.006

Cat IgE (kU/L)* 6m 6.6
(0.77-61)

0.079 2.2
(0.62-7.6)

0.2 0.24
(0.012-3.2)

0.29 2.3
(0.96-5.4)

0.061

1 2.1
(0.13-30)

0.57 4 (0.54-32) 0.16 0.45
(0.053-2.8)

0.41 3.5 (1.4-9.5) 0.0099

2 0.55
(0.042-3.7)

0.57 2.1 (0.59-7) 0.22 2.2
(0.42-26)

0.42 2.6 (1.3-5.5) 0.0065

3 1.7
(0.49-5.6)

0.35 1.4
(0.21-6.7)

0.66 1.3
(0.29-6.9)

0.77 2.5 (1.3-4.9) 0.0065

4 0.75
(0.0088-13)

0.86 1.5
(0.53-3.9)

0.4 0.83
(0.17-4.4)

0.81 2.4 (1.3-4.8) 0.006

Couch grass
IgE (kU/L)*

6m 2.8
(0.51-14)

0.21 1.3 (0.3-4.5) 0.68 0.98
(0.048-59)

0.99 1.7
(0.71-3.9)

0.22

1 0.38
(0.017-2.8)

0.42 0.33
(0.01-2.9)

0.41 0.15
(0.0058-1.5)

0.14 0.63
(0.19-1.7)

0.4

2 0.085
(0.0034-0.7)

0.057 1.1
(0.14-6.3)

0.9 25
(1.6-1100)

0.046 2.1
(0.99-4.7)

0.053

3 2 (0.44-8) 0.29 6.1e-06
(NA-
8.1e+54)

0.99 2.3
(0.57-14)

0.29 2.5 (1.3-5.1) 8.90E-03

4 8.4e-13
(NA-
3.5e+172)

0.99 1.6
(0.55-4.1)

0.34 1.9
(0.54-10)

0.35 2 (1.3-3.4) 4.30E-03

Phadiatop IgE
(PAU/L)*

6m 1.2
(0.44-2.9)

0.73 1.3
(0.65-2.6)

0.43 2.2
(0.66-12)

0.25 2 (1.3-2.9) 0.00078

1 0.73
(0.2-2.5)

0.63 1.1
(0.41-2.8)

0.85 1.6
(0.23-18)

0.67 2.1 (1.3-3.4) 0.0021

2 0.33
(0.091-1)

0.065 2.1
(0.81-5.9)

0.13 2.5
(0.18-70)

0.52 2 (1.3-3) 0.0012

3 1.8 (0.8-4) 0.16 1.4
(0.72-2.8)

0.31 8.4
(0.53-380)

0.19 2 (1.4-2.9) 8.00E-05

4 1.8
(0.91-3.8)

0.094 2.4 (1.3-4.8) 0.01 2.7
(0.16-66)

0.5 2.2 (1.6-3.2) 2.20E-06

HDM IgG4
(µg/L)*

6m NA
(NA-NA)

0.55 0.053 (NA-
6.5e+24)

0.99 28 (1.7e-34-
NA)

0.99 1.4
(0.88-2.6)

0.17

1 NA
(NA-NA)

0.61 1.1 (0.8-1.5) 0.5 0.9
(0.58-1.3)

0.6 1.2 (1-1.4) 0.053

2 1.1
(0.71-1.6)

0.67 1.1
(0.85-1.4)

0.61 0.4
(0.038-1.2)

0.26 1.1 (1-1.3) 0.056

3 1.1
(0.85-1.5)

0.35 1.1 (0.77-2) 0.64 0.94
(0.19-2.3)

0.9 1.1
(0.98-1.2)

0.1

4 1.2
(0.98-1.5)

0.082 0.89
(0.7-1.1)

0.33 0.46
(0.031-5.4)

0.53 1.1 (1-1.3) 0.034

Peanut IgG4
(µg/L)*

6m NA
(NA-NA)

0.55 NA
(NA-NA)

0.53 0.9
(0.42-1.9)

0.76 1.5
(0.94-2.6)

0.1

1 0.075 (NA-
3.5e+23)

0.99 0.89
(0.67-1.1)

0.35 0.96
(0.64-1.4)

0.84 1.1
(0.95-1.2)

0.22

2 1.1
(0.85-1.3)

0.54 0.96
(0.8-1.2)

0.64 0.89
(0.48-1.4)

0.65 1 (0.95-1.2) 0.37

3 1.1
(0.89-1.4)

0.37 1 (0.83-1.3) 0.87 0.68
(0.22-1.3)

0.37 1.1
(0.96-1.2)

0.27

4 1.1
(0.92-1.4)

0.22 0.91
(0.76-1.1)

0.35 0.73
(0.19-1.4)

0.45 1.1
(0.96-1.2)

0.24

Cat IgG4
(µg/L)*

6m 0.057
(NA-2e+12)

0.99 0.99
(0.67-1.3)

0.95 24 (3.3e-30-
NA)

1 1.1
(0.88-1.3)

0.41

1 0.76
(0.43-1.1)

0.22 0.94
(0.78-1.1)

0.54 0.76
(0.42-1.2)

0.28 1 (0.9-1.1) 0.82

Continued on next page
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Continued from previous page

Selected
predictors for
age-five
wheeze

Age CAS1 (N=88) CAS2 (N=107) CAS3 (N=22) All (N=261)

OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value

2 1.4 (1.1-1.7) 0.011 0.92
(0.67-1.3)

0.59 0.96
(0.51-1.6)

0.88 1.1 (1-1.3) 0.053

3 1.3 (1-1.6) 0.05 0.9
(0.63-1.4)

0.59 0.86
(0.054-13)

0.91 1.2 (1-1.4) 0.033

4 1.4 (1.1-2) 0.027 0.89
(0.64-1.3)

0.49 0.54
(0.011-1.5)

0.58 1.2 (1-1.5) 0.034

Couch grass
IgG4 (µg/L)*

6m NA
(NA-NA)

