
1 

Investigation of the tumour 
microenvironment of prostate 

cancer 
Stefano Mangiola

orcid.org/0000-0001-7474-836X 

PhD - Dec 2018 

Medicine, Dentistry & Health Sciences 
The University of Melbourne 

Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy



2 

Declaration 

I Stefano Mangiola declare that: 

(i) The present thesis comprises only my original work towards the PhD except where indicated
in the preface

(ii) Due acknowledgement has been made in the text to all other material used; and
(iii) The thesis is 34,046 words long as approved by the Research Higher Degrees Committee.

Sincerely, 



3 

Acknowledgements 

I thank my whole close and extended family and the countless people that has invested any time 

to support my work. My work was done with the hope of improving directly of indirectly the life 

of at least one patient suffering from prostate cancer, or other forms of cancer. 



 

4 

Table of contents 
Table of contents 3 

Context 9 

Literature review 10 

The prostate tumour microenvironment 10 
Cell cycle perturbation and proliferation 11 
Cell mobility, immune cell infiltration and immune suppression 11 
Epithelial to mesenchymal transition 12 
Angiogenesis 13 

The metastatic tumour microenvironment 13 
The migration to the bone metastatic site and the initiation of the “vicious cycle” 14 
Bone formation, osteoblasts migration, activation and proliferation. 14 
Bone resorption, osteoclast activation and proliferation 15 

Therapeutic opportunities 15 
The study of the tissue microenvironment: an evolving concept 16 
The mathematics behind the modelling of the tissue microenvironment 17 
Ab initio methods 20 

Inference of tissue composition 20 
Least square error linear regression through QR factorization 20 
E-insensitive loss linear regression through Maximal margin optimization 21 
Linear regression through quadratic programming 21 
Mixed membership model through Markov Chain Monte Carlo 21 
Gene enrichment through non-parametric statistics 22 

Inference of cell type specific transcriptome 22 
Least square error linear regression 22 
Linear regression through quadratic programming 23 

De novo methods 23 
Least square error linear regression 23 
Minimum ratio 24 

Comparative analysis of the methods for transcriptional signature deconvolution 24 
Methods 29 

Compilation of the novel training data set signatures 29 
Gene marker selection 30 
Calculation of the performance score 31 

Conclusions 31 
Supplementary figures 33 
Summary 35 



 

5 

Context 38 

Periprostatic fat tissue transcriptome reveals a signature diagnostic for high-risk prostate 
cancer 39 

Introduction 39 
Materials and methods 41 

Ethics statement 41 
Study cohort selection 41 

Gene expression screen 41 
Data pre-processing and differential expression analysis 41 
Classification using quantitative qRT-PCR 42 
Analysis of TCGA data 43 
Data and computational algorithms 44 

Results 44 
Patient characteristics 44 
Gene expression of adipose tissue in prostate cancer patients 44 
qRT-PCR refinement of the gene signature 47 
Specificity of the gene signature to fat 48 

Discussion 55 
Supplementary data 58 
Context 60 

Androgen deprivation therapy promotes an inflammatory and obesity-like 
microenvironment in periprostatic fat 61 

Introduction 61 
Materials and Methods 62 

Ethics statement. 62 
Study cohort selection 62 
Gene expression screen 62 
Data pre-processing and mapping 63 
Differential expression and gene set enrichment analyses 63 
Differential tissue composition analyses 63 
qRT-PCR validation 64 

Results and discussion 65 
Patient characteristics 65 
Differentially transcribed genes represent three main functional groups 65 
Enriched inflammatory signature 69 
Enriched obesity signature 72 

Conclusions 73 
Online methods and raw data 74 



 

6 

Supplementary material 76 
Probabilistic Bayesian inference model 80 

Context 82 

The interplay among cell types in the prostate tumour microenvironment contributes to the 
activation of key hallmarks 83 

Introduction 83 
Methods 84 

Tissue sampling and processing 84 
Antibody labelling, flow cytometry and cell storage 85 
RNA extraction, library preparation and RNA sequencing 85 
Sequencing data quality control, mapping and gene counting 86 
Statistical inference 86 
Gene annotation 88 

Results and discussion 89 
Quality control 89 
Differential transcription analyses 92 
Gene annotation 95 
The pro- and anti-inflammatory balance evolves during tumour progression 95 
The epithelial pro-migratory phenotype is promoted by three complementary hallmarks 97 
The synergy among cell populations to promote angiogenesis evolves during disease 
progression 100 
Hormonal homeostasis 102 

Conclusions 104 
Supplementary material 107 
Context 111 

Inference of extrinsic changes in simplex space under parsimony assumption 112 
Introduction 112 

Beta distribution and Beta regression 116 
Dirichlet distribution and Dirichlet regression 116 
Simplex distribution 117 

Methods 118 
The probabilistic model 118 
Benchmark 120 

Results and discussion 121 
Benchmark 121 
Probabilistic model implementation 125 
Interface 127 
Plots 128 



 

7 

Conclusions 129 
Context 132 

Differential tissue composition analyses from whole tissue transcriptional levels 133 
Introduction 133 
Methods 136 

Hierarchical structure of the data 136 
Transcriptional signatures of cell type categories 138 
Gene markers selection 138 
Structural design of the differential tissue composition analysis 138 
The probabilistic model 139 
Implementation 141 
Regression benchmarks 142 
Comparative benchmark 142 
Inference of associations between tissue composition and cancer relapse 143 

Results and discussion 143 
Regression benchmark 143 
Comparative benchmark 144 
Landscape of associations between cell types and cancer relapse 146 

Conclusions 153 

Conclusions 156 
Future work 158 
Final remarks 160 

References 161 

 

  



 

8 

 
 
 
 
 
 
 
 
 

CHAPTER 1 
  



 

9 

Context 

One in seven men in Australia is at risk of developing prostate cancer before the age of 75. This 

disease is a leading cause of male death worldwide, with a mortality rate of 62 men per 100,000. 

Treatments for prostate cancer exist, including surgery, radiotherapy and androgen deprivation 

therapy. However, the results achieved by the combination of these therapies can lead to variable 

outcomes, mainly due to the genetic heterogeneity of tumour cells and/or emergence of resistance. 

In contrast to the cancer cells, the non-cancerous portion of the tumour microenvironment, such as 

immune cells, fibroblasts and endothelial cells, is a genetically stable target that has a key role in 

cancer development. Improving our knowledge of the genetic and molecular interactions existing 

between cancer cells and other non-cancerous cell populations, both in primary or metastatic 

prostate cancer will provide new key insights in the biology of the disease and give new treatment 

opportunity. Here, we review the landscape of molecular interactions between cancerous and non-

cancerous cells within the prostate tumoral mass. 
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Literature review 
 

The prostate tumour microenvironment 
Within the primary prostate tumoural mass, cancer cells modulate the tumour microenvironment 

(TME)—the union of the extracellular matrix and diverse range of cell types, including immune 

and stromal cells, such as fibroblasts, endothelial cells, T- and B- cells and macrophages—

resulting in more favourable conditions for tumour development. In doing this, cancer cells 

activate four key hallmarks: (i) cell cycle perturbation and proliferation; (ii) cell mobility, 

including immune cell infiltration and immune suppression; (iii) epithelial to mesenchymal 

transition; and (vi) angiogenesis. The cellular interactions within the TME at the molecular level 

is complex, involving the synergistic action of multiple cell types creating positive cross-cellular 

stimulatory loops, that ultimately support cancer progression (Fig. 1.1).  

 
Fig. 1: Landscape of the major intercellular interactions in the prostate primary tumour 

microenvironment at the molecular level. Circles represent ligands coloured accordingly to the cell 

of provenance. Arrows represent genetic/physical gene interactions. Dashed lines represent 

physical receptor interactions. 
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Cell cycle perturbation and proliferation 
The microenvironmental contribution to cancer cell proliferation has principally been linked to the 

activity of cancer associated fibroblasts1. Several proteins secreted by cancer associated fibroblasts 

promote cell proliferation via nine leading molecular mechanisms (Fig. 1.1), of which TGF-β and 

androgen are key axes, being part of 3 alternative pathways each. The molecule TGF-β is mainly 

secreted by cancer associated fibroblasts2, immune cells3 and cancer cells, and binds to its receptor 

on cancer cells acting as enhancer of cell proliferation. The transduction of the TGF-β signalling 

from the receptor to the nucleus is driven by three redundant axes: (i) SMAD3/4 and CTGF4–6; (ii) 

SMAD3/4, c-Myc and p15 that directly alters the cell cycle arrest mechanism7; and (iii) by 

SMAD3/4 linked to a longer downstream transduction chain (>10 molecules)8. Another important 

pathway of cancer cell proliferation is initiated by the frizzled-related proteins (FRP) secreted by 

cancer associated fibroblasts, that indirectly enhances the cancer cell cycle via a pathway including 

the frizzled receptor, B-cathenin and TCF/LEF7. Cancer associated fibroblasts are also secretors 

of insulin growth factor (IGF)-1 that drive two complementary kinase pathways in cancer cells. 

The two axes include (i) PIP39,10, and (ii) FGF-2 that interacts with ERK signalling11–13. 

Androgens, besides having both a direct role in cancer cell progression and evolution 14–16, also 

stimulate the secretory activity of cancer associated fibroblasts for growth factors such as IGF-1, 

stromal cell derived factor (SDF)-1, hepatocyte growth factor (HGF), transforming growth factor 

(TGF)-β2 and fibroblasts growth factor (FGF)-7 and FGF-1017. The latter molecule, which is 

regulated by TGF-β, forms a positive feedback loop increasing androgen receptor in the 

epithelium18. Macrophages, similarly to associated fibroblasts, have a major role in tumour 

development for prostate cancer (as well as for several cancer types)9,19–21. For example, in the 

primary prostate tumour cancer associated macrophages contribute to cancer cell proliferation 

through E-cadherin22 via the secretion of heme oxygenase-1.  

Cell mobility, immune cell infiltration and immune suppression 
The enhanced infiltration of immune cells at the tumour site, and the alteration of their phenotype 

(=modulation) in favour of a more anti-inflammatory and wound-healing-like role, result in a 

favourable environment for the proliferation of cancerous cells. The infiltration of immune cells 

in the primary prostate TME is promoted above all by a range of molecules secreted by cancer 

cells, cancer associated fibroblasts and tumour associated macrophages (Fig. 1.1). For example, 

https://paperpile.com/c/S6tSJ7/QFQky
https://paperpile.com/c/S6tSJ7/JpZil
https://paperpile.com/c/S6tSJ7/rgr0z
https://paperpile.com/c/S6tSJ7/ivk3q+YSJ5H+HyNP7
https://paperpile.com/c/S6tSJ7/mSflh
https://paperpile.com/c/S6tSJ7/LbR4d
https://paperpile.com/c/S6tSJ7/mSflh
https://paperpile.com/c/S6tSJ7/0przE+NbkHS
https://paperpile.com/c/S6tSJ7/W2wXN+1rIQf+eGTYs
https://paperpile.com/c/S6tSJ7/ioOgk+7ZwEk+WUqiQ
https://paperpile.com/c/S6tSJ7/gwnRA
https://paperpile.com/c/S6tSJ7/pPsuA
https://paperpile.com/c/S6tSJ7/cloOt+0przE+grTpI+a7IP6
https://paperpile.com/c/S6tSJ7/5ui9s
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MCP-1 secreted by cancer cells and SDF-1 secreted by both cancer cells and cancer associated 

fibroblasts increase the migration of monocytes into the TME 1. The protein encoded by CSF-1 

and other inflammatory cytokines secreted from cancer cells — with an increased rate if the PTEN 

gene is mutated 23 — stimulate immune cell infiltration that includes macrophages and myeloid-

derived suppressor cells (MDSCs)24–26. An analogous role has the molecule Heme oxygenase-1 

produced by tumour associated macrophages27.  

Immune cell modulation in the primary prostate TME is mostly carried out by cancer cells 

and myeloid-derived suppressor cells with the main target being T-cells and macrophages. For 

example, another important role of CSF-1 is in immune modulation, namely to lower the antigen 

presentation by macrophages and lower the anti-tumour T cell response 28. Further modulation of 

leukocytes is enhanced by molecules Arg-1 and iNOS secreted mainly by macrophages29,30. The 

latter cell type is another that is commonly modulated by cancer cells in prostate cancer as well as 

many other tumours. The molecules CCN3 (secreted by cancer cells and myeloid-derived 

suppressor cells), IL-6, secreted by cancer cells1, and the molecule SDF-1 secreted by cancer cells 

and cancer associated fibroblasts, act in concert to shift the macrophage phenotype from an 

inflammatory M1 to an anti-inflammatory M2 polarization, resulting in a growth factor rich 

environment1.  

Epithelial to mesenchymal transition 
Epithelial to mesenchymal transition (EMT) is a hallmark of prostate cancer that is promoted by 

several microenvironmental processes, dominated by the role of cancer associated fibroblasts, 

cancer associated macrophages and T-cells (Fig. 1.1). Cancer associated fibroblasts boost 

epithelial to mesenchymal transition31 via bFGF and IGF-132; and indirectly via secreted 

metalloproteases, which stimulate the release of ROS from cancer cells (via Rac1b/cycloxygenase-

2; COX-2)33. Also, tumour associated macrophages influence directly or indirectly the mobility 

properties of prostate cancer cells. On one hand they indirectly contribute to the modulation of 

fibroblasts to cancer associated fibroblasts, which are key to enhance the motility of prostate cancer 

cells1; on the other hand they directly support the epithelial to mesenchymal transition via the 

repression of E-cadherin with a molecular mechanism that is dependent on the present of Heme 

oxygenase-1 in the TME22. Not surprisingly, within cancer cells themselves, several pathways are 

strongly associated with the epithelial to mesenchymal transition, including the MYC signalling 

and stem-cell development pathways, as well as pathways regulated by NOTCH, FGFR and 

https://paperpile.com/c/S6tSJ7/QFQky
https://paperpile.com/c/S6tSJ7/2LlGS
https://paperpile.com/c/S6tSJ7/XE3K4+kwCYX+UuG8d
https://paperpile.com/c/S6tSJ7/AxxvL
https://paperpile.com/c/S6tSJ7/6MwWf
https://paperpile.com/c/S6tSJ7/ChOmV+zRiRx
https://paperpile.com/c/S6tSJ7/QFQky
https://paperpile.com/c/S6tSJ7/QFQky
https://paperpile.com/c/S6tSJ7/nLGHT
https://paperpile.com/c/S6tSJ7/0Svid
https://paperpile.com/c/S6tSJ7/TlvqR
https://paperpile.com/c/S6tSJ7/QFQky
https://paperpile.com/c/S6tSJ7/5ui9s
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WNT34. Overall, within the prostate primary TME, basal and luminal cells have distinct molecular 

profiles and functions, being neurogenic-like and stem-like respectively35.  

Angiogenesis 
Blood supply, via the formation of new vessels (angiogenesis) within the tumoral mass, is essential 

for cancer growth36. The enhanced angiogenesis activity has been linked principally to cancer 

associated fibroblasts and macrophages, via the secretion of vascular endothelial growth factor 

(VEGF)37,38 (Fig. 1.1). Cancer associated fibroblasts upregulate the production and secretion of 

VEGF via androgen stimulation, which is increased in the prostate TME39; whereas tumour 

associated macrophages enhance their secretion of VEGF via the AK/Akt/NF-κB pathway 

triggered by the cancer secreted molecule CCN340. Furthermore, the oxidative metabolism of 

endothelial cells, controlled mainly by ADRB2 and E4ORF1, affects the adrenergic innervation, 

which promotes angiogenesis41. 

The metastatic tumour microenvironment 

While the molecular interactions between cancer and benign cells within the primary TME could 

in principle also be present in the metastatic bone TME, the metastatic environment is 

characterised by specific processes, related to cell migration, tissue penetration and bone formation 

and resorption. 

 

 

https://paperpile.com/c/S6tSJ7/Ku0JD
https://paperpile.com/c/S6tSJ7/cEPOj
https://paperpile.com/c/S6tSJ7/3r8Rd
https://paperpile.com/c/S6tSJ7/5SSkJ+twckl
https://paperpile.com/c/S6tSJ7/iW6tw
https://paperpile.com/c/S6tSJ7/pwIyV
https://paperpile.com/c/S6tSJ7/Gx0rv
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Figure 1.2: Representation of intercellular interactions proper of prostate metastatic tumour 

microenvironment. Circles represent ligands coloured accordingly to the cell of provenience. 

Arrows represent genetic/physical gene interactions. On the right-hand side a cancer cell entering 

from the bone marrow is represented. On the left-hand side is represented the bone marrow tumour 

microenvironment. 

The migration to the bone metastatic site and the initiation of the “vicious cycle” 
Metastatic cells that leave the primary tumour site migrate through the bloodstream (and often 

through lymphatic vessels) to reach distant organs and establish metastases. The bloodstream is a 

hostile environment for cancer cells. Within this migration phase the survival of migrating cancer 

cells is facilitated by the interactions with platelets that work as a physical protective barrier against 

immune cells; this interaction is promoted by the cancer transmembrane protein PAR142 (Fig. 1.2). 

In order to establish a niche in a distant organ, metastatic cells need to adhere and penetrate through 

the blood vessel wall; they achieve this interacting with endothelial cells via several axes, such as 

SDF-1/SDF-1R43, integrin B144,45, CD44 to hyaluronan matrix46, glycoantigen45 and/or beta-

galactosidase-binding-lectin-3 hyaluronan matrix 45. Within the bone marrow, cancer cells trigger 

and maintain a positive stimulatory loop or “vicious cycle”47, during which osteoclasts enhance 

the production of bone matrix and stimulate by consequence the activity of osteoclasts, which in 

turn stimulates osteoclasts. This cycle results in an enhanced turnover of the bone matrix. The 

benefit of such enhanced turnover for tumour development is the increased availability of growth 

factors, which, after having been injected into the bone matrix by osteoblasts during bone 

formation, become available when the bone matrix is resorbed by osteoclasts. Such cycles can 

result in either an overall increase of bone matrix formation (i.e., osteoblastic metastases), as often 

observed for prostate cancer48; or an overall reduction of bone matrix at the metastatic site (i.e., 

osteoclastic metastasis), as often observed for breast cancer49.  

Bone formation, osteoblasts migration, activation and proliferation.  
The enhanced bone formation is a consequence of an increased migration, activation and 

proliferation of osteoblasts, driven by cancer cells and supported by other cell types. A key 

molecular signal that enhances osteoblast migration to the metastatic site includes the molecules 

PDGF46 and PTHrP1-16. The availability of PTHrP1-16 depends on the presence of extracellular 

matrix proteases (e.g., MMP-3), which are produced and secreted by cancer cells them self and 

https://paperpile.com/c/S6tSJ7/rTt3b
https://paperpile.com/c/S6tSJ7/ualJE
https://paperpile.com/c/S6tSJ7/25cot+Xs67H
https://paperpile.com/c/S6tSJ7/aj5sf
https://paperpile.com/c/S6tSJ7/Xs67H
https://paperpile.com/c/S6tSJ7/Xs67H
https://paperpile.com/c/S6tSJ7/7Yfjm
https://paperpile.com/c/S6tSJ7/gp4RK
https://paperpile.com/c/S6tSJ7/l2qAE
https://paperpile.com/c/S6tSJ7/aj5sf
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whose function is to produce the final cleaved version of PTHrP50 (Fig. 1.2). Cancer cells also 

modulate the activation of osteoblasts at the metastatic site via the secretion of VEGF, bone 

morphogenetic protein (BMP), TGF-β and several growth factors. The secreted molecules TGF-

β51, IGF, ET1 and FGF-852 lead to osteoblastogenesis via the phosphorylation of MAPK, and the 

upregulation of RUNX2. Cancer secreted BMP upregulates key transcription factors for 

osteoblastogenesis, such as osterix via SMAD1/5 and RUNX2 via MAPK. VEGF and BMP are 

part of a positive loop where BMP secreted by cancer stimulates the expression of VEGF in cancer 

cells themselves53 (Fig. 1.2). Following their activation, the sustained proliferation of osteoblasts 

within the bone TME is promoted by cancer secreted molecules such as PDGF46, and ET-1 that 

being activated by extracellular proteases inhibits the expression of DDK-1 in osteoblasts, 

allowing the Wnt pathway to enhance the proliferative mechanism54. The uncleaved molecule 

PTHrP can also act directly as an inhibitor of apoptosis for osteoblasts55–57.  

Bone resorption, osteoclast activation and proliferation 
Bone matrix resorption is driven by osteoclasts that, in doing so, release a range of growth factors 

and signalling molecules sequestered in the bone matrix crystals. Such molecules sustain the 

vicious cycle and subsequently enhance cancer development. The molecule RANK is the key 

player in bone resorption; it is mainly produced by osteoblasts and prostate cancer cells58–61 (Fig. 

1.2). As a receptor, RANK is attached to the cell membrane; however, it can also be present in the 

extracellular matrix in its soluble form sRANK. Cancer cells enhance the availability of RANK in 

the TME via two principal mechanisms, the secretion of the pro-inflammatory cytokine IL-6 that 

increase RANK expression by osteoblasts62, and the secretion of MMP-7 that solubilize RANK 

present on cell membrane63 increasing the chance of reaching osteoclasts.  

Therapeutic opportunities 

Similarly, to several other tumour types, primary and metastatic prostate cancer are characterised 

by a complex microenvironment, where diverse cell types interact and synergise leading to tumour 

progression. A total of seven hallmarks of the disease progression have been discussed here, from 

tumour growth to metastasis. Several of these hallmarks represent treatment targets in other cancer 

types.  

For example, immune therapy mainly focuses on targeting inhibitory mechanisms that 

cancer cells trigger to avoid immune cell anti-cancer activity. Inhibitors of PD-1 and CTLA-4 

https://paperpile.com/c/S6tSJ7/lNIit
https://paperpile.com/c/S6tSJ7/4d4cl
https://paperpile.com/c/S6tSJ7/9nxaX
https://paperpile.com/c/S6tSJ7/xYUTr
https://paperpile.com/c/S6tSJ7/aj5sf
https://paperpile.com/c/S6tSJ7/IVeev
https://paperpile.com/c/S6tSJ7/tfLRb+g0cTA+o8kV1
https://paperpile.com/c/S6tSJ7/ls8jI+5SoxZ+4lO3F+9tGxO
https://paperpile.com/c/S6tSJ7/cOdkJ
https://paperpile.com/c/S6tSJ7/lLatj
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target cancer T-cells immune evasion and have shown high efficacy in eradicating several cancers 

types, such as melanoma. Current research is focused on understanding clinical and molecular 

profiles that are associated with immunotherapy efficacy. For example, prostate cancer does not 

benefit from such treatment, therefore further investigation is needed to understand whether an 

alternative mechanism for immune evasion and/or modulation exists. Epithelial to mesenchymal 

transition is being tackled by several experimental drugs across a diverse range of cancers 64. The 

main molecular targets are Calcineurin, TGFBR1, EGFR the MF-kB pathway and SMAD 

molecules. All such treatments are at most in phase II, and so far, no clinical trial exists for 

targeting epithelial to mesenchymal transition in prostate cancer. Anti-angiogenic treatments are 

at an advanced stage, with more than ten compounds approved for clinical use 65. Most of those 

compounds target tyrosine kinases, VEGF, VEGF receptors and the mTOR pathway. The cancer 

types that most benefit from those treatments are colorectal, lung, renal, brain hepatocellular and 

pancreatic. So far, no anti-angiogenic drugs have been approved for prostate cancer. No 

compounds tackling tumour cell migration through the circulation to metastatic sites, nor the 

development of bone metastasis are currently in advanced experimentation. 

The lack of approved alternative treatments for prostate cancer tackling the biology of the 

disease at a systematic level represents a call for further investigation. The emergence of high-

throughput cellular and molecular technologies represents an opportunity to gain a better 

understanding of the unique features of prostate cancer that cause the poor translation of treatments 

from other cancers. 

The study of the tissue microenvironment: an evolving concept 

The tissue microenvironment have been extensively studied through in vitro and in vivo 

experiments, such as migration assays 66 and xenograft mouse models 67 respectively. More 

recently, thanks to the development of high-throughput cellular and molecular technologies, it is 

possible to infer the biology at the molecular level for a wider range of cell types, for a given 

experiment. For example, fluorescence-activated cell sorting allows the isolation of several 

selected cell types from a tissue, which can be analysed at the molecular level with nucleotide 

sequencing or mass spectroscopy. In recent years, advances in machine learning techniques and 

the increased availability of nucleotide sequencing data for a wide range of cell types, has allowed 

the computational inference of both the cellular composition of tissues and molecular composition 

https://paperpile.com/c/S6tSJ7/kKpEZ
https://paperpile.com/c/S6tSJ7/bn2yf
https://paperpile.com/c/S6tSJ7/m7nO8
https://paperpile.com/c/S6tSJ7/uNhQO
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of specific cell types within a tissue, from whole tissue gene expression data. This approach 

increases the throughput of cell types that can be studied in a given experiment and allows the 

integrated analysis of novel and public data sets. Furthermore, such analysis can be performed on 

data generated from fresh frozen samples, as opposed to FACS which requires processed tissue, 

and in vitro and in vivo experiments which rely on physical models of the tissue. Despite their 

attractiveness, these computational approaches present major challenges. For example, most 

computational methods strictly rely on prior information, that can be sparse and/or misrepresent 

the data. 

The mathematics behind the modelling of the tissue microenvironment 

The inference of (i) tissue composition, and (ii) transcriptional profiles of distinct cell types within 

a tissue can be described more precisely as (i) the proportions of each cell type within a tissue 

sample, and (ii) the true transcription rate of each gene for each cell type (theoretically observable 

only if each cell type was purified and unchanged by tissue processing). For each gene, the value 

we observe from the whole tissue is a combination of (i) and (ii) for each cell type. For one gene 

and one sample, this data structure can be framed mathematically as a weighted average (Eq. 1). 

That is, the tissue gene expression value y (observed) is equal to the weighted sum of specific gene 

expression for each cell type a (observed or inferred), weighted by its absolute proportion π within 

each tissue sample (inferred). 

 

 
 

For multiple genes and multiple samples, this data structure can be framed mathematically 

as a system of linear equations (Eq. 2). That is, the observed matrix of gene transcription values Y 

(observed) is equal to the matrix of specific gene transcription for each cell type A (observed or 

inferred) multiplied by the matrix of absolute proportions of each cell types within each tissue 

sample Π (inferred). 
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The subscript 𝑔𝑔 ∈ {1, . . ,𝐺𝐺} represents genes, 𝑠𝑠 ∈ {1, . . , 𝑆𝑆} represents samples and 𝑝𝑝 ∈

{1, . . ,𝑃𝑃} represents cell type (populations). The selection of genes in this framework is done based 

on how well a gene can segregate one or more cell types from the rest; ideally, genes would be 

exclusively expressed/methylated in one cell type. Such genes are referred to as markers.  

Algorithms that infer tissue composition and/or cell type specific transcriptional signatures 

differ from each other for the amount of prior information and the statistical framework used. In 

principle, observing Y (Eq. 2) for enough samples and marker genes, would be possible to infer 

both the matrices A and Π that best explain the data. In practice, considering the high tissue 

complexity and the data bottleneck, most algorithms use a priori information for A to confidently 

infer Π or vice versa. Information for A is usually gathered from public resources of gene 

transcription for pure/purified cell types, while the information on Π can be observed 

experimentally with flow cytometry or immunohistochemistry of different sections of the tissue 

sample, or related samples. The inference of the matrix A and/or Π is performed through a wide 

variety of statistical methods, including: (i) linear regression with least square noise model coupled 

with QR factorization optimization68, or ε-insensitive noise model coupled with maximal margin 

optimization69; (ii) quadratic programming optimization70; (iii) mixed membership model71; or (iv) 

non-parametric gene enrichment72.  

 

Table 1.1. List of available algorithms for the inference of tissue composition and/or cell type 

specific transcriptional signatures. * refers to semi supervised methods. 

Software Input Output Method Main Platform 

Year of 

publication References 

 Prop Sign Mark Prop Sign     

De novo algorithms          

https://paperpile.com/c/S6tSJ7/0djf8
https://paperpile.com/c/S6tSJ7/Povnx
https://paperpile.com/c/S6tSJ7/WshhK
https://paperpile.com/c/S6tSJ7/yFxFB
https://paperpile.com/c/S6tSJ7/nQehK
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MMAD*    + + Linear regression MATLAB 2013 73 

CAM    + + Scatter space R 2016 74 

mixture_estimation    + +  R 2010 75 

DeMix*    + + Nelder–Mead 
(maximum likelihood) R 2013 76 

Ab initio algorithms          

MMAD* + +  + + Linear regression MATLAB 2013 73 

DSA   + + + Quadratic regression R 2013 70 

PERT  +  +  

mixed membership 

model Octave 2012 71 

NNML  +  +  

mixed membership 

model MATLAB 2012 71 

ISOLATE  +  +  

mixed membership 

model MATLAB 2009 77 

DeconRNASeq + +  +*  

Quadratic programming 
(non-negative 
decomposition) R 2013 78 

TEMT +    + 

Mixture model 

(MCMC) Python 2013 79 

ESTIMATE  +  +  Gene enrichment R 2013 80 

Cibersort  +  +  maximal margin R 2015 69 

Comics  +  +  

Linear regression 

(RNA) + ANOVA 

(DNA) R 2016 81 

DeMix*  + + + + 

Linear regression, L1 

norm ML R 2013 76 

NA      Minimum ratio  2010 75 

csSAM +    + Linear regression – 2010 82 

Zuckerman et al.    + + Linear regression – 2013 83 

MCP-counter  +  +  Linear regression R 2016 84 

ssGSEA  +  +  Gene enrichment R 2016 85 

xCell  +  +  Gene enrichment R 2017 72 

TIminer (pipeline)  +  +  Gene enrichment Bash 2017 86 

TIMER  +  +  Linear regression Web 2016 87 

EPIC  +  +  Linear regression R 2017 88 

quanTIseq (pipeline)  +  +  Linear regression Bash 2017 89 

ssKL  +  +  NA R 2014 90 

ssFrobenius  +  +*  NA R 2014 90 

 

https://paperpile.com/c/S6tSJ7/Loq58
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In the next section we introduce these methods grouping them by being ab initio or de 

novo, and subgrouping them by the statistical approach used. 

Ab initio methods 

Methods that use a priori information can either infer the tissue composition using transcriptomic 

cell type specific signatures, or vice versa. For complex tissues, where a high number of cell types 

including both distinct and highly similar cell populations are present, some a priori information 

is necessary to resolve the tissue mixture. Such an approach carries the risk of integrating 

information from public sources that is not representative of the query tissue.  

Inference of tissue composition 
Several statistical methods have been implemented for the inference of tissue composition using a 

priori information, including linear or quadratic regression with a diverse range of noise models 

and optimisation techniques, mixed membership model approaches or nonparametric gene 

enrichment. 

Least square error linear regression through QR factorization 

A multiple linear regression can be employed to solve the linear equation system Eq. 2. The noise 

is modelled with the square of the error distances (pairwise for each gene and sample) between the 

inferred  and the observed Y (Eq. 2). Least square optimization was first applied for identifying 

cellularity patterns on simulated data68 and on gene expression data from blood for the systemic 

lupus erythematosus disease91; using the nnls function (from Matlab) or the lsfit function (from R) 

respectively. The algorithm MMAD73, predicts Π minimizing the least square error using a non-

linear gradient descent algorithm with non-negative constraint. Similarly, the CsSAM algorithm, 

predicts cell type proportions using least square regression. The method of Zuckerman et al. 

predicts cell-type proportions (Π) using an external reference signatures just as initialization 

source. First non-negative matrix factorization is used to estimate an intermediate matrices  and  

 initializing   from the reference signatures. Second, the most likely set of cell types present in 

the mix is estimated (given a maximum number of cell types provided) using a method called 

SKLD92, and a surrogate transcription signature matrix   is composed. Third, non-negative least 

square is used to estimate Π from Y and  . DeMix utilizes a list of marker genes and/or a set of 

https://paperpile.com/c/S6tSJ7/0djf8
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reference background samples (e.g., benign component within the tumour mass) as a priori 

information and infers the proportion of the two major components (e.g., cancer and benign). In 

case marker genes are not defined, this algorithm uses Nelder–Mead procedure to identify an 

optimum gene set. The inference of two-component proportion is based on a custom optimization 

algorithm that evaluates the difference between the observed and predicted data. 

E-insensitive loss linear regression through Maximal margin optimization 

The algorithm Cibersort 69 applies a robust linear regression based on ε-insensitive loss function 

(i.e., svm R function using a linear kernel). The ε-insensitive loss function allows zero loss within 

the area surrounding the regression line and a quadratic loss beyond that area. This loss function 

confers more robustness against noise from non-informative genes. Furthermore, svm implements 

ridge regression to increase robustness for autocorrelated cell types. Cibersort also provides a 

curated pre-compiled signature data set including the most informative genes useful to separate 22 

distinct immune cell types69.  

Linear regression through quadratic programming 

Quadratic programming can be used to solve the linear equation system Eq. 2 with positive 

constraint. Formally, a quadratic programming solver is defined as an algorithm that finds a fit for 

a quadratic optimisation function applying linear constraints. The main difference to other linear 

regression solvers is the possibility to apply a positive constraint to the inferred proportions. Two 

algorithms make use of quadratic programming for gene expression deconvolution. The algorithm 

DeconRNAseq is RNA-seq dedicated78, and uses the quadratic programming algorithm limSolve 

(from R). The algorithm DSA70 only uses a list of marker genes for each selected cell type as prior 

information. DSA first predicts   using  , a surrogate of the matrix A (i.e., a diagonal matrix, 

including marker genes), it then predicts A from  , and subsequently Π with the inferred gene 

signatures. It uses the R quadprog solver 93. 

Mixed membership model through Markov Chain Monte Carlo 

A mixed membership model can be used for inferring proportion parameters in the system of linear 

equations Eq. 2. A series of algorithms based on latent Dirichlet allocation 94 (LDA) have been 

implemented: ISOLATE77, NNML71 and PERT71. Latent Dirichlet allocation can be represented 

as a product conditional probabilities. Both Π and A are modelled here as proportions (as arising 

from a Dirichlet distribution) of each cell type of being present in each sample, and of each gene 

https://paperpile.com/c/S6tSJ7/Povnx
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expressed in each cell type, respectively. The algorithm ISOLATE implements latent Dirichlet 

allocation in its simplest form, while the algorithm NNML introduces three further parameters that 

allows the modelling of an unknown/background source of RNA, beside the signatures provided, 

which includes all those cell types for which a signature is not available. The algorithm PERT 

expands on ISOLATE with three further parameters that allow to model the artefactual differences 

between reference signature and fresh hidden signatures within the mix, caused by the processing 

needed to obtain such purified signatures (e.g., cell sorting). 

Gene enrichment through non-parametric statistics 

Some methods do not attempt to solve directly the system of linear equations Eq. 2, but rather use 

a publicly available non-parametric algorithm (e.g., GSEA95) for calculating a score associated to 

the likelihood of a set of marker genes that define a cell type of being in enriched in the top or 

bottom rank in the tissue gene expression data set. For example, ESTIMATE uses ssGSEA96 to 

calculate enrichment scores for stromal tissue and immune cell infiltration. The tumour purity 

score is integrated using the ABSOLUTE-based97 score. All three scores are integrated into a 

formula identified using Eureqa Formulize98. The algorithm xCell72 uses GSEA enrichment score 

that is first transformed to a linear scale and then adjusted using a spill over compensation 

technique trained on in silico mixtures, with the goal of reducing autocorrelation biases among 

similar cell types. 

Inference of cell type specific transcriptome 
As opposed to the inference of tissue composition, a limited number of methods have been 

implemented for the ab initio inference of cell type specific transcriptomes from whole tissue 

nucleotide information. 

Least square error linear regression 

The algorithm MMAD, in its alternative setting, is able to infer cell specific transcriptional profiles 

if Π is known73. The reference profiles are calculated independently for each gene, minimizing the 

least square error of cell types that have similar expression for the selected gene, using a k-means 

mixed membership model. The most conservative mixed membership model is estimated using 

AIC parsimony criterion. 

https://paperpile.com/c/S6tSJ7/0vAYR
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Linear regression through quadratic programming 

The algorithm DSA70 estimates the matrix Π and A given a list of marker genes for each selected 

cell type. Briefly, DSA first predicts Π using surrogate of the matrix A (i.e., a diagonal matrix, 

including marker genes); then, pure signatures of cell types (A) are calculated using the predicted 

Π using the algorithm quadprog (from R)93. 

De novo methods 

Several algorithms predict both cell type proportions (Π) and cell type specific signatures (A) for 

a selected/inferred number of cell types within a tissue without any pre-existing information. The 

main advantages of such approaches are avoiding the bias generated by using partially 

representative, publicly available gene marker signatures for the selected cell types; and potentially 

discover novel cell types in cases where the identity of cell markers is inferred. These methods use 

a diverse range of statistics of which least square linear regression is the most popular, although a 

range of statistical tools, such as multidimensional-corner identification and AIC are used in 

integration.  

Least square error linear regression 

For the algorithm CAM74 genes are plotted in a “N” dimensional space depending on their 

expression values, with N being the number of given mixed samples; for example three samples 

genes would be plotted in a 3D space forming a gene “cloud”. The CAM algorithm uses Minimum 

description length (MDL) to identify “corners” in the cloud that will include marker genes for the 

most represented cell-types. Then, Π is estimated solving the system of linear equation, using the 

predicted marker genes to build a surrogate of A (i.e., a diagonal matrix, including marker genes). 

The matrix Π is then used to predict A using lsfit function (from R). The algorithm MMAD in its 

de novo setting, attempts to infer both A and Π without a priori information. It uses a maximum 

likelihood approach to minimize sum of square error between the inferred mixed value for each 

gene and the observed mixed value. DeMix is designed for a two-ways deconvolution (e.g., cancer 

versus benign component) and uses a maximum likelihood approach to solve the two components 

of the linear system Eq. 2. An optimal set of tumour purities for every sample is derived using the 

Nelder-Mean procedure99, based on global properties (mean and standard deviation) of the mixed 

tumour samples; then those proportions are used to deconvolve the mixed expression samples into 

their pure components according to the maximum likelihood of the combined probability of (i) 
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observing each gene expression for pre tumour considered global properties of pure tumour gene 

expression, and (ii) the estimated pure normal gene expression considered global properties of pure 

normal gene expression.  

Minimum ratio 

The algorithm Mixture_estimation75 infers the expression signatures and proportions of a two-

components transcriptional mix. The two-component proportions are estimated using a minimum 

ratio paradigm; defining the ratio for each gene as being the gene expression in the mix divided by 

the pure gene expression. When the ratios are calculated for a gene across all possible proportion 

values (between 0 and 1), they form an unimodal increasing curve; the proportion of the mix is 

found by identifying the point where the second derivative of the curve (where the trade-off 

between pulling low values up and low values down) is optimal.  

Comparative analysis of the methods for transcriptional signature deconvolution 

Considering that methods for infer cell type transcriptomic profiles from whole tissue data are not 

so well established, I will focus on the benchmarking of the deconvolution methods that infer tissue 

composition from whole tissue transcriptomic data, including ab initio and de novo 

implementations. In order to compare the accuracy and robustness of publicly available methods, 

the inferences of tissue composition were performed using a selection of published and novel cell 

type specific signature training data sets. This permits the assessment of the robustness of each 

method to diverse, a priori information. Those training data sets were: (i) the LM22 training 

transcriptomic signatures69; (ii) a recompiled LM22 (called LM22 redo) from the source 

signatures; (iii) an enriched LM22 with stromal signatures from epithelial, endothelial and 

fibroblast cells; (vi) a novel RNA sequencing data set that includes 28 cell types, and compiled 

integrating the BLUEPRINT100, FANTOM101 and ENCODE102 databases; (v) a novel microarray 

based data set including 28 cell types compiled integrating the GSE8636284 and LM22 data sets. 

In total, we tested each combination of algorithm and training signature across three validation 

data sets: a TCGA RNA sequencing based data set (named TCGA), a pure cell type RNA 

sequencing data set (named Pure), and a peripheral blood mononuclear cell (PBMC) microarray 

based data set69 (named PBMC).  

The TCGA data set is composed by 2352 samples from 19 major epithelial cancer types. 

The goal of the TCGA data set is to observe the agreement on tumour purity evaluation with a 
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selection of DNA based measures across cancer types103, including: (i) ABSOLUTE score 97; (ii) 

CPE104, a consensus measurement of purity estimation ; and (iii) LUMP105, based on methylation 

of immune-specific CpG sites. For the TCGA validation data set only the novel RNA sequencing 

and microarray-based training data sets were used as included epithelial cell transcriptional 

signatures. Figure 1.3 shows similar overall performances across training datasets and a diverse 

range of performances over cancer types for almost all algorithms. The combination of the 

algorithm Cibersort with RNA based transcriptional signature shows significantly better 

performances compared to the other combinations. As expected, the gain in performance of 

Cibersort declined when paired with the microarray-based signature. Comics and Decon are the 

second and third best performing algorithms on this validation data set. 
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Fig. 1.3 Comparison of the adjusted inference error of various deconvolution algorithms for the 

dataset TCGA across selected training data sets. The size of the dots represents the number of 

samples present for each cancer type. 

 

The Pure data set is composed by 190 samples from 20 pure cell types. The goal of the 

Pure cohort is the assessment of the accuracy in classifying correctly pure cell types. Figure 1.4 

shows a highly diverse performances across algorithms, training data sets and cell types. Overall 

all algorithms show poor accuracy, except for xCell. The algorithm decon showed the second best 
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performance. Interestingly, considering that the validation data set is RNA-seq based, the training 

data set LM22 (based on microarray) gave higher performances across algorithms compared with 

the other RNA sequencing and microarray-based data sets. 