0.55 0.062 (NA-
1.3e+24)

0.99 19 (2.5e-57-
NA)

1 1.3
(0.74-2.4)

0.32

1 0.081 (NA-
9.7e+23)

0.99 1 (0.77-1.3) 0.81 0.93
(0.6-1.4)

0.71 1.1
(0.92-1.3)

0.29

2 0.071 (NA-
2.1e+22)

0.99 0.88
(0.7-1.1)

0.22 0.91
(0.61-1.3)

0.61 1 (0.88-1.1) 0.96

3 1.2
(0.99-1.6)

0.061 0.85 (0.7-1) 0.1 1.4
(0.88-2.2)

0.16 1.1
(0.96-1.2)

0.22

4 1.1
(0.91-1.4)

0.28 0.72
(0.56-0.91)

0.0074 0.88
(0.24-1.9)

0.75 1 (0.91-1.2) 0.69

Phadiatop
Infant IgG4
(PAU/L)*

6m 0.7
(0.45-0.91)

0.03 1 (0.88-1.2) 0.79 1.4
(0.96-2.4)

0.12 0.98
(0.89-1.1)

0.67

1 0.91
(0.72-1.2)

0.4 0.73
(0.49-0.99)

0.057 0.83
(0.29-1.5)

0.64 0.93
(0.81-1.1)

0.35

2 1.1
(0.89-1.3)

0.49 0.97
(0.68-1.6)

0.86 1.7
(0.93-7.7)

0.2 1.1
(0.96-1.3)

0.2

3 2.3 (1.1-6.8) 0.091 0.23
(0.071-0.64)

0.0076 1 (0.17-7.3) 1 1.3
(0.96-1.8)

0.16

4 1 (0.83-1.4) 0.71 0.3
(0.097-0.85)

0.028 0.42
(0.042-3.2)

0.4 1.1
(0.88-1.3)

0.61

HDM IgG
(mg/L)*

1 25 (0.32-
1.6E+04)

0.19 3.3
(0.16-46)

0.38 5.6E-03
(8.4E-06-
0.57)

0.058 2 (0.31-11) 0.44

2 0.8
(0.15-3.5)

0.78 0.97
(0.24-3.7)

0.96 0.79
(0.031-18)

0.88 1.3 (0.6-2.9) 0.48

3 2.3
(0.14-35)

0.54 0.48
(0.057-2.5)

0.43 3.9
(0.26-96)

0.34 2.1 (0.89-5) 0.089

Cat IgG
(mg/L)*

1 1.5E-15
(NA-
1.2E+291)

0.99 6.5
(0.22-150)

0.24 4.6E-03
(1.4E-06-
0.9)

0.082 1.7
(0.11-18)

0.68

2 0.66
(0.077-3.5)

0.65 1.2
(0.28-4.3)

0.82 0.16 (4.0E-
03-3.5)

0.26 0.87
(0.34-2.1)

0.75

3 0.023
(8.2E-06-2)

0.18 0.52
(0.058-2.7)

0.49 3.7
(0.18-244)

0.44 1.1 (0.35-3) 0.9
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FASTQ CASAVA1.8 Paired-End 
Sequences

Import into QIIME2

Sample Data [Paired End 
Sequences with Quality]

DADA2
Filter/trim (trim left 10, trunc 150), dereplicate, 
denoise, merge/join paired-end reads, remove 

chimeras

Feature Table [Frequency] and 
Feature Data [Sequence] 

Read count and nucleotide sequence 
per ASV or ASV

CAS: 38 runs
6.3×108 paired-end reads

COAST: 41 runs (5 repeats) 
3.9×108 paired-end reads

Filter human reads
97% match and identity to human reference

START

Run1 Run2 etc.

Taxonomy Data
Taxon assigned for each ASV

Annotate taxonomy with classifier
Naïve Bayes classifier, trained on Greengenes

16S V4 region

Merge tables across runs

Export to .biom format with taxonomy 
data

Annotated .biom fileCAS: 23441 ASVs, 3439 samples
COAST: 12464 ASVs, 3915 samples

CAS: 5.9×108 reads (93%)
COAST: 3.5×108 reads (91%)

Filtered Feature Table 
[Frequency] and Feature Data 

[Sequence]

Complete Feature Table 
[Frequency] and Feature Data 

[Sequence]

Greengenes 13_8 99% ASV 
reference dataset

Import into R with read_phyloseq

Phyloseq object
ASV + metadata + taxa tables

Apply minimum threshold of total reads 
per sample

Remove poor-quality samples by read count threshold 
that excludes ~80% negative controls

CAS: threshold ≥ 3000 reads
COAST: threshold ≥ 4000 reads

Remove remaining negative and positive 
controls

CAS: 3249 samples (17 removed)
COAST: 3003 samples (66 removed)

Remove “well” samples within 4wks of 
preceding “sick” visit(as per Teo et al. 2018)

Cumulative sum scaling (CSS) 
normalisation

Phyloseq object with normalised 
read counts per ASV

Transform read counts to relative 
abundances

Phyloseq object with relative 
abundances per ASV

CAS: 3120 samples (129 removed)
COAST: 2922 samples (81 removed)

*Only relevant for COAST

CAS: 23441 ASVs, 3120 samples
COAST: 12464 ASVs, 2922 samples

END

Phyloseq object

NCBI GRCh38 human reference

Phyloseq object

Phyloseq object

Sum any remaining repeated runs from 
same extraction (same library)*

Remove poor quality samples or 
extractions with very low read count or 

systematic ambiguity in base calls.* COAST: 3643 samples (272 removed)

COAST: 3407 samples (236 collapsed)

Sum any remaining repeated samples, or 
extractions from same sample* COAST: 3058 samples (15 collapsed)

CAS: 3266 samples (173 removed)
COAST: 3069 samples (338 removed)

END

FIGURE C.1: Bioinformatic pipeline for processing and analyzing CAS
and COAST 16S rRNA data, using QIIME2 and the “microbiome” R

package
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ASV

others.rare

Staphylococcus.rare

Staphylococcus.29eb

Corynebacterium.rare

Corynebacterium.cb50

Alloiococcus.rare

Alloiococcus.dd2e

Other Streptococcus ASVs

Streptococcus.be1b

Streptococcus.b069

Streptococcus.a3a3

Streptococcus.3575

Streptococcus.4060

Haemophilus.rare

Haemophilus.f579

Haemophilus.bc0d

Moraxellaceae.rare

Moraxellaceae.a5a0

Moraxellaceae.6028

Moraxella.rare

Moraxella.d253

A.

B.

CAS

COAST

FIGURE C.2: Distribution of ASVs (average relative abundance) in
healthy and illness samples, within (A) CAS and (B) COAST.

ASV = Amplicon sequence variant; LRI = Lower respiratory illness or infection; URI = upper respiratory
illness or infection. See main text for definitions of LRI and URI. Note the different time scales for the
timepoint of collection in CAS vs. COAST.
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FIGURE C.3: (next two pages) Heatmaps of MPGs with relative abun-
dances of all common ASVs — complete versions of Figure 4.1. Samples

clustered into MPGs in (A) CAS and (B) COAST.

(See next two pages). ASV = Amplicon sequence variant; MPG = Microbiome profile group; Rel. abun. =
Relative abundance. The coloured horizontal bar above the heatmap represents MPGs to which samples were
assigned by hierarchical clustering.
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FIGURE C.4: (next two panels) Relative abundance of each OTU or ASV
within all samples of each MPG in QIIME1 CAS (A), and QIIME2 CAS

and COAST (left and right; B).

(See next two pages). ASV = Amplicon sequence variant; MPG = Microbiome profile group; OTU =
Operational taxonomic unit; Rel. abun. = Relative abundance. Boxplots represent relative abundance of
each OTU or ASV across all samples of each MPG. Each boxplot is in the style of Tukey i.e. horizontal line
represents median, box represents IQR, whiskers represent 1.5×IQR, points beyond whiskers represent
outliers. Figure is organized with horizontal axis / numbers representing ASVs; vertical axis relative
abundance; horizontal facets cohorts (CAS vs. COAST); and vertical facets / letters MPGs. It can be observed
that for many MPGs, most of the non-dominant OTUs or ASVs are zero-inflated, with many visible outliers
and barely-visible boxes. Note that COAST (QIIME2) did not have a Streptococcus.rare-dominated MPG.
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FIGURE C.8: Correlation of viruses detected within nasopharngeal sam-
ples during the first 3 years of life, in (A) CAS and (B) COAST.

MPV = Human metapneumovirus; RSV = Respiratory syncytial virus; RV = Rhinovirus. Heat and number in
each cell indicates magnitude of correlation coefficient (Spearman Rho); statistical significance of each

correlation is indicated by bolded (significant at p < 0.001) or greyed font (non-significant).
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FIGURE C.9: Relative abundance of ASVs and proportion of viruses be-
fore, during, and after an acute respiratory infection (ARI), in (A) CAS

and (B) COAST.

ARI = Acute respiratory illness; ASV = Amplicon sequence variant. NPS = Samples with no prior sickness.
Grey line and crosses represent mean proportion of virus in each timepoint category. Coloured bars represent
average relative abundances of ASV as indicated in legend. Dotted line represents mean relative abundance
for Moraxella.d253 ASV (black), or mean proportion of virus (grey) across all samples in the cohort. Black error
bars represent standard errors for relative abundance of Moraxella.d253. Numbers at the top indicate total
number of samples (black), and number of samples with virus (grey) respectively.
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FIGURE C.10: (next two pages) Trajectories in the nasopharyngeal micro-
biome as determined by Multiple Factor Analysis (MFA) and K-means

clustering, in (A) CAS and (B) COAST.

(See next two pages). Columns represent clustering features, arranged by ASV and timepoint (left-to-right: 2m
to 2y within each ASV). Columns are labelled by the row of colours to the top of the heatmap, representing the
colour coding of clustering features by ASV. Column of colours to the far left of heatmap represent Trajectories:
Green=Traj.A (Early Alloiococcus.dd2e and Corynebacterium.cb50); Red=Traj.B (Persistent Moraxella.d253);
Purple = Traj.C (Early Staphylococcus.29eb), with 2 variants for CAS – dark purple=Traj.C1 (Very early, in first
2mths), light purple=Traj.C2 (Up to age 1); Dark Orange=Traj.D (Early Streptococcus.3575).
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FIGURE C.11: Complete version of Figure 4.6: Average relative abun-
dances of ASVs per healthy and illness-associated samples, per individ-
ual in each microbiome trajectory as determined by MFA/k-means; in (A)

CAS and (B) COAST (QIIME2).

ASV = Amplicon sequence variant; LRI = Lower respiratory illness; URI = Upper respiratory illness. Note
that the original trajectories were based on dimension reduction and clustering of healthy routine (“Well”)

samples from the first two years of life, in either cohort. Despite this, we can observe the patterns persisting
into illness samples.
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TABLE C.3: Results of GEE models associating common ASVs with res-
piratory illness status (well vs. unwell), with adjustments for child as

subjects factor, and gender, age and season as covariates.

ASV = Amplicon sequence variant; 95% CI = 95% Confidence interval; OR = odds ratio. The model for
analysis was a generalized estimating equation (GEE), of: respiratory illness status (well vs. unwell) ~ ASV +
gender + age + season | subject. Separate models were created for each MPG (i.e. MPG of interest vs. all
others). The table is sorted by descending odds ratio in CAS, and statistically-significant associations are
bolded.