 

 
Fig. 1.4 Comparison of the adjusted inference error of various deconvolution algorithms for the 

dataset Pure across selected training data sets. The size of the dots represents the number of 

samples present for each cancer type. 

 

The PBMC data set is composed by 20 samples for which 9 blood cell types were 

experimentally measured. The goal of the PBMC training data set is to evaluate the accuracy in 



 

28 

inferring tissue composition in complex tissues as well as to perform an independent assessment 

of this publicly available data set previously analysed69. For this validation data set all available 

training signatures were used for evaluation. Figure 1.5 shows an overall good accuracy across 

algorithms and training data sets. As expected, the combination of LM22 and Cibersort shows the 

highest accuracy amongst all. The data set LM22 gave the highest overall accuracy on this 

validation set. The accuracy advantage of Cibersort decreases with any other training data set used. 

 

 
Fig. 1.5 Comparison of the adjusted inference error of various deconvolution algorithms for the 

dataset PBMC across selected training data sets. The size of the dots represents the number of 

samples present for each cancer type. 

https://paperpile.com/c/S6tSJ7/Povnx
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Figure 1.6 shows the overall variation in performances of all algorithms across training and 

validation data sets. Overall, Cibersort shower lower adjusted mean error rate (Eq. 3) compared to 

the other algorithms. However, for each validation data set we observed variability in the rank of 

most accurate algorithms. For example, xCell outperforms all algorithms for the classification task 

using the Pure validation data set, while Cibersort outperforms the other algorithms for the PBMC 

and TCGA validation data sets. Regardless of the absolute performances, the algorithms comics 

and mcpcounter showed the highest consistency in performances across training data sets. 

 
Fig. 1.6 Heatmap representing the overall performances of all algorithms across the three-

validation data set, employing a diverse range of training gene expression signatures. The 

performance is expressed in term of adjusted absolute error (Eq. 3) 

Methods 

Compilation of the novel training data set signatures 
For the RNA sequencing based signature, cell type specific transcriptomes were collected from 

three databases: BLUEPRINT100, FANTOM5101, and ENCODE102. All cell type identifiers were 
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harmonized to the following 28 cell types: epithelial, endothelial, fibroblast, adipocyte, eosinophil, 

neutrophil, monocyte, macrophage M0, macrophage M1, macrophage M2, dendritic resting, 

dendritic activated, mast cell activated, mast cell resting, b cell naive, b cell memory, t CD4 naive, 

t CD8, t helper 1, t helper 2, t helper follicular, t gamma delta, t reg, t memory central, t memory 

effector, NK activated, NK resting and plasma cell. All data sets were integrated based on gene 

symbols. Considering the large amount of samples, the integration was performed in a sparse 

manner, in order to avoid gene loss. That is, if a gene symbol was missing from a sample, its value 

was marked as missing data (i.e., NA). After harmonization, the data set was normalized using the 

TMM method106. In order to not discard genes in the normalization phase, the calculation of the 

normalization factor has first been performed on non-parse, filtered genes (> 0.5 count per million 

in at least 2/3 of the samples), and then applied to the whole data set. Then, the missing values for 

each gene were estimated using the closest cell type category according to the hierarchy of cell 

differentiation (Fig. S1.1). In order to remove unwanted variation between data sources, the 

algorithm RUV4107 was employed using the highest level descendants of the hierarchy cut at level 

2 as covariate of interest, and using a selection of 600 housekeeping genes107 as negative controls. 

The number of unwanted covariates (i.e., parameter K in RUV4 algorithm) was arbitrarily chosen 

for parsimony as the double of the number of the integrated databases (e.g., k = 6 for RNA 

sequencing), in the absence of a more meaningful criteria. For the microarray based signature, cell 

type specific transcriptomes were collected from two data sets: LM2269 and GSE8636284. An 

analogous methodology was used to integrate those data sets, except for the normalization step, 

which was based on quantile normalization. 

Gene marker selection 
The set of marker genes for each cell type was identified performing a global differential gene 

expression analysis across all other cell types, using edgeR108 on the RNA sequencing based 

training data set. For each query cell type genes were shortlisted if having false discovery rate < 

0.05 and fold change > 0, based on the edgeR top table; then, genes were ranked by fold change 

and the top 200 were shortlisted; then, genes were ranked based on the variance of the rest of cell 

types and the top 100 genes were shortlisted. From those genes, the ones that showed bimodality 

(i.e., that don’t show heterogeneity within) for any cell type were discarded. 
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Calculation of the performance score 
In order to create a performance score applicable to all validation data-sets, we created an error 

metrics based on the absolute distance between ground truth and prediction, adjusted 

proportionally to the abundance of a cell type. The rationale for not using R2 and p-value from the 

linear regression of predicted proportions against ground truth is: (i) that this score only applies 

when the ground truth proportion is a continuous value, and does not apply to classification 

problems with binary proportion values (i.e., either 0 or 1); and (ii) because a two-values score is 

not suitable for creating a unique rank. The score is calculated with the following formula 

 

 
 

Where π is a cell type proportion in a sample, and where || || represents the L1 

regularization. The first component on the left side of Eq. 3 represents the absolute error, while 

the second component represents a normalization constant. The normalization constant is needed 

because, if we assume that a proportion variable is Beta distributed (Fig. S1.2) the degrees of 

freedom are the largest at the point 0.5 and the lowest at the plateaus 0 and 1. The trend of change 

of degrees of freedom can be modelled with a logit function (Fig. S1.2). With such adjusted rate, 

the error for cell types with proportion close to 0 and 1 will obtain more weight proportionally to 

the absolute of the inverse of the logit function. The summation of 1 to the logit transformation 

(Eq. 3) have the function of producing a unitary baseline (multiplication by 1) for proportions of 

0.5.  

Conclusions 

The problem of transcriptional deconvolution has been approached for 17 years (from 200168). 

During this time, a diverse range of statistical paradigms has been adopted with success, and the 

improvement of cell-type specific transcriptomic signatures has allowed to infer the composition 

of complex tissues69. Overall, there is no a single algorithm that outperform others in all scenarios. 

Cibersort, xCell and Comics have overall better performances compared with the other tested 

algorithms; while Cibersort has superior performance on the PBMC validation data set and good 

performances on the other data sets, xCell have superior performances on the Pure data set. 

https://paperpile.com/c/S6tSJ7/0djf8
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Although premature, in recent years deconvolution methods based on methylation profiles 

have emerged109. In principle, the use of methylation cell-type-specific signatures offers more 

stability compared to transcriptional signatures as are less sensitive to extemporal biological 

changes and provide long-term gene regulatory profile for diverse cell types. For lack of direct 

comparative measures, such methodologies have been omitted from this work. 

In seeking associations between tissue composition and biological/clinical 

properties/outcomes, molecular profiles deconvolution across a sample cohort represents the first 

step; a statistical model then needs to be applied to the inferred cell-type proportions to infer an 

association between the abundance of a cell type and biological/clinical properties/outcomes. 

Compared to differential transcription analyses, working with tissue composition has a further 

challenge: while the inference of gene counts carries low uncertainty (considering the specificity 

of nucleotide gene sequences and the sequenced read length of modern sequencing techniques), 

the inference of tissue composition carries a much bigger uncertainty. Therefore, an integrated 

algorithm that performs tissue deconvolution and regression and/or hypothesis testing is necessary, 

to be able to transfer the uncertainty from the first inference phase to the second. 

https://paperpile.com/c/S6tSJ7/vlbmS
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Supplementary figures 

 
Fig. S1.1 Graph representation of the cell type hierarchical structure. 
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Fig. S1.2 A — Inference of epithelial proportion in TCGA colon adenocarcinoma samples, 

showing the compression of the error near 1, for highly pure cancer samples (i.e., where the 

proportion of epithelial cell is near 1). B — Inference of various blood cell type proportion in the 

PBMC validation data set, showing the compression of the error near 0, for rare cell types. C — 

Example of beta distribution showing the dimensionality compression near 0 and 1.  
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Summary 

The tumour microenvironment is a complex evolving system; and although an old concept, it is 

being intensively investigated across diverse disciplines such as cellular, molecular and 

computational biology. In this thesis, I investigated multiple aspects of the prostate tumour 

microenvironment using high throughput experimental (i.e., Fluorescence-activated cell sorting; 

FACS) and computational techniques (Bayesian inference). I focused both on periprostatic adipose 

tissue and primary prostate cancer tissue. 

- In chapter two, I investigated the diagnostic potential of periprostatic fat, using transcriptomic 

abundance data to detect a “field-effect” of the cancer-immuno activity. Here, I applied 

machine learning techniques to perform a 2-step feature selection and cross validation, with 

the goal to classify prostate cancer risk category from periprostatic fat gene transcription 

abundance. 

- In chapter three, I investigated transcriptomic changes of the periprostatic adipose tissue in 

association with supercastration therapy. Here, I performed differential transcription analysis 

of treated against untreated patients with the goal to identify tissue metabolic changes at the 

molecular level that could negatively affect treatment outcome (e.g., obesity and/or 

inflammation). 

- In chapter four, I investigated transcriptional changes along increasing risk score (i.e. CAPRA 

risk score), for several enriched cell types from prostate cancer tissue (i.e., Epithelial, 

fibroblasts, T- and myeloid cells). Here, I developed and applied an innovative differential 

transcription approach that was able to perform differential transcription analyses on (pseudo-

)continuous covariates (i.e., CAPRA risk score), with the goal to gain knowledge about the 

synergic contribution of different cell types to the development of hallmarks of prostate cancer 

(e.g., angiogenesis, immune modulation and tissue remodelling). 

- In chapter five, I developed a novel regression method targeted to proportional data. Here, I 

developed a Bayesian inference model with the goal of inferring both intrinsic and extrinsic 

proportional changes along a covariate of interest. Although stand-alone, this inference model 

was integrated with the method for differential tissue composition analyses developed and used 

in chapter six. 

- In chapter six, I developed and used a novel method for differential tissue composition analysis 

that is able to integratively infer (i) the tissue composition from whole tissue transcriptional 
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data (and prior information about the transcriptional profiles of pure cell types); and (ii) infer 

the association between cell type abundance and a covariate of interest (e.g., risk score or 

tumour relapse). Here, I applied such method to the TCGA database with the goal of defining 

a landscape of associations between cell type abundance and cancer relapse, identifying key 

cell types for a diverse range of cancers. 
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Context 

Evidence suggests that altered adipose tissue homeostasis may be an important contributor to the 

development and/or progression of prostate cancer. In this study, we investigated the adipose 

transcriptional profiles of low- and high-risk disease to determine both prognostic potential and 

possible biological drivers of aggressive disease. RNA was extracted from periprostatic adipose 

tissue from patients categorised as having prostate cancer with either a low or high risk of 

progression based on tumour characteristics at prostatectomy and profiled by RNA sequencing. 

The expression of selected genes was then quantified by qRT-PCR in a cross-validation cohort. In 

the first phase, a total of 677 differentially transcribed genes were identified, from which a subset 

of 14 genes was shortlisted. In the second phase, a 3 gene (IGHA1, OLFM4, RERGL) signature 

was refined and evaluated using recursive feature selection and cross-validation, obtaining a 

promising discriminatory utility (area under curve 0.72) at predicting the presence of high-risk 

disease. Genes implicated in immune and/or inflammatory responses predominated. Periprostatic 

adipose tissue from patients with high-risk prostate cancer has a distinct transcriptional signature 

that may be useful for detecting its occult presence. Differential expression appears to be driven 

by a local immune/inflammatory reaction to more advanced tumours, than any specific adipose 

tissue-specific tumour-promoting mechanism. This signature is transferable into a clinically usable 

PCR-based assay, which in a cross-validation cohort shows diagnostic potential. 
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Introduction 

Prostate cancer is the most widely diagnosed cancer among men in developed countries and the 

second most diagnosed cancer in men worldwide110. The widespread use of serum PSA 

measurement as an ad hoc community-based screening test has meant that the majority of patients 

are diagnosed very early in the natural history of the disease, in the absence of any significant 

cancer-related symptoms111. It is clear both from prospective cohort studies as well as the control 

arms of randomised intervention trials, that many of these cancers will not pose a threat to patient 

life or even wellbeing within their lifetime112–114. Counterbalancing this is the recognition that 

numerically, many diagnosed cancers are biologically aggressive, and prostate cancer is the 

primary cause of death in over 160,000 men worldwide each year110. However, current methods 

fail to reliably discriminate indolent tumours from those with metastatic potential115,116. This 

uncertainty leads many clinicians and/or patients to choose to complete radical therapy, even when 

the chance of benefit is small or absent. In addition, although the majority of patients recover well, 

a minority will develop debilitating post-operative morbidity, which is both time consuming and 
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costly to manage, and significantly impacts quality of life117. At the same time, misidentification 

of biologically aggressive disease is equally troublesome, with the possibility of patients with 

potentially lethal tumours being inappropriately observed. 

As the majority of tumours are neither palpable nor visible sonographically, a key 

limitation of the current diagnostic strategy is the reliance on prostate sampling, with transrectal 

ultrasound used to obtain needle biopsy cores from pre-specified areas within the gland118. This 

inevitably leads to a ‘sampling error’, in which clinically significant tumours may be missed 

resulting in a false-negative biopsy, or tumour grade, consistently the most important predictor of 

disease natural history, under- or over-estimated115. Indeed a recently reported large cohort study 

suggests that standard transrectal biopsy fails to diagnose 27–45% of clinically significant 

cancers119. 

Increasing evidence over the last decade indicates that altered adipose tissue homeostasis 

may be an important contributor to the development and/or progression of a number of solid organ 

tumours, including prostate cancer120. This was initially suggested by observations linking obesity 

to the development of aggressive prostate cancer121–125, and findings that obesity-induced 

biochemical changes in periprostatic adipose tissue can directly affect tumour growth126. As 

prostate tumours progress locally, they frequently invade the periprostatic adipose compartment, 

thereby gaining immediate access to adipose tissue and locally produced adipokines that have been 

associated with tumour cell growth, invasion and metastases127–130. Similarly, tumour-derived 

factors may simultaneously influence the metabolic profile of periprostatic adipose tissue, perhaps 

culturing a niche within which the cancer can progress to a more advanced stage131. Although the 

evidence so far is the strongest in support of a role for periprostatic fat in promoting prostate cancer 

progression in obese patients, the association between changes in local adipose tissue metabolism 

and prostate cancer aggressiveness in non-obese patients is less clear. 

Given the potential role of the local fat depot in prostate cancer progression, as well as the 

ongoing need for new strategies to improve risk stratification at the time of diagnosis, we 

investigated the possibility that alterations in periprostatic adipose tissue may be associated with 

disease risk. We performed RNA sequencing on periprostatic adipose tissue obtained at the time 

of prostatectomy, to determine if there existed a transcriptional signature that would allow 

differentiation between groups of patients at high or low risk of progression. We found significant 

alterations in expression affecting 677 genes and identified a distinct signature that we confirmed 
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by qPCR in an expanded cohort. Analyses of the genes involved suggest that differential 

expression is due to reactive changes within the tissue rather than local adipose tissue acting as a 

distinct driver of tumour progression. 

Materials and methods 

Ethics statement 

The collection and use of tissue for this study had Epworth Healthcare institutional review board 

approval and patients provided written informed consent (HREC approval number 34506). 

Study cohort selection 

Patients with localised prostate cancer from whom adipose tissue was obtained for research 

purposes at the time of prostatectomy were identified from a prospectively collected adipose tissue 

bank132. Prior to ligation of the dorsal venous complex and prostate pedicles, the anterior prostate 

was defatted and the specimen was removed immediately, placed in a sterile container and 

transferred on ice for long-term storage in the vapour phase of liquid nitrogen. Selected patients 

had enough quantities of periprostatic adipose tissue collected at the time of surgery, had no prior 

local or systemic prostate cancer therapies, could be categorised into low- or high-risk cohorts 

based on their pathological stage, prostatectomy Gleason score and tumour volume and were free 

from significant systemic medical conditions. CAPRA-S scores were calculated for all patients as 

described133. Patients were grouped into a discovery phase (n = 20) and then a second, cross-

validation (n = 58) phase, in a balanced fashion between low and high- risk. 

Gene expression screen 

A total of 50–100 µg of adipose tissue were separated from fresh frozen samples stored at 

~−180°C. RNA was isolated using the Qiagen RNeasy Lipid Tissue Mini Kit and eluted in 35 µL 

nuclease-free water. 0.5–1 µg of total RNA was used as the input for cDNA library synthesis using 

TruSeq RNA Sample Prep Kit v2 (Illumina), and libraries were constructed according to 

manufacturer’s instructions. Samples were sequenced on a HiSeq 2500 (Illumina) using 101 bp 

paired-end chemistry, aiming for 50 million mapped paired-end reads per sample. 

Data pre-processing and differential expression analysis 

https://paperpile.com/c/S6tSJ7/fk1Qe
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A schematic summarising the overall workflow is provided in Supplementary Fig. 2.1. The RNA 

sequencing (RNA-seq) quality for each sample was checked using the fastqc algorithm134. Reads 

were trimmed for Illumina adapters and low-quality fragments using the trimmomatic algorithm, 

and short reads filtered out from the pools according to default settings135. The remaining reads 

were aligned to the reference genome hg19 using the STAR aligner with default settings136. The 

gene abundance for each sample was quantified in terms of nucleotide reads per gene (read-count) 

using featureCounts137. Low abundant genes were filtered from the analysis if not present in at 

least 0.5 parts per million in two-thirds of the samples in each disease group (i.e., low- and high-

risk). The gene read counts were normalised based on their log-medians for each sample. The 

normalised gene abundances were adjusted for unknown variation using RUVseq (using default 

settings)138. The number of unwanted covariates (i.e., hidden batches) to account for was chosen 

through an iterative process. RUVseq was run for an increasing number of covariates (from 1 to 

15); for each run, the covariate matrix calculated was added to the design matrix (i.e., low-/high-

risk labels) and our samples tested for differential transcription using the edgeR package108. Based 

on the ranking of selected putative positive gene controls identified in previous studies120 (IL6, 

TNF, LEP, NFKB1, CD68) as well as the P-value distribution of each run, 14 covariates were 

chosen accordingly(Supplementary Figs 2.2 and 2.3). The differential transcription analysis was 

performed on the resulting data set, utilising the identified 14 covariate parameters in the linear 

model of edgeR. Pathway analyses were performed on the differentially transcribed genes (false 

discovery rate, FDR < 0.05) using two algorithms in parallel, SPIA and GSEA96,139. A potential 

transcriptional signature of 14 genes was selected for further analysis prioritised on low FDR, high 

fold-change and transcript abundance. 

Classification using quantitative qRT-PCR 

Selected genes were analysed in an extended cross-validation cohort of 58 patients (28 low-risk, 

30 high-risk) through quantitative real-time (qRT-) PCR, using 1 µL of cDNA, 0.5–1 µL qRT-

PCR primers (see below), 5 µL of TaqMan Fast Advanced Master Mix (Applied Biosystems) and 

made up to 10 µL volume per well with UltraPure distilled water (Gibco). Primers to 14 genes 

from the initial exploratory cohort including IGHA1 (Hs00733892_m1), SAA2 

(Hs01667582_m1), MYH11 (Hs00224610_m1), RERGL (Hs00922947_m1), SOCS3 

(Hs02330328_s1), PLA2G2A (Hs00179898_m1), SLC2A1 (Hs00892681_m1), COL6A6 

https://paperpile.com/c/S6tSJ7/Fpe3t
https://paperpile.com/c/S6tSJ7/d9ifM
https://paperpile.com/c/S6tSJ7/x3TZk
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https://paperpile.com/c/S6tSJ7/R8t3e
https://paperpile.com/c/S6tSJ7/Ql3c3
https://paperpile.com/c/S6tSJ7/EB6wj+jt5WU


 

43 

(Hs01029204_m1), GPR34 (Hs00271105_s1), CLDN1 (Hs00221623_m1), PCDH10 

(Hs00252974_s1), SELE (Hs00174057_m1), OLFM4 (Hs00197437_m1) and DES 

(Hs00157258_m1) were pre-designed and commercially available from Applied Biosystems. 

Samples were run on a 384-well plate using a Viia7 qRT-PCR machine (Applied Biosystems) 

under the following conditions: UNG incubation at 50°C for 2 min; polymerase activation at 95°C 

for 20 s; followed by 40 cycles of denature at 95°C for 1 s; anneal/extend at 60°C for 20 s. 

Expression levels of target genes were normalised to the geometric mean of GAPDH 

(Hs00266705_g1, Applied Biosystems), TBP (Hs00427621_m1, Applied Biosystems) and 

POLR2A(Hs00427621_m1, Applied Biosystems) using the formula 2−ΔC(T). 

Machine learning algorithms including support vector machine140 (with the following 

settings; SVM-Type: C-classification; SVM-Kernel: radial; cost: 1; gamma: 0.3), random forest141 

(with the following settings; Number of trees: 500; number of variables tried at each split: 1) and 

generalised linear model142 (with the following settings; degrees of freedom: 49; residuals: 46) 

were employed to classify patients as low or high risk both in the training and cross-validation 

phases. Genes were prioritised based on recursive feature selection using the rfe function from 

Caret R package143 on a randomly subsampled training portion of the data set (~70%). The 

classification performances of the resulting gene rank were cross-validated against the remaining 

data set (~30%) across 13 (gene N-1) iterations, first including only the two top genes, with 

increments of one gene per iteration. This gene feature selection/cross-validation procedure was 

iterated 30 times with different random, balanced subsampling of training and cross-validation 

fractions and the mean area under curve (AUC; expressing the prediction performances of a binary 

classifier) was calculated for each combination. The signature size N was chosen according to the 

performance trend observed using from 2 to 14 classifiers. The most recurrent N genes across 

cross-validation were then selected and a final round of cross-validation was performed using such 

genes. The patients in this cohort who were also present in the RNA-seq analysis were excluded 

from any cross-validation set and limited to the training set for the qRT-PCR classifier. The 

Cibersort tool69 was used to test for epithelial cell infiltration within the profiled periprostatic 

adipose tissue. 

Analysis of TCGA data 

https://paperpile.com/c/S6tSJ7/k38JX
https://paperpile.com/c/S6tSJ7/NMt3j
https://paperpile.com/c/S6tSJ7/CW1Bl
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Read counts and sample annotations of the TCGA prostate adenocarcinoma RNA-seq dataset were 

taken from the website portal.gdc.cancer.gov144. Data were filtered, normalised and tested for 

global differential expression accounting for unwanted variation as described earlier for our RNA-

seq data set. The 14 genes analysed with qRT-PCR were employed to classify low-/high-grade 

patients in a cross-validation fashion analogously to the RNA-seq classification procedure 

described earlier. Furthermore, the potential infiltration of cancerous cell from the prostate into the 

periprostatic fat was tested with Cibersort69 using an ad hoc signature based on LM22, with 

fibroblast and endothelial gene expression signatures were taken from ENCODE, BLUEPRINT 

and FANTOM5 data sets. 

Data and computational algorithms 

The raw data of sequence reads can be retrieved at ega-archive.org with the code 

EGAS00001002446. The informatics code used for the analyses in this work can be retrieved at 

github.com/stemangiola/Fat-classification-RNAseq-2017. 

Results 

Patient characteristics 

For the initial screen, we selected 20 patients with high- or low-risk disease respectively, as 

determined by the prostatectomy Gleason score, pathological stage and total tumour volume 

(Supplementary Table 2.1). Patients in the low-risk group had median CAPRA-S score of 1 (range 

0–4) with an estimated 91.0% 5-year progression-free survival, compared to a median of 7 (range 

3–9) in the high-risk group and an estimated 5-year disease-free survival of only 26.9%145. 

Similarly, tumours in the high-risk patients were significantly larger than those with low-risk 

disease (mean 8.3 cc vs 0.8 cc, P = 0.003 Students t-test). The groups were however well matched 

for body mass index (BMI) (low-risk mean 28.0 vs high-risk mean 26.2, P = 0.56 Students t-test). 

Further patients with similar characteristics were later selected for validation studies (Table 2.1). 

Gene expression of adipose tissue in prostate cancer patients 

Samples were sequenced to an average depth of 67 million reads. After data filtering and 

normalisation, the distribution of gene read counts followed an expected log-normal distribution. 

https://paperpile.com/c/S6tSJ7/bYzxx
https://paperpile.com/c/S6tSJ7/Povnx
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Preliminary clustering revealed two outlying samples (one each in the low and high-risk group), 

which were removed as previously recommended146,147. A multi-dimensional scaling (MDS) 

analysis148 of gene read counts in the low- and high-risk cohorts demonstrated a noticeable 

separation for periprostatic adipose tissue (Figs 2.1 and 2.2A), which increased significantly after 

reduction of unwanted variation (RUV) that eliminated sample processing batch effects 

(Supplementary Fig. 2.4A). No significant clustering was noted based on BMI or statin use, 

indicating that the effect of tumour risk on transcription was greater than either of these two 

covariates (Supplementary Figs 2.5 and 2.6). On differential expression analysis a total of 677 

differentially transcribed genes (FDR < 0.05) were identified between low- and high-risk disease 

in periprostatic tissue (of which the top 25 genes ranked by FDR P-values are listed in Table 2.2; 

full list provided as a supplementary excel file). Overall, the range of fold changes was low (from 

−3 to 2, Fig. 2.2B). Interestingly, the majority of the top ranked genes have roles in inflammation 

and immune response, including IGHA1, SAA1, SAA2, SELE, LYZ, CXCL2 and ITGAD as well 

SOCS3 (upregulated), which is known to be upregulated by increased levels of the inflammatory 

cytokines IL6 and IL10, suggesting that differences in immune activation are important to the 

differing severity of prostate cancers. When differentially transcribed genes were ranked according 

to their log fold-change (logFC), 5 of the top 20 genes overrepresented in high-risk disease encode 

various types of immunoglobulins. Further differences in gene expression were identified in genes 

involved in the transport of calcium or dependent upon calcium for their action; SCGN, GRIN2A, 

PLA2G2A, genes responsible for forming or maintaining the extracellular matrix; CLDN1, ITIH3, 

NPNT and genes encoding muscle proteins; MYH11, MUSTN1, DES, MYOZ1. Looking 

specifically at adipokines that have previously been implicated in driving obesity-related cancer 

progression, a significant increase in expression in high-risk disease was noted for IL6 (logFC 

0.42, FDR = 0.04) and CCL2 (logFC 0.57, FDR = 6.4E-06), although the fold-change was quite 

small (Supplementary Table 2.2). No significant difference in expression was identified for TNF, 

LEP (leptin), ADIPOQ (adiponectin), IL10 or IL8. 

 

Table 2.1. Clinical characteristics of study cohort 
 
    Low-risk High-risk 

n   28 30 

https://paperpile.com/c/S6tSJ7/etL7L+prXHF
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Age (yrs.) Median 60 66 

 Range 44-74 49-80 

PSA (ng/dl) Median 5.8 7.3 

  Range 0.7-41.0 2.7-81.0 

  <10 22 20 

  Oct-20 5 5 

  >20 1 5 

Pathological Stage pT2a 8 - 

 pT2c 18 1 

 pT3a 2 20 

 pT3b - 9 

Gleason Sum (ISUP 
Group) 

6 (1) 20 - 

  3+4 (2) 8 6 

  4+3 (3) - 11 

  8 (4) - 2 

  9-10 (5) - 11 

Tumour Volume 
(cm3) 

Mean 0.63 6.9 

 Range 0.1-3.3 1.2-32.1 

Recurrence No 28 13 

  Yes 0 17 

Follow up (months) Mean 27 29 

  Range 2-59 3-50 
 

 

Pathway analysis of the list of differentially transcribed genes using both SPIA and GSEA 

algorithms (Table 3) identified 18 differentially regulated pathways (FDR < 0.05), with an overlap 
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of 7 pathways. Most differences observed in functional pathway regulation demonstrate cancer-

related alterations to immune response and inflammation. A gene signature to be refined and cross-

validated with qRT-PCR was selected based on FDR and logFC, including IGHA1, SAA2, 

MYH11, DES, RERGL, SOCS3, PLA2G2A, SLC2A1, COL6A6, GPR34, CLDN1, PCDH10, 

SELE and OLFM4. 

qRT-PCR refinement of the gene signature 

qRT-PCR was used to interrogate the 14 selected genes across a larger cohort of 58 patients (28 

low-risk, 30 high-risk). Of these genes, IGHA1, MYH11, RERGL, SOCS3, PLA2G2A, CLDN1 

and OLFM4 were confirmed to be significantly differentially transcribed across the two groups 

(P-value <0.05, one-sided Student’s t-test) and GPR34, PCDH10 and SELE were found to have 

P-values <0.1 (Supplementary Fig. 2.7). Overall, qRT-PCR fold-change between low- and high-

risk tumours (calculated on delta-TC-value) showed a positive linear correlation with the RNA-

seq transcription fold-change (calculated on mean read counts), with a slope of 1.5 and a P-value 

(linear model; lm R package)149 of 0.06 and an R 2 of 0.26 (Fig. 2.3A). Of the four genes that did 

not validate, two (SLC2A1 and GPR34) had a logFC <0.7. The second phase feature selection 

using qRT-PCR gene abundance values led to the decision to set the signature size to 3 (Fig. 2.3B) 

as the performances of the three classifiers peaked at this value. The best performance expressed 

in mean AUC was 0.73 (S.D. = 0.14; Fig. 2.3B). Among the 3 gene signatures across iterations, 

the genes IGHA1, OLFM4 and RERGL occurred most often and further cross-validation using 

only these genes led to a mean AUC of 0.72 (S.D. = 0.14; Fig. 2.3C), with an out-of-bag estimate 

of error rate ranging from 31 to 39% across iterations. 
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Figure 2.1 Heatmap of the differentially expressed genes in periprostatic adipose tissue between 

patients with low- and high-risk prostate cancer. 

 

Specificity of the gene signature to fat 

To confirm that the signature was specific to fat and did not just represent sample contamination 

by invasive prostate cancer, several approaches were taken. Firstly, we examined global 

differential expression in the TCGA prostate cancer data set and found little overlap in 

differentially transcribed genes compared to the periprostatic fat cohort with just two of the genes 

in the 14-gene signature reaching FDR < 0.05 (Supplementary Table 2.3), neither of which was a 
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component of the final 3-gene assay. Secondly, we applied the 14-gene signature developed for 

adipose tissue to the TCGA dataset, which showed an overall negligible ability to classify high- 

and low-risk cancer cancers (Fig. 2.3C and Supplementary Fig. 2.4B), with a mean AUC of 0.61 

compared with 1.0 using the adipose tissue RNA-seq dataset, and 0.72 using the less complex 

qRT-PCR for our 3-gene signature (Fig. 2.3C), indicating that the signature is specific to adipose 

tissue. In addition, analysis of epithelial cell infiltration of the periprostatic fat using Cibersort 

indicated that epithelial cells were rare in the adipose tissue in both groups, and not significantly 

different between low- or high-risk prostate cancer patients (P = 0.84, Supplementary Fig. 2.8). 

Several immune cell subtypes, however, were differed significantly between groups, including 

eosinophils (P = 0.009) and T memory effector cells (P = 9.8E-8). We also did not detect any 

expression of prostate epithelial cell-specific transcripts such as KLK3, KLK2 and PCA3 in any 

sample. 

 

 
Figure 2.2. (A) Multi-dimensional-scaling (MDS) plot of RNA-seq samples after filtering, 

normalisation and removal of unwanted variation. (B) Smear plot of genes showing the relation 

between log fold changes (logFC) and gene abundance (count per million, CPM). The genes 

selected for qRT-PCR Dimension 1 analysis are labelled in the plot. 
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Table 2.2. Top differentially transcribed genes; ordered based on increasing P-value. 

Gene symbol logFC logCPM LR p-value FDR 

IGHA1 1.7 4.6 138.9 4.50E-32 7.00E-28 

SAA2 -1.1 6.3 111.9 3.60E-26 2.80E-22 

SYCE1 -1.2 1.5 98.7 2.90E-23 1.50E-19 

SAA1 -0.9 9.5 96.1 1.00E-22 4.00E-19 

CLDN1 1.4 1.5 91.9 8.70E-22 2.70E-18 

SCGN 1.3 1.1 87.3 9.30E-21 2.40E-17 

MYH11 1 8.1 82.1 1.20E-19 2.70E-16 

SELE 1.1 2.7 76.2 2.40E-18 4.70E-15 

MUSTN1 0.8 4 69.1 9.20E-17 1.50E-13 

LYZ -0.8 4.7 68.9 1.00E-16 1.50E-13 

GRIN2A 1.2 0.2 64.8 8.00E-16 1.10E-12 

DES 1.1 4.4 64.5 9.40E-16 1.10E-12 

MYOZ1 1.1 0.5 64.4 9.80E-16 1.10E-12 

SHOX2 0.9 2.4 64.2 1.00E-15 1.20E-12 

ITIH3 1.2 1.8 63 2.00E-15 2.10E-12 

SUSD5 1 2.8 60.4 7.40E-15 7.10E-12 
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KRT19 1.7 1.1 59.9 9.90E-15 8.90E-12 

CXCL2 0.8 3.9 59.8 1.00E-14 8.90E-12 

NPNT 0.8 4.1 57.7 2.90E-14 2.30E-11 

SOCS3 0.8 6.8 57.2 3.80E-14 2.90E-11 

TBX5 -1.3 2.1 56.7 4.90E-14 3.60E-11 

LOC284454 0.7 4.9 56.5 5.30E-14 3.80E-11 

ITGAD -1.5 0.1 56 6.80E-14 4.60E-11 

PLA2G2A 0.8 6.2 55.2 1.00E-13 6.90E-11 

RERGL 0.8 4.7 54.6 1.40E-13 8.90E-11 

 

 

Table 2.3. Pathways enriched in periprostatic adipose tissue derived from patients with low-risk 

compared to high-risk prostate cancer as determined by two independent algorithms, SPIA and 

GSEA. 

Name ID FDR Status Algorithm 

Cytokine-
cytokine 
receptor 
interaction 

4060 3.76-04 Inhibited SPIA 

Malaria 5144 2.30E-03 Activated SPIA 

Graft versus 
host disease 

5332 3.80E-03 Inhibited SPIA 
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Circadian 
rhythm 

4710 3.80E-03 Inhibited SPIA 

cAMP 
signalling 
pathway 

4024 8.90E-03 Activated SPIA 

Autoimmune 
thyroid disease 

5320 1.90E-02 Inhibited SPIA 

Allograft 
rejection 

5330 1.90E-02 Inhibited SPIA 

Leishmaniasis 5140 1.90E-02 Activated SPIA 

Type I diabetes 
mellitus 

4940 2.10E-02 Inhibited SPIA 

Intestinal 
immune 
network for 
IgA production 

4672 2.80E-02 Activated SPIA 

Pathways in 
cancer 

5200 3.30E-02 Activated SPIA 

Systemic lupus 
erythematosus 

5322 4.00E-02 Activated SPIA 

Antigen 
processing and 
presentation 

M16004 ≈0 NA GSEA 

Allograft 
rejection 

M18615 ≈0 NA GSEA 

Type I diabetes 
mellitus 

M12617 ≈0 NA GSEA 

Graft versus 
host disease 

M13519 2.00E-04 NA GSEA 
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Autoimmune 
thyroid disease 

M13103 6.00E-04 NA GSEA 

Asthma M13950 1.20E-03 NA GSEA 

Leishmania 
infection 

M3126 2.80E-03 NA GSEA 

Intestinal 
immune 
network for 
IGA production 

M615 8.20E-03 NA GSEA 

Viral 
myocarditis 

M12294 9.00E-03 NA GSEA 

Metabolism of 
xenobiotics by 
cytochrome 
p450 

M16794 1.30E-02 NA GSEA 

Systemic lupus 
erythematosus 

M4741 2.10E-02 NA GSEA 
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Figure 2.3. (A) The correlation plot of the fold-change for the selected genes between qRT-PCR 

and RNA sequencing. (B) Area under curve (AUC), of the ROC curve representing the 

classification performances of three different classifiers on qRT-PCR for a range of gene signature 

sizes. (C) The performances of the classifier created with the selected gene signature (n = 3 genes) 

on the qRT-PCR cohort, represented as a ROC curve. For comparison, the dashed lines represent 
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the performances for the same genes on our RNA-seq (Supplementary Fig. 2.4A) and the TCGA 

prostate adenocarcinoma data sets. 

Discussion 

Due to the sampling error associated with the standard prostate biopsy technique, there is always 

the inherent risk that potentially lethal tumours may be missed, even after multiple biopsies150. 

Although a number of advances have been made to reduce these errors, such as the use of 

transperineal mapping biopsies119 as well as MRI-guided needle placement151, patient 

misclassification remains a common clinical problem, and there are significant trade-offs in terms 

of increased costs and potential side effects. Contemporaneously with advances in biopsy 

technique, two transcriptional signatures have been developed, which are used clinically to predict 

the presence of more advanced pathological features or an increased risk of recurrence133,152, both 

of which can reduce misclassification error particularly in those patients diagnosed with low-risk 

disease. However, both these tests depend upon the presence of adequate tumour tissue in the 

diagnostic core to obtain usable RNA, which may be limited, particularly in patients with low 

volume disease, and the risk scores obtained can vary with the individual tissue core selected for 

input from any given cancer due to inherent genomic heterogeneity within primary prostate 

tumours153. A potential alternative strategy involves the identification of a ‘field-change’ 

specifically within benign tissue that is associated with adverse pathological features or clinical 

outcome. Certainly, a number of studies have shown that gene expression in benign prostate tissue 

of cancer-bearing organs differ significantly from that of benign tissue obtained from cancer-free 

glands154–156, and the altered expression in 39 genes in tumour-adjacent normal-appearing tissue 

has recently been associated with the risk of recurrence post treatment157. 

Given the epidemiological and experimental associations between periprostatic adipose 

tissue homeostasis and prostate cancer aggression, we believed that analysis of periprostatic fat 

could potentially yield a useful signal that could help detect the presence of high-risk tumours. We 

therefore performed a genome-wide analysis of gene expression in periprostatic adipose tissue 

obtained from patients with low- and high-risk disease, and despite the low dynamic range of 

differential expression, have identified a transcriptional signature that could distinguish between 

the two groups with high accuracy. The overall lack of significance in correlation between RNA-

seq fold-change and qRT-PCR fold-change (Fig. 2.3A; P-value = 0.06) was expected, considering 
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the increase of sample size and the change of technology for the cross-validation cohort. On the 

other hand, 7 genes in particular were shown to be consistent between the two cohorts, providing 

more confidence on the applicability of our signature into a clinical setting. We have then 

translated and refined this signature into a 3-gene qRT-PCR-based assay, which demonstrates 

promising discriminatory ability in an expanded cross-validation cohort, confirming the presence 

of a cancer-related ‘field effect’ in periprostatic adipose tissue that may be clinically exploitable. 

Indeed, the use of a fat-based expression assay has many advantages over a tumour tissue-based 

test, most importantly in that it does not rely on the actual detection of tumour in the diagnostic 

biopsy, and the anterior fat pad is amenable to biopsy, particularly with transperineal needle 

placement. There is also the potential that there is less heterogeneity in the signal across the fat 

depot, although this has not been tested. 

The role of adipose tissue in promoting cancer initiation and development is best 

understood in relation to obesity, which has been the subject of intense research interest over the 

last two decades. It is now well recognised that obesity induces a low-grade chronic inflammatory 

state within adipose depots, with infiltration by cells of both the innate and specific immune 

system. This results in the elaboration of various cytokines such as IL6, MCP-1 and TNF-α, which 

given the prostate gland is surrounded in fatty tissue, may promote prostate cancer progression in 

a paracrine manner158. Certainly conditioned media derived from periprostatic adipose tissue from 

obese patients significantly increased the proliferation of PC-3 cells to a significantly greater extent 

than similar media from lean counterparts126. However, multiple studies have demonstrated that 

similarly conditioned media derived from non-obese patients can promote the proliferation and 

invasion of human prostate tumour cells130,159,160. Indeed, prostate cancer has been demonstrated 

to induce many of these changes in the surrounding fat, establishing a reciprocal loop that promotes 

tumour progression131,160. Besides changes in cytokine expression, adipose tissue can secrete a 

number of fat-specific adipokines, including leptin and adiponectin, which can affect tumour cell 

growth and have previously been found to be altered in the anterior fat pad of prostate cancer 

patients161. Additionally, changes in the expression of proteins involved in adipocyte lipolysis 

and/or lipogenesis have been implicated in promoting prostate cancer growth, by increasing local 

supply of lipids required for intratumoural energy production162. 

Given these observations, a priori we anticipated that any distinguishing expression 

signature would largely comprise of these recognised changes, particularly given the differences 
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in clinical aggressiveness between the two cohorts used for the screen. However, we could only 

identify significant changes in two potentially relevant cytokines (IL6 and CLL2), and the 

differential expression was low with a logFC between cohorts being < 0.6. This is perhaps not 

surprising, given that the cohorts were well matched for BMI and suggests previously described 

changes may be obesity state specific, and not contributing significantly to the progression of high-

grade high-stage disease in non-obese individuals. The optimal 3-gene signature that did emerge 

comprising IGHA1(immunoglobulin heavy chain constant alpha 1), OLFM4 (olfactomedin 4) and 

RERGL (RAS-related and oestrogen-regulated growth inhibitor-like protein). IGHA1 encodes the 

first part of the constant region the IgA1 isoform of the immunoglobulin IgA, a secretory antibody 

that is produced predominantly at mucosal surfaces where it binds to and prevents pathogen entry. 