ASV (with full identifier) CAS COAST

OR (95%
CI)

p-value OR (95%
CI)

p-value

Haemophilus.f579ddd8d7c6a3d812ca33d72110
f0d6

1.6 (1.5-1.7) 7.50E-39 1.1 (1-1.1) 0.045

Streptococcus.4060107ffdf52e44f9d72343b7
332609

1.5 (1.4-1.5) 2.60E-45 1.3 (1.2-1.3) 5.30E-25

Haemophilus.bc0d904a0469d05c65b270998488
ee91

1.4 (1.3-1.6) 1.10E-15 1.3 (1.2-1.4) 2.60E-13

Moraxella.d253ca966efcd811d057dc2aa64307
74

1.4 (1.3-1.5) 9.10E-22 1.4 (1.3-1.5) 1.00E-24

Escherichia.d2a4add6029e32135562e2da9d4e
d2e1

1.2 (1.1-1.3) 1.40E-05 0.78
(0.73-0.84)

1.90E-11

Haemophilus.rare 1.2 (1.1-1.2) 6.90E-06 0.85
(0.8-0.91)

6.50E-07

Moraxella.rare 1.1
(0.99-1.2)

0.085 1.1
(0.99-1.1)

0.1

Pseudomonas.092523a4aed84953633a5f48bc2f
87b9

1 (0.96-1.1) 0.37 0.73
(0.64-0.82)

5.90E-07

Moraxellaceae.a5a08d96bf11fdeed28fc530d7
f5d8c7

1 (0.9-1.2) 0.64 1 (0.96-1.1) 0.33

Streptococcus.b069c8413c9eb478d4faa117c4
372bd3

0.94 (0.87-1) 0.12 0.82
(0.77-0.87)

3.00E-10

Streptococcus.rare 0.93 (0.87-1) 0.057 0.91
(0.85-0.97)

0.0074

Alloiococcus.rare 0.89
(0.82-0.97)

0.0074 0.88
(0.81-0.95)

0.00072

Streptococcus.be1bac8c38e726214223a5ac13
184ab7

0.85
(0.78-0.92)

0.00011 0.72
(0.67-0.77)

5.50E-21

Gemellaceae.d8009096d67cd7b4ce2853718bb1
7013

0.83
(0.77-0.89)

9.30E-07 0.66
(0.61-0.72)

3.90E-22

Veillonella.fb81574d887fa68041a84122487a
0e47

0.82
(0.76-0.88)

7.10E-08 0.7
(0.65-0.76)

1.30E-20

Moraxellaceae.6028872a168fbd6bc3381494da
3b116f

0.8
(0.75-0.85)

4.50E-12 0.99
(0.93-1.1)

0.88

Streptococcus.357551f644064bb2b49614b1ca
ab2fa5

0.78
(0.74-0.83)

1.20E-14 0.61
(0.57-0.66)

6.80E-36

Neisseriaceae.03f429f55feb0e805ba48c8c00
867cf3

0.78
(0.7-0.87)

5.40E-06 0.92 (0.84-1) 0.064

Moraxellaceae.rare 0.76
(0.7-0.83)

1.40E-10 0.78
(0.72-0.84)

1.30E-11

Staphylococcus.rare 0.76
(0.7-0.82)

3.70E-11 0.7
(0.62-0.8)

9.10E-08

Corynebacterium.cb50e79d177c169ec5b9d5e7
d308874e

0.75
(0.71-0.8)

4.80E-19 0.78
(0.74-0.83)

1.20E-15

Streptococcus.a3a3b519e04bf11edbb1d82497
c2b34c

0.75
(0.7-0.81)

5.60E-15 0.71
(0.66-0.76)

2.00E-22

Corynebacterium.rare 0.71
(0.67-0.76)

6.80E-25 0.68
(0.63-0.73)

1.40E-28

others.rare 0.68
(0.62-0.74)

1.30E-17 0.63
(0.57-0.69)

3.10E-23

Alloiococcus.dd2e15140d20c84712456e4c12e
ce08b

0.68
(0.63-0.73)

9.20E-23 0.73
(0.68-0.79)

1.20E-16

Staphylococcus.29eb8e14ce61e9c4549de0f9c
f200c19

0.61
(0.57-0.66)

1.70E-41 0.61
(0.56-0.66)

3.30E-29
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TABLE C.4: Results of GEE models associating MPGs and ASVs with
winter season, with adjustments for child as subjects factor, and gender,

age, season +/- respiratory illness as covariates.

95% CI = 95% Confidence interval; ASV = Amplicon sequence variant; MPG = Microbiome profile group; OR
= odds ratio. The model for analysis was a generalized estimating equation (GEE). Each sub-table presents a
different modelling scheme: (A) winter season (winter vs. other seasons) ~ MPG + gender + age | subject;
(B) winter season ~ MPG + gender + age + respiratory illness | subject; (C) winter season ~ ASV + gender +
age | subject; (D) winter season ~ ASV + gender + age + respiratory illness | subject. Separate models were
created for each MPG or ASV (i.e. MPG or ASV of interest vs. all others). Statistically-significant associations
are bolded.

MPG or ASV CAS COAST Meta

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

A. (Winter ~ MPG, without respiratory illness covariate)

Alloiococcus.dd2e MPG 0.65
(0.49-0.87)

0.0041 0.48
(0.36-0.63)

1.80E-07 0.56
(0.41-0.76)

0.00021

Corynebacterium.cb50
MPG

1.1 (0.71-1.7) 0.66 1.1 (0.77-1.7) 0.5 1.1 (0.84-1.5) 0.43

Corynebacterium.rare MPG 1.1 (0.52-2.2) 0.85 1.7 (0.62-4.8) 0.3 1.3 (0.69-2.3) 0.45
Haemophilus.bc0d MPG 1.1 (0.72-1.8) 0.59 1.3 (0.8-2.1) 0.29 1.2 (0.87-1.7) 0.26
Haemophilus.f579 MPG 0.97 (0.7-1.4) 0.87 1.6 (1.2-2.1) 0.0014 1.2 (0.78-2) 0.36
Haemophilus.rare MPG 1.4 (0.59-3.2) 0.47 1 (0.41-2.4) 0.99 1.2 (0.64-2.2) 0.6
Moraxella.d253 MPG 1.2 (1-1.4) 0.023 1.7 (1.4-2) 2.40E-09 1.4 (1-2) 0.032
Moraxella.rare MPG 0.92 (0.52-1.6) 0.76 1.4 (0.78-2.4) 0.28 1.1 (0.75-1.7) 0.59
Moraxellaceae.6028 MPG 0.83 (0.55-1.2) 0.35 1.9 (1.2-2.9) 0.005 1.2 (0.56-2.7) 0.6
Moraxellaceae.a5a0 MPG 1.9 (0.55-6.3) 0.32 1 (0.53-1.9) 0.99 1.1 (0.65-2) 0.66
others.rare MPG 0.91 (0.71-1.2) 0.49 0.25

(0.18-0.34)
6.10E-17 0.48 (0.13-1.7) 0.26

Staphylococcus.29eb MPG 0.67
(0.49-0.91)

0.011 0.92 (0.52-1.6) 0.76 0.72
(0.55-0.95)

0.018

Streptococcus.4060 MPG 1.3 (1-1.6) 0.032 1.1 (0.88-1.4) 0.41 1.2 (1-1.4) 0.037
Streptococcus.rare MPG 0.43

(0.054-3.4)
0.42 NA NA 0.43

(0.054-3.4)
0.42

B. (Winter ~ MPG, with respiratory illness covariate)

Alloiococcus.dd2e MPG 0.74
(0.55-0.99)

0.046 0.55
(0.41-0.73)

3.40E-05 0.64
(0.47-0.85)

0.0025

Corynebacterium.cb50
MPG

1.3 (0.81-2) 0.29 1.3 (0.85-1.9) 0.24 1.3 (0.94-1.7) 0.11

Corynebacterium.rare MPG 1.2 (0.55-2.5) 0.68 2.3 (0.83-6.2) 0.11 1.5 (0.8-2.8) 0.21
Haemophilus.bc0d MPG 1 (0.64-1.6) 0.95 1.2 (0.72-1.9) 0.54 1.1 (0.78-1.5) 0.64
Haemophilus.f579 MPG 0.85 (0.61-1.2) 0.35 1.4 (1.1-1.9) 0.012 1.1 (0.67-1.8) 0.67
Haemophilus.rare MPG 1.3 (0.54-2.9) 0.59 0.9 (0.37-2.2) 0.82 1.1 (0.58-2) 0.81
Moraxella.d253 MPG 1.2 (0.98-1.4) 0.088 1.6 (1.4-1.9) 1.00E-07 1.4 (0.99-1.9) 0.06
Moraxella.rare MPG 1 (0.59-1.8) 0.92 1.4 (0.8-2.6) 0.22 1.2 (0.81-1.8) 0.37
Moraxellaceae.6028 MPG 0.93 (0.62-1.4) 0.73 1.9 (1.2-3) 0.0037 1.3 (0.66-2.7) 0.43
Moraxellaceae.a5a0 MPG 1.9 (0.58-6.5) 0.28 1 (0.55-1.9) 0.93 1.2 (0.68-2) 0.57
others.rare MPG 0.92 (0.72-1.2) 0.53 0.27

(0.19-0.38)
6.50E-15 0.5 (0.15-1.7) 0.26

Staphylococcus.29eb MPG 0.78 (0.57-1.1) 0.13 1.1 (0.63-2) 0.68 0.87 (0.63-1.2) 0.38
Streptococcus.4060 MPG 1.1 (0.9-1.5) 0.28 0.95 (0.75-1.2) 0.67 1 (0.87-1.2) 0.67
Streptococcus.rare MPG 0.4 (0.049-3.3) 0.39 NA NA 0.4 (0.049-3.3) 0.39

C. (Winter ~ ASV, without respiratory illness covariate)

Alloiococcus.dd2e15140d
20c84712456e4c12ece08b

0.92
(0.86-0.98)

0.011 0.86
(0.79-0.92)

5.10E-05 0.89
(0.83-0.96)

0.0014

Alloiococcus.rare 1 (0.96-1.1) 0.31 0.97 (0.89-1.1) 0.48 1 (0.94-1.1) 0.85
Corynebacterium.cb50e79
d177c169ec5b9d5e7d30887
4e

1 (0.99-1.1) 0.15 0.96 (0.91-1) 0.12 1 (0.92-1.1) 0.96

Corynebacterium.rare 0.96 (0.9-1) 0.13 0.89
(0.84-0.95)

9.00E-04 0.93
(0.87-0.99)

0.022

Escherichia.d2a4add6029
e32135562e2da9d4ed2e1

0.88
(0.82-0.95)

0.00094 0.97 (0.9-1) 0.43 0.93 (0.84-1) 0.11

Continued on next page
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Continued from previous page

MPG or ASV CAS COAST Meta

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Gemellaceae.d8009096d67
cd7b4ce2853718bb17013

0.89
(0.83-0.95)

0.001 0.72
(0.66-0.78)

2.20E-14 0.8 (0.65-0.99) 0.04

Haemophilus.bc0d904a046
9d05c65b270998488ee91

0.98 (0.93-1) 0.58 1 (0.97-1.1) 0.31 1 (0.96-1.1) 0.77

Haemophilus.f579ddd8d7c
6a3d812ca33d72110f0d6

1 (0.97-1.1) 0.45 1 (0.94-1.1) 0.87 1 (0.97-1.1) 0.49

Haemophilus.rare 0.94
(0.89-0.99)

0.03 0.9 (0.85-0.96) 0.0017 0.92
(0.88-0.96)