The IgA1 isoform however is predominantly found in tissue and serum, and functions to opsonise 

foreign antigens to initiate phagocytosis and antibody-mediated cytotoxicity. Interestingly, 

prostate tumour-induced immune tolerance has previously been linked to the selective recruitment 

of IgA expressing B-cells, that suppress induction of a specific immune response through the 

expression of PD-L1 and IL10163. OLFM4 encodes an extracellular matrix protein, which is 

involved in cell adhesion and has anti-apoptotic effects. Counter-intuitively, intratumoural loss of 

expression of olfactomedin 4 has been linked to prostate cancer development and progression, 

reportedly through activation of the hedgehog signalling pathway164. In contrast, our data indicate 

that OLFM4 is overexpressed in periprostatic adipose tissue associated with high-risk disease, 

although the source of the transcript is unclear, as the expression level in normal fat is very low165. 

One potential source is through tissue infiltration by a specific subset of neutrophils, which express 

the transcript and are defined by it166. The function of RERGL is unknown, but it shares significant 

sequence homology with the RAS-superfamily member RERG, which encodes a tumour-

suppressing GTPase and is predicted to share many of its functions167. Loss of expression of 

RERGL has been identified in colorectal cancer, where it is associated with poorer overall 

survival167. Although RERGL transcript is ubiquitously expressed, including in adipose tissue, 

preliminary immunohistochemical studies suggest that adipocytes do not elaborate the protein, 

although both fibroblasts and lymphocytes stain strongly165. Certainly, tissue decomposition 

analysis using Cibersort supports alteration in the immune cell composition of adipose tissue as a 

potential source of the discriminatory signal, with significant changes in the proportion of several 

immune cells types. However, given that immune cells make up a very small proportion of the 
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tissue, and the performance of these types of algorithms in complex tissues is untested, further 

work is required to validate these finding. 

Despite the use of a cross-validation rather than an independent validation cohort this pilot 

study shows a diagnostic potential for periprostatic tissue. Although the AUC of 0.72 is modest, it 

is considerable considering the size of the discovery cohort in this study, and it is of the same 

predictive range of other approved polygenic tests such as Mi-Prostate Score (AUC = 0.77), 

SelectMDx (AUC = 0.76) and ExoDx (AUC = 0.71) for high-risk disease168–170. This suggests that 

an extended discovery cohort (n > 200) may result in a more robust signature with greater 

classification accuracy when translated into a PCR-based assay. Although we have not formally 

tested the adequacy of periprostatic tissue sampling, anecdotal experience (NMC) indicates that it 

may be biopsied inadvertently when obtaining anterior cores during transperineal prostate biopsy 

without adverse effects, and certainly yields sufficient RNA for qRT-PCR (up to 100 ng of RNA 

from a single biopsy core). Feasibility of this approach will however require formal testing in a 

prospective study. 

In summary, we have identified a transcriptional signature in periprostatic fat that can 

distinguish patients with clinically localised prostate cancer at low or high risk of progression and 

have successfully translated it into a 3-gene qRT-PCR-based assay. The basis of this signature 

appears to be related more to a local immune and/or inflammatory reaction to the presence of high-

risk tumour rather than a specific adipose tissue-based tumour-promoting mechanism as previously 

described, although the latter may be more obvious in obese and severely obese patients. 

Significant developmental work is required to assess utility in more marginal cases as well its 

specificity in the presence of benign prostatic conditions such as benign prostatic hyperplasia and 

prostatitis, before it can translated into a clinically usable test. 

Supplementary data 

This is linked to the online version of the paper at  

https://doi-org.ezp.lib.unimelb.edu.au/10.1530/ERC-18-0058.  

https://paperpile.com/c/S6tSJ7/KQqLX+TXo9X+AyMUD
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Context 

Prostate cancer is a leading cause of morbidity and cancer-related death worldwide. Androgen 

deprivation therapy (ADT) is the cornerstone of management for advanced disease. The use of 

these therapies is associated with multiple side effects, including metabolic syndrome and truncal 

obesity. At the same time, obesity has been associated with both prostate cancer development and 

disease progression, linked to its effects on chronic inflammation at a tissue level. The connection 

between androgen deprivation therapy, obesity, inflammation, and prostate cancer progression is 

well-established in clinical settings; however, an understanding of the changes in adipose tissue at 

the molecular level induced by castration therapies is missing. Here we investigated the 

transcriptional changes in periprostatic fat tissue induced by profound androgen deprivation 

therapy in a group of patients with high-risk tumours compared to a matching untreated cohort. 

We find that the deprivation of androgen is associated with a pro-inflammatory and obesity-like 

adipose tissue microenvironment. This study suggests that the beneficial effect of therapies based 

on androgen deprivation may be partially counteracted by metabolic and inflammatory side effects 

in the adipose tissue surrounding the prostate. 
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Androgen deprivation therapy promotes an inflammatory and 
obesity-like microenvironment in periprostatic fat 

 

Introduction 

For over 80 years, androgen deprivation by surgical or medical castration has been the cornerstone 

of treatment for advanced prostate cancer171. As new cytotoxic and androgen receptor targeted 

therapies have been developed, demonstrating survival benefit in combination with androgen 

deprivation in a number of clinical settings, the duration a patient can expect to be in a castrated 

state prior to death has been extended significantly172. Given that androgen signalling is important 

for homeostasis in a number of different organ systems, it is not surprising that both short and long 

term use is associated with a number of deleterious effects (reviewed in Rhee et al., 2015173). 

Forefront of these is the association of androgen deprivation with metabolic syndromes 

such as diabetes mellitus174 and obesity175, as androgens play a key role in the regulation of 

intermediate metabolism and tissue composition176. Increased fat tissue mass (known in 

conjunction with loss of muscle mass as sarcopenic obesity) is one of the main metabolic side 

effects of androgen deprivation therapy (ADT)177, even for short-term treatment178–180. At the 

molecular level, lack of androgen related hormones leads to changes in tissue lipid composition 

and decreased insulin sensitivity174. For example, gonadotropin-releasing hormone agonists have 

been shown to alter tissue lipid profiles with cholesterol levels, triglycerides, and high-density 

lipoproteins shown to increase up to 10.6%, 25%, and 8–20% respectively179,180. 

The promotion of an obese-like phenotype by androgen deprivation is highly clinically 

relevant, as obesity (expressed as body mass index; BMI) is itself associated with the development 

of prostate cancer, post-prostatectomy biochemical failure, and risk of death from prostate cancer. 

Although the link between elevated body mass index and increased risk of prostate cancer is still 

controversial181,182, several studies have found a positive association between body mass index and 

cancer grade and/or stage at the time of radical prostatectomy183–185. Two recent studies identified 

an association between body mass index and biochemical failure rates following radical 

prostatectomy, based on a large scale, multi-ethnic cohort186,187. The relationship between body 

mass index and prostate cancer-specific mortality is also widely supported122–124,188. 
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Although the connection between androgen deprivation therapy, obesity, and prostate 

cancer progression is well-established in clinical settings, a molecular understanding of the 

changes in adipose tissue associated with castrating therapies is still missing, in part due to a 

paucity of appropriate clinical specimens. This is especially important for periprostatic adipose 

tissue due to its proximity to the cancer site and its potential to influence prostate hormonal and 

immune homeostasis189. Here for the first time, based on a unique cohort of patients with six 

months profound androgen suppression and receptor blockade, we performed an integrative study 

of the molecular and cellular changes in periprostatic fat associated with androgen deprivation. In 

this study we show that androgen deprivation therapy is associated with a pro-inflammatory and 

obesity-like adipose tissue microenvironment. 

Materials and Methods 

Ethics statement. 

The collection and use of tissue for this study had Epworth Healthcare institutional review board 

approval and patients provided written informed consent (HREC approval number 34506). 

Study cohort selection 

Androgen deprivation therapy treated patients (n=11) were recruited from an open label 

neoadjuvant phase II study in which patients with high-risk disease received a ‘supercastration’ 

regimen consisting of degarelix 240/80 mg subcutaneously every four weeks; abiraterone acetate 

500 mg orally daily titrating upwards every two weeks by 250 mg to a final dose of 1000 mg daily; 

bicalutamide 50 mg orally daily; and prednisolone 5 mg orally twice daily for a total of 6 months 

(Australian New Zealand Clinical Trials Registry 12612000772842). Untreated patients with 

similar pre-treatment characteristics were obtained from a prospective prostatectomy 

biorepository132,189. Prior to ligation of the dorsal venous complex and prostate pedicles, the 

anterior prostate was defatted and the specimen was removed immediately, placed in a sterile 

container and transferred on ice for long-term storage in the vapour phase of liquid nitrogen.  

Gene expression screen 

A total of 50–100 µg of adipose tissue was separated from fresh frozen samples stored at −160°C. 

RNA was isolated using the Qiagen RNeasy Lipid Tissue Mini Kit and eluted in 35 µL nuclease-

https://paperpile.com/c/S6tSJ7/mOzTj
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free water. 0.5–1 µg of total RNA was used as the input for cDNA library synthesis using TruSeq 

RNA Sample Prep Kit v2 (Illumina), and libraries were constructed according to manufacturer’s 

instructions. Samples were sequenced on a HiSeq 2500 (Illumina) using 101 base paired-end 

chemistry, aiming for 50 million mapped paired-end reads per sample. 

Data pre-processing and mapping 

The RNA sequencing quality for each sample was controlled using the FastQC algorithm134. Reads 

were trimmed for Illumina adapters and low-quality fragments using the Trimmomatic algorithm, 

and short reads filtered out from the pools according to default settings 135. The remaining reads 

were aligned to the reference genome (hg19) with the STAR aligner using default settings136. The 

gene abundance for each sample was quantified in terms of reads per gene (read-count) using 

featureCounts137. Low abundance genes were filtered from the analysis, if not present in at least 

0.5 parts per million in two-thirds of the samples in each treatment group (i.e., treated and naïve). 

Differential expression and gene set enrichment analyses 

Considering the sparse batch distribution, the gene abundances were adjusted for unknown 

variation using RUVseq with one unwanted covariate (using default settings)138. The resulting 

covariate matrix for the unwanted covariate was appended to the design matrix (i.e., treated vs. 

naïve, plus the intercept term); then, all samples were tested for differential transcription using the 

edgeR package108, considering differentially transcribed genes with a false discovery rate < 0.05. 

Ensemble pathway analyses were performed using the algorithm EGSEA190. In order to test for 

the enrichment of an obesity molecular phenotype among the differentially transcribed genes, an 

ad hoc signature data set (supplementary file ijo2014210x1191) was queried using the algorithm 

GSEA96.  

Differential tissue composition analyses 
The associations between (i) the abundance of stromal and immune cell types within the tissue and 

(ii) the treatment status (i.e., treated or naïve) was inferred using two distinct approaches. Both 

approaches included a two-step inference, where the cellular composition of each sample is 

inferred first (i.e., the proportion of several cell types within the tissue sample), and an association 

analysis is performed integrating such inference with the treatment status. The first approach 

applied the algorithm Cibersort69 for the inference of tissue composition, in combination with 
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DirichletReg192 for the regression of the proportional estimates produced by Cibersort192. 

Considering that Cibersort was designed mainly for microarray data, and only for PBMC cell 

types, a custom probabilistic Bayesian model was also implemented (based on the Markov chain 

Monte Carlo probabilistic framework Stan193), which natively models RNA sequencing data and 

performs association analysis in an integrative manner preserving uncertainty information between 

the two steps. This probabilistic model can be described by a joint probability density formula and 

a series of sampling statements (see Supplementary Material), the full methodology and validation 

is described in Chapter 6.  

qRT-PCR validation 
In order to validate the methodology used for the inference of differential transcription, qRT-PCR 

was used for an independent observation of gene transcript abundance. A total of nine differentially 

transcribed genes were selected for validation with qRT-PCR, based on false discovery rate (< 

0.05), log fold change (> 2) and on the absence of clear outliers. The qRT-PCR validation was 

performed using 1 µL of cDNA, 0.5 µL qRT-PCR primers (see below), 5 µL of TaqMan Fast 

Advanced Master Mix (Applied Biosystems) and 3.5 µL of UltraPure distilled water (Gibco). The 

primers, including ART3 (Hs00922621_m1), CSDC2 (Hs00411093_m1), DIO2 

(Hs05050546_s1), FCGR1B (Hs00174081_m1), LYZ (Hs00426232_m1), OR51E2 

(Hs00258239_s1), SLC16A12 (Hs01584854_m1), SUSD5 (Hs01394532_m1), and TRIM67 

(Hs01595609_m1), were pre-designed and commercially available from Applied Biosystems. 

Samples were run on a 384-well plate using a Viia7 qRT-PCR machine (Applied Biosystems) 

under the following conditions: UNG incubation at 50°C for 2 min; polymerase activation at 95°C 

for 20 s; followed by 40 cycles of denature at 95°C for 1 s; anneal/extend at 60°C for 20 s. 

Expression levels of target genes were normalized to the geometric mean of GAPDH 

(Hs00266705_g1, Applied Biosystems), TBP (Hs00427621_m1, Applied Biosystems) and 

POLR2A (Hs00427621_m1, Applied Biosystems) using the formula 2−ΔC(T). One-sided 

Student’s t-test was used for hypothesis testing; then, Bonferroni multiple-test correction was 

applied to the produced p-values. 
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Results and discussion 

Patient characteristics 
The treated and naïve groups comprised 11 and 10 patients respectively; their clinical and 

pathological characteristics are shown in Table 3.1. Given that pre-operative risk assessment is 

frequently inaccurate115,116, being biased towards underestimation of tumour grade and stage, 

patients in the high risk cohort were selected based on the stage, grade, and volume of tumour in 

the prostatectomy specimen. All patients in the treated cohort had high risk disease at the time of 

initial assessment, although the ultimate response to androgen deprivation was highly variable.  

Differentially transcribed genes represent three main functional groups 
The RNA sequencing libraries had an average of 55 million reads across the 21 samples. All 

samples had a Phred quality score exceeding 28 following filtering and trimming134. As expected, 

the distribution of the multi-dimensional scaling (MDS) analysis148 including both treated and 

naïve groups showed the improvement in clustering obtained through the removal of unwanted 

variation (RUVseq; Fig. 3.1A and 3.1B). However, the overall magnitude of differences between 

the two groups was low (i.e., log fold difference < 3; Fig. 3.1B and 3.1C). No significant difference 

was found between the two treatment categories for body mass index or CAPRA-S risk score 

distributions (adjusted p-value = 1.0 and 1.0 respectively; Fig. S3.1).  

A total of 70 genes were identified as differentially transcribed (false discovery rate < 0.05; 

Table S3.1), characterized by a median fold change of 3.23. Of these, 49 genes were characterized 

by a fold change greater than 2. Among the differentially transcribed genes with fold change 

greater than 2, three recurring biological processes (from grouping analogous gene ontology 

annotations; GO194; Table S3.2) were identified: hormonal and fat homeostasis (n = 8), 

inflammation (n = 8) and neural plasticity (n = 4). Several genes involved in cholesterol 

metabolism were found to be upregulated from the hormonal homeostasis gene set. One such gene 

encodes for cytochrome P450, family 1, member A1 (CYP1A1), which catalyses several reactions 

involved in the synthesis of cholesterol, steroids and other lipids, as well as drug metabolism195. 

Another upregulated gene, fatty acid desaturase 2 (FADS2), is a known modulator of lipid 

composition in skin196. Within in the treated cohort, several genes were decreased in abundance 

such as iodothyronine deiodinase 2 (DIO2), which is associated with the biosynthesis of thyroid 

hormone197; and cyclin A1 (CCNA1), which is involved in spermatogenesis198. For inflammation, 
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upregulated genes were enriched over downregulated genes (n = 7 vs. 1 respectively). The 

transcriptional changes with larger magnitude involved two paralog genes (i.e., IGKV1D−39 and 

IGKV1−39) encoding for “v” region of the variable domain of immunoglobulin light chains, 

mainly secreted by B lymphocytes and participating in antigen recognition199. The only 

downregulated gene within the inflammation category was WAP four-disulphide core domain 1 

(WFDC1), which is linked to negative regulation of the inflammatory response200. 
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Figure 3.1: A — Heatmap of the top differentially regulated genes, with unsupervised hierarchical 

clustering for samples and genes. B — Multidimensional scaling (MDS) plot of the treated and 

naïve cohorts before and after removal of the unwanted variation (K = 1). C — Smear plot 

indicating the differentially transcribed genes in red. D — recurrent functional groups within the 

differentially transcribed genes. 

For neural development, the transcript abundance of most genes was decreased in treated 

patients, including several genes regulating synapse formation such as regulating synaptic 

membrane exocytosis 4 (RIMS4). Among nine differentially transcribed genes, a total of seven 

validated with qRT-PCR, after correcting for multiple hypothesis testing (i.e., adjusted p-value 

<0.05; Fig. S3.2). 

 

Table 3.1. Clinical characteristics of study cohort. PSA = prostate specific antigen; BMI = body 
mass index. 

  Naïve Treated 

Age (yrs) Median 66 65 

 Range 49-72 63-72 

PSA (ng/dl) Median 7.5 14.4 

 Range 2.7-27 4.4-95 

 <10 7 5 

 10-20 2 2 

 >20 1 4 

Clinical Stage cT1 3 2 

 cT2 7 4 

 cT3 0 5 

Biopsy Grade ISUP2 2 1 

 ISUP3 3 0 

 ISUP4 2 3 
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 ISUP5 3 7 

Pathological Stage pT0 0 1 

 pT2 0 3 

 pT3 10 8 

Prostatectomy Grade ND 0 1 

 ISUP1 0 2 

 ISUP2 0 1 

 ISUP3 3 1 

 ISUP4 1 2 

 ISUP5 6 5 

Tumour Volume Median 7.1 1 

 Range 0.7-17.8 0-9.3 

BMI (kg/m2) Mean 26.9 28.2 

 SD 2.9 4 

 
 

Table 3.2. EGSEA results 

GeneSet Direction p.value p.adj 

Hallmark Signatures 

Hallmark allograft rejection Up < 1.0x10-16 < 1.0x10-16 

Hallmark kras signalling up Up < 1.0x10-16 1.0x10-06 

Hallmark inflammatory response Up < 1.0x10-16 < 1.0x10-16 

Hallmark IL6 jak stat3 signalling Up 8.0x10-06 5.0x10-05 

Hallmark interferon gamma response Up < 1.0x10-16 < 1.0x10-16 

Gene ontology 
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GO regulation of innate immune response Up 2.0x10-06 3.8x10-05 

GO innate immune response Up < 1.0x10-16 9.0x10-06 

GO positive regulation of defense response Up 4.0x10-06 8.4x10-05 

GO positive regulation of immune response Up < 1.0x10-16 9.0x10-06 

GO immune system process Up 4.9x10-05 7.1 x10-4 

KEGG 

hsa04612 Antigen processing and presentation Up < 1.0x10-16 < 1.0x10-16 

hsa05152 Tuberculosis Up 1.7x10-05 1.6 x10-4 

hsa05164 Influenza A Up 2.2x10-05 2.0 x10-4 

hsa05332 Graft-versus-host disease Up < 1.0x10-16 < 1.0x10-16 

hsa05140 Leishmaniasis Up < 1.0x10-16 < 1.0x10-16 

Immune signatures 

GSE7509 Genes down-regulated in immature 
dendritic cells 

Up < 1.0x10-16 < 1.0x10-16 

GSE2706 Genes down-regulated in comparison 
of unstimulated DC 

Up < 1.0x10-16 < 1.0x10-16 

GSE19888 Genes up-regulated in HMC-1 (mast 
leukaemia) cells 

Up < 1.0x10-16 < 1.0x10-16 

GSE34156 Genes down-regulated in monocytes Up < 1.0x10-16 < 1.0x10-16 

GSE37416 Genes up-regulated in activated 
neutrophils 

Up 7.0x10-06 9.7x10-05 

 

Enriched inflammatory signature 
Overall, the gene enrichment analysis performed by EGSEA showed a pro-inflammatory signature 

for all query data sets (e.g., Hallmarks, Gene Ontology, KEGG, and Immune Signatures; Table 2; 

Supplementary file 1)190. The pathways within the immune signature data set included 

IL6/JAK/STAT3 signalling, interferon gamma response, positive regulation of immune response, 

https://paperpile.com/c/S6tSJ7/EI4vr
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and antigen processing and presentation. Specifically for the Immune Signature dataset, 

transcriptional changes pointed to the differentiation of immature immune cell types (i.e., 

immature dendritic cells and monocytes), as well as neutrophil and mast cell activation. 

Consistent with the gene enrichment analyses, the differential tissue composition analysis 

based on our Bayesian inference model showed a positive association between overall immune 

cell abundance and treatment status (Fig. 3.2A). In the two approaches employed for differential 

tissue composition analysis, monocyte derived cells dominated the immune population within 

adipose tissue across the treated and naïve cohorts. Signatures of macrophages, monocytes and 

granulocytes were enriched by our model within the immune cell population in treated patients 

compared to naïve. This inference was partially consistent with that of the Cibersort-DirichletReg 

approach (i.e., for monocytes and macrophages; Fig. 3.2B). The latter approach uniquely identified 

an association involving CD4 memory resting, NK cells resting, and Mast cells resting. Although 

a significant enrichment of CD8+ T-cells in treated patients was not observed using our statistical 

model and the Cibersort-DirichletReg approach, a positive association appears to exist when 

observing the distributions of the estimated cell type proportions (Fig. S3.3). As expected, 

considering the absence of a robust adipocyte transcriptomic signature within the model, the 

fibroblast cell type appears to have captured the adipocyte transcriptomic profile (Fig S3.3). The 

differences observed in the average estimated proportions for immune cell types between Cibersort 

and our statistical method are in part due to the inclusion of non-immune cells (e.g., fibroblasts, 

endothelial and epithelial) in our model, while Cibersort models selectively estimate immune cells 

as composing the totality of the tissue.  
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Figure 3.2: Differential tissue composition analysis. A — Polar plot representing the overall cell 

type abundance (i.e., radius dimension) and the significant associations with androgen deprivation 

therapy (i.e., white for non-significant associations). Cell types are labelled if more abundant than 

1%. CI = 95% credible interval of the association. B — Boxplots of the inferred cell type 

proportions by our Bayesian probabilistic model and Cibersort, for the cell types that correspond 
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or are part of significantly differentially abundant cell type categories (e.g., the differentially 

abundant category “granulocytes” include eosinophils and neutrophils) between the two treatment 

categories (i.e., treated and naïve) according to our model. FDR = false discovery rate linked to an 

association being different non null. 

Enriched obesity signature 

The analysis of a previously published obesity transcriptional signature for adipose tissue191 

revealed a positive association with androgen deprivation treatment independent of body mass 

index (false discovery rate of 8.4x10-3; Fig. 3.3). Within the ten top ranked genes present in the 

obesity signature, the majority were linked to inflammation (Table S3.2), including Fc fragment 

of IgG binding protein (FCGBP), lysozyme (LYZ), chemokine ligand motif 10 (CXCL10), 

myeloid cell nuclear differentiation antigen (MNDA), toll like receptor 8 (TLR8), and a member 

of the STAT family (STAT1), which is activated by various ligands including interferon-alpha, 

interferon-gamma (IFNɣ), epidermal growth factor (EGF), platelet derived growth factor (PDGF) 

and interleukin 6 (IL6). The third top ranked gene (included in the obesity signature) is a key 

regulator of hormonal homeostasis (DHRS9), which is able to convert 3-alpha-

tetrahydroprogesterone to dihydroxyprogesterone and 3-alpha-androstanediol to 

dihydroxyprogesterone in the cytoplasm201; also, it is a marker for regulatory macrophages202. 

Regulatory genes for calcium homeostasis were also present, including S100 calcium-binding 

protein A1 (S100A1) and stanniocalcin 2 (STC2), which regulate renal and intestinal calcium and 

phosphate transport203. 

https://paperpile.com/c/S6tSJ7/jZMEm
https://paperpile.com/c/S6tSJ7/pcwmB
https://paperpile.com/c/S6tSJ7/bEBuK
https://paperpile.com/c/S6tSJ7/obMqL
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Figure 3.3: GSEA enrichment plot showing the significant enrichment of the obesity signature 

among the most differentially transcribed genes. 

Conclusions 

Obesity induces a persistent inflammatory and hormone rich tissue microenvironment that 

contributes to high risk disease204,205. Androgen deprivation therapy is a known cause of increased 

fat body mass183–185, yet the cellular and molecular processes that are altered in association with 

androgen deprivation therapy, especially in the periprostatic adipose tissue microenvironment, 

have not been completely resolved. In this study we showed that androgen deprivation therapy 

based on a 6-month combination treatment of degarelix, bicalutamide, and abiraterone is 

associated with a pro-inflammatory adipose tissue microenvironment, as well as with altered 

obesity-related gene transcription linked with cholesterol and hormonal homeostasis (Fig. 3.1, 3.2 

and 3.3).  

Overall, the periprostatic adipose tissues of the treated and naïve cohorts were 

transcriptionally similar. This may indicate that some differences observed in tissue profiles reside 

within tissue infiltrating cells (e.g., immune cells). With gene integration (e.g., differential tissue 

composition and gene enrichment analyses), it was possible to extract global properties about 

differences between the two cohorts at the molecular level, despite a small number of single genes 

being significantly differentially transcribed. For example, both differential tissue composition and 

gene enrichment analyses pointed to an enrichment of infiltrating immune cell types within the 

tissue. Monocytes and macrophages had the greatest presence within the periprostatic adipose 

https://paperpile.com/c/S6tSJ7/qAQw3+wdcDh
https://paperpile.com/c/S6tSJ7/ZaEuA+1zp25+nKLDY
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tissue, compared with other immune cells. The abundance of these immune cell types was 

positively associated with androgen deprivation, suggesting their infiltration of the tissue, which 

is consistent with in vivo studies206. Macrophages have been shown to interact with adipose tissue 

in a paracrine manner, where TNF-α secretion from macrophages interferes with adipocyte insulin 

signalling and induces fatty acid lipolysis, which commences a vicious inflammatory cycle and 

contributes to insulin resistance207. Furthermore, an elevated blood monocyte count is an 

independent prognostic predictor for poor prostate cancer outcome in cancer-specific and overall 

survival studies208,209.  

This study suggests that the beneficial effect of androgen deprivation therapy may be 

partially counteracted by metabolic and inflammatory side effects in the adipose tissue 

encompassing the prostate. This may be particular pertinent when the primary tumour is in situ, as 

tumour response within the prostate appears less profound compared to that observed for 

metastatic disease210,211. Further studies will need to investigate the immune infiltration profile 

associated with androgen deprivation, as well as the potential impact of anti-inflammatory 

therapies on local tumour response.  

Online methods and raw data 

The code used to conduct the analyses is available at github.com/stemangiola/ADT_fat. The 

sequenced reads raw files are available at ega-archive.org with the identifier EGAS00001003286. 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/S6tSJ7/wDcaq
https://paperpile.com/c/S6tSJ7/UlIAk
https://paperpile.com/c/S6tSJ7/H5BUF+nITKn
https://paperpile.com/c/S6tSJ7/lkYpF+iwID9
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Supplementary material 

 

 

Figure S3.1. Boxplot of the body mass index (BMI), CAPRA and CAPRA-S risk scores for the 

two treatment categories (i.e., treated and naïve). Hypothesis tests were performed with t-test and 

the adjustment for multiple test correction was performed with the Bonferroni technique. 
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Figure S3.2 qRT-PCR validation. A total of seven out of nine probed genes did validated 

accordingly to the differential transcription analyses performed on RNA sequencing data. 

Hypothesis tests were performed with one side t-test and the adjustment for multiple test 

correction was performed with the Bonferroni technique. 
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Figure S3.3. Boxplots of the inferred cell type proportions by our Bayesian probabilistic model 

and Cibersort. 
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Table S3.1. Attached as file 

 

Table S3.2. Attached as file 

 

Supplementary file 3.1. Attached as file 
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Probabilistic Bayesian inference model 
 

 

 

 

 

The parameter α represents the rates of change of each cell type category along the biological 

conditions. The parameter π represents the matrix of proportions for each cell type category and 

sample. The parameters σ, φ and δ define the noise model. The point estimate and credible intervals 

for both cell type proportions and trends of change are calculated from the posterior distribution.  
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Context 

Treatments for prostate cancer include surgery, radiotherapy and androgen deprivation therapy. 

The results achieved by the combination of these therapies can lead to variable and often temporary 

results, mainly due to cancer cells genetic plasticity and heterogeneity, leading to the emergence 

of drug resistance. In contrast, the non-cancerous portion of the tumour microenvironment, 

including immune cells and fibroblasts, is a genetically stable target that has a key role in cancer 

development. Improving our knowledge of the genetic and molecular interactions between cancer 

cells and other non-cancerous cell populations, both in primary or metastatic prostate cancer will 

provide new key insights in the biology of the disease and give new treatment opportunities. Here, 

analysing the transcriptional profiles of enriched cell types from the tumour microenvironment of 

primary prostate cancer, we provide an extensive landscape of intercellular transcriptional 

synergies between cancerous and benign cells, revealing the activation of key hallmarks of prostate 

cancer progression. 
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The interplay among cell types in the prostate tumour 
microenvironment contributes to the activation of key hallmarks 

 

 

Introduction 

Prostate cancer is a leading cause of male death worldwide. Treatments for prostate cancer include 

surgery, radiotherapy and androgen deprivation therapy. Due mainly to the high levels of 

heterogeneity and the fast adaptability nature of prostate cancer cells, such therapies lead to 

variable and often temporary results. For example, although androgen deprivation therapy confers 

biochemical effects for more than 90% of patients 212 and clinical effects for ~70% of patients 213, 

such effects can be temporary leading to recurrence within two-years in more than 50% of patients 
214,215. In contrast, the non-cancerous portion of the tumour microenvironment, including immune 

and stromal cells, is genetically more stable compared with cancer cells and plays a key role in 

cancer development. For example, the benign component is important for the tumour 

development216,217, metastasis218 as well as in drug resistance219 and has potential as diagnostic 

tool220. Therefore, improving our knowledge on the genetic and molecular interactions existing 

between cancer cells and other non-cancerous cell populations, both in primary or metastatic 

prostate cancer will provide new key insights in the biology of the disease and give new treatment 

opportunities. 

The cellular components of the tumoral mass and the extracellular matrix are referred as 

tumour microenvironment (TME). The tumour microenvironment has been extensively studied 

through in vitro and in vivo experiments, such as migration assays66 and xenograft mouse models 

respectively67. These functional approaches are extremely valuable, as they can provide evidence 

on the role of specific cell types and/or genes in the development of the disease. However, due to 

the high financial and logistic burden associated with such approaches, they are limited in the 

throughput of targets that can be analysed in each given experiment. More recently, high-

throughput cellular and molecular technologies, such as fluorescence-activated cell sorting 

(FACS) and low-input nucleotide sequencing, allow exploratory studies of a wider range of cell 

types and their gene expression patterns within single experiments. That is, fluorescence-activated 

https://paperpile.com/c/S6tSJ7/toqeC
https://paperpile.com/c/S6tSJ7/p7O7u
https://paperpile.com/c/S6tSJ7/QbWAE+tm8LH
https://paperpile.com/c/S6tSJ7/NhvZD+8VAMc
https://paperpile.com/c/S6tSJ7/Q7v4b
https://paperpile.com/c/S6tSJ7/JTQyj
https://paperpile.com/c/S6tSJ7/IadFS
https://paperpile.com/c/S6tSJ7/m7nO8
https://paperpile.com/c/S6tSJ7/uNhQO
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cell sorting allows the simultaneous isolation of several selected cell types from a tissue, which 

can be analysed at the transcriptome level with RNA sequencing. 

For prostate cancer, several studies have adopted the combination of fluorescence-activated 

cell sorting and RNA sequencing. These studies mainly focused on the process of epithelial to 

mesenchymal transition (MET) 34,35. Epithelial cell populations and/or stromal cells were enriched 

from prostate cancer tissue cores (n = 20 and n = 6 respectively) and differential transcriptional 

analysis was performed. These studies demonstrated the power of cell type enrichment coupled 

with high-throughput molecular analyses; however, an integrative investigation of the 

transcriptional changes happening among epithelial, immune and stromal cells is still pending. In 

this study, adopting (i) cell-specific enrichment; (ii) RNA sequencing; and (iii) a novel statistical 

model for continuous differential transcription analyses; we performed a hypothesis-generating 

study focusing on the emergence of molecular signatures for hallmarks of prostate cancer, 

resolving the contribution of cancer, immune and stromal cells. 

Methods 

Tissue sampling and processing 
Following prostatectomy (n=13 patients), a tissue biopsy was collected from the prostate tumour 

site using a four millimetre punch, conditionally to histopathological verification132,189. If not 

otherwise specified, all procedures were carried out at 4°C. Tissue blocks were washed in 

Phosphate-buffered saline (PBS) solution for 2 minutes and minced for 2 minutes with a scalpel. 

Homogenised tissue was added to a solution (total volume of 7 ml) composed by of 1 mg/ml 

collagenase IV, 0.02 mg/ml DNase 1, 0.2 mg/ml dispase. The solution was serially digested at 

37°C at 180 rpm, through three digestion steps of duration 5, 20 and 20 minutes duration, with the 

final 3 minutes dedicated to sedimentation at 0 rpm. After each digestion step, the supernatant was 

aspirated and filtered through a 70 μm strainer into a pre-chilled tube, diluting the solution with 

15 ml of 2% bovine serum PBS to quench the enzymatic reaction. The resulting cumulative 

solution was then centrifuged at 1500 rpm for five minutes, with the supernatant collected and the 

cell pellet resuspended into 1 ml 2% PBS-serum prior to labelling (Fig. S4.1). 

https://paperpile.com/c/S6tSJ7/Ku0JD+cEPOj
https://paperpile.com/c/S6tSJ7/fk1Qe+mOzTj
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Antibody labelling, flow cytometry and cell storage 
In order to identify and enrich for epithelial, fibroblast, T-cell, and myeloid cell populations, the 

antibodies EpCAM-PE, CD31-APC; CD90-PerCP; CD45-APC-Cy7, CD3-BV711; CD16-PB 

were used respectively, at a dilution factor of 1/40 with a labelling time of 30 minutes. To remove 

unbound antibody, the labelled cell solution was diluted with 5 ml of 2% calf serum PBS and 

centrifuged at 1500 rpm for five minutes. The supernatant was removed, the cell pellet was 

resuspended in 2 ml of 2% PBS-serum and the PE fluorescence conjugated viability dye was added 

at a dilution of 1/40 from the stock. Due to the heterogeneity of the prostate tissue, the cell sorting 

strategy utilised a robust three stage design: (i) A series of shared physical parameter plots, based 

on cell size and morphology to remove cell debris and cell doublets or clusters; (ii) the 

fluorochrome selection for cell specific surface marker immunophenotype ; and (iii) a second cell-

type specific side-scatter gate based on expected cell morphology. The four enriched cell 

populations collected in 1.5 ml tubes and stored in dry ice immediately after collection, before 

centrifugation and permanent storage at -80°C.  

RNA extraction, library preparation and RNA sequencing  
RNA extraction was performed in two batches (comprising 6 and 7 patients, for a total of 24 and 

28 samples respectively) on consecutive days. The two patient batches included a balanced 

distribution of Gleason score and days passed from tissue processing (in order to eliminate time-

dependent methodological biases). The RNA extraction was performed using the miRNeasy Micro 

Kit (Qiagen; Cat # 217084), according to manufacturer's protocol. Briefly, cell pellets were lysed 

with QIAzol lysis reagent, treated with chloroform and centrifugation carried out to separate the 

aqueous phase. Total RNA was precipitated from aqueous phase using absolute ethanol, filtered 

through the MinElute spin column and treated with DNase I to remove genomic DNA. The RNA 

bound columns were washed with the buffers RWT and RPE before eluting the total RNA with 

14μl of RNase-free water. RNA estimation was carried out using Tapestation (Agilent). 

Whole transcriptome analysis on low input total RNA samples (up to 10ng) was carried 

out using SMART-Seq v4 Ultra Low Input RNA Kit (Clontech), according to manufacturer's 

protocol. The first-strand cDNA synthesis utilised 3’ SMART-Seq CDS Primer II A and the 

SMART-Seq v4 Oligonucleotide and the cDNA amplification was carried out on Thermocycler 

using PCR Primer II A and PCR conditions: 95°C 1min, 12 cycles of 98°C 10sec, 65°C 30sec and 
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68°C 3min; 72°C 10min and 4°C for ever. The PCR-amplified cDNA was purified using AMPure 

XP beads and processed with the Nextera XT DNA Library Preparation Kits (Illumina, Cat. # FC-

131-1024 and FC- 131-1096) as per the protocol provided by the manufacturer.  

The whole transcriptome analysis on input total RNA samples (10 – 100ng) was carried 

out using Truseq RNA Sample Preparation Kit v2. The poly-A containing mRNA was purified 

using oligo-dT bound magnetic beads followed by fragmentation. The first strand cDNA synthesis 

utilised random primers and second strand cDNA synthesis was carried out using DNA 

Polymerase I. The cDNA fragments then underwent end repair process, the addition of a single 

‘A’ base, and ligation of the RNA adapters. The adaptor ligated cDNA samples were bead-purified 

and enriched with PCR (15 cycles) to generate the final RNAseq library. 

The SMART-Seq v4 RNA and Truseq RNA libraries were sequenced on an Illumina 

Nextseq 500 to generate 15-20 million 75 bp paired-end reads for each sample. The batch effect 

due to sequencing runs was minimised by pooling all 52 libraries and carrying out three sequential 

runs on a Nextseq500 sequencer. 

Sequencing data quality control, mapping and gene counting 
The RNA sequencing quality for each sample was checked using the Fastqc 134. Reads were 

trimmed for custom Nextera Illumina adapters, low quality fragments and short reads were filtered 

out from the pools according to default settings. All remaining reads were aligned to the reference 

genome Hg38 using the STAR aligner with default settings136 (Fig. S4.1). The quality control on 

the alignment was performed with RNA-SeQC221. For each sample, the gene transcription 

abundance was quantified in terms of nucleotide reads per gene (read-count) using 

FeatureCounts137 with the following settings: isPairedEnd = T, requireBothEndsMapped = T, 

checkFragLength = F, useMetaFeatures = T. All sequenced reads that did not align to the reference 

human genome were aligned against bacterial and viral reference genomes using kraken222 with 

default settings. 

Statistical inference  
Changes of transcriptional levels along the post-prostatectomy CAPRA-S risk score223 were 

inferred using regression of the raw gene counts along a pseudo-continuous covariate, 

independently for each cell type (i.e., epithelial, fibroblast, T-cell and monocyte-derived cells). 

The CAPRA-S risk score is a combination of: (i) concentration of blood prostate serum antigen 

https://paperpile.com/c/S6tSJ7/Fpe3t
https://paperpile.com/c/S6tSJ7/x3TZk
https://paperpile.com/c/S6tSJ7/IDbXs
https://paperpile.com/c/S6tSJ7/zBhSO
https://paperpile.com/c/S6tSJ7/17Gnw
https://paperpile.com/c/S6tSJ7/troqV
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(PSA); (ii) presence of surgical margin (SM); (iii) Gleason score; (iv) presence of seminal vesicle 

invasion (SVI); (v) the extent of extracapsular extension (ECE); and (vi) the lymph node 

involvement. The RNA extraction batch was used as further covariate. Due to the absence of 

publicly available model for non-linear monotonic regression along a continuous covariate, a new 

non-linear model was implemented. This model is based on the simplified Richard’s curve224 

(Eq.1), but re-parameterised to improve numerical stability (Eq. 2). 

 

 
 

Where yo represents the intercept on the y axes, η represents the point of inflection on the x-axis, 

β represents the matrix of coefficients (i.e., slope coefficients, without the intercept term),  

represents the coefficient of interest (i.e., main slope), and k the upper plateau of the generalised 

sigmoid function.  

Bayesian inference was used to infer the values of all parameters of the model. The 

probabilistic framework Stan193 was used to encode the joint probability function of the model, 

partitioning the transcriptomic data set in blocks of 5000 genes to decrease the analysis run-time. 

This Bayes model is based on a negative binomial distribution (parameterised as mean and 

dispersion) of the raw gene counts. In order to account for diverse sequencing depths across 

samples and a possible asymmetry of transcriptional changes (i.e., the overall transcriptional 

output along the covariate on interest is not zero) a normalisation parameter has been added to the 

negative binomial expected value. This parameter is identified by the regularised horseshoe225 

prior over the covariate of interest. The role of this prior is to impose a sparsity assumption on the 

gene-wise transcriptional changes; that is, most genes are not differentially transcribed. The 

precision of the negative binomial distribution is conditional to the expected value146 following a 

generalised sigmoid function (Eq. 1). The overall distribution of the gene intercepts follows a 

gamma probability function. The statistical model is defined by the following joint probability 

density. 

https://paperpile.com/c/S6tSJ7/L1HZ2
https://paperpile.com/c/S6tSJ7/WT6WM
https://paperpile.com/c/S6tSJ7/9OEQ8
https://paperpile.com/c/S6tSJ7/etL7L


 

88 

 

 
Where Y represents raw gene counts,   represents the expected values of gene counts and X 

represents the design matrix (with no intercept term and with scaled covariates). The regression 

function also includes β which represents the gene-wise matrix of factors (i.e., slopes excluding 

the intercept term), yo and η which represent the gene-wise y-intercept and the inflection point of 

the generalised reparametrized sigmoid function (Eq. 2), while γ represent the hyperparameters of 

yo. Other parameters of the negative binomial function are δ, which represents the normalisation 

factors; and ω, which represents overdispersion. The regularising prior (for imposing the sparsity 

assumption) over the covariate of interest βdot (first column of β) is defined by the hyperparameter 

list ξ225, while σ represents the standard deviation of the factor not of interest. The hyperprior of the 

overdispersion parameter ω is defined by α representing the intercept and slope, and κ representing 

the upper plateau of the generalised sigmoid function (Eq. 1).  