2.00E-04

Moraxella.d253ca966efcd
811d057dc2aa6430774

1.2 (1.1-1.3) 7.00E-07 1.4 (1.3-1.5) 5.20E-15 1.3 (1.1-1.5) 0.00053

Moraxella.rare 1.2 (1.1-1.3) 6.90E-07 1.1 (0.98-1.1) 0.15 1.1 (1-1.2) 0.06
Moraxellaceae.6028872a1
68fbd6bc3381494da3b116f

0.96 (0.91-1) 0.23 1 (0.97-1.1) 0.36 1 (0.93-1.1) 0.9

Moraxellaceae.a5a08d96b
f11fdeed28fc530d7f5d8c7

0.98 (0.88-1.1) 0.74 1.1 (0.99-1.1) 0.09 1 (0.96-1.1) 0.36

Moraxellaceae.rare 0.91
(0.85-0.99)

0.02 1.1 (1-1.2) 0.056 0.99 (0.85-1.2) 0.91

Neisseriaceae.03f429f55
feb0e805ba48c8c00867cf3

1.1 (0.95-1.2) 0.29 0.97 (0.89-1.1) 0.53 1 (0.93-1.1) 0.83

others.rare 0.83 (0.77-0.9) 1.40E-05 0.75
(0.68-0.84)

3.90E-07 0.8 (0.72-0.88) 4.00E-06

Pseudomonas.092523a4aed
84953633a5f48bc2f87b9

1 (0.94-1.1) 0.87 1 (0.92-1.2) 0.61 1 (0.96-1.1) 0.69

Staphylococcus.29eb8e14
ce61e9c4549de0f9cf200c1
9

0.85 (0.79-0.9) 1.60E-07 0.88
(0.82-0.95)

0.0012 0.86 (0.82-0.9) 1.10E-09

Staphylococcus.rare 0.92
(0.85-0.99)

0.031 0.98 (0.87-1.1) 0.73 0.94 (0.88-1) 0.048

Streptococcus.357551f64
4064bb2b49614b1caab2fa5

0.91
(0.86-0.96)

0.00081 0.8 (0.74-0.87) 6.10E-08 0.86
(0.76-0.97)

0.013

Streptococcus.4060107ff
df52e44f9d72343b7332609

1.1 (1-1.1) 0.0017 1.1 (1-1.1) 0.0024 1.1 (1-1.1) 1.20E-05

Streptococcus.a3a3b519e
04bf11edbb1d82497c2b34c

0.84 (0.78-0.9) 2.00E-07 0.77
(0.73-0.83)

9.00E-15 0.81
(0.74-0.87)

5.70E-08

Streptococcus.b069c8413
c9eb478d4faa117c4372bd3

0.93 (0.85-1) 0.079 0.78
(0.73-0.83)

7.50E-14 0.85 (0.72-1) 0.058

Streptococcus.be1bac8c3
8e726214223a5ac13184ab7

0.87
(0.81-0.94)

0.00072 0.81
(0.76-0.87)

1.10E-08 0.84 (0.79-0.9) 7.30E-07

Streptococcus.rare 0.97 (0.91-1) 0.4 0.85
(0.79-0.92)

1.70E-05 0.91 (0.8-1) 0.16

Veillonella.fb81574d887
fa68041a84122487a0e47

0.84 (0.79-0.9) 1.20E-06 0.77
(0.71-0.83)

1.70E-10 0.81
(0.73-0.89)

8.40E-06

D. (Winter ~ ASV, with respiratory illness covariate)

Alloiococcus.dd2e15140d
20c84712456e4c12ece08b

0.95 (0.89-1) 0.16 0.88
(0.82-0.94)

0.00029 0.92 (0.84-1) 0.039

Alloiococcus.rare 1.1 (0.97-1.1) 0.21 0.97 (0.9-1) 0.45 1 (0.93-1.1) 0.8
Corynebacterium.cb50e79
d177c169ec5b9d5e7d30887
4e

1.1 (1-1.1) 0.011 0.98 (0.93-1) 0.52 1 (0.94-1.1) 0.55

Corynebacterium.rare 0.99 (0.93-1.1) 0.79 0.93
(0.87-0.99)

0.035 0.96 (0.9-1) 0.24

Escherichia.d2a4add6029
e32135562e2da9d4ed2e1

0.87 (0.8-0.93) 0.00022 1 (0.93-1.1) 0.93 0.93 (0.81-1.1) 0.3

Gemellaceae.d8009096d67
cd7b4ce2853718bb17013

0.91
(0.85-0.97)

0.0069 0.74 (0.68-0.8) 9.50E-14 0.82 (0.67-1) 0.056

Haemophilus.bc0d904a046
9d05c65b270998488ee91

0.96 (0.9-1) 0.15 1 (0.95-1.1) 0.87 0.98 (0.94-1) 0.43

Haemophilus.f579ddd8d7c
6a3d812ca33d72110f0d6

0.98 (0.93-1) 0.44 0.99 (0.93-1.1) 0.85 0.99 (0.95-1) 0.48

Haemophilus.rare 0.93
(0.87-0.98)

0.0091 0.91
(0.86-0.97)

0.002 0.92
(0.88-0.96)

5.70E-05

Moraxella.d253ca966efcd
811d057dc2aa6430774

1.1 (1.1-1.2) 0.00011 1.3 (1.2-1.4) 1.20E-11 1.2 (1.1-1.4) 0.0024

Moraxella.rare 1.2 (1.1-1.2) 1.80E-06 1 (0.98-1.1) 0.17 1.1 (0.99-1.2) 0.063
Moraxellaceae.6028872a1
68fbd6bc3381494da3b116f

0.99 (0.93-1) 0.64 1 (0.98-1.1) 0.23 1 (0.96-1.1) 0.67

Continued on next page
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Continued from previous page

MPG or ASV CAS COAST Meta

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Moraxellaceae.a5a08d96b
f11fdeed28fc530d7f5d8c7