Gene annotation 
Each gene (g) was considered well fitted by the model if at most 3 samples had counts outside the 

95th percentile of the generated quantities (according to posterior predictive checks 

standards226,227). Among the well fitted genes, those for which the 0.95 credible interval of the 

https://paperpile.com/c/S6tSJ7/9OEQ8
https://paperpile.com/c/S6tSJ7/XrXFW+V0BLh
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posterior distribution of the factor of interest  did not include the value 0 were labelled as 

differentially transcribed. In order to interpret the inflection points over the CAPRA-S covariate 

in a biologically meaningful way: the inflection point was adjusted to the log-scale, and the 

covariate was converted to the natural scale. 

 

 
 

This point was calculated (in log space) as the value of the x-axis  at half distance between zero 

and the upper plateau of the generalised reparametrized sigmoid function (Eq. 2). Genes were 

functionally annotated with gene ontology categories194 using BiomaRt228. Furthermore, genes 

were functionally annotated with the protein atlas database165 for identifying those that interface 

with the extracellular environment, encoding for membrane and secreted proteins.  

Results and discussion 

Quality control 

After library preparation, the amplified cDNA sequences showed the expected nominal solution 

concentration and distribution in fragment length, except for monocyte-derived samples, which 

concentration was lower compared to other cell types, and the proportion of larger fragments (> 

600bp) was higher, indicating a less efficient enzymatic process (Fig. S4.2). After filtering and 

trimming, the sequenced reads of all samples showed a mean Phred quality score above 28. The 

sequencing output ranged from 70 million (for sample 2C; Fig. 4.1) to 1 million reads (for sample 

4C; Fig. 4.1). The proportion of reads uniquely mapped to the Hg38 reference genome was > 80% 

for most samples (n = 41), with an exonic rate in the range of 50 to 70%. Overall, myeloid samples 

were characterised by a lower sequencing output, and mapping coverage compared to the other 

three cell types.  

https://paperpile.com/c/S6tSJ7/u3HCe
https://paperpile.com/c/S6tSJ7/RuK4H
https://paperpile.com/c/S6tSJ7/h37ay
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Descriptive%20statistics%20of%20sequencing%20output%20and%20mapping%20for%20each%20sample%20(n%20=%2052)%20grouped%20by%20cell%20type.
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Descriptive%20statistics%20of%20sequencing%20output%20and%20mapping%20for%20each%20sample%20(n%20=%2052)%20grouped%20by%20cell%20type.


 

90 

 

 

Figure 4.1: Descriptive statistics of sequencing output and mapping for each sample (n = 52) 

grouped by cell type. 

 

 

For myeloid samples, a positive association can be observed between CAPRA-S risk score and (i) 

number of mapped reads, as well as (ii) number of mapped reads to exons (Fig. 4.2). Such 

association is partly due to an abundant amount of bacterial and viral genomic content for 

surrounding benign and low grade cancers (Fig. 4.3). 

 

https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Pair%20plot%20showing%20the%20relations%20among%20sequencing%20and%20mapping%20statistics,%20stratified%20by%20cell%20type%20and%20CAPRA-S%20risk%20score.
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Proportion%20of%20bacterial%20and%20viral%20sequences%20in%20each%20sample,%20and%20its%20association%20with%20CAPRA-S%20risk%20score,%20cohort%20across%20cell%20types.
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Figure 4.2: Pair plot showing the relations among sequencing and mapping statistics, stratified by 

cell type and CAPRA-S risk score. 
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Figure 4.3: Proportion of bacterial and viral sequences in each sample, and its association with 

CAPRA-S risk score, cohort across cell types. 

Differential transcription analyses 
On average across the four cell types, 40% of genes were quarantined as having 0 sequenced reads 

in more than half of samples. As expected, the analysis of the two principal components of the 

transcriptional profiles of our cohort grouped by cell type shows a clear association with CAPRA-

S risk score (Fig. 4.4), especially strong for epithelial and fibroblast cells. Following statistical 

inference, an average of 10% of genes were quarantined following the posterior distribution check 

(Table 4.1), with such proportion associated with the overall sequencing coverage and mapping 

rate of each cell type.  

 

https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Multidimensional%20scaling%20(MDS)%20plot%20of%20all%20samples,%20grouped%20by%20cell%20type.%20The%20colour%20coding%20is%20linked%20to%20the%20CAPRA-S%20risk%20score
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Figure 4.4: Multidimensional scaling (MDS) plot of all samples, grouped by cell type. The colour 

coding is linked to the CAPRA-S risk score 

 

A total of 1,626 Genes were overall identified as differentially transcribed across the four cell types 

(Table 4.1). Surprisingly, epithelial cells showed the smallest association with the CAPRA-S risk 

score in terms of number of differentially transcribed genes; myeloid cells conversely showed the 

largest association (Table 4.1). The inferred trends of the top differentially transcribed genes for 

each cell type are showed in Fig. S4.3. 

 

Table 4.1: Summary statistics for the differential transcription analysis. CI = confidence interval; 

DT differentially transcribed. “Of which” refers to the gene selection relative to the category 

adjacent on the left. 

Cell 
type 

Tot 
genes 

Quarant. 
sparse 

Quarant. 
CI 

DT (up/down) Of which 
interface 

Of which 
cancer genes 
(consistent) 

Of which PC genes 
(consistent) 

E 21.618 
 

5.408 
 

189 171 (139/32) 80 48 (73%) 29 (80%) 

F 21.510 
 

7141 
 

651 267 (156/111) 97 24 (68%) 11 (64%) 

T 21.716 
 

8807 
 

540 288 (195/93) 83 35 (70%) 19 (79%) 

M 22.507 
 

13836 2695 900 (827/73) 261 37 (84%) 14 (71%) 

 

https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_table_label_Summary%20statistics%20for%20the%20differential%20transcription%20analysis.%20CI%20=%20confidence%20interval;%20DT%20differentially%20transcribed.%20%E2%80%9COf%20which%E2%80%9D%20refers%20to%20the%20gene%20selection%20relative%20to%20the%25
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_table_label_Summary%20statistics%20for%20the%20differential%20transcription%20analysis.%20CI%20=%20confidence%20interval;%20DT%20differentially%20transcribed.%20%E2%80%9COf%20which%E2%80%9D%20refers%20to%20the%20gene%20selection%20relative%20to%20the%25
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_table_label_Summary%20statistics%20for%20the%20differential%20transcription%20analysis.%20CI%20=%20confidence%20interval;%20DT%20differentially%20transcribed.%20%E2%80%9COf%20which%E2%80%9D%20refers%20to%20the%20gene%20selection%20relative%20to%20the%25
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_table_label_Summary%20statistics%20for%20the%20differential%20transcription%20analysis.%20CI%20=%20confidence%20interval;%20DT%20differentially%20transcribed.%20%E2%80%9COf%20which%E2%80%9D%20refers%20to%20the%20gene%20selection%20relative%20to%20the%25
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As expected, the distribution of adjusted inflection points (i.e., point at which the trend has the 

steepest increase or decrease) are roughly unimodal and centred within the CAPRA-S risk score 

interval 0-7 (Fig. 4.5), with the exception of the myeloid cell population showing a bimodal 

distribution for the negatively associated genes. 

 The differential transcription analysis based on the algorithm edgeR and the patient 

stratification pivot CAPRA-S risk score of 2 failed to identify any differentially transcribed genes, 

due to limited sample size and multiple testing correction.  

 

 
Figure 4.5: Distribution of the adjusted inflection points along the CAPRA-S risk score, across 

cell types. The grey shade represents the range. of CAPRA-S risk score in the 13-patient cohort. 

Inflection points outside that range represents exponential-like trends that did not approach a 

plateau within the CAPRA-S risk score range. 

https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Distribution%20of%20the%20adjusted%20inflection%20points%20along%20the%20CAPRA-S%20risk%20score,%20across%20cell%20types.%20The%20grey%20shade%20represents%20the%20range.%20of%20CAPRA-S%20risk%20score%20in%20the%2013%20patient%20cohort.%20Infl
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Gene annotation 
On average across the four cell types, 35% of genes identified encode for proteins that interface to 

the extracellular space (i.e., secreted or transmembrane; Table 4.1). An average of 33% of these 

genes have been previously identified as cancer related; and of those, an average of 51% have been 

previously described as prostate cancer related genes. For all cell types, most cancer genes have a 

direction of change consistent with the literature (20 vs. 7 for epithelial; 14 vs. 7 for fibroblasts; 

18 vs. 8 for T-cells; 28 vs. 8 for myeloid cells).  

Of all differentially transcribed genes that encode for proteins that interface with the 

extracellular space (transmembrane or secretory proteins), a total of six recurring hallmarks were 

identified (from grouping analogous gene ontology annotations; GO194): (i) epithelial/cancer cell 

growth; (ii) angiogenesis; (iii) cancer cell migration (as integration of tissue remodelling and 

epithelial to mesenchymal transition); (iv) osteogenesis; (v) hormone/fat homeostasis; and (vi) 

macrophage-fibroblast interplay.  

The pro- and anti-inflammatory balance evolves during tumour progression 
The balance between inflammatory and anti-inflammatory signals evolves along the disease 

progression (i.e., CAPRA-S risk score range 0-7). The balance between pro- and anti-

inflammatory signals evolves along the disease progression. While the pro-inflammatory 

transcriptional signature is prominent in the initial stage of the cancer progression (i.e., CAPRA-

S risk score 0-2), it appears to decrease in the more advanced stages. On the contrary, the anti-

inflammatory signature significantly expands in the late stage of the disease (i.e., CAPRA score > 

2; p-value 0.015). Overall, the majority of the inflammatory signal it targeted toward the 

recruitment of monocytes/macrophages28,229,230,231,232,233,234,235,236 (labelled with an asterisk in Fig. 

4.6). 

https://paperpile.com/c/S6tSJ7/u3HCe
https://paperpile.com/c/S6tSJ7/6MwWf+GHbxb
https://paperpile.com/c/S6tSJ7/iRDoq
https://paperpile.com/c/S6tSJ7/qNr9c
https://paperpile.com/c/S6tSJ7/9tCqx+a0hOQ
https://paperpile.com/c/S6tSJ7/9lGyS+Tc9yY
https://paperpile.com/c/S6tSJ7/cdGLp
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Map%20of%20the%20secretory%20(represented%20as%20circles)%20and%20transmembrane%20(represented%20as%20squares)%20protein%20coding%20genes,%20that%20are%20differentially%20transcribed%20across%20the%20four%20cell%20types%20(i.e.,%20epithelial,%25
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Map%20of%20the%20secretory%20(represented%20as%20circles)%20and%20transmembrane%20(represented%20as%20squares)%20protein%20coding%20genes,%20that%20are%20differentially%20transcribed%20across%20the%20four%20cell%20types%20(i.e.,%20epithelial,%25
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Figure 4.6: A - regression descriptive statistics. Slope (CI) represent the credible interval of the 
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angular coefficient; Magnitude represents the fold change (full dot) and the baseline transcription 

abundance (intercept, empty circle); CAPRA represents the value of the inflection point estimate. 

B -Map of the secretory (represented as circles) and transmembrane (represented as squares) 

protein coding genes, that are differentially transcribed across the four cell types (i.e., epithelial, 

fibroblasts, myeloid cells and T-cells), that contribute to the immune modulation. Genes are 

grouped according the range value of the inflection point (at what stage of the disease a 

transcriptional change happens; CAPRA-S risk score 0-2, 3-5 and 6-8), and according to their role 

(Pro- or anti-inflammatory). The colour coding and the size are linked with the fold change of the 

expected transcription value (between the baseline CAPRA-S risk score = 0, and CAPRA-S risk 

score = 7) on a logarithmic scale. 

 

In a more advanced stage of the disease (i.e., CAPRA-S risk score 3-5), the sustained 

inflammatory signature is mainly maintained by the myeloid population with contribution of the 

T-cell and epithelial cell populations, still having monocyte/macrophages as main target237,238,239. 

The transcriptional alterations (labelled with an asterisk in Fig. 4.6) for monocyte and macrophage 

recruitment includes the genes IL2RB240–242, ICAM4243,244, DCN245,246 and MDK247,248 in myeloid 

cells and CSF128, PDGFD249 in T-cells. In the most advanced stage of the disease (i.e., CAPRA-S 

risk score 6-8), several myeloid chemotactic genes maintain their upregulation. Interestingly, 

epithelial cells upregulates the gene HLA-DRB5 which is HLA-DR is an MHC class II cell surface 

receptor normally encoded by the human leukocyte for antigen presentation250,251. It is tempting to 

speculate that together with the upregulation of FC receptors, epithelial cells might promote an 

immune mimicry activity.   

The epithelial pro-migratory phenotype is promoted by three complementary 

hallmarks 
A synergy among all four cell types promotes an epithelial pro-migratory signature across three 

routes: direct modulation of epithelial-to-mesenchymal transition (EMT), a pro-fibrotic stimulus 

and a matrix degradation activity. A transcriptomic signature252 for epithelial-to-mesenchymal 

transition phenotype is enriched among the epithelial differentially transcribed genes (adjusted p-

value 0.022; Fig. S4.2). Modulatory genes of epithelial-to-mesenchymal transition are synergically 

activated along the disease progression by epithelial, myeloid and T-cell population253,254,255.  

https://paperpile.com/c/S6tSJ7/y0k5N
https://paperpile.com/c/S6tSJ7/AXQFZ
https://paperpile.com/c/S6tSJ7/jCANX
https://paperpile.com/c/S6tSJ7/qZGPW+Np5nj+9hp6e
https://paperpile.com/c/S6tSJ7/cTliG+Z9i9Y
https://paperpile.com/c/S6tSJ7/2uXNp+Iedsr
https://paperpile.com/c/S6tSJ7/Hs5dd+FgQti
https://paperpile.com/c/S6tSJ7/6MwWf
https://paperpile.com/c/S6tSJ7/7D0n6
https://paperpile.com/c/S6tSJ7/qe7FM+byqIG
https://paperpile.com/c/S6tSJ7/fVaGV
https://paperpile.com/c/S6tSJ7/h6BLJ
https://paperpile.com/c/S6tSJ7/RRKSR
https://paperpile.com/c/S6tSJ7/0FZcM
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Figure 4.7: A - regression descriptive statistics. Slope (CI) represent the credible interval of the 
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angular coefficient; Magnitude represents the fold change (full dot) and the baseline transcription 

abundance (intercept, empty circle); CAPRA represents the value of the inflection point estimate. 

B - Map of the secretory (represented as circles) and transmembrane (represented as squares) 

protein coding genes, that are differentially transcribed across the four cell types (i.e., epithelial, 

fibroblasts, myeloid cells and T-cells), that contribute to the epithelial cell migration. Genes are 

grouped according the range value of the inflection point (at what stage of the disease a 

transcriptional change happens; CAPRA-S risk score 0-2, 3-5 and 6-8), and according to their role 

(directly promoting epithelial-to-mesenchymal transition, pro-fibrotic or promoting matrix 

remodelling). The colour coding and the size are linked with the fold change of the expected 

transcription value (between the baseline CAPRA-S risk score = 0, and CAPRA-S risk score = 7) 

on a logarithmic scale. 

The balance between a fibrotic and matrix remodelling/degradation signatures evolves 

during tumour progression. The induction of fibrosis appears to be an early event in cancer 

progression; on the contrary, the anti-fibrotic signalling is altered by all four cell types consistently 

along the CAPRA-S risk score. In the initial stage of disease progression (i.e., CAPRA-S risk score 

0-2), several differentially transcribed genes encoding protein that interface the extracellular 

environment are connected with collagen production, including COL3A1 in epithelial and 

COL1A2 in T-cell and myeloid cell populations; and PLOD3 which is upregulated in myeloid 

cells and is an essential gene for collagen catabolism256.  

Both the upregulated genes SERPINE1257,258 from myeloid cell population and PXDN259–

261 from epithelial encode for fibrotic factors downstream of TGFβTGFB1; similarly, the 

upregulated gene VWF262,263 from myeloid cells and CILP264,265 from fibroblasts contribute to a 

fibrotic environment. In more advanced stages of the disease (i.e., CAPRA-S risk score >2) both 

the cysteine proteases inhibitors CST4266 and CST6267 are upregulated by epithelial cells. Such 

cell type and fibroblasts also upregulate the a pro-fibrotic factors HTR2B268 and CPXM2269 

respectively.  

The matrix remodelling and degradation is mainly driven by the upregulation of proteases, 

such as MMP26270, ADAMTS1271 and ADAMTSL1272. in the first stages of the disease (i.e., 

CAPRA-S risk score 0-2), and TPSB2273, TPSAB1 and CPA3274 in more advanced stages. 

Furthermore, epithelial cells upregulate an inhibitor of a family of serine proteinases involved in 

extracellular matrix remodelling, SPINK5275–277. Myeloid cells upregulate ADAMDEC1 and 

https://paperpile.com/c/S6tSJ7/UerDL
https://paperpile.com/c/S6tSJ7/uIpRz+ClZo0
https://paperpile.com/c/S6tSJ7/gwwrM+naFtr+FjXIX
https://paperpile.com/c/S6tSJ7/gwwrM+naFtr+FjXIX
https://paperpile.com/c/S6tSJ7/ajzwO+8ugkZ
https://paperpile.com/c/S6tSJ7/eEyzD+MKSLB
https://paperpile.com/c/S6tSJ7/GfZ0X
https://paperpile.com/c/S6tSJ7/4IvhT
https://paperpile.com/c/S6tSJ7/xqtJ6
https://paperpile.com/c/S6tSJ7/ULFp1
https://paperpile.com/c/S6tSJ7/rx1zf
https://paperpile.com/c/S6tSJ7/X8MZ0
https://paperpile.com/c/S6tSJ7/hjtrd
https://paperpile.com/c/S6tSJ7/gblih
https://paperpile.com/c/S6tSJ7/3GNEJ
https://paperpile.com/c/S6tSJ7/gXGrS+Bdyqj+WpjTz
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ADAMTS6 during the initial stage of the disease, and ADAM12 and ADAMTS14 and ST14 in 

later stages278,279. T-cell in advanced disease upregulate the potent trypsin protease CTRL. 

Fibroblasts promote tissue remodelling by increasing mobility with the upregulation of several 

genes linked with neural plasticity and connectivity, including the genes PCDHB2, LRRN1, 

BDNF, SLITRK4 and ASIC2280–282. 

The synergy among cell populations to promote angiogenesis evolves during disease 

progression 
The angiogenesis signalling appears to be sustained along the whole disease development. In the 

initial stage of cancer development (i.e., CAPRA-S risk score 0-2) the pro-angiogenic signal is not 

enriched compared with the anti-angiogenic (or repression of pro-angiogenic) signalling (adjusted 

p-value 1), on the contrary of later stages of the disease (i.e., CAPRA-S risk score >2; adjusted p-

value 0.03; Fig. 4.8). Along the disease progression, a gene alteration signature of platelet 

recruitment, that promote angiogenesis and endothelial cell migration, is expressed in synergy by 

the immune cell types. T-cells upregulate PRG4283 and PDGFD284, while myeloid cells upregulate 

CHPT1285 which favours the secretion of platelet activation factor, and VWF, a potent coagulation 

factor286–288. Interestingly, fibroblasts seem to negatively modulate the myeloid role in platelet 

activation by upregulating ADAMTS13 (Willebrand factor-cleaving protease), which cleaves 

extracellular VWF, promoting at the same time angiogenesis289–291. 

 

https://paperpile.com/c/S6tSJ7/cMakC+gAu4r
https://paperpile.com/c/S6tSJ7/gyqFE+F1H2M+bgj0w
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Map%20of%20the%20secretory%20(represented%20as%20circles)%20and%20transmembrane%20(represented%20as%20squares)%20protein%20coding%20genes,%20that%20are%20differentially%20transcribed%20across%20the%20four%20cell%20types%20(i.e.,%20epithelial,%25
https://paperpile.com/c/S6tSJ7/CcE63
https://paperpile.com/c/S6tSJ7/jSeb4
https://paperpile.com/c/S6tSJ7/xfTp3
https://paperpile.com/c/S6tSJ7/VluH1+utiXE+p5JDZ
https://paperpile.com/c/S6tSJ7/vy60J+2QX8E+WqirD
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Figure 4.8: A - regression descriptive statistics. Slope (CI) represent the credible interval of the 

angular coefficient; Magnitude represents the fold change (full dot) and the baseline transcription 

abundance (intercept, empty circle); CAPRA represents the value of the inflection point estimate. 

B - Map of the secretory (represented as circles) and transmembrane (represented as squares) 

protein coding genes, that are differentially transcribed across the four cell types (i.e., epithelial, 

fibroblasts, myeloid cells and T-cells), that contribute to angiogenesis. Genes are grouped 

according the range value of the inflection point (at what stage of the disease a transcriptional 

change happens; CAPRA-S risk score 0-2, 3-5 and 6-8). The colour coding and the size are linked 

with the fold change of the expected transcription value (between the baseline CAPRA-S risk score 

= 0, and CAPRA-S risk score = 7) on a logarithmic scale. 
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At a later stage (i.e., CAPRA-S risk score >2), the epithelial cell population regulate a total 

of five secreted protein genes including the further downregulation of ORM1, the downregulation 

of a key inhibitor of serine proteases involved in angiogenesis SPINK5275, and the upregulation of 

three pro-angiogenic genes including CHI3L1292, DNC246 and CPA3293,294, a proteinase normally 

secreted by mast cells that favours micro-vessel formation. Myeloid cells upregulate the receptor 

ADAM12 known in cancer biology to indirectly promote angiogenic phenotypes295, and 

upregulate the secreted ANGPT2 that is a known pro angiogenic factor that favours metastases 

and an immune target in clinics296.  

Hormonal homeostasis 
Along the disease progression, our data suggest a synergy in hormonal molecules/cholesterol 

production and secretion, and hormonal sensing that is exerted by all four cell types. The most 

recurring metabolite that is linked with differentially transcribed genes (encoding for secreted of 

transmembrane proteins) across the four cell types is cholesterol (labelled with an asterisk in Fig. 

4.9). Overall however, the set of interface genes (i.e., secreted and transmembrane) for cholesterol 

production and secretion was not enriched compared with those for cholesterol metabolism.  

In an initial stage of the disease (i.e., CAPRA-S risk score 0-2), several differentially 

transcribed genes encode for transmembrane proteins with a role in increasing the extracellular 

cholesterol concentration, including CYP51A1 which silences cholesterol degradation enzymes297, 

STARD3NL linked to cholesterol transport298,299, and SC5D that drives cholesterol and steroid 

synthesis at the cell membrane300, which gene is upregulated by both T-cells in early stages and 

by myeloid cells in more advanced stages (i.e., CAPRA-S risk score >2). At late stages of the 

disease, the epithelial secretory CES3 promotes the production of free cholesterol from cholesteryl 

esters for steroid hormone production301,302. The myeloid transmembrane protein gene CH25H 

have a key role in converting cholesterol into its hydrated form303. 

https://paperpile.com/c/S6tSJ7/gXGrS
https://paperpile.com/c/S6tSJ7/0DU0e
https://paperpile.com/c/S6tSJ7/Iedsr
https://paperpile.com/c/S6tSJ7/aKDst+2XyJu
https://paperpile.com/c/S6tSJ7/nwNTd
https://paperpile.com/c/S6tSJ7/FfCaN
https://paperpile.com/c/S6tSJ7/GCOvX
https://paperpile.com/c/S6tSJ7/gmfFB+dO59f
https://paperpile.com/c/S6tSJ7/nMGOs
https://paperpile.com/c/S6tSJ7/5Ghdi+ZzNIt
https://paperpile.com/c/S6tSJ7/1oKli
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Figure 4.9: A - regression descriptive statistics. Slope (CI) represent the credible interval of the 

angular coefficient; Magnitude represents the fold change (full dot) and the baseline transcription 

abundance (intercept, empty circle); CAPRA represents the value of the inflection point estimate. 

B -Map of the secretory (represented as circles) and transmembrane (represented as squares) 

protein coding genes, that are differentially transcribed across the four cell types (i.e., epithelial, 

fibroblasts, myeloid cells and T-cells), that contribute to hormonal homeostasis. Genes are grouped 
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according the range value of the inflection point (at what stage of the disease a transcriptional 

change happens; CAPRA-S risk score 0-2, 3-5 and 6-8), and according to their role 

(production/secretion or sensing/signal transduction of hormone related molecules). The colour 

coding and the size are linked with the fold change of the expected transcription value (between 

the baseline CAPRA-S risk score = 0, and CAPRA-S risk score = 7) on a logarithmic scale. A 

related signature of hormone sensing and signal transduction is present among the differentially 

transcribed genes304,305,306,307.  

Conclusions 

The tumour microenvironment has been shown to be important for cancer progression 216,217 and 

treatment resistance219, as well as being a reliable diagnostic marker in cases of metastatic disease. 

The inference of differential transcription on enriched key cell types (i.e., epithelial, fibroblasts, 

myeloid and T-cells), with a statistical model that is able to infer the stage of the disease at which 

a transcriptional change takes place, allowed to map the contribution of different cancerous and 

benign cell types to the development of hallmarks of prostate cancer through the disease 

progression.  

Both the library preparation and sequencing efficacy were heterogeneous across the four 

enriched cell types. In particular, myeloid cells have both a lower sequencing output and lower 

mapping rate. The latter aspect (and possibly the first) appears to be caused by the abundance of 

bacterial sequence contaminants. This was to be expected as the enriched myeloid cell population 

includes several phagocytic immune cells types. The ability of macrophages and other phagocytic 

immune cell populations to probe bacterial and viral nucleotidic material could be of use in future 

studies. We observed a decrease in bacterial content for high grade cancer, this may be due to the 

permanent inflammation within the tissue, and whether such sterile inflammatory environment is 

of clinical importance remains to be established. 

Intercellular heterogeneity is presented in the analysis of principal components, where T-

cells cluster poorly accordingly to CAPRA-S risk score, compared to the other three cell types 

(Fig. 4.4). The diversity and complexity of the cell phenotypes within the enriched T-cells might 

play a role in such poorly correlated sample distribution. A possible approach to resolve intra cell-

type diversity is to integrate sample-wise cellular composition as a confounding covariate in the 

regression model. Such composition can be inferred from the whole tissue RNA abundances using 

https://paperpile.com/c/S6tSJ7/6Oocj
https://paperpile.com/c/S6tSJ7/MjYzR
https://paperpile.com/c/S6tSJ7/mpmtv+ccoiX
https://paperpile.com/c/S6tSJ7/NhvZD+8VAMc
https://paperpile.com/c/S6tSJ7/JTQyj
https://docs.google.com/document/d/1QQIsnbCr6_cy4LBoEevnxdm8joz45-Bzo__t5jdbzjI/edit#D2L_fig_ref_Multidimensional%20scaling%20(MDS)%20plot%20of%20all%20samples,%20grouped%20by%20cell%20type.%20The%20colour%20coding%20is%20linked%20to%20the%20CAPRA-S%20risk%20score
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algorithms such as ARMET (included in the present thesis) and Cibersort 69. However, the 

relatively low sample size of the present study (i.e., n = 13) does not allow for such integration. 

The differential transcription analysis was performed with a novel approach. The use of a 

model able to detect changes in transcript abundance along a (pseudo-)continuous covariate (i.e., 

CAPRA-S risk score) allows: (i) to avoid the arbitrary choice of thresholds for converting the risk 

score into binary risk categories (i.e., low- or high-risk); and (ii) to provide the confidence 

information about the stage of the disease at which a gene-wise change in transcription most likely 

happen. For example in case of a discrete change of transcription, our statistical model would 

provide high confidence about the inflection point around a particular coordinate of the CAPRA-

S risk score, while in case of a smooth transcriptional change along the CAPRA-S risk score the 

confidence would be spread along the CAPRA-S risk score. Although it is important to not regard 

the lack of confidence as information (e.g., continuous change along the covariate of interest), the 

previous example become more relevant as the confidence of the transcriptional change increases 

(e.g., when the posterior distribution of the slope parameter do not include the zero value; i.e., for 

differentially transcribed genes).  

The common parameterisation of the generalised sigmoid function has shown to be 

numerically unstable for transcriptional data mainly for the frequent lack of the upper plateau 

(parameter k in Eq. X) in differential transcription trends (e.g., for exponential changes along the 

covariate of interest). In this study, we proposed a new parameterisation of the generalised sigmoid 

function that allows robust detection of monotonic changes for transcriptional data. 

Overall, we observed a smaller number of changes in transcriptional abundance for more 

advanced stages of the disease. Such bias could be caused by the smallest representation of high-

grade samples compared to lower-grade, thus providing less information to base the inference on. 

Across the four cell types, the myeloid cell population provided the longest list of differentially 

transcribed genes, compared with the other cell types (900 compared with an average of 242). On 

one hand, such difference could be just due to the overall lower coverage of the myeloid cell 

samples that can cause higher noise and more false positives. On the other hand, such difference 

in number of differentially transcribed genes could be simply due to the richness in biological 

response of myeloid cells that include key modulators of the immune response (e.g., myeloid, 

macrophage, and dendritic cells). 

https://paperpile.com/c/S6tSJ7/Povnx
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Our study showed that the majority of differentially transcribed genes encoding for proteins that 

interface the extracellular environment (e.g., transmembrane and secreted) target the chemotaxis 

and modulation of macrophages, which are known to drive a wound healing environment30 . We 

were able to identify two axes of interaction between monocytes and macrophages with other cell 

types including epithelial cells and fibroblasts, creating positive chemotactic and modulatory 

loops. Furthermore, our results show that monocyte macrophages may be involved in the hormonal 

homeostasis of the extracellular matrix. While cholesterol is known to be an inflammatory 

messenger with a key role in monocyte and macrophage activity and is a precursor of membrane 

lipids needed for phagocytosis and cytotoxic activity. However, a side effect of such metabolism 

could be enrichment of free cholesterol available in the extracellular matrix, that could be used by 

cancer cells for driving the synthesis of testosterone. In previous studies, the abundance of 

monocytes in circulation have been shown to be prognostic for poor prognosis208.  

Interestingly, the epithelial cell population altered the transcription of transmembrane 

protein genes with an inflammatory role is expressed by immune cells. If confirmed, such gene 

regulation could allow an immunoglobulin poor environment in the vicinity of such cell, still 

allowing a chronic inflammation within the prostate tissue. Alternatively, such activity could also 

promote immune escape308. The tissue remodelling and fibrosis represented an important recurrent 

hallmark in our data. Although TGFβ was not among the DE genes for epithelial cells, several 

downstream and related genes were differentially regulated. The only cell population where we 

could observe an upregulation of TGFβ3 was myeloid, although did not reach significance. On the 

contrary T-cells significantly downregulate TGFβ2 in advanced stages of the disease (i.e., 

CAPRA-S risk score 3-5). Regarding angiogenesis, an important axe seems to be platelet 

recruitment and activation. This axe is sustained by myeloid, epithelial and T-cells, while 

fibroblasts appear regulate an opposite signature of anticoagulation. Overall, this study proves the 

utility of being able to map transcriptional alterations to specific cell populations as well as to 

cancer developmental stages. The present study gives an extensive landscape on the possible 

synergies existing among cancer, immune and stromal cells, and represents an useful hypothesis 

generating resource for future studies. 

 

  

https://paperpile.com/c/S6tSJ7/zRiRx
https://paperpile.com/c/S6tSJ7/H5BUF
https://paperpile.com/c/S6tSJ7/lJn8e
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Supplementary material 

 
Fig. S4.1. Diagram of the tissue processing and data analysis 
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Fig S4.2. GSEA analysis of an epithelial to mesenchymal transition signature252 for the epithelial 

samples, along the CAPRA risk score. 

 

https://paperpile.com/c/S6tSJ7/fVaGV
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Fig. S4.3. Trend plots of the top differentially transcribed genes, The red dots represent data, the 

error bars represent the posterior confidence interval of each data point. The grey lines represent 

all the possible trends according to the model. 
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Context 

Proportional data is often relevant in statistical inference, either because data is directly acquired 

as such or because acquired count data underlies a multinomial process, which is driven by the 

proportions of its components. For example, the analysis of tissue composition via the direct 

observation of the different cell types within, represents a multinomial observation driven by cell 

type proportions; similarly, the inference of tissue composition through molecular make-up of the 

tissue models the components of a tissue as proportions. Observing/inferring the changes in the 

composition of a mixture along a factor of interest can be highly informative. For example, 

observing/inferring the changes in tissue composition along cancer grade can improve the 

knowledge about the role of specific cell types in cancer progression. Identifying driving changes 

in a mixture is a challenging task, due to the apparent inverse correlation emerging among 

components solely as result of the sum-to-one compression, which is characteristic of all 

proportional data. For example, two or more components of a system that remain unchanged in 

count size along a factor of interest in the real space, can appear as having non-zero changing rates 

in proportional space due to the change of a third component. Publicly available algorithms fail to 

model such aspects, and thus to correctly identify drivers of change. Here, we present a 

probabilistic generative Bayes model that can identify drivers of change from a simplex space 

under the parsimony assumption that two or more component of the system remain unchanged in 

the real space. 
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Inference of extrinsic changes in simplex space under parsimony 
assumption 

 

 

Introduction 

Proportional data is often relevant, either because data is directly acquired as such or because 

acquired count data underlies a multinomial process that is driven by the proportions of its 

components. For example, the analysis of tissue composition via the direct observation of the 

different cell types within represents a multinomial observation driven by cell type proportions; 

similarly, the inference of tissue composition through molecular make-up of the tissue, models the 

components of a tissue as proportions. A vector of proportions that sums to one is referred to as a 

simplex. More formally, a simplex is a vector of reals of size K with K-1 degrees of freedom (Eq. 

1). 

 

  

 
 

Geometrically, a simplex of size K can be represented as a point in a K-1-dimensional 

polytope. For example, a simplex of K=3 correspond to 2-dimensional triangle surface (Fig. 5.1).  
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Figure 5.1: Geometric visualization of a three components (K = 3) simplex sample space in two 

dimension, with a degree of uncertainty associated with each observation. Each point in the plot 

represent a simplex (e.g., [0.2, 0.4, 0.4]). On the left, all three components are equally represented, 

on the right the C3 component is over-represented. 

Inferring changes in the composition of a mixture (i.e., the trends of change of the 

proportion of its components) along a factor of interest, can inform about the role of each 

component within. For example, the change in cellular composition of the tumoral mass along 

cancer grade can inform about the importance of any cell types for cancer progression. Performing 

such inference presents several challenges. For example, the simplex space is characterised by 

non-symmetric and heteroscedastic noise with extremes at the plateaus 0 and 1. Also, the 

independence assumption of the simplex components is complex and has multiple definitions309. 

Furthermore, a linear increase in real space appears as curved in the simplex space 192, therefore a 

suitable regression function must be chosen. Another point of complexity is the two-ways 

interpretation of the simplex space309. The extrinsic interpretation considers the existence of a real 

system where changes regarding the absolute quantity of its components (e.g., a cell population 

increase of 1 million units in a tissue area/organ; Fig. 5.2A) are inferred. Of such a system, only a 

small proportion can be usually observed at any given time; the observations are therefore the 

result of a multinomial process, that is driven by the proportions of its components. Therefore, 

even if a system could be numerically described on an unbounded positive natural scale, the 

proportional observations must be described in a simplex space. On the contrary, the intrinsic 

interpretation of the simplex space considers such space as the only one existing (Fig. 5.2B). The 

https://paperpile.com/c/S6tSJ7/lcrO9
https://paperpile.com/c/S6tSJ7/Sx1NB
https://paperpile.com/c/S6tSJ7/lcrO9
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
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analysis of either the extrinsic or intrinsic interpretations can inform on different aspects of a 

system.  

As practical analogy, we can define a five-components (e.g., cell types) system of which 

only a small portion can be observed at any given time. Through time, the count size of two 

components increases (solid red and irregular orange lines; Fig. 5.2A); the count size of one 

component decreases (dashed blue line in Fig. 5.2A); while two components remain stable in size 

(dash-dotted purple and dotted green lines in Fig. 5.2A). The relative proportions of the five groups 

are observed through time (Fig. 5.2B). The visualisation of the real space (unobserved; extrinsic 

interpretation of the simplex) and the proportional space (observed; intrinsic interpretation of the 

simplex) give different perspectives on which component is changing. In the real space two 

different groups appear stable, maintaining a unchanged size (dash-dotted purple and dotted green 

lines in Fig. 5.2A); while in the proportional space, only one different component maintains a 

stable relative proportion (irregular line; Fig. 5.2B). In this example, the extrinsic interpretation 

can provide information on the growing forces in the system and can be helpful for example if the 

goal is to target the component(s) that are “driving” the change, in order to re-establish the 

equilibrium. The intrinsic interpretation can provide information on the mere proportional 

relationships among the components in a system and can be helpful for example if the ratio of two 

or more components is important for the stability of the system. In an alternative scenario, where 

the system can be completely observed but is characterised by a lower and upper boundary (e.g., 

voting system), the extrinsic interpretation can still give information on the growing forces in a 

system. That is, even if a quantity reaches a plateau toward its upper or lower bound, the force 

applied to that boundary can live in an unbounded space (-Inf, +Inf).  

 

https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
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Figure 5.2: A - Extrinsic interpretation of the real unconstrained space (unobserved). B - Intrinsic 

representation of A in terms of probability in simplex space (observed). 

 

 

This problem has been referred to as simplex, Dirichlet or softmax regression. Generally, 

two main approaches are adopted to model changes in this “awkward” 309 sample space. First, the 

simplex data can be transformed to a linear space using methods such as isometric, centred, or 

additive log-ratio, enabling the direct use of familiar statistical tools such as multiple linear 

regression. This approach although attractive presents some drawbacks, including the more 

laborious interpretation of the numerical generating process and the loss in accuracy in cases of 

extreme non-symmetricity and/or heteroscedasticity. Second, the simplex can be modelled in its 

native sample space. The probability density distributions of choice are either beta310,311, 

Dirichlet192, or simplex312. For regression, the use of such distributions is coupled usually with a 

sigmoid function, or with other monotone functions defined within the interval zero to one. A 

statistics that works on untransformed data allows a more direct construction of generative 

Bayesian models, which have been shown to work well in regimes of low or missing data 313. 

Moreover, such models can be integrated naturally in larger hierarchical models. Considering the 

characteristics of the statistical model described in this article, we will focus on the methods that 

work in a native simplex space, from now on. 

https://paperpile.com/c/S6tSJ7/lcrO9
https://paperpile.com/c/S6tSJ7/JJXG1+vJVjd
https://paperpile.com/c/S6tSJ7/Sx1NB
https://paperpile.com/c/S6tSJ7/Ogb5t
https://paperpile.com/c/S6tSJ7/65P0b


 

116 

Beta distribution and Beta regression 
The Beta distribution is described by Eq. 2 

 
 

where the shape and the location are defined by combinations of the two parameters α and 

β (> 0). The beta regression underlies a generalized linear model where the link function is an 

inverse logit and the noise around such function follows a beta probability density function. Ferrari 

and Cribari-Neto proposed a beta-regression model and implemented the statistical estimation in 

the R language as the package betareg310,311. The maximum likelihood (ML)314 is used for the 

estimation of the parameters. Also, an R package gamlss 315–317 provides semi-parametric beta 

regression type models for proportional data. The advantage of the beta regression is that the beta 

distribution follows the non-symmetricity and heteroscedasticity characteristics of the simplex 

sample space, allowing flexibility to model both centre and variance. 

 

Dirichlet distribution and Dirichlet regression 
The Dirichlet probability distribution is defined by Eq. 3 

 

 
 

where K is the order of the distribution (i.e., the number of components of which proportions sum 

to 1), α (>0) is the parameter vector of length K318, and , and B(α) being the multivariate Beta 

function. The modality (unimodal or bimodal) of the K components is defined by the sign of the 

logarithm of α: if positive the distribution is unimodal or bimodal otherwise (with the modes being 

at the values zero and one). The overall precision around the modes is dependent on the overall 

magnitude of the logarithm of α, where values distant from zero concentrate the mass around the 

mode. For example, for log(α)>0 (i.e., aα > 1) the precision equals to ∑log(α). The location of the 

modes of the K components is defined within the interval 0-1 and depends on the relative ratios of 

the components of the α parameter. For example, the modes of the two Dirichlet distributions 

defined by A = [1,2,3], and B = [10, 20, 30] are the same (approximately equal to 0.17, 0.3, and 

0.5) with B characterized by lower variances around the modes. 

https://paperpile.com/c/S6tSJ7/vJVjd+JJXG1
https://paperpile.com/c/S6tSJ7/xxPAp
https://paperpile.com/c/S6tSJ7/fWCbM+e9DAm+Juv0V
https://paperpile.com/c/S6tSJ7/k5g8e
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A publicly available regression algorithm based on the Dirichlet probability distribution is 

DirichletReg192, which implements such distribution under two possible parametrizations: 

common and alternative. Under the common parametrization, the α parameter is modelled by log-

link; while under the alternative parametrization, the α parameter is modelled analogously to 

betareg310,311 with mean and variance, allowing for heteroskedasticity. The maximum likelihood 

is used for the estimation of the parameters314. The Dirichlet distribution of K components has a 

relatively small degrees of freedom compared to K Beta independent distributions, with the 

variance defined by just one; this aspect can suite low-data regimes. A disadvantage of Dirichlet 

regression is due to the strong independence foundation of its distribution, which can produce only 

convex sampling (Fig. 1); while for some data the negative correlation among component car result 

in concave distributions309. 