0.98 (0.88-1.1) 0.75 1.1 (0.99-1.1) 0.1 1 (0.97-1.1) 0.34

Moraxellaceae.rare 0.94 (0.87-1) 0.1 1.1 (1-1.2) 0.0066 1 (0.87-1.2) 0.83
Neisseriaceae.03f429f55
feb0e805ba48c8c00867cf3

1.1 (0.98-1.2) 0.12 0.98 (0.9-1.1) 0.7 1 (0.93-1.1) 0.57

others.rare 0.86 (0.8-0.94) 0.00071 0.75
(0.69-0.82)

4.60E-11 0.81 (0.7-0.93) 0.0023

Pseudomonas.092523a4aed
84953633a5f48bc2f87b9

1 (0.94-1.1) 0.97 1.1 (0.94-1.2) 0.33 1 (0.96-1.1) 0.6

Staphylococcus.29eb8e14
ce61e9c4549de0f9cf200c1
9

0.88
(0.83-0.94)

2.00E-04 0.93 (0.86-1) 0.049 0.9 (0.86-0.95) 3.80E-05

Staphylococcus.rare 0.94 (0.87-1) 0.16 1 (0.91-1.1) 0.75 0.97 (0.9-1) 0.39
Streptococcus.357551f64
4064bb2b49614b1caab2fa5

0.93
(0.88-0.99)

0.013 0.81
(0.76-0.86)

6.50E-11 0.87 (0.76-1) 0.046

Streptococcus.4060107ff
df52e44f9d72343b7332609

1 (0.99-1.1) 0.12 1 (0.99-1.1) 0.095 1 (1-1.1) 0.022

Streptococcus.a3a3b519e
04bf11edbb1d82497c2b34c

0.86
(0.81-0.92)

1.60E-05 0.8 (0.75-0.85) 8.40E-12 0.83
(0.77-0.89)

5.60E-07

Streptococcus.b069c8413
c9eb478d4faa117c4372bd3

0.94 (0.86-1) 0.13 0.8 (0.75-0.85) 4.00E-12 0.86 (0.74-1) 0.062

Streptococcus.be1bac8c3
8e726214223a5ac13184ab7

0.89
(0.82-0.96)

0.0027 0.84 (0.78-0.9) 4.10E-07 0.86
(0.81-0.91)

5.90E-08

Streptococcus.rare 0.98 (0.92-1) 0.53 0.86 (0.8-0.92) 2.10E-05 0.92 (0.81-1) 0.19
Veillonella.fb81574d887
fa68041a84122487a0e47

0.86 (0.8-0.92) 2.40E-05 0.78
(0.72-0.84)

6.90E-12 0.82
(0.74-0.91)

9.60E-05
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TABLE C.6: Results of GEE models associating viruses with respiratory
illness status (well vs. unwell), with adjustments for child as subjects

factor, and gender, age and season as covariates.

95% CI = 95% confidence interval; MPV = Human metapneumovirus; OR = Odds ratio; RSV = Respiratory
syncytial virus; RV = Rhinovirus. The model for analysis was a generalized estimating equation (GEE), of:
respiratory illness status (well vs. unwell) ~ virus + gender + age + season | subject. Separate models were
created for each virus (i.e. virus of interest vs. all others including no virus). The table is sorted by descending
odds ratio in CAS, and statistically-significant associations are bolded.

Virus CAS COAST

OR (95% CI) p-value OR (95% CI) p-value

MPV 6.6 (3.1-14) 8.10E-07 19 (5.8-63) 1.30E-06
Influenza 5.7 (2.7-12) 7.60E-06 3.3 (2-5.7) 1.00E-05
RV 5.5 (4.4-6.7) 2.30E-58 3.8 (3.2-4.7) 9.90E-43
Parainfluenza 3.8 (2.5-5.9) 5.80E-10 6.8 (4.2-11) 2.60E-14
RSV 2.6 (1.8-3.7) 5.00E-08 14 (6.6-30) 1.00E-11
Enterovirus 2.1 (1.4-3.1) 0.00029 2.7 (1.2-6.1) 0.02
Adenovirus 1.9 (1.3-2.9) 0.0019 2.9 (1.8-4.6) 8.80E-06
Bocavirus 1.4 (0.47-4) 0.55 1.4 (0.96-2.1) 0.082
Coronavirus 1.3 (0.88-2) 0.17 1.8 (1.2-2.7) 0.0033

TABLE C.7: Results of GEE models associating viruses with winter sea-
son, with adjustments for child as subjects factor, and gender, age and

respiratory illness as covariates.

95% CI = 95% confidence interval; MPV = Human metapneumovirus; OR = Odds ratio; RSV = Respiratory
syncytial virus; RV = Rhinovirus. The model for analysis was a generalized estimating equation (GEE),
of: winter season (winter vs. other seasons) ~ virus + gender + age + respiratory illness status | subject.
Separate models were created for each virus (i.e. virus of interest vs. all others including no virus). The table
is sorted by descending odds ratio in CAS, and statistically-significant associations are bolded. *Note that the
definition of Enterovirus differed between CAS and COAST – see Supplementary Table C.5.

Virus CAS COAST

OR (95% CI) p-value OR (95% CI) p-value

RSV 4.5 (3.3-6) 2.40E-23 5.4 (4-7.2) 5.70E-30
Influenza 3 (1.7-5.3) 0.00018 4.9 (3.1-7.6) 6.80E-12
Bocavirus 2.4 (0.99-5.6) 0.053 1.1 (0.73-1.6) 0.68
Enterovirus* 1.7 (1.2-2.3) 0.0012 0.32 (0.13-0.77) 0.011
MPV 1.1 (0.7-1.8) 0.62 1.6 (1.1-2.4) 0.028
Coronavirus 1.1 (0.71-1.6) 0.77 2.7 (1.8-4.1) 1.00E-06
Adenovirus 0.91 (0.63-1.3) 0.61 1.4 (1-2.1) 0.047
Parainfluenza 0.72 (0.49-1.1) 0.089 0.49 (0.33-0.72) 0.00025
RV 0.58 (0.48-0.7) 2.40E-08 0.4 (0.33-0.48) 2.90E-23
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TABLE C.9: GLM models associating wheeze and asthma outcomes
with proportion of illness-associated MPGs in routine healthy samples
within first 2 years of life, stratified by early sensitization status and

npEM clusters; (A) in CAS, (B) in COAST.

GLM model: outcome ~ proportion of illness-associated MPGs amongst all routine healthy samples in the
first 2 years of life; separate model for each sensitisation status or npEM group. *In COAST, we used any IgE
against Alternaria, cat, dog, Dermatophagoides pteronyssinus, or D. farinae in the first two years of life, whereas
in CAS we used IgE against cat, couch grass, D. pteronyssinus, mould (including Alternaria and Aspergillus),
peanuts, and ryegrass (see Methods).

Outcome Exposure Stratified OR (95% CI) p-value

A. Outcome ~ illness-associated MPGs, stratified by sensitisation status in CAS

Wheeze at age 5 Illness-associated MPGs in first 2 years of life All 1.4 (0.99-2.1) 0.058
Early sensitised 2.2 (1.3-3.8) 0.003
Not early sensitised 0.8 (0.43-1.5) 0.47

Transient wheeze Illness-associated MPGs in first 2 years of life All 1.1 (0.8-1.6) 0.47
Early sensitised 0.64 (0.38-1.1) 0.089
Not early
sensitised

2 (1.1-3.5) 0.018

Asthma at age 5 Illness-associated MPGs in first 2 years of life All 1.5 (0.96-2.4) 0.071
Early sensitised 2 (1.1-3.8) 0.023
Not early sensitised 1.1 (0.51-2.3) 0.82

Asthma at age 10 Illness-associated MPGs in first 2 years of life All 1.3 (0.76-2.3) 0.33
Early sensitised 2 (0.99-3.9) 0.054
Not early sensitised 0.83 (0.3-2.3) 0.73

B. Outcome ~ illness-associated MPGs, stratified by sensitisation status in COAST*

Asthma at age 6 Illness-associated MPGs in first 2 years of life All 0.83 (0.6-1.2) 0.28
Early sensitised 0.84 (0.43-1.6) 0.62
Not early sensitised 0.67 (0.43-1.1) 0.089

Transient wheeze Illness-associated MPGs in first 2 years of life All 0.9 (0.6-1.3) 0.6
Early sensitised 1.1 (0.25-4.5) 0.93
Not early-sensitised 0.89 (0.58-1.4) 0.62

Asthma at age 13 Illness-associated MPGs in first 2 years of life All 1 (0.71-1.4) 0.95
Early sensitised 0.77 (0.37-1.6) 0.49
Not early sensitised 1 (0.65-1.6) 0.94
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A.

B.

DPP10

FIGURE D.1: Manhattan plots of genome-wide association scans for
parent-reported wheeze at age 5 in CAS.

(A) General Manhattan plot; red line indicates threshold for genome-wide significance (5× 10−8); blue line
indicates threshold for suggestive association (1× 10−5). (B) LocusZoom plot focusing on the locus of interest
at Chromosome 2 near DPP10. LD R2 values and recombination rates given as per hg19/1000 Genomes Nov
2014 EUR reference genome.
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A.

B.

DNAH5

FIGURE D.2: Manhattan plots of genome-wide association scan for any
wheezy LRI at age 1 in CAS.

(A) General Manhattan plot; red line indicates threshold for genome-wide significance (5× 10−8); blue line
indicates threshold for suggestive association (1× 10−5). (B) LocusZoom plot focusing on the locus of interest
at Chromosome 5 near DNAH5. LD R2 values and recombination rates given as per hg19/1000 Genomes Nov
2014 EUR reference genome.
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A.

B.

FZD5

FIGURE D.3: Manhattan plots of genome-wide association scan for any
rhinovirus-C-associated LRI at age 1 in CAS.

(A) General Manhattan plot; red line indicates threshold for genome-wide significance (5× 10−8); blue line
indicates threshold for suggestive association (1× 10−5). (B) LocusZoom plot focusing on the locus of interest
at Chromosome 2 near FZD5. LD R2 values and recombination rates given as per hg19/1000 Genomes Nov
2014 EUR reference genome.
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A.

B.

APOL3

FIGURE D.4: Manhattan plots of genome-wide association scan for any
rhinovirus-A-associated LRI at age 1 in CAS.

(A) General Manhattan plot; red line indicates threshold for genome-wide significance (5× 10−8); blue line
indicates threshold for suggestive association (1× 10−5). (B) LocusZoom plot focusing on the locus of interest
at Chromosome 5 near DNAH5. LD R2 values and recombination rates given as per hg19/1000 Genomes Nov
2014 EUR reference genome.
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FIGURE D.6: Histogram of p-values of GWAS catalogue SNPs in associ-
ation with eczema at age 6m in CAS.

Red line represents frequency of values from uniform distribution given histogram break size (0.05). Note
overpresentation of p-values on the left side, with 249 p-values less than 0.50 compared to 167 above (Fisher
exact p = 0.005).
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FIGURE D.7: Scatterplot of the first two principal components (PC)s from
principal components analysis of GRS in CAS, coloured by npEM clus-

ters as per Tang et al 2018.

There was no clear segregation in genetic risk for allergy, asthma and COPD, and no clear separation of npEM
clusters by genetic risk. Note however that members of CAS3 tended to have greater PC1.
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allergy-related GRS, and not by non-allergic GRS (COPD).
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FIGURE D.9: GLM associations with early-life traits vs. GRS, with mem-
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covariates.

GLM of early-life trait ~ GRS + npEM cluster 3 + sex. Note the diminished ORs compared to Figure 5.4.
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GLM of early-life trait ~ npEM Cluster 3 + sex +/- GRS. Note the relatively unchanged effect sizes and
statistical significance compared to the rightmost column.
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