Simplex distribution 
The Simplex distribution is derived from the generalised inverse Gaussian distribution, and is 

defined by Eq. 4 

 

 
 

with mu and σ being the centre and variance; and α1 and α2 being shape parameters 319. 

The Simplex distribution limits to a Beta distribution if α1 and α2 >0 and σ2 → inf 320, and limits 

to a standard normal distribution if σ2 → 0320. This distribution can be unimodal or bimodal 

depending on the σ parameter (point of inversion 4/sqrt(3))312. 

Such probability distribution has been implemented in a regression model in R called 

simplexreg312. This algorithm is based on a generalized linear model with a simplex distributed 

noise, using a diverse range of regression functions including logit, probit, cloglog, neglog or any 

other monotonic, differentiable function that map the space (0,1) → (-inf, +inf). The iteratively 

reweighted least squares algorithm is used for the maximum likelihood estimation of the 

parameters. The advantages of the simplex distribution are its adaptability to overdispersed noise 

models; however it comes at the cost of being defined by four parameters for each component, 

which leaves less residual degrees of freedom for inference compared with other methods. 

https://paperpile.com/c/S6tSJ7/Sx1NB
https://paperpile.com/c/S6tSJ7/vJVjd+JJXG1
https://paperpile.com/c/S6tSJ7/xxPAp
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_Geometric%20visualization%20of%20a%20three%20components%20(K%20=%203)%20simplex%20sample%20space%20in%20two%20dimension,%20with%20a%20degree%20of%20uncertainty%20associated%20with%20each%20observation.%20Each%20point%20in%20the%20plot%20repres
https://paperpile.com/c/S6tSJ7/lcrO9
https://paperpile.com/c/S6tSJ7/lcGMU
https://paperpile.com/c/S6tSJ7/6173l
https://paperpile.com/c/S6tSJ7/6173l
https://paperpile.com/c/S6tSJ7/Ogb5t
https://paperpile.com/c/S6tSJ7/Ogb5t
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Independently from of which model they adopt, publicly available algorithms do not 

attempt to infer the extrinsic rates of change but limit their inference to the intrinsic ones. Here, 

we present a generative Bayesian model cable to infers both extrinsic and intrinsic changes from 

data simplex space, using a Dirichlet and a Beta generative models respectively. 

Methods 

The probabilistic model 
A Bayesian probabilistic model was used to infer the trends of change of the components of a 

simplex. In order to infer the trends of change for both the intrinsic and extrinsic interpretations of 

the simplex space, a Dirichlet framework and a Beta framework were used respectively. The two 

models can be represented by the probability densities Eq. 5 and Eq. 15 

 

Dirichlet framework 

 

 
 

 
 
Beta framework 
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For the two sets of formulae, Y represents the input simplex of dimension K (number of 

components), N (number of observations) and X represents the design matrix of dimensions N, R 

(number of covariates including the intercept term).  

For the Dirichlet framework, α represents the matrix of the factors of interest of size N, R; 

φ is the precision parameter for the Dirichlet prior distribution for Y; and σ represents the vector 

parameter for the regularised horseshoe225 prior distribution for α. Specifically, Eq. 5 represents 

the joint probability distribution that is used to identify the most likely values of the parameters; 

Eq. 6 represents the sampling statement for the likelihood of the data from a Dirichlet distribution; 

Eq. 7 represents the calculation of the hyperparameter of the Dirichlet probability distribution, 

parameterized as expected values and precision193; Eq. 8 is calculation of the expected values for 

the linear system; Eq. 9 represents the sum-to-zero constraint of the intercept values, which allows 

the degrees of freedom on the P components to fit those of the expected value of the Dirichlet 

hyperparameter (i.e., P-1); Eq. 10, 11, 12 and 13 represent the prior distributions attributed to σ, φ 

and α respectively; and Eq. 15 represents the softmax transformation, which is the exponential 

equivalent of the zero-to-one normalization. 

For the Beta framework, α2 is analogous to α; and φ2 represents the precision parameter for 

the Beta distribution for Y. Specifically, Eq. 16 represents the joint probability distribution that is 

used to identify the most likely values of the parameters; Eq. 17 represents the sampling statement 

for the likelihood of the data from a Beta distribution, parameterized as expected value and 

precision; Eq. 18 represents the inverse logit transformation of the expected value of the linear 

system; Eq. 19 is analogous to Eq. 8; and Eq. 20 and 21 represent the prior distributions attributed 

to φ2 and α2. 

https://paperpile.com/c/S6tSJ7/9OEQ8
https://paperpile.com/c/S6tSJ7/WT6WM
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Such models can be also represented as two oriented, plated graphs (Dirichlet - Fig. 3, Beta 

- Fig. S1), where the bold nodes represent the parameters, the light nodes represent data, where the 

edges between node represent the conditionality between the probabilities distributions and/or 

data, and the plates represent the iterations across the dimension of each node. 

 
Figure 5.3: Graphical representation of the Dirichlet generative regression model, used to infer 

parameters for the extrinsic prospective. 

 

Benchmark 
A two-way benchmark for the intrinsic and extrinsic interpretation of the simplex space was 

designed with simulated data, with the aim of testing the accuracy in detection of non-zero 

changes. For both benchmarks, the numerical process that generated the data is based on the union 

of K negative binomials draws simulating the counts of K components of a system (hidden to the 

algorithms). At every point along the covariate of interest, the expected value of the K generating 

https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_Graphical%20representation%20of%20the%20Dirichlet%20generative%20regression%20model,%20used%20to%20infer%20parameters%20for%20the%20extrinsic%20prospective.


 

121 

negative binomials varies following an exp-linear regression function (i.e., log-link). For every 

point along the covariate of interest, the counts are then mapped to a simplex using a softmax 

transformation.  

For each of the two benchmarks, the data set were simulated with four different flavours 

representing different selections of tuning parameters: (i) the variance around the regression 

function; (ii) the magnitude of the independent variables α (i.e., slopes); (iii) the number of 

observations; and (iv) the number of components of the simplex (i.e., K). For each simulation, 30 

replicates were produced, for a total of 4800 simulations.  

The extrinsic and intrinsic benchmarks were created with two different strategies to set the 

changing versus non changing components. For the extrinsic benchmark, half of the components 

do not change in size (e.g., dash-dotted and dotted lines in Fig. 5.2A) while half of the components 

increase or decrease in size (e.g., solid, irregular and dashed blue in Fig. 5.2A). For the intrinsic 

benchmark, half of the components change in the real space in a way to retain a non-changing 

proportion in the simplex space (e.g., irregular line; Fig. 5.2B). For both benchmarks, each 

component was labelled 1 if changing or 0 if not. The performance of the algorithms was measured 

in terms of area under curve (AUC) based on this accuracy of the binary classification. 

Results and discussion 

Benchmark 
The intrinsic benchmark was designed to test the accuracy in detecting significant changes in the 

relative abundance of each component. For this test, a flat line in simplex space represents a zero 

change. The algorithms betaReg and simplexReg and our model performed similarly across the 

four data set flavours (Fig. 5.4; increasing precision, slope, number of samples and number of 

components) in terms of area under the curve (AUC). Our model performed slightly better 

compared with the other algorithms for the three flavours: increasing precision, slope and number 

of samples. Overall, the algorithm dirichletReg performed poorly for all data set flavours, 

compared with the other algorithms. 

https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_A:%20Extrinsic%20interpretation%20of%20the%20real%20unconstrained%20space%20(unobserved).%20B:%20Intrinsic%20representation%20of%20A%20in%20terms%20of%20probability%20in%20simplex%20space%20(observed).
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_Area%20under%20curve%20(AUC)%20of%20four%20different%20methods%20when%20varying%204%20parameters%20of%20simulation%20data.
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Figure 5.4: Area under curve (AUC) of four different methods when varying 4 parameters of 

simulation data. 

 

The extrinsic benchmark was designed to test the accuracy in detecting changes in the real 

space under the parsimony assumption. In this scenario, null changes in the real space for two or 

more components may appear as distinct non-zero trends in the simplex space. For this extrinsic 

test, the true positive rate of betaReg, simplexReg and our model is high and comparable, with our 

statistical model performing slightly poorlier than the other two. Overall, the algorithm 

dirichletReg performed poorly compared with the other algorithms in terms of true positive rate. 

Fig. 5.5 shows the unique ability of our statistical model of classifying extrinsic changes from the 

simplex space in the four simulation flavours, with false positive rate < 1%. Counterintuitively, 

the false positive rate increases for betaReg and simplexReg as the input data becomes less noisy; 

that is, when the (i) variance around the regression function decreases; (ii) value of the independent 

variables α (i.e., slopes) increases; and (iii) number of observations increase. Such a result is a 

consequence of the independent evaluation of the K components of the simplex, rather than a 

https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_False%20positive%20and%20true%20positive%20counts%20of%20four%20different%20methods%20when%20varying%204%20parameters%20of%20simulation%20data.
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generative, integrative modelling. Interestingly, the number of components of the system did not 

affect the performances for simplexRegression, betaReg or simplexReg; and rather appears to be 

positively correlated with the performances of dirichletReg. The algorithm DirichletReg showed 

overall lower false positive rate for the extrinsic interpretation compared with betaReg and 

simplexReg; however, this is likely to be a side effect of the overall poor performance of such an 

algorithm in classifying true positives. 
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Figure 5.5: False positive and true positive counts of four different methods when varying 4 

parameters of simulation data. 
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Probabilistic model implementation 
Our Dirichlet-beta Bayes model has been encoded in the probabilistic language Stan193,321, which 

permits the declaration of conditional probabilities and samples from the resulting joint 

distribution with the efficient non-U-turns-sampler (NUTS). The encoding of the probabilistic 

model in the Stan language is as follows. 

 
functions{ 
 
 vector reg_horseshoe( 
     vector zb, 
     real aux1_global , 
     real aux2_global, 
     vector aux1_local , 
     vector aux2_local , 
     real caux, 
     real scale_global , 
     real slab_scale 
     ) { 
  int K = rows(zb); 
 
  // Horseshoe variables 
  real tau ; // global shrinkage parameter 
  vector [ K] lambda ; // local shrinkage parameter 
  vector [ K] lambda_tilde ; // ’ truncated ’ local shrinkage parameter 
  real c; // slab scale 
 
  // Horseshoe calculation 
  lambda = aux1_local .* sqrt ( aux2_local ); 
  tau = aux1_global * sqrt ( aux2_global ) * scale_global * 1 ; 
  c = slab_scale * sqrt ( caux ); 
  lambda_tilde = sqrt ( c ^2 * square ( lambda ) ./ (c ^2 + tau ^2* square ( lambda )) ); 
  return zb .* lambda_tilde * tau ; 
 } 
} 
data{ 
 int K;                   // Number of groups 
 int N;                   // Number of observations 
 int<lower=1> R;               // Number of covariates  
 matrix[N,R] X;               // Design matrix 
 simplex[K] beta[N];             // Proportions 
  
 // Horseshoe 
 real < lower =0 > par_ratio ; // proportion of 0s 
 real < lower =1 > nu_global ; // degrees of freedom for the half -t prior 
 real < lower =1 > nu_local ; // degrees of freedom for the half - t priors 
 real < lower =0 > slab_scale ; // slab scale for the regularized horseshoe 
 real < lower =0 > slab_df; // slab degrees of freedom for the regularized 
 
} 
transformed data{ 
 real < lower =0 > scale_global = par_ratio / sqrt(1.0 * N); // scale for the half -t prior for tau 
} 
parameters { 
 real<lower=0> phi_raw;              // Unique variance of the dirichlet distribution 
 matrix[R,K] extrinsic_raw;             // Covariates 

https://paperpile.com/c/S6tSJ7/WT6WM+7yJQT
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 // Horseshoe 
 real < lower =0 > aux1_global ; 
 real < lower =0 > aux2_global ; 
 vector < lower =0 >[ K] aux1_local ; 
 vector < lower =0 >[ K] aux2_local ; 
 real < lower =0 > caux ; 
 
 real<lower=0> phi2;  
 matrix[R,K] intrinsic;  
 real<lower=0> bg_sd2;             // Variance of the prior distribution to alpha 
 
} 
transformed parameters{ 
 matrix[N,K] beta_hat;          
 vector[K] beta_hat_hat[N];   
 matrix[N, K] beta_hat2;  
 matrix[R,K] extrinsic;        // Covariates 
 real<lower=0> phi = inv(sqrt(phi_raw));              // Unique variance of the dirichlet distribution 
 
 // Building matrix factors of interest 
 extrinsic[1] = extrinsic_raw[1]; 
 extrinsic[2] = to_row_vector( 
  reg_horseshoe( 
   to_vector(extrinsic_raw[2]), 
   aux1_global , 
   aux2_global, 
   aux1_local , 
   aux2_local , 
   caux, 
   scale_global, 
   slab_scale 
  ) 
 ); 
  
 beta_hat = X * extrinsic; 
 for(n in 1:N) beta_hat_hat[n] = softmax( to_vector(beta_hat[n]) ) * phi ; 
  
 beta_hat2 = inv_logit(X * intrinsic);  
} 
model { 
  
 // Priors 
 phi_raw ~ normal(0,1); 
 phi2 ~ cauchy(0,2.5); 
 bg_sd2 ~ cauchy(0,2.5); 
 
 // Linear model 
 for(n in 1:N) beta[n] ~ dirichlet(beta_hat_hat[n]); 
  
 extrinsic_raw[1] ~ normal(0,5); 
 sum(extrinsic_raw[1]) ~ normal(0,0.01 * K) ; 
 extrinsic_raw[2] ~ normal (0 , 1); 
 if(R > 2) for(r in 3:R) extrinsic_raw[r] ~ normal(0,1); 
  
 // Horseshoe 
 aux1_local ~ normal (0 , 1); 
 aux2_local ~ inv_gamma (0.5* nu_local , 0.5* nu_local ); 
 aux1_global ~ normal (0 , 1); 
 aux2_global ~ inv_gamma (0.5* nu_global , 0.5* nu_global ); 
 caux ~ inv_gamma (0.5* slab_df , 0.5* slab_df ); 
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 // Linear model for beta regression 
 for(n in 1:N) beta[n] ~ beta(beta_hat2[n] * phi2, (1 - beta_hat2[n]) * phi2);  
  
 // Prior distribution on the background cluster 
 intrinsic[1] ~ normal(1.0/K, bg_sd2); 
 intrinsic[2] ~ normal(0, 2); 
 if(R > 2) for(r in 3:R) intrinsic[r] ~ normal(0,1); 
 
} 
generated quantities{ 
 vector[K] beta_gen[N];            
 for(n in 1:N) beta_gen[n] = dirichlet_rng(beta_hat_hat[n]); 
} 

 

Interface 
Our model has been implemented as R package (simplexRegression). Our function accepts three 

inputs; (i) a proportion matrix oriented with column-wise components and row-wise observations; 

(ii) a design matrix (including the intercept); and (iii) the label of the covariate to perform the 

hypothesis test on. With the command “simplexRegression(proportion_matrix, design_matrix, 

cov_to_test)”, two different hypothesis testing are shown, one for the extrinsic scenario (cov - 

extrinsic; where independent variables α of interest are inferred for the generating numerical 

process), and for the intrinsic scenario (cov - intrinsic; where independent variables α of interest 

are inferred for the mere simplex space). 
 

-------------------------------------------------------------------------------------------- 
Beta-Coefficients for variable no. 1: 
               Estimate   Std. Error   z value     Pr(>|z|) 
(Intercept)       0.27      0         -8.71       1.03e-05 *** 
cov - extrinsic    0.94      0         -22.43      0 *** 
cov - intrinsic    1.14      0         -20.4       0 *** 
-------------------------------------------------------------------------------------------- 
Beta-Coefficients for variable no. 2: 
               Estimate   Std. Error   z value     Pr(>|z|) 
(Intercept)       0.26      0         -4.74       0.31 
cov - extrinsic    -0.82      0         17.04      1.33e-10 *** 
cov - intrinsic     -1.23      0         16.9       0 *** 
-------------------------------------------------------------------------------------------- 
Beta-Coefficients for variable no. 3: 
               Estimate   Std. Error   z value     Pr(>|z|) 
(Intercept)       0.27      0         -8.09       4.44e-05 *** 
cov - extrinsic    -0.09      0         1.87        0.39 
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cov - intrinsic     -0.44      0         7.18        7.03e-13 *** 
-------------------------------------------------------------------------------------------- 
Beta-Coefficients for variable no. 4: 
              Estimate   Std. Error   z value     Pr(>|z|) 
(Intercept)      0.2       0          5.37       0 *** 
cov - extrinsic    0.08      0         -1.59      0.39 
cov - intrinsic     -0.2      0         2.8        5.18e-03 ** 

-------------------------------------------------------------------------------------------- 
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Number of Observations: 100 
Link: linear-softmax 

Plots 
A plot is produced for each inference run, which summarizes the inference for both the intrinsic 

and extrinsic interpretations. The densities represent the posterior estimate distributions of the 

slope parameters. The densities that have their mass distant from zero represent components with 

positive/negative change. Fig. 6 shows the posterior distributions for a simulated system with three 

stationary components (in linear space) and one increasing component along the covariate of 

interest. This example shows how significative differences between intrinsic and extrinsic 

interpretations of the simplex space can exist. In the intrinsic interpretation, all four components 

are inferred to have non-zero changes as they appear in the simplex space. On the contrary, in the 

extrinsic interpretation only one component is inferred having non-zero changes (i.e., red density 

curve; as it was simulated in the real space). For this interpretation, the increase in count size of 

such component in real space drives all the changes apparent in the simplex space. 

 

https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit#D2L_fig_ref_Example%20result%20plot,%20for%20a%20system%20with%20four%20components%20of%20which%20only%20one%20has%20a%20non-zero,%20positive%20rate%20of%20change%20in%20the%20real%20space.%20On%20the%20top%20is%20shown%20the%20inference%20on%20the%20extr
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Figure 5.6: Example result plot, for a system with four components of which only one has a non-

zero, positive rate of change in the real space. On the top is shown the inference on the extrinsic 

interpretation of the simplex space. On the bottom is shown the intrinsic interpretation. The density 

curves represent the posterior distribution of each of the four slope parameters. 

Conclusions 

Every experiment that collects data as proportions, and many experiments that collect count data 

of a small portion of a system, can be modelled in simplex space. Being able to correctly model 

changes happening in simplex space is therefore important. Publicly available algorithms focus 

on the intrinsic interpretations of the simplex space, analysing trends as they visually appear 

within the zero to one range, with the interpretation of a flat line as zero change. However, 

investigating which of the K components of a system is likely to drive the changes that are 

observed in the simplex space is often relevant. Such question has validity only if a parsimony 

assumption is made, being that more than one component is not changing in the physical system 

in analysis. For example, if we consider a tissue composed by K main cell types and want to 

observe the evolution of tissue composition during cancer progression, the assumption to be 

made is that two or more cell types do not change in number within the tissue, and thus that the 

tumour development is associated with a limited number of drivers. The ability of our model to 

identify such drivers is due to the integrated and generative modelling of all components (for the 
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Dirichlet part of the model). This approach is possible through the modelling of the intercept 

term of the K-components linear system with a variable having K-1 degrees of freedom, which 

introduces an interdependence among the components, accounting for the inverse relations 

among them characteristic of the simplex space. Our statistical model can accurately inform 

about both extrinsic and intrinsic interpretations of the simplex space, using a Dirichlet and beta 

models respectively. In order to build our generative model, the statistical framework Stan was 

employed. Although our model was implemented in a R package, it constitutes a module that can 

also be integrated in more extensive models, where the regression in simplex space may be just a 

component of a complex workspace. For example, where the simplex input is itself a parameter 

inferred upstream, and/or the coefficients of change (i.e., slopes) are used downstream. This 

modularity increases the values of the design and testing of generative probability Bayes models.  
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Context 

The properties of the tissue microenvironment are key for many pathological conditions such as 

cancer. For example, for several types of cancer, the tissue microenvironment shows altered 

properties that actively promote tumour development and/or decrease the treatment response. 

Furthermore, some molecular markers of the tissue microenvironment have been selected as a 

valuable diagnostic tool. Both in vitro and in vivo techniques have been used for the study of the 

biology of tissue microenvironment at the molecular level and its association to cancer 

progression. Such techniques must necessarily focus on specific genes/cell type targets due to the 

financial and logistic burden. Computational methods allow large scale exploratory analyses 

across many genes, cell types and samples. Recently, improved algorithms and a wider availability 

of high throughput molecular data have allowed large scale epidemiological studies inferring the 

cellular composition of tumour microenvironments using both novel and publicly available data 

sets. Inferring changes in tissue composition, that we name here differential tissue composition 

(DTC) analysis is essential to readily connect such inference with biology. Differential tissue 

composition analyses implies the inference of both tissue composition and its rate of change along 

a factor of interest. So far, only the first stage of the problem, but not the second, has been tackled. 

Here, we present a hierarchical Bayesian model that, besides improving on the “state of the art” in 

the inference of tissue composition, permits the inference and testing of the significance of changes 

in tissue composition across biological conditions. 
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Differential tissue composition analyses from whole tissue 
transcriptional levels 

 
 

 

Introduction 

The properties of the tissue microenvironment are key for many pathological conditions such as 

cancer 19,40,46,160, involving both immune (e.g., t-cells, b-cells, monocytes, granulocytes) and 

stromal (e.g., fibroblasts, endothelial, smooth muscle, nervous) cell compartments. For example, 

increased proportion of infiltrating immune cells within the tumour microenvironment (TME) 

affects tumour growth in colorectal 322,323 and breast cancer 324,325; similarly, stromal cells are key 

for cancer development, such as cancer associated fibroblasts in colorectal 326,327, in prostate 1 and 

breast cancer 328, endothelial in breast cancer 329,330 and adipose in prostate cancer 160. Improving 

our knowledge on the biology of the tumour microenvironment will lead to improved diagnosis 

and a better understanding of drug resistance 331–333. Given their key role and genetic stability, 

tumour associated stromal and immune cells represent a valuable target for treating cancer 
324,331,334,335.  

For cancer, the properties of specific cell types within the tumoral mass have been 

investigated through in vitro and in vivo experiment, such as migration and proliferation assays, 

and drug response or xenograft mouse models 67. Despite their effectiveness, such approaches must 

focus on specific cell types and on a limited number of tissue samples, due to the financial and 

logistic burden associated to the experimental procedures. The computational inference of tissue 

composition using tissue transcriptional levels is a high-throughput alternative that enables large 

scale epidemiological investigations, using novel and publicly available data. However, such 

inference must link with biological/clinical traits to gain meaning. The inference of changes in 

tissue composition along biological/clinical traits, that we name here “differential tissue 

composition” (DTC) analysis is key to readily provide clinical applications. The analysis of 

differential tissue composition can be presented as two-staged: (i) the inference of tissue 

composition for each sample; and (ii) the execution of a trend analysis through the integration of 

sample-wise tissue composition across biological conditions.  

https://paperpile.com/c/S6tSJ7/8ZdV2+aj5sf+pwIyV+cloOt
https://paperpile.com/c/S6tSJ7/7z5ir+PtJaE
https://paperpile.com/c/S6tSJ7/wgCq6+DnyU5
https://paperpile.com/c/S6tSJ7/813wu+axTMJ
https://paperpile.com/c/S6tSJ7/QFQky
https://paperpile.com/c/S6tSJ7/mpP9w
https://paperpile.com/c/S6tSJ7/eELlC+80Sv0
https://paperpile.com/c/S6tSJ7/8ZdV2
https://paperpile.com/c/S6tSJ7/lllzY+y1H0V+p5bad
https://paperpile.com/c/S6tSJ7/hoAmS+wgCq6+vX9bQ+lllzY
https://paperpile.com/c/S6tSJ7/uNhQO
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More precisely, the inference of tissue composition (i) refers to the estimation of the 

proportions of each cell type within. For the special case of one gene and one sample (Eq. 1), the 

tissue gene transcription level y (observed) is equal to the weighted sum of specific gene 

transcriptional level for each cell type a (observed or unobserved), weighted by its absolute 

proportion π within such tissue sample (unobserved). For the generalised case of many genes and 

many samples (Eq. 2), the observed matrix of gene transcription levels Y (observed) is equal to 

the matrix of specific gene transcriptional levels for each cell type A (observed or unobserved) 

multiplied by the matrix of absolute proportions of each cell types within each tissue sample M 

(unobserved). 

 

 
 

where g {1..G} represents genes, s {1..S} represents samples and p {1..P} represents cell type 

populations. In order to solve this system of linear equations and infer the value of the matrix Π, 

several approaches have been employed so far. Four main approaches are: (a) regression; (b) 

generative probabilistic mixture model; (c) minimum ratio paradigm; and (d) gene set enrichment. 

The approach (a) via regression commonly treats each sample separately, reducing the problem to 

a series of multiple regressions. This approach was first applied by Venet et al.68; since then, has 

been tackled with a diverse range of optimization methods such linear regression336, quadratic 

programming78 and support vector linear regression337. The approach (b) via generative 

probabilistic mixture is based on the latent Dirichlet allocation (LDA) framework94, and treats 

gene transcriptional signatures for each cell types as words in topics, and cell types in samples as 

topics in documents. The optimal solution for such hierarchical probabilistic model is identified 

via Markov chain Monte Carlo. The approach (c) via minimum ratio paradigma75 treats each tissue 

sample separately, modelling them as a mixture of two components A and B with proportions p 

and 1-p. A unimodal decreasing curve is drawn ordering the gene-wise ratios pg; {1..G} obtained 

dividing the tissue gene transcriptional levels with the component A. The point where the second 

derivate of such curve equals zero indicates the best estimate for p. The approach (d) via gene 

enrichment analysis72 treats each sample separately; it infers their composition using a gene 

https://paperpile.com/c/S6tSJ7/0djf8
https://paperpile.com/c/S6tSJ7/sW8n9
https://paperpile.com/c/S6tSJ7/4KRqE
https://paperpile.com/c/S6tSJ7/UShpz
https://paperpile.com/c/S6tSJ7/DXUOy
https://paperpile.com/c/S6tSJ7/GAY0f
https://paperpile.com/c/S6tSJ7/nQehK
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enrichment scores calculated using a publicly available non parametric method95, that is 

transformed to a linear scale before further compensation.  

More precisely, the analysis of differential tissue composition (ii) refers to the regression 

of the proportions of cell types (i.e., matrix Π) along a factor of interest (e.g., cancer grade). Such 

analysis provides confidence on the changes in cell type proportions associated with a factor of 

interest. For such analysis, two main approaches can be adopted: (a) multiple linear regression on 

a linearized homoscedastic data space; and (b) multiple generalised linear regression on the native 

data space. For the approach (a), the proportional data can be transformed to a linear space using 

methods such as isometric, centred, or additive log-ratio309. The resulting transformed data space 

is assumed to have normally distributed noise and trends of change that follow a linear function. 

This approach, although attractive, presents some drawbacks, including the more laborious 

interpretation of the results in face of the numerical generating process, and the loss in accuracy in 

cases if non-symmetric of heteroscedastic noise persists. For the approach (b), the sample space is 

assumed to have a either Beta310,311, Dirichlet192, or simplex312 distributed noise and having trends 

of change that follow a either sigmoid function, or other monotone functions defined within the 

interval 0, 1312. In principle, a statistics that works on untransformed data allows a more direct 

construction of generative probabilistic models, which have been shown to work well in regimes 

of little or sparse data313, and it can be integrated in larger hierarchical models. 

Several algorithms have approached the deconvolution stage (i) of the problem, providing 

wide evidence for the accuracy of such computational approach for microarray data69–71,73,75–

78,80,81,83,338, and one piece of evidence for RNA sequencing data72. However, so far no publicly 

available algorithms attempted to integrate the regression stage (ii). Without such integration, the 

link to interpret the results in a biologically meaningful context, with statistical robustness, is 

missing. A serial inference of stages (i) and (ii) using standalone algorithms (rather that integrated 

in the same probabilistic model) would also not be an optimal approach, as the information about 

the uncertainty of the inference around (i) would be forgotten for inference of (ii), resulting in a 

significance test skewed toward false positives339,340. Here, we present ARMET-tc: a hierarchical 

generative Bayesian model that, beside improving on the “state of the art” in the inference of tissue 

composition (i), allows for the first time to infer and test the significance of changes in tissue 

composition across biological conditions (ii). 

https://paperpile.com/c/S6tSJ7/0vAYR
https://paperpile.com/c/S6tSJ7/lcrO9
https://paperpile.com/c/S6tSJ7/JJXG1+vJVjd
https://paperpile.com/c/S6tSJ7/Sx1NB
https://paperpile.com/c/S6tSJ7/Ogb5t
https://paperpile.com/c/S6tSJ7/Ogb5t
https://paperpile.com/c/S6tSJ7/65P0b
https://paperpile.com/c/S6tSJ7/Loq58+B2j96+GAY0f+Pz4SX+WshhK+yFxFB+cWdPx+4KRqE+1YXsu+Povnx+WjxQE+GVK6l
https://paperpile.com/c/S6tSJ7/Loq58+B2j96+GAY0f+Pz4SX+WshhK+yFxFB+cWdPx+4KRqE+1YXsu+Povnx+WjxQE+GVK6l
https://paperpile.com/c/S6tSJ7/nQehK
https://paperpile.com/c/S6tSJ7/l4KOX+Op6w8
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Methods 

Hierarchical structure of the data 
Analogously to cell lineage differentiation341, the data and the inference problem were structured 

in a hierarchical fashion. Such hierarchy that can be represented as a directed tree graph, where 

nodes represent cell type categories and branches represent the parental relation between cell types 

categories (Fig. 6.1). The term “cell type category” defines a cell phenotype that is characterised 

by common traits (e.g., immune cell, t cell or epithelial cell), and it is represented by a node in the 

hierarchical structure. The hierarchical structure was organized in 3 levels, where level 1 represents 

main cell types (e.g., epithelial and immune cells) and level 3 defines specific cell phenotypes 

(e.g., activated dendritic cells, M2 polarised macrophages and regulatory t cells). Each cell type 

category is characterised by a list of marker genes, defined as genes that are preferentially 

transcribed in such category compared with others. Given the recursive nature of data manipulation 

happening within a tree, in order to facilitate the understanding of this section we introduce here 

few key recurring concepts. An ancestor of a node is the node of a lower level connected with it. 

The direct ancestor of a node is the ancestor directly connected with it (yellow dot in Fig. 6.1). 

The descendants of a node are all the nodes of a higher level that relate to it (green dots in Fig. 

6.1). The direct descendants of node are those nodes of higher levels that are directly connected 

with it (red dots in Fig. 6.1). The direct peers of a node are all the other nodes with the same direct 

ancestor (purple dots in Fig. 6.1). The recursive peers of a node are all direct peers and the peers 

of indirect ancestors (blue dots in Fig. 6.1). If not specified, the terms ancestors, descendant or 

peer refer to their generic definition. 

https://paperpile.com/c/S6tSJ7/i4Pl4
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Figure 6.1: Graph representation of the cell type hierarchical structure used by ARMET-tc. 

Colours represent relations among elements of the hierarchy that are mentioned through the article. 

Elements of the hierarchy are referred as cell type categories or nodes within this article. The green 

nodes are descendants of the monocyte derived cell type category. The red nodes are direct 

descendants of the T cell type category. The yellow node is ancestor of the T cell type category. 
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The purple nodes are peers to each other. The blue nodes are recursive peers of the T cell type 

category. 

Transcriptional signatures of cell type categories 
The gene transcriptional levels for each cell type category were inferred from publicly available 

data sets. In order to accommodate both RNA sequencing and microarray input queries, two 

separate signature data sets were developed, named A-RNAseq and A-microarray respectively. 

For A-RNAseq, a total of 621 pure cell type samples were selected from the databases 

ENCODE102, FANTOM5101 and BLUEPRINT100; for A-microarray, a total of 603 pure cell type 

samples were selected from the GSE86362 and LM2269 data sources, and integrated with A-

RNAseq for the missing cell type categories. The algorithm trimmed mean of M-values (TMM)106 

was used to normalise A-RNAseq, while quantile normalization 342,343 was used to normalise A-

microarray. In order to remove unwanted variation between data sources, the algorithm RUV4107 

was employed using level-2 cell type categories (Fig. 6.1) as covariate of interest, and using a 

selection of 600 housekeeping genes107 as negative controls. The number of unwanted covariates 

(i.e., parameter K in RUV4 algorithm) was chosen with a parsimony criterion as the double of the 

number of the integrated databases (e.g., k = 6 for RNA sequencing). In order to normalize genes 

that had sparse information across any cell type, the missing gene transcription levels were 

estimated recursively from the closest recursive peers for which such information was available. 

Gene markers selection 
The set of marker genes for each cell type category was identified performing a differential gene 

transcription analysis including its recursive peers, using edgeR108 on the RNA sequencing data of 

the cell type specific gene transcription signatures.  

Structural design of the differential tissue composition analysis  
The differential tissue composition analysis is performed recursively for each cell type category 

(i.e., node of the hierarchy; Fig. 6.1) having descendants, starting from level 1 of the hierarchy. 

Such analysis for each cell type category aims to estimate the trends of change of proportions of 

the direct descendants of such category. For example, the analysis for t cell tracks the change in 

proportions of the t cell subtypes (red dots in Fig. 6.1). Each local analysis is performed in a 

context-aware fashion integrating the contribution of recursive peers inferred for lower layers of 

https://paperpile.com/c/S6tSJ7/PLmP2
https://paperpile.com/c/S6tSJ7/AB3rd
https://paperpile.com/c/S6tSJ7/VbLNQ
https://paperpile.com/c/S6tSJ7/Povnx
https://paperpile.com/c/S6tSJ7/RZnaj
https://paperpile.com/c/S6tSJ7/phPYU+YvtRc
https://paperpile.com/c/S6tSJ7/gXxQh
https://docs.google.com/document/d/1_nEQJeRF1l1BqJKViogcV8k3vxLQSS2hPxqxKfeLc5s/edit#D2L_fig_ref_Graph%20representation%20of%20the%20cell%20type%20hierarchical%20structure%20used%20by%20ARMET-tc.%20Colors%20represent%20relations%20among%20element%20of%20the%20hierarchy%20that%20are%20mentioned%20through%20the%20article.%20Elements%20of%20
https://paperpile.com/c/S6tSJ7/gXxQh
https://paperpile.com/c/S6tSJ7/R8t3e
https://docs.google.com/document/d/1_nEQJeRF1l1BqJKViogcV8k3vxLQSS2hPxqxKfeLc5s/edit#D2L_fig_ref_Graph%20representation%20of%20the%20cell%20type%20hierarchical%20structure%20used%20by%20ARMET-tc.%20Colors%20represent%20relations%20among%20element%20of%20the%20hierarchy%20that%20are%20mentioned%20through%20the%20article.%20Elements%20of%20
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the cell type hierarchy. In order to achieve this, the linear equations (Eq. 1) is not applied directly, 

but rather adjusted (Eq. 3). That is, for each gene, its transcription level y in the tissue is made 

from the contribution of the cell type categories in analysis yfg, and the contribution of the 

background ybg cell type categories (i.e., recursive peers; Eq. 3).  

 

 
 

The probabilistic model 
The differential tissue composition analysis is performed using a hierarchical probabilistic model 

where a first stage (i) infers the tissue composition for each sample, and where the second stage 

(ii) infers trends in tissue compositions across biological conditions. The first stage implements a 

multiple linear model on the logarithmic scale. The bimodality of RNA sequencing data is 

modelled using a zero-inflated log-normal noise model. The local composition p1...pP of cell types 

for each sample is represented by a simplex (i.e., a vector defined in (0,1) which components sum 

to 1). The second stage implements both simplex regression and a beta regression for inferring and 

testing extrinsic and intrinsic rates of change309 respectively. For integrity of the generative 

probabilistic model, while the simplex regression was integrated to the hierarchical model as 

generative process, the beta regression was implemented as a separate model that accepts as input 

the posterior distribution of the proportion matrix, so to not lose the information about the 

uncertainty around the inferred proportions. In total, the probabilistic model has 5 parameters, and 

can be described by a joint probability density formula (Eq. 7) or a graphical model (Fig. 6.2).  

 

 

https://paperpile.com/c/S6tSJ7/lcrO9
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The parameter α represents the rates of change of each cell type category along the biological 

conditions. The parameter π represents the matrix of proportions for each cell type category and 

sample. The parameters σ, φ and δ define the noise model. The probabilistic model for beta 

regression was previously described elsewhere344. The point estimate and credible intervals for 

both cell type proportions and trends of change are calculated from the posterior distribution.  

 

https://paperpile.com/c/S6tSJ7/LM42H
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Figure 6.2: Graphical plate model representing the joint distribution as directed graph, where bold 

nodes represent parameters, these nodes represent the data, edges represent the conditionalities 

between nodes, and plates define the shared dimensionality of the nodes. For example, the 

parameter π shares the P (cell types) dimension with α, and the S (samples) dimension with the 

observed tissue gene expression 

Implementation 
This probabilistic model was implemented in R345 using the Bayesian framework Stan 193,321. Stan 

permits the definition of a probabilistic model with a declarative symbolic language and sample 

from it with the non-U-turns-sampler (NUTS)346, based on the Hamiltonian monte carlo 

algorithm347. This probabilistic model is available as R package ARMET (with 

install_github("stemangiola/ARMET", args = "--preclean", build_vignettes = FALSE). 

https://paperpile.com/c/S6tSJ7/9lpWt
https://paperpile.com/c/S6tSJ7/WT6WM+7yJQT
https://paperpile.com/c/S6tSJ7/3qC4H
https://paperpile.com/c/S6tSJ7/6a675
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Regression benchmarks 
A first simulation benchmark was designed to test the accuracy of the inference of changes in 

tissue composition across a continuous covariate, for cell types belonging to level 1, 2 and 3 (Fig. 

6.1). The matrix of P cell type proportions across S tissue samples (i.e., matrix ΠS,P in Eq. 2), was 

simulated as previously described344, with positive trend of change for a cell type and null trend 

for the others. For each sample, the transcriptional signature for P cell types were sampled from 

A-RNAseq and mixed according to the simulated proportions. In order to evaluate the 

performances in a range of possible scenarios, in silico tissue samples were simulated with varying 

S and rates of change.  

Comparative benchmark 
A second benchmark based on validated data was designed to compare the performances of 

ARMET-tc to other publicly available methods in inferring tissue composition (i.e., stage (i) of 

the differential tissue composition analysis) from three validation data sets. First, a validation data 

set (named Pure) composed of a selection of purified cell types which gene transcription levels 

were detected with RNA sequencing. This dataset enabled the measurement of the specificity of 

the inference. Second, a validation data set (named TCGA) composed by cancer TCGA samples 

for which cancer purity has been estimated as consensus of an array of publicly available methods 

based on genomic and transcriptomic data104. This validation data set enabled the measurement of 

the accuracy of cancer purity estimation. Third, a validation data set (named PBMC) proposed by 

Newman 69 et al. based on gene transcription of samples of peripheral blood mononuclear cells, 

detected with microarray, for which cellular composition has been observed with flow cytometry. 

This validation data set enabled the measurement of the accuracy against a complex tissue with 

experimentally detected tissue composition. For each validation data set, an array of training cell 

type specific signature data sets was used to infer tissue composition, with the goal of testing the 

robustness of the methods to training data with variable size and origin. Such training 

transcriptional signatures data sets were: A-RNAseq; A-microarray; LM22; LM22-redo being 

LM22 reconstituted from the original raw data; LM22-Becht being the integration of LM22 with 

a second data set of microarray based immune cell signatures (i.e., GSE86362); and LM22+ being 

an integration of LM22-Becht with stromal transcriptomic signatures. Given the absence of the 

https://docs.google.com/document/d/1_nEQJeRF1l1BqJKViogcV8k3vxLQSS2hPxqxKfeLc5s/edit#D2L_fig_ref_Graph%20representation%20of%20the%20cell%20type%20hierarchical%20structure%20used%20by%20ARMET-tc.%20Colors%20represent%20relations%20among%20element%20of%20the%20hierarchy%20that%20are%20mentioned%20through%20the%20article.%20Elements%20of%20
https://docs.google.com/document/d/1_nEQJeRF1l1BqJKViogcV8k3vxLQSS2hPxqxKfeLc5s/edit#D2L_fig_ref_Graph%20representation%20of%20the%20cell%20type%20hierarchical%20structure%20used%20by%20ARMET-tc.%20Colors%20represent%20relations%20among%20element%20of%20the%20hierarchy%20that%20are%20mentioned%20through%20the%20article.%20Elements%20of%20
https://paperpile.com/c/S6tSJ7/LM42H
https://paperpile.com/c/S6tSJ7/kpvqK
https://paperpile.com/c/S6tSJ7/Povnx
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whole transcriptome for LM22, and the different gene selection for ATMET-tc compared to 

Cibersort, LM22 could not be used in combination with ARMET-tc.  

In order to achieve a more direct comparison across validation data sets, an adjusted 

inference error measure was adopted (Eq. 18)344. This error measures the difference between the 

inferred and the observed proportions of a specific cell type, adjusted by the absolute value plus 

one of the logit transformed value of the observed proportion344. Such adjustment permits the 

reduction in the bias of estimating rare or dominating cell types, compared to cell type with ~50% 

abundance344; normally, such bias leads to a relatively low or high error rate respectively. 

 

 

Inference of associations between tissue composition and cancer relapse 
In order to show the utility of ARMET-tc, we inferred the association between tissue composition 

and cancer relapse, for several primary tumour types within the TCGA database. The cancer type 

included were acute myeloid leukemia, breast invasive ductal carcinoma, breast invasive lobular 

carcinoma, cervical squamous cell carcinoma, colon adenocarcinoma, head and neck squamous 

cell carcinoma, hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, 

pancreatic adenocarcinoma, papillary thyroid cancer, prostate adenocarcinoma, renal clear cell 

carcinoma, serous ovarian cancer, stomach adenocarcinoma, uterine endometrioid carcinoma. 

RNA sequencing gene counts were taken from GDC portal348; the sample information were taken 

from Cbioportal349. A stratification strategy for disease free survival time was adopted, as a 

proportional hazard model (e.g., Cox-regression350) is currently not part of our statistical model. 

For each cancer type, samples were grouped according to whether the patient relapsed before time 

T1 or had not relapsed after time T2. Time T1 and T2 were selected for each cancer as the 0.2 and 

the 0.8 quantile of the disease-free survival time. The binary relapse variable was used as main 

covariate of interest and patient age was used as confounding factor. 

Results and discussion 

Regression benchmark 
The first benchmark shows the performance of ARMET-tc in inferring trends of change (i.e., 

slope) across cell type levels (i.e., 1, 2, and 3; Fig. 6.1), with varying: (i) the effect size (i.e., 

https://paperpile.com/c/S6tSJ7/LM42H
https://paperpile.com/c/S6tSJ7/LM42H
https://paperpile.com/c/S6tSJ7/LM42H
https://paperpile.com/c/S6tSJ7/jsBOc
https://paperpile.com/c/S6tSJ7/1QApd
https://paperpile.com/c/S6tSJ7/VZ6xO


 

144 

proportional to the slope term in the linear model); and (ii) sample size (Fig. 6.3). As expected, 

overall the true positive rate increased with the sample size and effect size. If we consider 0.8 the 

minimum true positive rate acceptable, for cell types belonging to level 1 (Fig. 6.1) such positive 

rate can be achieved for a cell type doubling in size with ~40 samples; for level 2, the same rate 

can be achieved with ~100 samples. For level 3, 0.8 true positive rate is achievable with a threefold 

change in proportion for a cell type category across 100 samples. 

 

 
Figure 6.3: A - trend lines showing the true positive rate of ARMET-tc in classifying trends of 

change across varying degrees of change and sample size, for three different level of cell 

differentiation. The three dots represent the specific runs that are visualised in section B. B - 

Specific inference runs showing in black all the non-changing populations, in blue the ground truth 

of the changing population and in red the inference of cell type proportions in every sample with 

the inferred trend of change. The error bars represent the 0.95 credible interval. 

Comparative benchmark 
The second benchmark (Fig. 6.4) shows the overall higher accuracy of ARMET-tc in estimating 

tissue composition from tissue gene expression data, compared to other two reference publicly 

available methods: an implementation of linear equation system solver lsfit336 and Cibersort69. In 

particular, for RNA sequencing based validation data, ARMET-tc was able to provide higher 

accuracy across all training data sets, while for the validation data set PBMC ARMET-tc shows a 

https://docs.google.com/document/d/1_nEQJeRF1l1BqJKViogcV8k3vxLQSS2hPxqxKfeLc5s/edit#D2L_fig_ref_Graph%20representation%20of%20the%20cell%20type%20hierarchical%20structure%20used%20by%20ARMET-tc.%20Colors%20represent%20relations%20among%20element%20of%20the%20hierarchy%20that%20are%20mentioned%20through%20the%20article.%20Elements%20of%20
https://docs.google.com/document/d/1_nEQJeRF1l1BqJKViogcV8k3vxLQSS2hPxqxKfeLc5s/edit#D2L_fig_ref_Lien%20plot%20of%20the%20performances%20of%20three%20methods:%20ARMET-tc,%20Cibersort%20and%20Lsfit,%20on%20three%20validation%20data%20sets:%20Pure,%20composed%20by%20a%20selection%20of%20purified%20cell%20types%20which%20gene%20expression%20
https://paperpile.com/c/S6tSJ7/sW8n9
https://paperpile.com/c/S6tSJ7/Povnx
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higher robustness outperforming other methods across all training data sets except for LM22, 

where Cibersort was able to achieve better performances. 

 

 
Figure 6.4: Line plot of the performances of three methods: ARMET-tc, Cibersort and Lsfit, on 

three validation data sets: Pure, composed by a selection of purified cell types which gene 

expression was detected with RNA sequencing; TCGA, composed by cancer TCGA samples for 

which cancer purity have been estimated as consensus of an array of publicly available methods 

based on genomic and transcriptomic data; and PBMC, gene expression samples derived from 

peripheral blood mononuclear cells, produced with microarray, for which cellular composition has 

been observed with flow cytometry. Each validation data set have been tested using an array of 

training signature data: A-RNAseq, A-microarray, LM22, LM22-redo being LM22 reconstituted 

from the original raw data; LM22-Becht being the integration of LM22 with another data set of 

microarray based immune cell signatures; LM22+ being an integration of LM22-Becht with 

stromal transcriptomic signatures.  
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Landscape of associations between cell types and cancer relapse 
Differential tissue composition analyses were performed on an extensive array of cancer types, to 

infer the association between abundance of cell types with disease relapse. In order to visualise 

both overall abundance of cell types and significant changes of cell type abundance novel graphics 

were produced (Fig. 5.5A). 

For prostate cancer, ARMET-tc was able to identify monocyte derived cells, and in 

particular macrophages as positively associated with cancer relapse. The infiltration of such cell 

types has been previously linked with proliferative inflammatory atrophy lesions, chronic prostatic 

inflammation and cancer351. Prostate cancer-specific and overall survival studies identified an 

elevated monocyte count as an independent prognostic factor for poor outcome208,209. Furthermore, 

TAM infiltration in prostate needle biopsy specimens is a useful predictive factor for PSA failure 

or progression of PCa after hormonal therapy209. 

For acute myeloid leukemia, several associations between blood composition and tumour 

relapse were identified. The abundance of eosinophil was inferred to be negatively associated with 

tumour relapse, in agreements with previous findings352, focused on the relationship between 

eosinophilia and inversion 16, with remission and resistance to chemotherapy353. Similarly, the 

presence of γδ t cells were inferred to be negatively associated with relapse. The anti-cancer role 

of such t cell phenotype is extensively supported 354 (although pro-tumour activity has also be 

observed). Specifically for myeloid leukemia, a fourfold increase of γδ t cells has been observed 

in patients with very early morphological or molecular relapse355; such t cells were also able to kill 

leukemic target cells in vitro. On the contrary, the monocyte population was identified as positively 

associated with relapse, as supported by previous studies352, which identified a predictive power 

of the reduction of blood monocyte counts with leukemia-free survival after the first HDC/IL-2 

treatment cycle. Furthermore, plasma cells were inferred to be highly negatively associated with 

relapse, suggesting their beneficial role in disease progression. 

For colon adenocarcinoma, the cell type that was most negatively associated with tumour 

relapse was γδ t cells; which anti-cancer activity have been demonstrated for this cancer type, 

mediated by granule exocytosis and dependent on isoprenoid production by tumour cells356. 

However, the pro-anti-cancer activity balance of γδ t cells in colon adenocarcinoma is not fully 

established354. The cell type that was most positively associated with tumour relapse was 

macrophages; surprisingly the cell phenotype leading this change was M1. Such a phenotype of 

https://docs.google.com/document/d/1_nEQJeRF1l1BqJKViogcV8k3vxLQSS2hPxqxKfeLc5s/edit#D2L_fig_ref_A%20-%20Schematics%20of%20the%20information%20content%20of%20the%20differential%20tissue%20composition%20plots.%20The%20radial%20axis%20(i.e.,%20width%20of%20each%20slice)%20represent%20the%20cell%20type%20hierarchy%20(e.g.,%20the%20slice%20re
https://paperpile.com/c/S6tSJ7/M46A6
https://paperpile.com/c/S6tSJ7/H5BUF+nITKn
https://paperpile.com/c/S6tSJ7/nITKn
https://paperpile.com/c/S6tSJ7/MT2mf
https://paperpile.com/c/S6tSJ7/SZHIW
https://paperpile.com/c/S6tSJ7/fz67d
https://paperpile.com/c/S6tSJ7/cX6nl
https://paperpile.com/c/S6tSJ7/MT2mf
https://paperpile.com/c/S6tSJ7/SvNGl
https://paperpile.com/c/S6tSJ7/fz67d
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macrophages has been mainly linked to anti-cancer activity357; however, M1 macrophages have 

been shown to damage endothelial monolayers in vitro358, and that such damage can lead to 

increased tumour-cell adhesion to the vasculature359. Furthermore, the roles of M1 macrophages 

can change during the progression of the disease: going from an early stage elimination of tumour 

cells with the activation of an adaptive immunity response, to a late polarisation to pro-tumorigenic 

M2 macrophages after such response is ablated by cancer358. 

For hepatocellular carcinoma, T-cells had a negative association to relapse similarly to 

other cancers. Such association have been observed (together with other immunoscores) for both 

CD3+ and CD8+ linked to rate of recurrence as well as disease free survival360. On the contrary, 

macrophages had an overall increase in association with relapse, showing a switch toward M1 

phenotype. Such counterintuitive result could be potentially caused by an erroneous classification 

of M2 macrophages as M1. However, some aspects of the mechanisms responsible for the 

regulation and maintenance of M1 and M2 polarization imbalance are still unclear361. 

For lung squamous carcinoma, T-cell abundance had similar negative association with 

cancer relapse to most of other cancers. Previous studies362 identified the association of the 

abundance of CD3+ T-cells with improved overall survival, as well as the association of CD4+ t 

cells (in the stromal extra tumour compartment) and of CD8+ T-cells (in the tumour compartment) 

with increased overall and disease specific survival. The density of infiltrating t cells have been 

identified as powerful prognostic factor, more than standard pathological criteria363. On the 

contrary of most other cancers, the macrophage cell population (specifically M1 phenotype) was 

negatively associated with relapse. This result agrees with previous evidence364, although a general 

consensus on the anti- or pro-tumour potential of M1 macrophages is missing365. Although rare in 

the tissue, both eosinophils and neutrophils seem to be negatively associated with cancer relapse. 

For pancreatic adenocarcinoma, a global negative association with relapse was inferred for 

the presence of immune cells. The main contributions came from t cells (including memory and 

γδ), mast cells and macrophages. For T-cells, monocyte derived cells and mast cell the direction 

of the association with relapse is not consistent with previous studies366–368. However, the 

concurrent decrease of all immune cell type, and the absence of evidence for any driver role from 

ARMET-tc inference is an indication that such overall decrease might be apparent in simplex space 

because of the increase of the epithelial component (estimate non-significant association = 0.57). 

https://paperpile.com/c/S6tSJ7/5GJFG
https://paperpile.com/c/S6tSJ7/vjmSn
https://paperpile.com/c/S6tSJ7/Rhbtp
https://paperpile.com/c/S6tSJ7/vjmSn
https://paperpile.com/c/S6tSJ7/xRTW8
https://paperpile.com/c/S6tSJ7/mjl9y
https://paperpile.com/c/S6tSJ7/SssJT
https://paperpile.com/c/S6tSJ7/Xqamv
https://paperpile.com/c/S6tSJ7/TN0jM
https://paperpile.com/c/S6tSJ7/bPImL
https://paperpile.com/c/S6tSJ7/2UbcQ+SZTdh+RVf87
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For serous ovarian cancer, the associations with relapse were similar to prostate cancer; 

with the abundance of the macrophage population, specifically the M1 phenotype, being positively 

correlated to worst outcome. Although several studies369,370 support the specific role of tumour 

associated macrophages in cancer progression, it has been shown that in late stages of the disease 

cancer cells might become resilient to the toxic activity of M1 macrophages and modulate them to 

M2 phenotype, making their presence a risk factor. It is possible however that the challenges in 

distinguishing M1 from M2 macrophages may lead to an inaccurate inference of the two 

phenotypes. 

For stomach adenocarcinoma, the association pattern was similar to pancreatic 

adenocarcinoma, involving overall immune cell abundance as a factor of positive outcome. The 

cell type category involved are t cells, granulocytes and monocyte/macrophages. For stomach 

adenocarcinoma, the ratio of neutrophil to lymphocytes is a prognostic indicator of overall and 

disease-free survival, with a low ratio being associated with better outcome. This shift in ratio is 

supported by ARMET-tc inference. Although both neutrophil and T-cell abundance is negatively 

associated with relapse, the expected neutrophil to lymphocytes ratio is respected due to the 

abundance of T-cells who drive the change. T-cells, and specifically the memory phenotype, are 

associated with better survival371. Also, the decreased expression of granulocyte-macrophage 

colony-stimulating factor has been associated with adverse clinical outcome372. 

For uterine endometrioid carcinoma, ARMET-tc inferred the overall immune cell 

infiltration as negatively associated with relapse, mainly involving T-cells with the phenotype 

memory and γδ.  
 

 

https://paperpile.com/c/S6tSJ7/x4v8A+sfyrG
https://paperpile.com/c/S6tSJ7/rdMlS
https://paperpile.com/c/S6tSJ7/3talW
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Figure 6.5: A - Schematics of the information content of the differential tissue composition plots. 

The radial axis (i.e., width of each slice) represent the cell type hierarchy (e.g., the slice 

representing the immune cell include the slice representing t-cells, which includes the slice 

representing memory t-cells); the y axis (i.e., the depth of each slice) represents the abundance of 

each cell type category; and the colour coding represent the degree of significant change of cell 

type proportion in association with cancer relapse (i.e., blue if positive or red if negative). B - Plots 

representing the cell abundance and the changes in cell type proportion associated with cancer 

relapse. 
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Conclusions 

Here we presented ARMET-tc, a novel tool that allows for this first-time differential tissue 

composition analyses. This tool outperforms publicly available alternatives in deconvolving whole 

tissue RNA sequencing data, and exclusively performs an integrated analysis of the trends of 

change of tissue composition along covariates of interest preserving the uncertainty information 

though the whole inference process. 

For the inference of tissue composition (i.e., gene transcription deconvolution), our method 

uses an innovative hierarchical approach that increase the information/noise ratio and 

transcriptional signatures autocorrelation. That is, rather than approaching the inference of tissue 

composition in an unstructured manner, ARMET-tc performs such task recursively across the cell 

differentiation hierarchy. The principle is that identifiable transcriptional signature that segregate 

diverse cell type categories exist at multiple level of such hierarchy: for example, a robust signature 

for immune cells that distinguish them from epithelial cells exist, as well as a robust signatures 

that allow to distinguish distinct immune cell types within the immune cell population. The 

isolation of such two inferences allows to better target the use of marker genes, avoiding the 

introduction of markers that even though are specific for a node of the hierarchy (e.g., phenotypes 

of b cells) are useless for another (e.g., phenotypes of epithelial cells). For example, a gene that 

segregates activated from central memory t cells is not informative on the segregation of epithelial 

from fibroblast. Thanks to a higher information/noise ratio and lower cell type transcriptional 

signatures autocorrelations, it is possible to model RNA sequencing data on a logarithmic scale. 

Such modelling strategy allows to avoid the marked heteroskedasticity of RNA sequencing data 

leading to better resolution for rare cell populations and changes therein. Furthermore, the use of 

a simplex for modelling the proportion of cell types within a tissue avoids the anomaly of negative 

proportion present in most of algorithms based on pure linear regression. 

It should be noted that in its current form, ARMET (as well as the other alternative methods 

presented in this thesis) is based on a linear additivity assumption (Eq. 2; gene transcription across 

samples for each cell type is equal), however this is needed to keep the parameter space smaller 

than the data space; this is an acceptable assumption that becomes irrelevant when N genes are 

used as the random errors will cancer out for N>>1. Furthermore, ARMET (as well as the other 

alternative methods presented in this thesis) ignores a key bias, being the relation between cell size 

and absolute mRNA content. For example, macrophages have larger internal volume than T cells, 
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and have a larger mRNA content. Due to this, ARMET infers a biased measure of cell type 

proportion, that will be adjusted for cell type average size in future releases. 

For the inference of changes in tissue composition, a novel simplex regression approach 

was designed and implemented 344; which allows the detection of relative proportional changes 

(intrinsic perspective) as well as the detection of driver changes in absolute abundance within the 

tissue (extrinsic perspective). As shown for pancreatic adenocarcinoma, this aspect is particularly 

important as overall changes in relative proportions (e.g., decrease of immune cells) could be an 

artifactual effect driven by the change (i.e., increase of epithelial tumour cells) of another single 

cell type 344. The Bayesian inference model employed by ARMET-tc allows to preserve the 

information about the uncertainty of the estimation of the tissue composition (step i) across the 

inference of its changes along a covariate of interest. This ability is fundamental in the context of 

transcriptional deconvolution as the uncertainty associated with step (i) is substantial. A key 

unique quality of our method is the report of the direct probabilistic uncertainty of each estimation 

to the user, including both tissue composition (deconvolution) and trends of change. The landscape 

of associations between tissue composition and cancer relapse for wide types of tumour types was 

revealed with higher consistency compared to previous studies and demonstrated the utility of 

ARMET-tc in a clinical context. Future directions are the improvement of the noise model for 

RNA sequencing data; the addition of microarray specific noise models; and the improvement of 

gene selection for cell-type-specific signatures, for example improving the internal separation of 

macrophage and T-cell phenotypes.  

https://paperpile.com/c/S6tSJ7/LM42H
https://paperpile.com/c/S6tSJ7/LM42H
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CHAPTER 7 
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Conclusions  
 

 

In this thesis, I have demonstrated the importance of investigating the prostate tumour 

microenvironment at the molecular level, integrating experimental and computational tools. An 

improved understanding of prostate tumour microenvironment will open novel routes both for 

diagnosis and treatment. The diagnostic potential of molecular and cellular features of tumour 

microenvironment have been previously shown (for example220). Considering this potential as well 

the challenges that multifocality poses in the stratification of prostate cancer patients based on their 

tissue pathology, the identification of changes at systemic level that could have diagnostic power 

is an attractive route.  

In Chapter 2, I showed the value in probing the adipose tissue surrounding the prostate at 

the molecular level. Being both near the cancer location and metabolically active, adipose tissue 

has the potential to be both affected by and/or affect cancer development. In this first part of the 

thesis, I have provided evidence that changes at the transcriptomic level happen in association with 

cancer grade. Such findings give hope for overcoming the multifocality limitation of prostate 

cancer in biopsies-based diagnosis.  

In chapter 3, I provided further evidence for the molecular alterations that surrounding 

benign adipose tissue acquires in consequence of androgen deprivation therapy. Interestingly, the 

identified changes involve mostly inflammation and likely enrichment of inflammatory cells 

within the tissue. The relevance of the investigation of adipose tissue is increased by its 

accessibility, compared with prostate tissue.  

The therapeutic potential of targeting benign elements of the tumour microenvironment 

has been proven, especially with immune checkpoint inhibitors for a wide range of cancers. 

Immune checkpoint inhibitors (i.e., PD-1 and PD-L1 inhibitor) have improved life expectancy for 

several cancer types, including melanoma and lung cancer. However, the benefits of these novel 

therapies are not translated to prostate cancer so far. Currently, there is an urgent need for further 

investigation of the prostate tumour microenvironment, with the goal of discovering new immune 

escape mechanism of prostate cancer, or alternative non-immune routes of adaptation and 

development. Chapters 4 have shown the value of probing prostate tissue at the site of primary 

prostate cancer. In this chapter, I have provided evidence that the molecular profiles of cancerous 

https://paperpile.com/c/S6tSJ7/IadFS
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and non-cancerous cells types are associated with the development of the disease. This 

investigation was aided by both an innovative experimental design approach and a novel statistical 

inference model for differential transcription analyses. The differential transcription analysis 

approach enabled inference of associations between gene abundances and a continuous risk score, 

rather than a binary label as it is commonly recommended (e.g., low- vs. high grade). This analysis, 

applied to enriched epithelial, fibroblasts, T- and myeloid cell types from cancerous prostate tissue, 

allowed the creation of landscape plots were transcriptomic changes were mapped to both the 

cellular source and CAPRA risk score, which is a surrogate of disease development if we assume 

that prostate cancer is characterised by a progressive nature. This approach favoured a much deeper 

hypothesis generation compared to classic differential transcriptional analysis approaches. The 

current approach can be viewed as in a middle ground between bulk tissue and single cell 

transcriptomic analysis. Enriching for key cell types before bar-coding allows for much more 

meaningful interpretations of the results, still allowing for a medium size patient cohort. A 

limitation to be considered is the number of cell types that can be enriched for each experiment 

with fluorescence-activated cell sorting (FACS) technology. Although serial collection of more 

than four cell types is possible for a given sample, the starting total number of cells in the sample 

might not allow that. A higher dimensional analysis on a minimal representative selection of 

patients will be possible when the cost linked to single cell sequencing technology will 

significantly drop.  

In cases when the physical enrichment/isolation of single cell types is not possible, 

statistical models can be used to extract information about the tissue at the cellular and molecular 

levels, from bulk tissue molecular profiles (e.g., transcriptomic). For example, inferring the 

cellular composition of a selection of tumour samples, representative of clinical stages/conditions 

can inform about the importance of single cell types for cancer development and risk status.  

Chapter 5 and 6 provide evidence that the abundance of some non-cancerous cell types are 

associated with the development of cancer. Two stand-alone statistical models have been 

developed in chapters 5 and 6 respectively. While the inference of tissue composition from bulk 

tissue transcriptomic data has been approached in the past, not much attention has been paid to 

connecting changes of cell type abundance to biological/clinical conditions. Chapter 5 was focused 

on this latter point, with the development of an improved regression model for proportional data. 

This inference model is able to estimate both the observable (i.e., intrinsic) and driver (i.e., 
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extrinsic)309 associations from proportional data. Besides being a stand-alone, this regression 

model was integrated with the deconvolution model implemented in chapter 6. With the integration 

of the deconvolution and regression statistical models, it is possible to perform robust differential 

tissue composition analyses from bulk tissue transcriptomic data. I compared the performance of 

the deconvolution model with representative publicly available algorithms. I also examined the 

performance on simulated data with increasing noise content. Finally, I applied the model for 

inferring associations between the abundance of specific cell types and cancer relapse across 

several cancer types in a prognostic setting. Using TCGA data, I produced a landscape of cell type 

abundance profiles, across a wide range of cancer types; and identified prognostic cellular 

signatures. The integrative nature of the two phases of the differential tissue composition analysis 

(i.e., deconvolution and regression) is important considering the uncertainty linked with the 

deconvolution phase. For example, the use of a deconvolution algorithm and a separate regression 

algorithm is possible, passing the point estimate of the first to the second model. However, since 

the deconvolution phase carries a high level of uncertainty, the regression phase will be biased 

toward false positive identification. 

Future work 

Beside contributing to improve the biological and statistical knowledge related to prostate tumour 

microenvironment, this thesis established several lines of works that can be developed further. 

Considering the promising results of chapter 2, an extended discovery cohort (n ≃ 100) of 

periprostatic adipose tissue may reveal an improved gene signature. This signature may be useful 

as a complementary tool for the stratification low- and high-grade tumours and reduce the chances 

of incorrect stratification due to high prostate cancer multifocality. Although the choice of a two-

stage feature selection procedure allowed a cost-efficient operation, it also represents a limitation 

of the present study. An expanded discovery cohort would allow more robust feature selection, 

which would produce a more robust gene list to validate on an independent patient cohort, with an 

orthogonal technology (e.g., qRT-PCR). Furthermore, the addition of cellular tissue composition 

analysis with flow-cytometry technologies such as CyTOF or FACS would enrich the feature set 

that could be informative of the field effect of the tumour. 

Future work should also be focused on investigating several hypotheses that chapter 4 has 

generated. For example, it appears that monocytes and macrophages play a major role in prostate 

https://paperpile.com/c/S6tSJ7/lcrO9
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cancer. A coupled cell-type-enrichment and differential transcription analysis can be applied 

specifically to the diverse phenotype of monocyte-derived cells, in order to investigate further the 

role of each cell type category in prostate cancer progression. The role of immune cell in the 

metabolism of hormone-related molecules may be further investigated experimentally with 

metabolomics and proteomics approaches. The enrichment of hormone-related molecules in the 

extracellular matrix may be a side effect of inflammation, which may represent a potential 

therapeutic target. Furthermore, future work will be aimed to using the cell-type-specific 

transcriptional signatures identified in chapter 4 for patient risk stratification. Employing 

transcriptome deconvolution, the presence of the cell-type-specific gene signatures identified 

experimentally could be sought within publicly available data of bulk tissue transcriptomes of 

prostate cancer. 

Methods developed in chapters 4, 5 and 6 significantly improve on the state of the art, 

however future work should aim to further improve the noise models. For example, the differential 

transcription inference model developed in chapter 4 could use a better noise model of RNA 

sequencing data. In the present thesis, a negative binomial distribution has been used to model the 

uncertainty of gene count observations; this distribution is convenient because it models discrete 

counts and the overdispersed noise typical of RNA sequencing data. Although the multinomial 

distribution better represents the numerical generating process that goes from sequencing to gene 

counts, it does not allow for the necessarily overdispersion. The Dirichlet-multinomial distribution 

improves on this but does not overcome it completely. A hierarchical normal-multinomial or 

student-t-multinomial may also be a valid alternative.  

An improved noise model could be directly beneficial for the differential tissue 

composition analysis algorithm. Currently, the prior information about the gene-wise abundance 

of cell-type-specific signatures is used as point estimate. In reality, such abundance carries a 

variability that could be modelled as described above, allowing a better inference of the tissue 

composition. This hierarchical approach would integrate (i) the uncertainty linked to the 

transcriptional signatures of single cell types, (ii) the uncertainty linked to the inference of tissue 

composition, and (iii) the uncertainty linked with the inference of associations between cell type 

abundance and a biological/clinical factor of interest. Furthermore, the selection of the genes 

within the cell-type-specific transcriptional signatures can be improved. This selection would 

require a better cross-validation approach based on common differential transcription analysis 
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tools, or a fully probabilistic approach based on Bayesian inference. Given the hierarchical 

structure of the deconvolution model presented in this thesis, more cell types will be added to the 

model, allowing a deeper analysis of a given sample. The regression model for proportional data 

has also improvement margins. For example, although the Dirichlet distribution is suitable for 

modelling trends in proportional data, it does not account for the overdispersed noise proper of 

some data sources. For avoiding issues with outliers leading to false positive associations (i.e., 

apparent non-null trends of change), a hierarchical normal-multinomial or student-t-multinomial 

model could be introduced.  

Final remarks 

Both the genetic alteration of prostate cancer cells and the interaction of cancer cells with 

surrounding benign cells (e.g., immune system and stroma) play an essential role in prostate cancer 

development. To better diagnose and cure this disease, we need to take an integrative approach 

that tries to include both aspects in the investigative effort. Currently, the amount of resources 

invested in high-throughput genetic studies of prostate cancer (e.g., pan-cancer analysis of whole 

genomes (PCAWG); Pan Prostate Cancer Consortium; and other cancers) is skewed toward the 

study of genetic alteration (i.e., mutations, rearrangements, copy number variations) in cancer 

cells. This skewed approach underlies a belief that the cancer evolution can be understood in 

isolation, without considering the environment (i.e., patient specific physiology) that surrounds 

and interact with cancer cells. The present thesis represents an attempt to enrich the genomic and 

computational biology research with a microenvironmental focus, looking toward the more 

ambitious goal of integrating both aspects (i.e., tumour and non-tumour cell biology) of cancer 

development.  



 

161 

 

References 
 

 

1. Comito, G. et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during 

prostate carcinoma progression. Oncogene 33, 2423–2431 (2014). 

2. Yu, Y. et al. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer 

cells through paracrine TGF-β signalling. Br. J. Cancer 110, 724 (2013). 

3. Yang, L., Pang, Y. & Moses, H. L. TGF-beta and immune cells: an important regulatory axis in the 

tumor microenvironment and progression. Trends Immunol. 31, 220–227 (2010). 

4. Lin, X. et al. PPM1A Functions as a Smad Phosphatase to Terminate TGFβ Signaling. Cell 166, 

1597 (2016). 

5. Barron, D. A. & Rowley, D. R. The reactive stroma microenvironment and prostate cancer 

progression. Endocr. Relat. Cancer 19, R187–204 (2012). 

6. Tuxhorn, J. A., McAlhany, S. J., Dang, T. D., Ayala, G. E. & Rowley, D. R. Stromal cells promote 

angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft 

model. Cancer Res. 62, 3298–3307 (2002). 

7. Joesting, M. S. et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial 

signaling in prostate cancer. Cancer Res. 65, 10423–10430 (2005). 

8. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 

27–30 (2000). 

9. Chung, L. W. K., Baseman, A., Assikis, V. & Zhau, H. E. Molecular insights into prostate cancer 

progression: the missing link of tumor microenvironment. J. Urol. 173, 10–20 (2005). 

10. Siddle, K. et al. Specificity in ligand binding and intracellular signalling by insulin and insulin-like 

growth factor receptors. Biochem. Soc. Trans. 29, 513–525 (2001). 

11. Bhowmick, N. A. et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of 

http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/QFQky
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/JpZil
http://paperpile.com/b/S6tSJ7/rgr0z
http://paperpile.com/b/S6tSJ7/rgr0z
http://paperpile.com/b/S6tSJ7/rgr0z
http://paperpile.com/b/S6tSJ7/rgr0z
http://paperpile.com/b/S6tSJ7/rgr0z
http://paperpile.com/b/S6tSJ7/rgr0z
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/ivk3q
http://paperpile.com/b/S6tSJ7/YSJ5H
http://paperpile.com/b/S6tSJ7/YSJ5H
http://paperpile.com/b/S6tSJ7/YSJ5H
http://paperpile.com/b/S6tSJ7/YSJ5H
http://paperpile.com/b/S6tSJ7/YSJ5H
http://paperpile.com/b/S6tSJ7/YSJ5H
http://paperpile.com/b/S6tSJ7/HyNP7
http://paperpile.com/b/S6tSJ7/HyNP7
http://paperpile.com/b/S6tSJ7/HyNP7
http://paperpile.com/b/S6tSJ7/HyNP7
http://paperpile.com/b/S6tSJ7/HyNP7
http://paperpile.com/b/S6tSJ7/HyNP7
http://paperpile.com/b/S6tSJ7/HyNP7
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/mSflh
http://paperpile.com/b/S6tSJ7/LbR4d
http://paperpile.com/b/S6tSJ7/LbR4d
http://paperpile.com/b/S6tSJ7/LbR4d
http://paperpile.com/b/S6tSJ7/LbR4d
http://paperpile.com/b/S6tSJ7/LbR4d
http://paperpile.com/b/S6tSJ7/LbR4d
http://paperpile.com/b/S6tSJ7/0przE
http://paperpile.com/b/S6tSJ7/0przE
http://paperpile.com/b/S6tSJ7/0przE
http://paperpile.com/b/S6tSJ7/0przE
http://paperpile.com/b/S6tSJ7/0przE
http://paperpile.com/b/S6tSJ7/0przE
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/NbkHS
http://paperpile.com/b/S6tSJ7/W2wXN
http://paperpile.com/b/S6tSJ7/W2wXN
http://paperpile.com/b/S6tSJ7/W2wXN


 

162 

adjacent epithelia. Science 303, 848–851 (2004). 

12. Ao, M. et al. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes 

malignancy in benign human prostatic epithelium. Cancer Res. 67, 4244–4253 (2007). 

13. Orimo, A. & Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell 

Cycle 5, 1597–1601 (2006). 

14. Lonergan, P. E. & Tindall, D. J. Androgen receptor signaling in prostate cancer development and 

progression. J. Carcinog. 10, 20 (2011). 

15. Tan, M. H. E., Li, J., Xu, H. E., Melcher, K. & Yong, E.-L. Androgen receptor: structure, role in 

prostate cancer and drug discovery. Acta Pharmacol. Sin. 36, 3–23 (2015). 

16. Zhou, Y., Bolton, E. C. & Jones, J. O. Androgens and androgen receptor signaling in prostate 

tumorigenesis. J. Mol. Endocrinol. 54, R15–29 (2015). 

17. Yu, S. et al. Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate 

cancer epithelial cell growth and invasion. Med. Oncol. 30, 674 (2013). 

18. Memarzadeh, S. et al. Role of autonomous androgen receptor signaling in prostate cancer initiation 

is dichotomous and depends on the oncogenic signal. Proc. Natl. Acad. Sci. U. S. A. 108, 7962–7967 

(2011). 

19. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour 

microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015). 

20. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–

252 (2009). 

21. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 

(2009). 

22. Nemeth, Z. et al. Heme oxygenase-1 in macrophages controls prostate cancer progression. 

Oncotarget 6, 33675–33688 (2015). 

23. Bryant, G., Wang, L. & Mulholland, D. J. Overcoming Oncogenic Mediated Tumor Immunity in 

Prostate Cancer. Int. J. Mol. Sci. 18, (2017). 

http://paperpile.com/b/S6tSJ7/W2wXN
http://paperpile.com/b/S6tSJ7/W2wXN
http://paperpile.com/b/S6tSJ7/W2wXN
http://paperpile.com/b/S6tSJ7/W2wXN
http://paperpile.com/b/S6tSJ7/W2wXN
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/1rIQf
http://paperpile.com/b/S6tSJ7/eGTYs
http://paperpile.com/b/S6tSJ7/eGTYs
http://paperpile.com/b/S6tSJ7/eGTYs
http://paperpile.com/b/S6tSJ7/eGTYs
http://paperpile.com/b/S6tSJ7/eGTYs
http://paperpile.com/b/S6tSJ7/eGTYs
http://paperpile.com/b/S6tSJ7/ioOgk
http://paperpile.com/b/S6tSJ7/ioOgk
http://paperpile.com/b/S6tSJ7/ioOgk
http://paperpile.com/b/S6tSJ7/ioOgk
http://paperpile.com/b/S6tSJ7/ioOgk
http://paperpile.com/b/S6tSJ7/ioOgk
http://paperpile.com/b/S6tSJ7/7ZwEk
http://paperpile.com/b/S6tSJ7/7ZwEk
http://paperpile.com/b/S6tSJ7/7ZwEk
http://paperpile.com/b/S6tSJ7/7ZwEk
http://paperpile.com/b/S6tSJ7/7ZwEk
http://paperpile.com/b/S6tSJ7/7ZwEk
http://paperpile.com/b/S6tSJ7/WUqiQ
http://paperpile.com/b/S6tSJ7/WUqiQ
http://paperpile.com/b/S6tSJ7/WUqiQ
http://paperpile.com/b/S6tSJ7/WUqiQ
http://paperpile.com/b/S6tSJ7/WUqiQ
http://paperpile.com/b/S6tSJ7/WUqiQ
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/gwnRA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/pPsuA
http://paperpile.com/b/S6tSJ7/cloOt
http://paperpile.com/b/S6tSJ7/cloOt
http://paperpile.com/b/S6tSJ7/cloOt
http://paperpile.com/b/S6tSJ7/cloOt
http://paperpile.com/b/S6tSJ7/cloOt
http://paperpile.com/b/S6tSJ7/cloOt
http://paperpile.com/b/S6tSJ7/grTpI
http://paperpile.com/b/S6tSJ7/grTpI
http://paperpile.com/b/S6tSJ7/grTpI
http://paperpile.com/b/S6tSJ7/grTpI
http://paperpile.com/b/S6tSJ7/grTpI
http://paperpile.com/b/S6tSJ7/grTpI
http://paperpile.com/b/S6tSJ7/a7IP6
http://paperpile.com/b/S6tSJ7/a7IP6
http://paperpile.com/b/S6tSJ7/a7IP6
http://paperpile.com/b/S6tSJ7/a7IP6
http://paperpile.com/b/S6tSJ7/a7IP6
http://paperpile.com/b/S6tSJ7/a7IP6
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/5ui9s
http://paperpile.com/b/S6tSJ7/2LlGS
http://paperpile.com/b/S6tSJ7/2LlGS
http://paperpile.com/b/S6tSJ7/2LlGS
http://paperpile.com/b/S6tSJ7/2LlGS
http://paperpile.com/b/S6tSJ7/2LlGS
http://paperpile.com/b/S6tSJ7/2LlGS


 

163 

24. Holmgaard, R. B., Zamarin, D., Lesokhin, A., Merghoub, T. & Wolchok, J. D. Targeting myeloid-

derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune 

resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine 6, 

50–58 (2016). 

25. Caescu, C. I. et al. Colony stimulating factor-1 receptor signaling networks inhibit mouse 

macrophage inflammatory responses by induction of microRNA-21. Blood 125, e1–13 (2015). 

26. Dai, X.-M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results 

in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, 

and reproductive defects. Blood 99, 111–120 (2002). 

27. Trikha, P. & Carson, W. E., 3rd. Signaling pathways involved in MDSC regulation. Biochim. 

Biophys. Acta 1846, 55–65 (2014). 

28. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves 

response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–

5069 (2014). 

29. Garcia, A. J. et al. Pten null prostate epithelium promotes localized myeloid-derived suppressor cell 

expansion and immune suppression during tumor initiation and progression. Mol. Cell. Biol. 34, 

2017–2028 (2014). 

30. Koh, T. J. & DiPietro, L. A. Inflammation and wound healing: the role of the macrophage. Expert 

Rev. Mol. Med. 13, e23 (2011). 

31. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 

1420–1428 (2009). 

32. Brawer, M. K., Deering, R. E., Brown, M., Preston, S. D. & Bigler, S. A. Predictors of pathologic 

stage in prostatic carcinoma. The role of neovascularity. Cancer 73, 678–687 (1994). 

33. Giannoni, E., Bianchini, F., Calorini, L. & Chiarugi, P. Cancer associated fibroblasts exploit reactive 

oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition 

and stemness. Antioxid. Redox Signal. 14, 2361–2371 (2011). 

http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/XE3K4
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/kwCYX
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/UuG8d
http://paperpile.com/b/S6tSJ7/AxxvL
http://paperpile.com/b/S6tSJ7/AxxvL
http://paperpile.com/b/S6tSJ7/AxxvL
http://paperpile.com/b/S6tSJ7/AxxvL
http://paperpile.com/b/S6tSJ7/AxxvL
http://paperpile.com/b/S6tSJ7/AxxvL
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/6MwWf
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/ChOmV
http://paperpile.com/b/S6tSJ7/zRiRx
http://paperpile.com/b/S6tSJ7/zRiRx
http://paperpile.com/b/S6tSJ7/zRiRx
http://paperpile.com/b/S6tSJ7/zRiRx
http://paperpile.com/b/S6tSJ7/zRiRx
http://paperpile.com/b/S6tSJ7/zRiRx
http://paperpile.com/b/S6tSJ7/nLGHT
http://paperpile.com/b/S6tSJ7/nLGHT
http://paperpile.com/b/S6tSJ7/nLGHT
http://paperpile.com/b/S6tSJ7/nLGHT
http://paperpile.com/b/S6tSJ7/nLGHT
http://paperpile.com/b/S6tSJ7/nLGHT
http://paperpile.com/b/S6tSJ7/0Svid
http://paperpile.com/b/S6tSJ7/0Svid
http://paperpile.com/b/S6tSJ7/0Svid
http://paperpile.com/b/S6tSJ7/0Svid
http://paperpile.com/b/S6tSJ7/0Svid
http://paperpile.com/b/S6tSJ7/0Svid
http://paperpile.com/b/S6tSJ7/TlvqR
http://paperpile.com/b/S6tSJ7/TlvqR
http://paperpile.com/b/S6tSJ7/TlvqR
http://paperpile.com/b/S6tSJ7/TlvqR
http://paperpile.com/b/S6tSJ7/TlvqR
http://paperpile.com/b/S6tSJ7/TlvqR
http://paperpile.com/b/S6tSJ7/TlvqR


 

164 

34. Smith, B. A. et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. 

Natl. Acad. Sci. U. S. A. 112, E6544–52 (2015). 

35. Zhang, D. et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to 

aggressive prostate cancer. Nat. Commun. 7, 10798 (2016). 

36. Nishida, N., Yano, H., Nishida, T., Kamura, T. & Kojiro, M. Angiogenesis in cancer. Vasc. Health 

Risk Manag. 2, 213–219 (2006). 

37. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. 

Med. 19, 1423–1437 (2013). 

38. Riabov, V. et al. Role of tumor associated macrophages in tumor angiogenesis and 

lymphangiogenesis. Front. Physiol. 5, 75 (2014). 

39. Levine, A. C. et al. Androgens induce the expression of vascular endothelial growth factor in human 

fetal prostatic fibroblasts. Endocrinology 139, 4672–4678 (1998). 

40. Chen, P.-C. et al. Prostate cancer-derived CCN3 induces M2 macrophage infiltration and contributes 

to angiogenesis in prostate cancer microenvironment. Oncotarget 5, 1595–1608 (2014). 

41. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. 

Science 358, 321–326 (2017). 

42. Chay, C. H. et al. A functional thrombin receptor (PAR1) is expressed on bone-derived prostate 

cancer cell lines. Urology 60, 760–765 (2002). 

43. Sun, Y.-X. et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks 

prostate cancer metastasis and growth in osseous sites in vivo. J. Bone Miner. Res. 20, 318–329 

(2005). 

44. Edlund, M. et al. Integrin expression and usage by prostate cancer cell lines on laminin substrata. 

Cell Growth Differ. 12, 99–107 (2001). 

45. Glinskii, O. V. et al. Mechanical entrapment is insufficient and intercellular adhesion is essential for 

metastatic cell arrest in distant organs. Neoplasia 7, 522–527 (2005). 

46. Morrissey, C. & Vessella, R. L. The role of tumor microenvironment in prostate cancer bone 

http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/Ku0JD
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/cEPOj
http://paperpile.com/b/S6tSJ7/3r8Rd
http://paperpile.com/b/S6tSJ7/3r8Rd
http://paperpile.com/b/S6tSJ7/3r8Rd
http://paperpile.com/b/S6tSJ7/3r8Rd
http://paperpile.com/b/S6tSJ7/3r8Rd
http://paperpile.com/b/S6tSJ7/3r8Rd
http://paperpile.com/b/S6tSJ7/5SSkJ
http://paperpile.com/b/S6tSJ7/5SSkJ
http://paperpile.com/b/S6tSJ7/5SSkJ
http://paperpile.com/b/S6tSJ7/5SSkJ
http://paperpile.com/b/S6tSJ7/5SSkJ
http://paperpile.com/b/S6tSJ7/5SSkJ
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/twckl
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/iW6tw
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/pwIyV
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/Gx0rv
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/rTt3b
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/ualJE
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/25cot
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/Xs67H
http://paperpile.com/b/S6tSJ7/aj5sf


 

165 

metastasis. J. Cell. Biochem. 101, 873–886 (2007). 

47. Gartrell, B. A. & Saad, F. Managing bone metastases and reducing skeletal related events in prostate 

cancer. Nat. Rev. Clin. Oncol. 11, 335–345 (2014). 

48. Dai, J., Hensel, J., Wang, N., Kruithof-de Julio, M. & Shiozawa, Y. Mouse models for studying 

prostate cancer bone metastasis. Bonekey Rep 5, 777 (2016). 

49. Woolf, D. K., Padhani, A. R. & Makris, A. Assessing response to treatment of bone metastases from 

breast cancer: what should be the standard of care? Ann. Oncol. 26, 1048–1057 (2015). 

50. Frieling, J. S., Pamen, L. A., Cook, L. M., Yang, S. & Lynch, C. C. Abstract 5061: Roles for matrix 

metalloproteinase-3 (MMP-3) in the prostate tumor-bone microenvironment. Cancer Res. 73, 5061–

5061 (2013). 

51. Hienert, G., Kirchheimer, J. C., Christ, G., Pflüger, H. & Binder, B. R. Plasma urokinase-type 

plasminogen activator correlates to bone scintigraphy in prostatic carcinoma. Eur. Urol. 15, 256–258 

(1988). 

52. Logothetis, C. J. & Lin, S.-H. Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5, 

21–28 (2005). 

53. Mayr-Wohlfart, U. et al. Vascular endothelial growth factor stimulates chemotactic migration of 

primary human osteoblasts. Bone 30, 472–477 (2002). 

54. Ide, H. et al. Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. 

Cancer Res. 57, 5022–5027 (1997). 

55. Cornish, J. et al. Stimulation of osteoblast proliferation by C-terminal fragments of parathyroid 

hormone-related protein. J. Bone Miner. Res. 14, 915–922 (1999). 

56. Chen, H.-L. et al. Parathyroid hormone and parathyroid hormone-related protein exert both pro- and 

anti-apoptotic effects in mesenchymal cells. J. Biol. Chem. 277, 19374–19381 (2002). 

57. Karaplis, A. C. & Vautour, L. Parathyroid hormone-related peptide and the parathyroid 

hormone/parathyroid hormone-related peptide receptor in skeletal development. Curr. Opin. 

Nephrol. Hypertens. 6, 308–313 (1997). 

http://paperpile.com/b/S6tSJ7/aj5sf
http://paperpile.com/b/S6tSJ7/aj5sf
http://paperpile.com/b/S6tSJ7/aj5sf
http://paperpile.com/b/S6tSJ7/aj5sf
http://paperpile.com/b/S6tSJ7/aj5sf
http://paperpile.com/b/S6tSJ7/7Yfjm
http://paperpile.com/b/S6tSJ7/7Yfjm
http://paperpile.com/b/S6tSJ7/7Yfjm
http://paperpile.com/b/S6tSJ7/7Yfjm
http://paperpile.com/b/S6tSJ7/7Yfjm
http://paperpile.com/b/S6tSJ7/7Yfjm
http://paperpile.com/b/S6tSJ7/gp4RK
http://paperpile.com/b/S6tSJ7/gp4RK
http://paperpile.com/b/S6tSJ7/gp4RK
http://paperpile.com/b/S6tSJ7/gp4RK
http://paperpile.com/b/S6tSJ7/gp4RK
http://paperpile.com/b/S6tSJ7/gp4RK
http://paperpile.com/b/S6tSJ7/l2qAE
http://paperpile.com/b/S6tSJ7/l2qAE
http://paperpile.com/b/S6tSJ7/l2qAE
http://paperpile.com/b/S6tSJ7/l2qAE
http://paperpile.com/b/S6tSJ7/l2qAE
http://paperpile.com/b/S6tSJ7/l2qAE
http://paperpile.com/b/S6tSJ7/lNIit
http://paperpile.com/b/S6tSJ7/lNIit
http://paperpile.com/b/S6tSJ7/lNIit
http://paperpile.com/b/S6tSJ7/lNIit
http://paperpile.com/b/S6tSJ7/lNIit
http://paperpile.com/b/S6tSJ7/lNIit
http://paperpile.com/b/S6tSJ7/lNIit
http://paperpile.com/b/S6tSJ7/4d4cl
http://paperpile.com/b/S6tSJ7/4d4cl
http://paperpile.com/b/S6tSJ7/4d4cl
http://paperpile.com/b/S6tSJ7/4d4cl
http://paperpile.com/b/S6tSJ7/4d4cl
http://paperpile.com/b/S6tSJ7/4d4cl
http://paperpile.com/b/S6tSJ7/4d4cl
http://paperpile.com/b/S6tSJ7/9nxaX
http://paperpile.com/b/S6tSJ7/9nxaX
http://paperpile.com/b/S6tSJ7/9nxaX
http://paperpile.com/b/S6tSJ7/9nxaX
http://paperpile.com/b/S6tSJ7/9nxaX
http://paperpile.com/b/S6tSJ7/9nxaX
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/xYUTr
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/IVeev
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/tfLRb
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/g0cTA
http://paperpile.com/b/S6tSJ7/o8kV1
http://paperpile.com/b/S6tSJ7/o8kV1
http://paperpile.com/b/S6tSJ7/o8kV1
http://paperpile.com/b/S6tSJ7/o8kV1
http://paperpile.com/b/S6tSJ7/o8kV1
http://paperpile.com/b/S6tSJ7/o8kV1
http://paperpile.com/b/S6tSJ7/o8kV1


 

166 

58. Brown, J. M. et al. Osteoprotegerin and rank ligand expression in prostate cancer. Urology 57, 611–

616 (2001). 

59. Brown, J. M. et al. Serum osteoprotegerin levels are increased in patients with advanced prostate 

cancer. Clin. Cancer Res. 7, 2977–2983 (2001). 

60. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 

337–342 (2003). 

61. Josson, S., Matsuoka, Y., Chung, L. W. K., Zhau, H. E. & Wang, R. Tumor-stroma co-evolution in 

prostate cancer progression and metastasis. Semin. Cell Dev. Biol. 21, 26–32 (2010). 

62. Zheng, Y. et al. Targeting IL-6 and RANKL signaling inhibits prostate cancer growth in bone. Clin. 

Exp. Metastasis 31, 921–933 (2014). 

63. Lynch, C. C. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of 

RANKL. Cancer Cell 7, 485–496 (2005). 

64. Voon, D. C., Huang, R. Y., Jackson, R. A. & Thiery, J. P. The EMT spectrum and therapeutic 

opportunities. Mol. Oncol. 11, 878–891 (2017). 

65. Abdalla, A. M. E. et al. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of 

Nanotherapeutics. Theranostics 8, 533–548 (2018). 

66. Salvatore, V. et al. The tumor microenvironment promotes cancer progression and cell migration. 

Oncotarget 8, 9608–9616 (2017). 

67. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S. & Searson, P. C. In Vitro Tumor Models: 

Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol 4, 

12 (2016). 

68. Venet, D., Pecasse, F., Maenhaut, C. & Bersini, H. Separation of samples into their constituents 

using gene expression data. Bioinformatics 17 Suppl 1, S279–87 (2001). 

69. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. 

Methods 12, 453–457 (2015). 

70. Zhong, Y., Wan, Y.-W., Pang, K., Chow, L. M. L. & Liu, Z. Digital sorting of complex tissues for 

http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/ls8jI
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/5SoxZ
http://paperpile.com/b/S6tSJ7/4lO3F
http://paperpile.com/b/S6tSJ7/4lO3F
http://paperpile.com/b/S6tSJ7/4lO3F
http://paperpile.com/b/S6tSJ7/4lO3F
http://paperpile.com/b/S6tSJ7/4lO3F
http://paperpile.com/b/S6tSJ7/4lO3F
http://paperpile.com/b/S6tSJ7/9tGxO
http://paperpile.com/b/S6tSJ7/9tGxO
http://paperpile.com/b/S6tSJ7/9tGxO
http://paperpile.com/b/S6tSJ7/9tGxO
http://paperpile.com/b/S6tSJ7/9tGxO
http://paperpile.com/b/S6tSJ7/9tGxO
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/cOdkJ
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/lLatj
http://paperpile.com/b/S6tSJ7/kKpEZ
http://paperpile.com/b/S6tSJ7/kKpEZ
http://paperpile.com/b/S6tSJ7/kKpEZ
http://paperpile.com/b/S6tSJ7/kKpEZ
http://paperpile.com/b/S6tSJ7/kKpEZ
http://paperpile.com/b/S6tSJ7/kKpEZ
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/bn2yf
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/m7nO8
http://paperpile.com/b/S6tSJ7/uNhQO
http://paperpile.com/b/S6tSJ7/uNhQO
http://paperpile.com/b/S6tSJ7/uNhQO
http://paperpile.com/b/S6tSJ7/uNhQO
http://paperpile.com/b/S6tSJ7/uNhQO
http://paperpile.com/b/S6tSJ7/uNhQO
http://paperpile.com/b/S6tSJ7/uNhQO
http://paperpile.com/b/S6tSJ7/0djf8
http://paperpile.com/b/S6tSJ7/0djf8
http://paperpile.com/b/S6tSJ7/0djf8
http://paperpile.com/b/S6tSJ7/0djf8
http://paperpile.com/b/S6tSJ7/0djf8
http://paperpile.com/b/S6tSJ7/0djf8
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/Povnx
http://paperpile.com/b/S6tSJ7/WshhK


 

167 

cell type-specific gene expression profiles. BMC Bioinformatics 14, 89 (2013). 

71. Qiao, W. et al. PERT: A Method for Expression Deconvolution of Human Blood Samples from 

Varied Microenvironmental and Developmental Conditions. PLoS Comput. Biol. 8, e1002838 

(2012). 

72. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. 

Genome Biol. 18, 220 (2017). 

73. Liebner, D. A., Huang, K. & Parvin, J. D. MMAD: microarray microdissection with analysis of 

differences is a computational tool for deconvoluting cell type-specific contributions from tissue 

samples. Bioinformatics 30, 682–689 (2014). 

74. Wang, N. et al. Mathematical modelling of transcriptional heterogeneity identifies novel markers 

and subpopulations in complex tissues. Sci. Rep. 6, 18909 (2016). 

75. Clarke, J., Seo, P. & Clarke, B. Statistical expression deconvolution from mixed tissue samples. 

Bioinformatics 26, 1043–1049 (2010). 

76. Ahn, J. et al. DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. 

Bioinformatics 29, 1865–1871 (2013). 

77. Quon, G. & Morris, Q. ISOLATE: a computational strategy for identifying the primary origin of 

cancers using high-throughput sequencing. Bioinformatics 25, 2882–2889 (2009). 

78. Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework for deconvolution of 

heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29, 1083–1085 (2013). 

79. Li, Y. & Xie, X. A mixture model for expression deconvolution from RNA-seq in heterogeneous 

tissues. BMC Bioinformatics 14 Suppl 5, S11 (2013). 

80. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression 

data. Nat. Commun. 4, 2612 (2013). 

81. Altboum, Z. et al. Digital cell quantification identifies global immune cell dynamics during influenza 

infection. Mol. Syst. Biol. 10, 720 (2014). 

82. Shen-Orr, S. S. et al. Cell type-specific gene expression differences in complex tissues. Nat. 

http://paperpile.com/b/S6tSJ7/WshhK
http://paperpile.com/b/S6tSJ7/WshhK
http://paperpile.com/b/S6tSJ7/WshhK
http://paperpile.com/b/S6tSJ7/WshhK
http://paperpile.com/b/S6tSJ7/WshhK
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/yFxFB
http://paperpile.com/b/S6tSJ7/nQehK
http://paperpile.com/b/S6tSJ7/nQehK
http://paperpile.com/b/S6tSJ7/nQehK
http://paperpile.com/b/S6tSJ7/nQehK
http://paperpile.com/b/S6tSJ7/nQehK
http://paperpile.com/b/S6tSJ7/nQehK
http://paperpile.com/b/S6tSJ7/Loq58
http://paperpile.com/b/S6tSJ7/Loq58
http://paperpile.com/b/S6tSJ7/Loq58
http://paperpile.com/b/S6tSJ7/Loq58
http://paperpile.com/b/S6tSJ7/Loq58
http://paperpile.com/b/S6tSJ7/Loq58
http://paperpile.com/b/S6tSJ7/Loq58
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/IZD6N
http://paperpile.com/b/S6tSJ7/GAY0f
http://paperpile.com/b/S6tSJ7/GAY0f
http://paperpile.com/b/S6tSJ7/GAY0f
http://paperpile.com/b/S6tSJ7/GAY0f
http://paperpile.com/b/S6tSJ7/GAY0f
http://paperpile.com/b/S6tSJ7/GAY0f
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/Pz4SX
http://paperpile.com/b/S6tSJ7/cWdPx
http://paperpile.com/b/S6tSJ7/cWdPx
http://paperpile.com/b/S6tSJ7/cWdPx
http://paperpile.com/b/S6tSJ7/cWdPx
http://paperpile.com/b/S6tSJ7/cWdPx
http://paperpile.com/b/S6tSJ7/cWdPx
http://paperpile.com/b/S6tSJ7/4KRqE
http://paperpile.com/b/S6tSJ7/4KRqE
http://paperpile.com/b/S6tSJ7/4KRqE
http://paperpile.com/b/S6tSJ7/4KRqE
http://paperpile.com/b/S6tSJ7/4KRqE
http://paperpile.com/b/S6tSJ7/4KRqE
http://paperpile.com/b/S6tSJ7/Nl6jO
http://paperpile.com/b/S6tSJ7/Nl6jO
http://paperpile.com/b/S6tSJ7/Nl6jO
http://paperpile.com/b/S6tSJ7/Nl6jO
http://paperpile.com/b/S6tSJ7/Nl6jO
http://paperpile.com/b/S6tSJ7/Nl6jO
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/1YXsu
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/WjxQE
http://paperpile.com/b/S6tSJ7/MQNIy
http://paperpile.com/b/S6tSJ7/MQNIy
http://paperpile.com/b/S6tSJ7/MQNIy
http://paperpile.com/b/S6tSJ7/MQNIy


 

168 

Methods 7, 287–289 (2010). 

83. Zuckerman, N. S., Noam, Y., Goldsmith, A. J. & Lee, P. P. A self-directed method for cell-type 

identification and separation of gene expression microarrays. PLoS Comput. Biol. 9, e1003189 

(2013). 

84. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell 

populations using gene expression. Genome Biol. 17, 218 (2016). 

85. Şenbabaoğlu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell 

carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. 

Genome Biol. 17, 231 (2016). 

86. Tappeiner, E. et al. TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. 

Bioinformatics 33, 3140–3141 (2017). 

87. Li, B. et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. 

Genome Biol. 17, 174 (2016). 

88. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of 

cancer and immune cell types from bulk tumor gene expression data. Elife 6, (2017). 

89. Finotello, F. et al. quanTIseq: quantifying immune contexture of human tumors. bioRxiv 223180 

(2017). doi:10.1101/223180 

90. Qi, L. et al. Deconvolution of the gene expression profiles of valuable banked blood specimens for 

studying the prognostic values of altered peripheral immune cell proportions in cancer patients. PLoS 

One 9, e100934 (2014). 

91. Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z. & Clark, H. F. Deconvolution of blood 

microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 4, 

e6098 (2009). 

92. Kullback, S. & Leibler, R. A. On Information and Sufficiency. Ann. Math. Stat. 22, 79–86 (1951). 

93. Turlach, B. A. & Weingessel, A. quadprog: Functions to solve quadratic programming problems. R 

package version 1–4 (2007). 

http://paperpile.com/b/S6tSJ7/MQNIy
http://paperpile.com/b/S6tSJ7/MQNIy
http://paperpile.com/b/S6tSJ7/MQNIy
http://paperpile.com/b/S6tSJ7/MQNIy
http://paperpile.com/b/S6tSJ7/GVK6l
http://paperpile.com/b/S6tSJ7/GVK6l
http://paperpile.com/b/S6tSJ7/GVK6l
http://paperpile.com/b/S6tSJ7/GVK6l
http://paperpile.com/b/S6tSJ7/GVK6l
http://paperpile.com/b/S6tSJ7/GVK6l
http://paperpile.com/b/S6tSJ7/GVK6l
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/eQ8m8
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/qG3F3
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/uclSX
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/wCWJu
http://paperpile.com/b/S6tSJ7/Kw9Zu
http://paperpile.com/b/S6tSJ7/Kw9Zu
http://paperpile.com/b/S6tSJ7/Kw9Zu
http://paperpile.com/b/S6tSJ7/Kw9Zu
http://paperpile.com/b/S6tSJ7/Kw9Zu
http://paperpile.com/b/S6tSJ7/Kw9Zu
http://paperpile.com/b/S6tSJ7/lNdgd
http://paperpile.com/b/S6tSJ7/lNdgd
http://paperpile.com/b/S6tSJ7/lNdgd
http://paperpile.com/b/S6tSJ7/lNdgd
http://paperpile.com/b/S6tSJ7/lNdgd
http://paperpile.com/b/S6tSJ7/lNdgd
http://dx.doi.org/10.1101/223180
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/odr6n
http://paperpile.com/b/S6tSJ7/gWZbA
http://paperpile.com/b/S6tSJ7/gWZbA
http://paperpile.com/b/S6tSJ7/gWZbA
http://paperpile.com/b/S6tSJ7/gWZbA
http://paperpile.com/b/S6tSJ7/gWZbA
http://paperpile.com/b/S6tSJ7/gWZbA
http://paperpile.com/b/S6tSJ7/gWZbA
http://paperpile.com/b/S6tSJ7/NCg9A
http://paperpile.com/b/S6tSJ7/NCg9A
http://paperpile.com/b/S6tSJ7/NCg9A
http://paperpile.com/b/S6tSJ7/NCg9A
http://paperpile.com/b/S6tSJ7/NCg9A
http://paperpile.com/b/S6tSJ7/rlBAN
http://paperpile.com/b/S6tSJ7/rlBAN
http://paperpile.com/b/S6tSJ7/rlBAN
http://paperpile.com/b/S6tSJ7/rlBAN


 

169 

94. Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 

(2003). 

95. GSEA (gene set enrichment analysis). in SpringerReference (Springer-Verlag, 2011). 

96. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 

genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005). 

97. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. 

Biotechnol. 30, 413–421 (2012). 

98. Eureqa Formulize. Available at: http://nutonian.wikidot.com/. (Accessed: 9th May 2018) 

99. Nelder, J. A. & Mead, R. A Simplex Method for Function Minimization. Comput. J. 7, 308–313 

(1965). 

100. Stunnenberg, H. G., International Human Epigenome Consortium & Hirst, M. The International 

Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell 167, 

1897 (2016). 

101. Abugessaisa, I. et al. FANTOM5 transcriptome catalog of cellular states based on Semantic 

MediaWiki. Database  2016, (2016). 

102. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 

306, 636–640 (2004). 

103. Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of tumour purity. Nat. Commun. 

6, 8971 (2015). 

104. Zheng, X., Zhang, N., Wu, H.-J. & Wu, H. Estimating and accounting for tumor purity in the 

analysis of DNA methylation data from cancer studies. Genome Biol. 18, 17 (2017). 

105. Benelli, M., Romagnoli, D. & Demichelis, F. Tumor purity quantification by clonal DNA 

methylation signatures. Bioinformatics (2018). doi:10.1093/bioinformatics/bty011 

106. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis 

of RNA-seq data. Genome Biol. 11, R25 (2010). 

107. Gagnon-Bartsch, J. A. Removing Unwanted Variation from Microarray Data with Negative 

http://paperpile.com/b/S6tSJ7/DXUOy
http://paperpile.com/b/S6tSJ7/DXUOy
http://paperpile.com/b/S6tSJ7/DXUOy
http://paperpile.com/b/S6tSJ7/DXUOy
http://paperpile.com/b/S6tSJ7/DXUOy
http://paperpile.com/b/S6tSJ7/DXUOy
http://paperpile.com/b/S6tSJ7/0vAYR
http://paperpile.com/b/S6tSJ7/0vAYR
http://paperpile.com/b/S6tSJ7/0vAYR
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/EB6wj
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/ivjia
http://paperpile.com/b/S6tSJ7/Cfjv8
http://nutonian.wikidot.com/
http://paperpile.com/b/S6tSJ7/Cfjv8
http://paperpile.com/b/S6tSJ7/4F0Ba
http://paperpile.com/b/S6tSJ7/4F0Ba
http://paperpile.com/b/S6tSJ7/4F0Ba
http://paperpile.com/b/S6tSJ7/4F0Ba
http://paperpile.com/b/S6tSJ7/4F0Ba
http://paperpile.com/b/S6tSJ7/4F0Ba
http://paperpile.com/b/S6tSJ7/VbLNQ
http://paperpile.com/b/S6tSJ7/VbLNQ
http://paperpile.com/b/S6tSJ7/VbLNQ
http://paperpile.com/b/S6tSJ7/VbLNQ
http://paperpile.com/b/S6tSJ7/VbLNQ
http://paperpile.com/b/S6tSJ7/VbLNQ
http://paperpile.com/b/S6tSJ7/VbLNQ
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/AB3rd
http://paperpile.com/b/S6tSJ7/PLmP2
http://paperpile.com/b/S6tSJ7/PLmP2
http://paperpile.com/b/S6tSJ7/PLmP2
http://paperpile.com/b/S6tSJ7/PLmP2
http://paperpile.com/b/S6tSJ7/PLmP2
http://paperpile.com/b/S6tSJ7/PLmP2
http://paperpile.com/b/S6tSJ7/h4s2a
http://paperpile.com/b/S6tSJ7/h4s2a
http://paperpile.com/b/S6tSJ7/h4s2a
http://paperpile.com/b/S6tSJ7/h4s2a
http://paperpile.com/b/S6tSJ7/h4s2a
http://paperpile.com/b/S6tSJ7/h4s2a
http://paperpile.com/b/S6tSJ7/kpvqK
http://paperpile.com/b/S6tSJ7/kpvqK
http://paperpile.com/b/S6tSJ7/kpvqK
http://paperpile.com/b/S6tSJ7/kpvqK
http://paperpile.com/b/S6tSJ7/kpvqK
http://paperpile.com/b/S6tSJ7/kpvqK
http://paperpile.com/b/S6tSJ7/50Byv
http://paperpile.com/b/S6tSJ7/50Byv
http://paperpile.com/b/S6tSJ7/50Byv
http://paperpile.com/b/S6tSJ7/50Byv
http://dx.doi.org/10.1093/bioinformatics/bty011
http://paperpile.com/b/S6tSJ7/RZnaj
http://paperpile.com/b/S6tSJ7/RZnaj
http://paperpile.com/b/S6tSJ7/RZnaj
http://paperpile.com/b/S6tSJ7/RZnaj
http://paperpile.com/b/S6tSJ7/RZnaj
http://paperpile.com/b/S6tSJ7/RZnaj
http://paperpile.com/b/S6tSJ7/gXxQh


 

170 

Controls. (UC Berkeley, 2012). 

108. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential 

expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). 

109. Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from DNA 

methylation: a review of recent applications. Hum. Mol. Genet. 26, R216–R224 (2017). 

110. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015). 

111. O’Brien, B. A., Cohen, R. J., Ryan, A., Sengupta, S. & Mills, J. A new preoperative nomogram to 

predict minimal prostate cancer: accuracy and error rates compared to other tools to select patients 

for active surveillance. J. Urol. 186, 1811–1817 (2011). 

112. Hamdy, F. C. et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized 

Prostate Cancer. N. Engl. J. Med. 375, 1415–1424 (2016). 

113. Lu-Yao, G. L. et al. Outcomes of localized prostate cancer following conservative management. 

JAMA 302, 1202–1209 (2009). 

114. Parker, C., Muston, D., Melia, J., Moss, S. & Dearnaley, D. A model of the natural history of screen-

detected prostate cancer, and the effect of radical treatment on overall survival. Br. J. Cancer 94, 

1361–1368 (2006). 

115. Corcoran, N. M. et al. Upgrade in Gleason score between prostate biopsies and pathology following 

radical prostatectomy significantly impacts upon the risk of biochemical recurrence. BJU Int. 108, 

E202–10 (2011). 

116. Corcoran, N. M. et al. Underestimation of Gleason score at prostate biopsy reflects sampling error in 

lower volume tumours. BJU Int. 109, 660–664 (2012). 

117. Michaelson, M. D. et al. Management of complications of prostate cancer treatment. CA Cancer J. 

Clin. 58, 196–213 (2008). 

118. Gore, J. L. et al. Optimal combinations of systematic sextant and laterally directed biopsies for the 

detection of prostate cancer. J. Urol. 165, 1554–1559 (2001). 

119. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate 

http://paperpile.com/b/S6tSJ7/gXxQh
http://paperpile.com/b/S6tSJ7/R8t3e
http://paperpile.com/b/S6tSJ7/R8t3e
http://paperpile.com/b/S6tSJ7/R8t3e
http://paperpile.com/b/S6tSJ7/R8t3e
http://paperpile.com/b/S6tSJ7/R8t3e
http://paperpile.com/b/S6tSJ7/R8t3e
http://paperpile.com/b/S6tSJ7/vlbmS
http://paperpile.com/b/S6tSJ7/vlbmS
http://paperpile.com/b/S6tSJ7/vlbmS
http://paperpile.com/b/S6tSJ7/vlbmS
http://paperpile.com/b/S6tSJ7/vlbmS
http://paperpile.com/b/S6tSJ7/vlbmS
http://paperpile.com/b/S6tSJ7/Nur6F
http://paperpile.com/b/S6tSJ7/Nur6F
http://paperpile.com/b/S6tSJ7/Nur6F
http://paperpile.com/b/S6tSJ7/Nur6F
http://paperpile.com/b/S6tSJ7/Nur6F
http://paperpile.com/b/S6tSJ7/Nur6F
http://paperpile.com/b/S6tSJ7/Nur6F
http://paperpile.com/b/S6tSJ7/5dDMJ
http://paperpile.com/b/S6tSJ7/5dDMJ
http://paperpile.com/b/S6tSJ7/5dDMJ
http://paperpile.com/b/S6tSJ7/5dDMJ
http://paperpile.com/b/S6tSJ7/5dDMJ
http://paperpile.com/b/S6tSJ7/5dDMJ
http://paperpile.com/b/S6tSJ7/5dDMJ
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/iSD3J
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/RfUwp
http://paperpile.com/b/S6tSJ7/vnMvA
http://paperpile.com/b/S6tSJ7/vnMvA
http://paperpile.com/b/S6tSJ7/vnMvA
http://paperpile.com/b/S6tSJ7/vnMvA
http://paperpile.com/b/S6tSJ7/vnMvA
http://paperpile.com/b/S6tSJ7/vnMvA
http://paperpile.com/b/S6tSJ7/vnMvA
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/vmeAl
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/gUHNz
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/2YhXo
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/uxEcq
http://paperpile.com/b/S6tSJ7/NggjW
http://paperpile.com/b/S6tSJ7/NggjW
http://paperpile.com/b/S6tSJ7/NggjW


 

171 

cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017). 

120. Prieto-Hontoria, P. L. et al. Role of obesity-associated dysfunctional adipose tissue in cancer: a 

molecular nutrition approach. Biochim. Biophys. Acta 1807, 664–678 (2011). 

121. Møller, H. et al. Prostate cancer incidence, clinical stage and survival in relation to obesity: a 

prospective cohort study in Denmark. Int. J. Cancer 136, 1940–1947 (2015). 

122. Snowdon, D. A., Phillips, R. L. & Choi, W. Diet, obesity, and risk of fatal prostate cancer. Am. J. 

Epidemiol. 120, 244–250 (1984). 

123. Andersson, S. O. et al. Body size and prostate cancer: a 20-year follow-up study among 135006 

Swedish construction workers. J. Natl. Cancer Inst. 89, 385–389 (1997). 

124. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality 

from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 

(2003). 

125. Freedland, S. J., Bañez, L. L., Sun, L. L., Fitzsimons, N. J. & Moul, J. W. Obese men have higher-

grade and larger tumors: an analysis of the duke prostate center database. Prostate Cancer Prostatic 

Dis. 12, 259–263 (2009). 

126. Venkatasubramanian, P. N. et al. Periprostatic adipose tissue from obese prostate cancer patients 

promotes tumor and endothelial cell proliferation: a functional and MR imaging pilot study. Prostate 

74, 326–335 (2014). 

127. Cheng, L. et al. Correlation of margin status and extraprostatic extension with progression of 

prostate carcinoma. Cancer 86, 1775–1782 (1999). 

128. Stenman, U.-H. Re: Periprostatic Adipose Tissue as a Modulator of Prostate Cancer Aggressiveness. 

Eur. Urol. 57, 541–542 (2010). 

129. van Roermund, J. G. H. et al. Periprostatic fat correlates with tumour aggressiveness in prostate 

cancer patients. BJU Int. 107, 1775–1779 (2011). 

130. Ribeiro, R. et al. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in 

vitro. J. Exp. Clin. Cancer Res. 31, 32 (2012). 

http://paperpile.com/b/S6tSJ7/NggjW
http://paperpile.com/b/S6tSJ7/NggjW
http://paperpile.com/b/S6tSJ7/NggjW
http://paperpile.com/b/S6tSJ7/NggjW
http://paperpile.com/b/S6tSJ7/NggjW
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/Ql3c3
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/95Jcg
http://paperpile.com/b/S6tSJ7/MrCAC
http://paperpile.com/b/S6tSJ7/MrCAC
http://paperpile.com/b/S6tSJ7/MrCAC
http://paperpile.com/b/S6tSJ7/MrCAC
http://paperpile.com/b/S6tSJ7/MrCAC
http://paperpile.com/b/S6tSJ7/MrCAC
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/Fl5Ey
http://paperpile.com/b/S6tSJ7/0y2D1
http://paperpile.com/b/S6tSJ7/0y2D1
http://paperpile.com/b/S6tSJ7/0y2D1
http://paperpile.com/b/S6tSJ7/0y2D1
http://paperpile.com/b/S6tSJ7/0y2D1
http://paperpile.com/b/S6tSJ7/0y2D1
http://paperpile.com/b/S6tSJ7/0y2D1
http://paperpile.com/b/S6tSJ7/r4ME9
http://paperpile.com/b/S6tSJ7/r4ME9
http://paperpile.com/b/S6tSJ7/r4ME9
http://paperpile.com/b/S6tSJ7/r4ME9
http://paperpile.com/b/S6tSJ7/r4ME9
http://paperpile.com/b/S6tSJ7/r4ME9
http://paperpile.com/b/S6tSJ7/r4ME9
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/YrRtF
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/gAvz9
http://paperpile.com/b/S6tSJ7/5khB1
http://paperpile.com/b/S6tSJ7/5khB1
http://paperpile.com/b/S6tSJ7/5khB1
http://paperpile.com/b/S6tSJ7/5khB1
http://paperpile.com/b/S6tSJ7/5khB1
http://paperpile.com/b/S6tSJ7/5khB1
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/o67S0
http://paperpile.com/b/S6tSJ7/nSpIO
http://paperpile.com/b/S6tSJ7/nSpIO
http://paperpile.com/b/S6tSJ7/nSpIO
http://paperpile.com/b/S6tSJ7/nSpIO
http://paperpile.com/b/S6tSJ7/nSpIO
http://paperpile.com/b/S6tSJ7/nSpIO
http://paperpile.com/b/S6tSJ7/nSpIO
http://paperpile.com/b/S6tSJ7/nSpIO


 

172 

131. Ribeiro, R. J. T. et al. Tumor cell-educated periprostatic adipose tissue acquires an aggressive 

cancer-promoting secretory profile. Cell. Physiol. Biochem. 29, 233–240 (2012). 

132. Kerger, M. et al. Microscopic assessment of fresh prostate tumour specimens yields significantly 

increased rates of correctly annotated samples for downstream analysis. Pathology 44, 204–208 

(2012). 

133. Klein, E. A. et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of 

Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur. Urol. 66, 550–

560 (2014). 

134. Andrews, S. & Others. FastQC: a quality control tool for high throughput sequence data. (2010). 

135. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. 

Bioinformatics 30, 2114–2120 (2014). 

136. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 

137. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning 

sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). 

138. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis 

of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014). 

139. Tarca, A. L. et al. A novel signaling pathway impact analysis. Bioinformatics 25, 75–82 (2009). 

140. Bennett, K. P. & Demiriz, A. Semi-Supervised Support Vector Machines. in Advances in Neural 

Information Processing Systems 11 (eds. Kearns, M. J., Solla, S. A. & Cohn, D. A.) 368–374 (MIT 

Press, 1999). 

141. Svetnik, V. et al. Random forest: a classification and regression tool for compound classification and 

QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 1947–1958 (2003). 

142. Dobson, A. J. & Barnett, A. An Introduction to Generalized Linear Models, Third Edition. (Taylor & 

Francis, 2008). 

143. Kuhn, M. & Others. Caret package. J. Stat. Softw. 28, 1–26 (2008). 

144. Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. 

http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/DfVvC
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/fk1Qe
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/MyUvi
http://paperpile.com/b/S6tSJ7/Fpe3t
http://paperpile.com/b/S6tSJ7/d9ifM
http://paperpile.com/b/S6tSJ7/d9ifM
http://paperpile.com/b/S6tSJ7/d9ifM
http://paperpile.com/b/S6tSJ7/d9ifM
http://paperpile.com/b/S6tSJ7/d9ifM
http://paperpile.com/b/S6tSJ7/d9ifM
http://paperpile.com/b/S6tSJ7/x3TZk
http://paperpile.com/b/S6tSJ7/x3TZk
http://paperpile.com/b/S6tSJ7/x3TZk
http://paperpile.com/b/S6tSJ7/x3TZk
http://paperpile.com/b/S6tSJ7/x3TZk
http://paperpile.com/b/S6tSJ7/x3TZk
http://paperpile.com/b/S6tSJ7/x3TZk
http://paperpile.com/b/S6tSJ7/zBhSO
http://paperpile.com/b/S6tSJ7/zBhSO
http://paperpile.com/b/S6tSJ7/zBhSO
http://paperpile.com/b/S6tSJ7/zBhSO
http://paperpile.com/b/S6tSJ7/zBhSO
http://paperpile.com/b/S6tSJ7/zBhSO
http://paperpile.com/b/S6tSJ7/yWBCg
http://paperpile.com/b/S6tSJ7/yWBCg
http://paperpile.com/b/S6tSJ7/yWBCg
http://paperpile.com/b/S6tSJ7/yWBCg
http://paperpile.com/b/S6tSJ7/yWBCg
http://paperpile.com/b/S6tSJ7/yWBCg
http://paperpile.com/b/S6tSJ7/jt5WU
http://paperpile.com/b/S6tSJ7/jt5WU
http://paperpile.com/b/S6tSJ7/jt5WU
http://paperpile.com/b/S6tSJ7/jt5WU
http://paperpile.com/b/S6tSJ7/jt5WU
http://paperpile.com/b/S6tSJ7/jt5WU
http://paperpile.com/b/S6tSJ7/jt5WU
http://paperpile.com/b/S6tSJ7/k38JX
http://paperpile.com/b/S6tSJ7/k38JX
http://paperpile.com/b/S6tSJ7/k38JX
http://paperpile.com/b/S6tSJ7/k38JX
http://paperpile.com/b/S6tSJ7/k38JX
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/NMt3j
http://paperpile.com/b/S6tSJ7/CW1Bl
http://paperpile.com/b/S6tSJ7/CW1Bl
http://paperpile.com/b/S6tSJ7/CW1Bl
http://paperpile.com/b/S6tSJ7/CW1Bl
http://paperpile.com/b/S6tSJ7/1MA81
http://paperpile.com/b/S6tSJ7/1MA81
http://paperpile.com/b/S6tSJ7/1MA81
http://paperpile.com/b/S6tSJ7/1MA81
http://paperpile.com/b/S6tSJ7/1MA81
http://paperpile.com/b/S6tSJ7/bYzxx


 

173 

Cell 163, 1011–1025 (2015). 

145. Cooperberg, M. R., Hilton, J. F. & Carroll, P. R. The CAPRA-S score: a straightforward tool for 

improved prediction of outcomes after radical prostatectomy. Cancer 117, 5039–5046 (2011). 

146. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model 

analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014). 

147. Liu, R. et al. Why weight? Modelling sample and observational level variability improves power in 

RNA-seq analyses. Nucleic Acids Res. 43, e97 (2015). 

148. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and 

microarray studies. Nucleic Acids Res. 43, e47 (2015). 

149. Wilkinson, G. N. & Rogers, C. E. Symbolic Description of Factorial Models for Analysis of 

Variance. J. R. Stat. Soc. Ser. C Appl. Stat. 22, 392–399 (1973). 

150. Nafie, S., Pal, R. P., Dormer, J. P. & Khan, M. A. Transperineal template prostate biopsies in men 

with raised PSA despite two previous sets of negative TRUS-guided prostate biopsies. World J. 

Urol. 32, 971–975 (2014). 

151. Pokorny, M. R. et al. Prospective study of diagnostic accuracy comparing prostate cancer detection 

by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent 

MR-guided biopsy in men without previous prostate biopsies. Eur. Urol. 66, 22–29 (2014). 

152. Cooperberg, M. R. et al. Validation of a cell-cycle progression gene panel to improve risk 

stratification in a contemporary prostatectomy cohort. J. Clin. Oncol. 31, 1428–1434 (2013). 

153. Wei, L. et al. Intratumoral and Intertumoral Genomic Heterogeneity of Multifocal Localized Prostate 

Cancer Impacts Molecular Classifications and Genomic Prognosticators. Eur. Urol. 71, 183–192 

(2017). 

154. Schlomm, T. et al. Molecular cancer phenotype in normal prostate tissue. Eur. Urol. 55, 885–890 

(2009). 

155. Risk, M. C. et al. Differential gene expression in benign prostate epithelium of men with and without 

prostate cancer: evidence for a prostate cancer field effect. Clin. Cancer Res. 16, 5414–5423 (2010). 

http://paperpile.com/b/S6tSJ7/bYzxx
http://paperpile.com/b/S6tSJ7/bYzxx
http://paperpile.com/b/S6tSJ7/bYzxx
http://paperpile.com/b/S6tSJ7/bYzxx
http://paperpile.com/b/S6tSJ7/MGlDZ
http://paperpile.com/b/S6tSJ7/MGlDZ
http://paperpile.com/b/S6tSJ7/MGlDZ
http://paperpile.com/b/S6tSJ7/MGlDZ
http://paperpile.com/b/S6tSJ7/MGlDZ
http://paperpile.com/b/S6tSJ7/MGlDZ
http://paperpile.com/b/S6tSJ7/etL7L
http://paperpile.com/b/S6tSJ7/etL7L
http://paperpile.com/b/S6tSJ7/etL7L
http://paperpile.com/b/S6tSJ7/etL7L
http://paperpile.com/b/S6tSJ7/etL7L
http://paperpile.com/b/S6tSJ7/etL7L
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/prXHF
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/MzXdc
http://paperpile.com/b/S6tSJ7/YVJS5
http://paperpile.com/b/S6tSJ7/YVJS5
http://paperpile.com/b/S6tSJ7/YVJS5
http://paperpile.com/b/S6tSJ7/YVJS5
http://paperpile.com/b/S6tSJ7/YVJS5
http://paperpile.com/b/S6tSJ7/YVJS5
http://paperpile.com/b/S6tSJ7/QoiD4
http://paperpile.com/b/S6tSJ7/QoiD4
http://paperpile.com/b/S6tSJ7/QoiD4
http://paperpile.com/b/S6tSJ7/QoiD4
http://paperpile.com/b/S6tSJ7/QoiD4
http://paperpile.com/b/S6tSJ7/QoiD4
http://paperpile.com/b/S6tSJ7/QoiD4
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/2IfoW
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/uaAZP
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/0dpwz
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/ulHZy
http://paperpile.com/b/S6tSJ7/2mzLQ
http://paperpile.com/b/S6tSJ7/2mzLQ
http://paperpile.com/b/S6tSJ7/2mzLQ
http://paperpile.com/b/S6tSJ7/2mzLQ
http://paperpile.com/b/S6tSJ7/2mzLQ
http://paperpile.com/b/S6tSJ7/2mzLQ
http://paperpile.com/b/S6tSJ7/2mzLQ
http://paperpile.com/b/S6tSJ7/2mzLQ


 

174 

156. Kosari, F. et al. Shared gene expression alterations in prostate cancer and histologically benign 

prostate from patients with prostate cancer. Am. J. Pathol. 181, 34–42 (2012). 

157. Magi-Galluzzi, C. et al. Gene expression in normal-appearing tissue adjacent to prostate cancers are 

predictive of clinical outcome: evidence for a biologically meaningful field effect. Oncotarget 7, 

33855–33865 (2016). 

158. Taylor, R. A., Lo, J., Ascui, N. & Watt, M. J. Linking obesogenic dysregulation to prostate cancer 

progression. Endocr Connect 4, R68–80 (2015). 

159. Sacca, P. A. et al. Human periprostatic adipose tissue: its influence on prostate cancer cells. Cell. 

Physiol. Biochem. 30, 113–122 (2012). 

160. Laurent, V. et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in 

obesity. Nat. Commun. 7, 10230 (2016). 

161. Zhang, Q., Sun, L.-J., Yang, Z.-G., Zhang, G.-M. & Huo, R.-C. Influence of adipocytokines in 

periprostatic adipose tissue on prostate cancer aggressiveness. Cytokine 85, 148–156 (2016). 

162. Guaita-Esteruelas, S., Gumà, J., Masana, L. & Borràs, J. The peritumoural adipose tissue 

microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 

5. Mol. Cell. Endocrinol. 462, 107–118 (2018). 

163. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic 

chemotherapy. Nature 521, 94–98 (2015). 

164. Li, H. et al. Olfactomedin 4 deficiency promotes prostate neoplastic progression and is associated 

with upregulation of the hedgehog-signaling pathway. Sci. Rep. 5, 16974 (2015). 

165. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 

(2015). 

166. Clemmensen, S. N. et al. Olfactomedin 4 defines a subset of human neutrophils. J. Leukoc. Biol. 91, 

495–500 (2012). 

167. Liu, H. Y. & Zhang, C. J. Identification of differentially expressed genes and their upstream 

regulators in colorectal cancer. Cancer Gene Ther. 24, 244–250 (2017). 

http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/ce41G
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/p4dlS
http://paperpile.com/b/S6tSJ7/r5Vf7
http://paperpile.com/b/S6tSJ7/r5Vf7
http://paperpile.com/b/S6tSJ7/r5Vf7
http://paperpile.com/b/S6tSJ7/r5Vf7
http://paperpile.com/b/S6tSJ7/r5Vf7
http://paperpile.com/b/S6tSJ7/r5Vf7
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/E9DEh
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/8ZdV2
http://paperpile.com/b/S6tSJ7/Xk7eD
http://paperpile.com/b/S6tSJ7/Xk7eD
http://paperpile.com/b/S6tSJ7/Xk7eD
http://paperpile.com/b/S6tSJ7/Xk7eD
http://paperpile.com/b/S6tSJ7/Xk7eD
http://paperpile.com/b/S6tSJ7/Xk7eD
http://paperpile.com/b/S6tSJ7/yuoME
http://paperpile.com/b/S6tSJ7/yuoME
http://paperpile.com/b/S6tSJ7/yuoME
http://paperpile.com/b/S6tSJ7/yuoME
http://paperpile.com/b/S6tSJ7/yuoME
http://paperpile.com/b/S6tSJ7/yuoME
http://paperpile.com/b/S6tSJ7/yuoME
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/cN15i
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/yB9Hg
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/h37ay
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/DHa4T
http://paperpile.com/b/S6tSJ7/b54IP
http://paperpile.com/b/S6tSJ7/b54IP
http://paperpile.com/b/S6tSJ7/b54IP
http://paperpile.com/b/S6tSJ7/b54IP
http://paperpile.com/b/S6tSJ7/b54IP
http://paperpile.com/b/S6tSJ7/b54IP


 

175 

168. McKiernan, J. et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate 

Cancer at Initial Biopsy. JAMA Oncol 2, 882–889 (2016). 

169. Tomlins, S. A. et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk 

Assessment. Eur. Urol. 70, 45–53 (2016). 

170. Van Neste, L. et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker-

Based Risk Score. Eur. Urol. 70, 740–748 (2016). 

171. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. Cancer Res. (1941). 

172. James, N. D. et al. Survival with Newly Diagnosed Metastatic Prostate Cancer in the ‘Docetaxel 

Era’: Data from 917 Patients in the Control Arm of the STAMPEDE Trial (MRC PR08, 

CRUK/06/019). Eur. Urol. 67, 1028–1038 (2015). 

173. Rhee, H. et al. Adverse effects of androgen-deprivation therapy in prostate cancer and their 

management. BJU Int. 115 Suppl 5, 3–13 (2015). 

174. Faris, J. E. & Smith, M. R. Metabolic sequelae associated with androgen deprivation therapy for 

prostate cancer. Curr. Opin. Endocrinol. Diabetes Obes. 17, 240–246 (2010). 

175. Braunstein, L. Z., Chen, M.-H., Loffredo, M., Kantoff, P. W. & D’Amico, A. V. Obesity and the 

Odds of Weight Gain following Androgen Deprivation Therapy for Prostate Cancer. Prostate 

Cancer 2014, 230812 (2014). 

176. Comitato, R., Saba, A., Turrini, A., Arganini, C. & Virgili, F. Sex hormones and macronutrient 

metabolism. Crit. Rev. Food Sci. Nutr. 55, 227–241 (2015). 

177. van Londen, G. J., Levy, M. E., Perera, S., Nelson, J. B. & Greenspan, S. L. Body composition 

changes during androgen deprivation therapy for prostate cancer: a 2-year prospective study. Crit. 

Rev. Oncol. Hematol. 68, 172–177 (2008). 

178. Smith, J. C. et al. The effects of induced hypogonadism on arterial stiffness, body composition, and 

metabolic parameters in males with prostate cancer. J. Clin. Endocrinol. Metab. 86, 4261–4267 

(2001). 

179. Dockery, F., Bulpitt, C. J., Agarwal, S., Donaldson, M. & Rajkumar, C. Testosterone suppression in 

http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/KQqLX
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/TXo9X
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/AyMUD
http://paperpile.com/b/S6tSJ7/Yepk3
http://paperpile.com/b/S6tSJ7/Yepk3
http://paperpile.com/b/S6tSJ7/Yepk3
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/dpHeG
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/7Garo
http://paperpile.com/b/S6tSJ7/h6mFw
http://paperpile.com/b/S6tSJ7/h6mFw
http://paperpile.com/b/S6tSJ7/h6mFw
http://paperpile.com/b/S6tSJ7/h6mFw
http://paperpile.com/b/S6tSJ7/h6mFw
http://paperpile.com/b/S6tSJ7/h6mFw
http://paperpile.com/b/S6tSJ7/Fbua8
http://paperpile.com/b/S6tSJ7/Fbua8
http://paperpile.com/b/S6tSJ7/Fbua8
http://paperpile.com/b/S6tSJ7/Fbua8
http://paperpile.com/b/S6tSJ7/Fbua8
http://paperpile.com/b/S6tSJ7/Fbua8
http://paperpile.com/b/S6tSJ7/Fbua8
http://paperpile.com/b/S6tSJ7/GxenE
http://paperpile.com/b/S6tSJ7/GxenE
http://paperpile.com/b/S6tSJ7/GxenE
http://paperpile.com/b/S6tSJ7/GxenE
http://paperpile.com/b/S6tSJ7/GxenE
http://paperpile.com/b/S6tSJ7/GxenE
http://paperpile.com/b/S6tSJ7/VebSH
http://paperpile.com/b/S6tSJ7/VebSH
http://paperpile.com/b/S6tSJ7/VebSH
http://paperpile.com/b/S6tSJ7/VebSH
http://paperpile.com/b/S6tSJ7/VebSH
http://paperpile.com/b/S6tSJ7/VebSH
http://paperpile.com/b/S6tSJ7/VebSH
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/bSe4n
http://paperpile.com/b/S6tSJ7/grelx


 

176 

men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia. Clin. Sci.  

104, 195–201 (2003). 

180. Smith, M. R., Lee, H. & Nathan, D. M. Insulin sensitivity during combined androgen blockade for 

prostate cancer. J. Clin. Endocrinol. Metab. 91, 1305–1308 (2006). 

181. Freedland, S. J. & Aronson, W. J. Examining the relationship between obesity and prostate cancer. 

Rev. Urol. 6, 73–81 (2004). 

182. Chow, K. et al. Obesity suppresses tumor attributable PSA, affecting risk categorization. Endocr. 

Relat. Cancer 25, 561–568 (2018). 

183. Amling, C. L. et al. Relationship between obesity and race in predicting adverse pathologic variables 

in patients undergoing radical prostatectomy. Urology 58, 723–728 (2001). 

184. Rohrmann, S., Roberts, W. W., Walsh, P. C. & Platz, E. A. Family history of prostate cancer and 

obesity in relation to high-grade disease and extraprostatic extension in young men with prostate 

cancer. Prostate 55, 140–146 (2003). 

185. Mydlo, J. H., Tieng, N. L., Volpe, M. A., Chaiken, R. & Kral, J. G. A pilot study analyzing PSA, 

serum testosterone, lipid profile, body mass index and race in a small sample of patients with and 

without carcinoma of the prostate. Prostate Cancer Prostatic Dis. 4, 101–105 (2001). 

186. Freedland, S. J. et al. Impact of obesity on biochemical control after radical prostatectomy for 

clinically localized prostate cancer: a report by the Shared Equal Access Regional Cancer Hospital 

database study group. J. Clin. Oncol. 22, 446–453 (2004). 

187. Amling, C. L. et al. Pathologic variables and recurrence rates as related to obesity and race in men 

with prostate cancer undergoing radical prostatectomy. J. Clin. Oncol. 22, 439–445 (2004). 

188. Rodriguez, C. et al. Body mass index, height, and prostate cancer mortality in two large cohorts of 

adult men in the United States. Cancer Epidemiol. Biomarkers Prev. 10, 345–353 (2001). 

189. Mangiola, S. et al. Periprostatic fat tissue transcriptome reveals a signature diagnostic for high-risk 

prostate cancer. Endocr. Relat. Cancer 25, 569–581 (2018). 

190. Alhamdoosh, M., Ng, M. & Ritchie, M. E. EGSEA: Ensemble of Gene Set Enrichment Analyses. R 

http://paperpile.com/b/S6tSJ7/grelx
http://paperpile.com/b/S6tSJ7/grelx
http://paperpile.com/b/S6tSJ7/grelx
http://paperpile.com/b/S6tSJ7/grelx
http://paperpile.com/b/S6tSJ7/grelx
http://paperpile.com/b/S6tSJ7/grelx
http://paperpile.com/b/S6tSJ7/iCULx
http://paperpile.com/b/S6tSJ7/iCULx
http://paperpile.com/b/S6tSJ7/iCULx
http://paperpile.com/b/S6tSJ7/iCULx
http://paperpile.com/b/S6tSJ7/iCULx
http://paperpile.com/b/S6tSJ7/iCULx
http://paperpile.com/b/S6tSJ7/p1iCh
http://paperpile.com/b/S6tSJ7/p1iCh
http://paperpile.com/b/S6tSJ7/p1iCh
http://paperpile.com/b/S6tSJ7/p1iCh
http://paperpile.com/b/S6tSJ7/p1iCh
http://paperpile.com/b/S6tSJ7/p1iCh
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/o1cVC
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/ZaEuA
http://paperpile.com/b/S6tSJ7/1zp25
http://paperpile.com/b/S6tSJ7/1zp25
http://paperpile.com/b/S6tSJ7/1zp25
http://paperpile.com/b/S6tSJ7/1zp25
http://paperpile.com/b/S6tSJ7/1zp25
http://paperpile.com/b/S6tSJ7/1zp25
http://paperpile.com/b/S6tSJ7/1zp25
http://paperpile.com/b/S6tSJ7/nKLDY
http://paperpile.com/b/S6tSJ7/nKLDY
http://paperpile.com/b/S6tSJ7/nKLDY
http://paperpile.com/b/S6tSJ7/nKLDY
http://paperpile.com/b/S6tSJ7/nKLDY
http://paperpile.com/b/S6tSJ7/nKLDY
http://paperpile.com/b/S6tSJ7/nKLDY
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/DjyZb
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/bcSOu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/CCMeu
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/mOzTj
http://paperpile.com/b/S6tSJ7/EI4vr
http://paperpile.com/b/S6tSJ7/EI4vr


 

177 

package version 1, (2017). 

191. Das, S. K., Ma, L. & Sharma, N. K. Adipose tissue gene expression and metabolic health of obese 

adults. Int. J. Obes.  39, 869–873 (2015). 

192. Maier, M. J. DirichletReg: Dirichlet regression for compositional data in R. (2014). 

193. Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 20, 1–37 (2016). 

194. Botstein, D. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000). 

195. Nebert, D. W. & Russell, D. W. Clinical importance of the cytochromes P450. Lancet 360, 1155–

1162 (2002). 

196. Sampath, H. & Ntambi, J. M. The role of fatty acid desaturases in epidermal metabolism. 

Dermatoendocrinol. 3, 62–64 (2011). 

197. Bianco, A. C. & Kim, B. W. Deiodinases: implications of the local control of thyroid hormone 

action. J. Clin. Invest. 116, 2571–2579 (2006). 

198. Panigrahi, S. K., Manterola, M. & Wolgemuth, D. J. Meiotic failure in cyclin A1-deficient mouse 

spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 

proteins. PLoS One 12, e0173926 (2017). 

199. Lefranc, M.-P. Immunoglobulin and T Cell Receptor Genes: IMGT® and the Birth and Rise of 

Immunoinformatics. Front. Immunol. 5, (2014). 

200. Ressler, S. J. et al. WFDC1 is a key modulator of inflammatory and wound repair responses. Am. J. 

Pathol. 184, 2951–2964 (2014). 

201. Jones, R. J., Dickerson, S., Bhende, P. M., Delecluse, H.-J. & Kenney, S. C. Epstein-Barr virus lytic 

infection induces retinoic acid-responsive genes through induction of a retinol-metabolizing enzyme, 

DHRS9. J. Biol. Chem. 282, 8317–8324 (2007). 

202. Riquelme, P. et al. DHRS9 Is a Stable Marker of Human Regulatory Macrophages. Transplantation 

101, 2731–2738 (2017). 

203. Xiang, J. et al. Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in 

Caco2 Cells. Int. J. Mol. Sci. 17, (2016). 

http://paperpile.com/b/S6tSJ7/EI4vr
http://paperpile.com/b/S6tSJ7/EI4vr
http://paperpile.com/b/S6tSJ7/EI4vr
http://paperpile.com/b/S6tSJ7/EI4vr
http://paperpile.com/b/S6tSJ7/jZMEm
http://paperpile.com/b/S6tSJ7/jZMEm
http://paperpile.com/b/S6tSJ7/jZMEm
http://paperpile.com/b/S6tSJ7/jZMEm
http://paperpile.com/b/S6tSJ7/jZMEm
http://paperpile.com/b/S6tSJ7/jZMEm
http://paperpile.com/b/S6tSJ7/Sx1NB
http://paperpile.com/b/S6tSJ7/WT6WM
http://paperpile.com/b/S6tSJ7/WT6WM
http://paperpile.com/b/S6tSJ7/WT6WM
http://paperpile.com/b/S6tSJ7/WT6WM
http://paperpile.com/b/S6tSJ7/WT6WM
http://paperpile.com/b/S6tSJ7/WT6WM
http://paperpile.com/b/S6tSJ7/WT6WM
http://paperpile.com/b/S6tSJ7/u3HCe
http://paperpile.com/b/S6tSJ7/u3HCe
http://paperpile.com/b/S6tSJ7/u3HCe
http://paperpile.com/b/S6tSJ7/u3HCe
http://paperpile.com/b/S6tSJ7/u3HCe
http://paperpile.com/b/S6tSJ7/u3HCe
http://paperpile.com/b/S6tSJ7/u3HCe
http://paperpile.com/b/S6tSJ7/dQKNu
http://paperpile.com/b/S6tSJ7/dQKNu
http://paperpile.com/b/S6tSJ7/dQKNu
http://paperpile.com/b/S6tSJ7/dQKNu
http://paperpile.com/b/S6tSJ7/dQKNu
http://paperpile.com/b/S6tSJ7/dQKNu
http://paperpile.com/b/S6tSJ7/o2nJT
http://paperpile.com/b/S6tSJ7/o2nJT
http://paperpile.com/b/S6tSJ7/o2nJT
http://paperpile.com/b/S6tSJ7/o2nJT
http://paperpile.com/b/S6tSJ7/o2nJT
http://paperpile.com/b/S6tSJ7/o2nJT
http://paperpile.com/b/S6tSJ7/QDDUn
http://paperpile.com/b/S6tSJ7/QDDUn
http://paperpile.com/b/S6tSJ7/QDDUn
http://paperpile.com/b/S6tSJ7/QDDUn
http://paperpile.com/b/S6tSJ7/QDDUn
http://paperpile.com/b/S6tSJ7/QDDUn
http://paperpile.com/b/S6tSJ7/WI7cg
http://paperpile.com/b/S6tSJ7/WI7cg
http://paperpile.com/b/S6tSJ7/WI7cg
http://paperpile.com/b/S6tSJ7/WI7cg
http://paperpile.com/b/S6tSJ7/WI7cg
http://paperpile.com/b/S6tSJ7/WI7cg
http://paperpile.com/b/S6tSJ7/WI7cg
http://paperpile.com/b/S6tSJ7/I3CKC
http://paperpile.com/b/S6tSJ7/I3CKC
http://paperpile.com/b/S6tSJ7/I3CKC
http://paperpile.com/b/S6tSJ7/I3CKC
http://paperpile.com/b/S6tSJ7/I3CKC
http://paperpile.com/b/S6tSJ7/I3CKC
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/Hp2EO
http://paperpile.com/b/S6tSJ7/pcwmB
http://paperpile.com/b/S6tSJ7/pcwmB
http://paperpile.com/b/S6tSJ7/pcwmB
http://paperpile.com/b/S6tSJ7/pcwmB
http://paperpile.com/b/S6tSJ7/pcwmB
http://paperpile.com/b/S6tSJ7/pcwmB
http://paperpile.com/b/S6tSJ7/pcwmB
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/bEBuK
http://paperpile.com/b/S6tSJ7/obMqL
http://paperpile.com/b/S6tSJ7/obMqL
http://paperpile.com/b/S6tSJ7/obMqL
http://paperpile.com/b/S6tSJ7/obMqL
http://paperpile.com/b/S6tSJ7/obMqL
http://paperpile.com/b/S6tSJ7/obMqL
http://paperpile.com/b/S6tSJ7/obMqL
http://paperpile.com/b/S6tSJ7/obMqL


 

178 

204. Baumgartner, R. N. Body composition in healthy aging. Ann. N. Y. Acad. Sci. 904, 437–448 (2000). 

205. Stenholm, S. et al. Sarcopenic obesity: definition, cause and consequences. Curr. Opin. Clin. Nutr. 

Metab. Care 11, 693–700 (2008). 

206. Oh, D. Y., Morinaga, H., Talukdar, S., Bae, E. J. & Olefsky, J. M. Increased macrophage migration 

into adipose tissue in obese mice. Diabetes 61, 346–354 (2012). 

207. Suganami, T., Nishida, J. & Ogawa, Y. A paracrine loop between adipocytes and macrophages 

aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. 

Arterioscler. Thromb. Vasc. Biol. 25, 2062–2068 (2005). 

208. Wang, Y.-Q. et al. Peripheral monocyte count: an independent diagnostic and prognostic biomarker 

for prostate cancer - a large Chinese cohort study. Asian J. Androl. 19, 579–585 (2017). 

209. Nonomura, N. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is 

predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 107, 1918–

1922 (2011). 

210. Montgomery, B. et al. Neoadjuvant Enzalutamide Prior to Prostatectomy. Clin. Cancer Res. 23, 

2169–2176 (2017). 

211. Tombal, B. et al. Enzalutamide monotherapy in hormone-naive prostate cancer: primary analysis of 

an open-label, single-arm, phase 2 study. Lancet Oncol. 15, 592–600 (2014). 

212. Palmberg, C., Koivisto, P., Visakorpi, T. & Tammela, T. L. PSA decline is an independent 

prognostic marker in hormonally treated prostate cancer. Eur. Urol. 36, 191–196 (1999). 

213. Gittes, R. F. Carcinoma of the prostate. N. Engl. J. Med. 324, 236–245 (1991). 

214. Crawford, E. D. et al. A controlled trial of leuprolide with and without flutamide in prostatic 

carcinoma. N. Engl. J. Med. 321, 419–424 (1989). 

215. Denis, L. J. et al. Goserelin acetate and flutamide versus bilateral orchiectomy: a phase III EORTC 

trial (30853). EORTC GU Group and EORTC Data Center. Urology 42, 119–29; discussion 129–30 

(1993). 

216. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune 

http://paperpile.com/b/S6tSJ7/qAQw3
http://paperpile.com/b/S6tSJ7/qAQw3
http://paperpile.com/b/S6tSJ7/qAQw3
http://paperpile.com/b/S6tSJ7/qAQw3
http://paperpile.com/b/S6tSJ7/qAQw3
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wdcDh
http://paperpile.com/b/S6tSJ7/wDcaq
http://paperpile.com/b/S6tSJ7/wDcaq
http://paperpile.com/b/S6tSJ7/wDcaq
http://paperpile.com/b/S6tSJ7/wDcaq
http://paperpile.com/b/S6tSJ7/wDcaq
http://paperpile.com/b/S6tSJ7/wDcaq
http://paperpile.com/b/S6tSJ7/UlIAk
http://paperpile.com/b/S6tSJ7/UlIAk
http://paperpile.com/b/S6tSJ7/UlIAk
http://paperpile.com/b/S6tSJ7/UlIAk
http://paperpile.com/b/S6tSJ7/UlIAk
http://paperpile.com/b/S6tSJ7/UlIAk
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/H5BUF
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/nITKn
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/lkYpF
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/iwID9
http://paperpile.com/b/S6tSJ7/toqeC
http://paperpile.com/b/S6tSJ7/toqeC
http://paperpile.com/b/S6tSJ7/toqeC
http://paperpile.com/b/S6tSJ7/toqeC
http://paperpile.com/b/S6tSJ7/toqeC
http://paperpile.com/b/S6tSJ7/toqeC
http://paperpile.com/b/S6tSJ7/p7O7u
http://paperpile.com/b/S6tSJ7/p7O7u
http://paperpile.com/b/S6tSJ7/p7O7u
http://paperpile.com/b/S6tSJ7/p7O7u
http://paperpile.com/b/S6tSJ7/p7O7u
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/QbWAE
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/tm8LH
http://paperpile.com/b/S6tSJ7/NhvZD
http://paperpile.com/b/S6tSJ7/NhvZD
http://paperpile.com/b/S6tSJ7/NhvZD


 

179 

landscape in human cancer. Immunity 39, 782–795 (2013). 

217. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-

seq. Science 352, 189–196 (2016). 

218. Pearce, O. M. T. et al. Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common 

Matrix Response in Human Cancers. Cancer Discov. 8, 304–319 (2018). 

219. Ostman, A. The tumor microenvironment controls drug sensitivity. Nat. Med. 18, 1332–1334 (2012). 

220. Mlecnik, B. et al. The tumor microenvironment and Immunoscore are critical determinants of 

dissemination to distant metastasis. Sci. Transl. Med. 8, 327ra26 (2016). 

221. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 

2184–2185 (2012). 

222. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact 

alignments. Genome Biol. 15, R46 (2014). 

223. Cooperberg, M. R., Hilton, J. F. & Carroll, P. R. The CAPRA‐S score: a straightforward tool for 

improved prediction of outcomes after radical prostatectomy. Cancer (2011). 

224. Richards, F. J. A Flexible Growth Function for Empirical Use. J. Exp. Bot. 10, 290–301 (1959). 

225. Piironen, J. & Vehtari, A. Sparsity information and regularization in the horseshoe and other 

shrinkage priors. Electron. J. Stat. 11, 5018–5051 (2017). 

226. Gelman, A. et al. Bayesian Data Analysis, Third Edition. (CRC Press, 2013). 

227. Gabry, J. Graphical posterior predictive checks using the bayesplot package. (2018). Available at: 

https://cran.r-project.org/web/packages/bayesplot/vignettes/graphical-ppcs.html. (Accessed: 13th 

July 2018) 

228. Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and 

microarray data analysis. Bioinformatics 21, 3439–3440 (2005). 

229. Kumar, V. et al. Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor 

Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell 32, 654–668.e5 (2017). 

230. Liu, M. et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic 

http://paperpile.com/b/S6tSJ7/NhvZD
http://paperpile.com/b/S6tSJ7/NhvZD
http://paperpile.com/b/S6tSJ7/NhvZD
http://paperpile.com/b/S6tSJ7/NhvZD
http://paperpile.com/b/S6tSJ7/NhvZD
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/8VAMc
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/Q7v4b
http://paperpile.com/b/S6tSJ7/JTQyj
http://paperpile.com/b/S6tSJ7/JTQyj
http://paperpile.com/b/S6tSJ7/JTQyj
http://paperpile.com/b/S6tSJ7/JTQyj
http://paperpile.com/b/S6tSJ7/JTQyj
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IadFS
http://paperpile.com/b/S6tSJ7/IDbXs
http://paperpile.com/b/S6tSJ7/IDbXs
http://paperpile.com/b/S6tSJ7/IDbXs
http://paperpile.com/b/S6tSJ7/IDbXs
http://paperpile.com/b/S6tSJ7/IDbXs
http://paperpile.com/b/S6tSJ7/IDbXs
http://paperpile.com/b/S6tSJ7/17Gnw
http://paperpile.com/b/S6tSJ7/17Gnw
http://paperpile.com/b/S6tSJ7/17Gnw
http://paperpile.com/b/S6tSJ7/17Gnw
http://paperpile.com/b/S6tSJ7/17Gnw
http://paperpile.com/b/S6tSJ7/17Gnw
http://paperpile.com/b/S6tSJ7/troqV
http://paperpile.com/b/S6tSJ7/troqV
http://paperpile.com/b/S6tSJ7/troqV
http://paperpile.com/b/S6tSJ7/troqV
http://paperpile.com/b/S6tSJ7/L1HZ2
http://paperpile.com/b/S6tSJ7/L1HZ2
http://paperpile.com/b/S6tSJ7/L1HZ2
http://paperpile.com/b/S6tSJ7/L1HZ2
http://paperpile.com/b/S6tSJ7/L1HZ2
http://paperpile.com/b/S6tSJ7/9OEQ8
http://paperpile.com/b/S6tSJ7/9OEQ8
http://paperpile.com/b/S6tSJ7/9OEQ8
http://paperpile.com/b/S6tSJ7/9OEQ8
http://paperpile.com/b/S6tSJ7/9OEQ8
http://paperpile.com/b/S6tSJ7/9OEQ8
http://paperpile.com/b/S6tSJ7/XrXFW
http://paperpile.com/b/S6tSJ7/XrXFW
http://paperpile.com/b/S6tSJ7/XrXFW
http://paperpile.com/b/S6tSJ7/XrXFW
http://paperpile.com/b/S6tSJ7/XrXFW
http://paperpile.com/b/S6tSJ7/V0BLh
http://paperpile.com/b/S6tSJ7/V0BLh
https://cran.r-project.org/web/packages/bayesplot/vignettes/graphical-ppcs.html.
http://paperpile.com/b/S6tSJ7/V0BLh
http://paperpile.com/b/S6tSJ7/V0BLh
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/RuK4H
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/GHbxb
http://paperpile.com/b/S6tSJ7/iRDoq
http://paperpile.com/b/S6tSJ7/iRDoq
http://paperpile.com/b/S6tSJ7/iRDoq


 

180 

implications. Cytokine Growth Factor Rev. 22, 121–130 (2011). 

231. Lu, J., Chatterjee, M., Schmid, H., Beck, S. & Gawaz, M. CXCL14 as an emerging immune and 

inflammatory modulator. J. Inflamm.  13, 1 (2016). 

232. Latour, S. et al. Regulation of SLAM-mediated signal transduction by SAP, the X-linked 

lymphoproliferative gene product. Nat. Immunol. 2, 681–690 (2001). 

233. Wang, G. et al. Migration of myeloid cells during inflammation is differentially regulated by the cell 

surface receptors Slamf1 and Slamf8. PLoS One 10, e0121968 (2015). 

234. Consequences of the crosstalk between monocytes/macrophages and natural killer cells. Front. 

(2012). 

235. Rovis, T. L., Brlic, P. K., Kaynan, N. & Lisnic, V. J. Inflammatory monocytes and NK cells play a 

crucial role in DNAM-1–dependent control of cytomegalovirus infection. Journal of (2016). 

236. O’Connell, P. A., Surette, A. P., Liwski, R. S., Svenningsson, P. & Waisman, D. M. S100A10 

regulates plasminogen-dependent macrophage invasion. Blood 116, 1136–1146 (2010). 

237. Wu, X. et al. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy. Cancer 

Immunol Res 5, 17–28 (2017). 

238. Vijayan, V. et al. A New Immunomodulatory Role for Peroxisomes in Macrophages Activated by 

the TLR4 Ligand Lipopolysaccharide. J. Immunol. 198, 2414–2425 (2017). 

239. Cohen, N. et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment 

in breast cancer via secretion of Chitinase 3-like 1. Oncogene 36, 4457–4468 (2017). 

240. Jounaidi, Y., Cotten, J. F., Miller, K. W. & Forman, S. A. Tethering IL2 to Its Receptor IL2Rβ 

Enhances Antitumor Activity and Expansion of Natural Killer NK92 Cells. Cancer Res. 77, 5938–

5951 (2017). 

241. ImmuNet. Available at: http://immunet.princeton.edu/genes/detail/homo-sapien/IL2RB/. (Accessed: 

26th August 2018) 

242. Espinoza-Delgado, I. et al. Interleukin-2 and human monocyte activation. J. Leukoc. Biol. 57, 13–19 

(1995). 

http://paperpile.com/b/S6tSJ7/iRDoq
http://paperpile.com/b/S6tSJ7/iRDoq
http://paperpile.com/b/S6tSJ7/iRDoq
http://paperpile.com/b/S6tSJ7/iRDoq
http://paperpile.com/b/S6tSJ7/iRDoq
http://paperpile.com/b/S6tSJ7/qNr9c
http://paperpile.com/b/S6tSJ7/qNr9c
http://paperpile.com/b/S6tSJ7/qNr9c
http://paperpile.com/b/S6tSJ7/qNr9c
http://paperpile.com/b/S6tSJ7/qNr9c
http://paperpile.com/b/S6tSJ7/qNr9c
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/9tCqx
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/a0hOQ
http://paperpile.com/b/S6tSJ7/9lGyS
http://paperpile.com/b/S6tSJ7/9lGyS
http://paperpile.com/b/S6tSJ7/Tc9yY
http://paperpile.com/b/S6tSJ7/Tc9yY
http://paperpile.com/b/S6tSJ7/Tc9yY
http://paperpile.com/b/S6tSJ7/Tc9yY
http://paperpile.com/b/S6tSJ7/cdGLp
http://paperpile.com/b/S6tSJ7/cdGLp
http://paperpile.com/b/S6tSJ7/cdGLp
http://paperpile.com/b/S6tSJ7/cdGLp
http://paperpile.com/b/S6tSJ7/cdGLp
http://paperpile.com/b/S6tSJ7/cdGLp
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/y0k5N
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/AXQFZ
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/jCANX
http://paperpile.com/b/S6tSJ7/qZGPW
http://paperpile.com/b/S6tSJ7/qZGPW
http://paperpile.com/b/S6tSJ7/qZGPW
http://paperpile.com/b/S6tSJ7/qZGPW
http://paperpile.com/b/S6tSJ7/qZGPW
http://paperpile.com/b/S6tSJ7/qZGPW
http://paperpile.com/b/S6tSJ7/qZGPW
http://paperpile.com/b/S6tSJ7/Np5nj
http://immunet.princeton.edu/genes/detail/homo-sapien/IL2RB/
http://paperpile.com/b/S6tSJ7/Np5nj
http://paperpile.com/b/S6tSJ7/Np5nj
http://paperpile.com/b/S6tSJ7/9hp6e
http://paperpile.com/b/S6tSJ7/9hp6e
http://paperpile.com/b/S6tSJ7/9hp6e
http://paperpile.com/b/S6tSJ7/9hp6e
http://paperpile.com/b/S6tSJ7/9hp6e
http://paperpile.com/b/S6tSJ7/9hp6e
http://paperpile.com/b/S6tSJ7/9hp6e
http://paperpile.com/b/S6tSJ7/9hp6e


 

181 

243. Kim, M. et al. Novel natural killer cell-mediated cancer immunotherapeutic activity of anisomycin 

against hepatocellular carcinoma cells. Sci. Rep. 8, 10668 (2018). 

244. Ihanus, E., Uotila, L. M., Toivanen, A., Varis, M. & Gahmberg, C. G. Red-cell ICAM-4 is a ligand 

for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-

4. Blood 109, 802–810 (2007). 

245. Järvinen, T. A. H. & Ruoslahti, E. Target-seeking antifibrotic compound enhances wound healing 

and suppresses scar formation in mice. Proc. Natl. Acad. Sci. U. S. A. 107, 21671–21676 (2010). 

246. Zhang, W. et al. Decorin is a pivotal effector in the extracellular matrix and tumour 

microenvironment. Oncotarget 9, 5480–5491 (2018). 

247. Narita, H., Chen, S., Komori, K. & Kadomatsu, K. Midkine is expressed by infiltrating macrophages 

in in-stent restenosis in hypercholesterolemic rabbits. J. Vasc. Surg. 47, 1322–1329 (2008). 

248. Fan, N. et al. Midkine, a potential link between obesity and insulin resistance. PLoS One 9, e88299 

(2014). 

249. Yang, P. et al. Role of PDGF-D and PDGFR-β in neuroinflammation in experimental ICH mice 

model. Exp. Neurol. 283, 157–164 (2016). 

250. GeneCards Human Gene Database. HLA-DRB5 Gene - GeneCards | DRB5 Protein | DRB5 

Antibody. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=HLA-DRB5. 

(Accessed: 26th August 2018) 

251. Genetics Home Reference. HLA-DRB5 gene. Genetics Home Reference Available at: 

https://ghr.nlm.nih.gov/gene/HLA-DRB5. (Accessed: 26th August 2018) 

252. Kolijn, K. et al. Epithelial-Mesenchymal Transition in Human Prostate Cancer Demonstrates 

Enhanced Immune Evasion Marked by IDO1 Expression. Cancer Res. 78, 4671–4679 (2018). 

253. Kai, K. et al. CSF-1/CSF-1R axis is associated with epithelial/mesenchymal hybrid phenotype in 

epithelial-like inflammatory breast cancer. Sci. Rep. 8, 9427 (2018). 

254. Moen, I. et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat 

adenocarcinoma model. PLoS One 4, e6381 (2009). 

http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/cTliG
http://paperpile.com/b/S6tSJ7/Z9i9Y
http://paperpile.com/b/S6tSJ7/Z9i9Y
http://paperpile.com/b/S6tSJ7/Z9i9Y
http://paperpile.com/b/S6tSJ7/Z9i9Y
http://paperpile.com/b/S6tSJ7/Z9i9Y
http://paperpile.com/b/S6tSJ7/Z9i9Y
http://paperpile.com/b/S6tSJ7/Z9i9Y
http://paperpile.com/b/S6tSJ7/2uXNp
http://paperpile.com/b/S6tSJ7/2uXNp
http://paperpile.com/b/S6tSJ7/2uXNp
http://paperpile.com/b/S6tSJ7/2uXNp
http://paperpile.com/b/S6tSJ7/2uXNp
http://paperpile.com/b/S6tSJ7/2uXNp
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Iedsr
http://paperpile.com/b/S6tSJ7/Hs5dd
http://paperpile.com/b/S6tSJ7/Hs5dd
http://paperpile.com/b/S6tSJ7/Hs5dd
http://paperpile.com/b/S6tSJ7/Hs5dd
http://paperpile.com/b/S6tSJ7/Hs5dd
http://paperpile.com/b/S6tSJ7/Hs5dd
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/FgQti
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/7D0n6
http://paperpile.com/b/S6tSJ7/qe7FM
http://paperpile.com/b/S6tSJ7/qe7FM
https://www.genecards.org/cgi-bin/carddisp.pl?gene=HLA-DRB5.
http://paperpile.com/b/S6tSJ7/qe7FM
http://paperpile.com/b/S6tSJ7/qe7FM
http://paperpile.com/b/S6tSJ7/byqIG
http://paperpile.com/b/S6tSJ7/byqIG
http://paperpile.com/b/S6tSJ7/byqIG
http://paperpile.com/b/S6tSJ7/byqIG
https://ghr.nlm.nih.gov/gene/HLA-DRB5.
http://paperpile.com/b/S6tSJ7/byqIG
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/fVaGV
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/h6BLJ
http://paperpile.com/b/S6tSJ7/RRKSR
http://paperpile.com/b/S6tSJ7/RRKSR
http://paperpile.com/b/S6tSJ7/RRKSR
http://paperpile.com/b/S6tSJ7/RRKSR
http://paperpile.com/b/S6tSJ7/RRKSR
http://paperpile.com/b/S6tSJ7/RRKSR
http://paperpile.com/b/S6tSJ7/RRKSR
http://paperpile.com/b/S6tSJ7/RRKSR


 

182 

255. Pivetta, E., Colombatti, A. & Spessotto, P. A Rare Bird among Major Extracellular Matrix Proteins: 

EMILIN1 and the Tumor Suppressor Function. Journal of Carcinogenesis & Mutagenesis 0, 1–11 

(2013). 

256. Tsai, C.-K. et al. Overexpression of PLOD3 promotes tumor progression and poor prognosis in 

gliomas. Oncotarget 9, 15705–15720 (2018). 

257. Higgins, P. J. Expression of the p53 target SERPINE1 (PAI-1) gene is required for human tumor cell 

migration upon plastic conversion to a stem cell-like phenotype in response to TGF- β1+EGF. 

(2016). doi:10.4172/1948-5956.S1.02 

258. Sonnylal, S. et al. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in 

vitro. J. Cell Sci. 126, 2164–2175 (2013). 

259. Tauber, S. et al. Transcriptome analysis of human cancer reveals a functional role of heme 

oxygenase-1 in tumor cell adhesion. Mol. Cancer 9, 200 (2010). 

260. Péterfi, Z. et al. Peroxidasin is secreted and incorporated into the extracellular matrix of 

myofibroblasts and fibrotic kidney. Am. J. Pathol. 175, 725–735 (2009). 

261. Sitole, B. N. & Mavri-Damelin, D. Peroxidasin is regulated by the epithelial-mesenchymal transition 

master transcription factor Snai1. Gene 646, 195–202 (2018). 

262. Terraube, V., Marx, I. & Denis, C. V. Role of von Willebrand factor in tumor metastasis. Thromb. 

Res. 120 Suppl 2, S64–70 (2007). 

263. Joshi, N. et al. Von Willebrand factor deficiency reduces liver fibrosis in mice. Toxicol. Appl. 

Pharmacol. 328, 54–59 (2017). 

264. van Nieuwenhoven, F. A. et al. Cartilage intermediate layer protein 1 (CILP1): A novel mediator of 

cardiac extracellular matrix remodelling. Sci. Rep. 7, 16042 (2017). 

265. Zhang, C.-L. et al. Cartilage intermediate layer protein-1 alleviates pressure overload-induced 

cardiac fibrosis via interfering TGF-β1 signaling. J. Mol. Cell. Cardiol. 116, 135–144 (2018). 

266. Xie, L. et al. Cystatin C increases in cardiac injury: a role in extracellular matrix protein modulation. 

Cardiovasc. Res. 87, 628–635 (2010). 

http://paperpile.com/b/S6tSJ7/0FZcM
http://paperpile.com/b/S6tSJ7/0FZcM
http://paperpile.com/b/S6tSJ7/0FZcM
http://paperpile.com/b/S6tSJ7/0FZcM
http://paperpile.com/b/S6tSJ7/0FZcM
http://paperpile.com/b/S6tSJ7/0FZcM
http://paperpile.com/b/S6tSJ7/0FZcM
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/UerDL
http://paperpile.com/b/S6tSJ7/uIpRz
http://paperpile.com/b/S6tSJ7/uIpRz
http://paperpile.com/b/S6tSJ7/uIpRz
http://dx.doi.org/10.4172/1948-5956.S1.02
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/ClZo0
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/gwwrM
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/naFtr
http://paperpile.com/b/S6tSJ7/FjXIX
http://paperpile.com/b/S6tSJ7/FjXIX
http://paperpile.com/b/S6tSJ7/FjXIX
http://paperpile.com/b/S6tSJ7/FjXIX
http://paperpile.com/b/S6tSJ7/FjXIX
http://paperpile.com/b/S6tSJ7/FjXIX
http://paperpile.com/b/S6tSJ7/ajzwO
http://paperpile.com/b/S6tSJ7/ajzwO
http://paperpile.com/b/S6tSJ7/ajzwO
http://paperpile.com/b/S6tSJ7/ajzwO
http://paperpile.com/b/S6tSJ7/ajzwO
http://paperpile.com/b/S6tSJ7/ajzwO
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/8ugkZ
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/eEyzD
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/MKSLB
http://paperpile.com/b/S6tSJ7/GfZ0X
http://paperpile.com/b/S6tSJ7/GfZ0X
http://paperpile.com/b/S6tSJ7/GfZ0X
http://paperpile.com/b/S6tSJ7/GfZ0X
http://paperpile.com/b/S6tSJ7/GfZ0X
http://paperpile.com/b/S6tSJ7/GfZ0X
http://paperpile.com/b/S6tSJ7/GfZ0X
http://paperpile.com/b/S6tSJ7/GfZ0X


 

183 

267. Hitomi, K., Yamagiwa, Y., Ikura, K., Yamanishi, K. & Maki, M. Characterization of human 

recombinant transglutaminase 1 purified from baculovirus-infected insect cells. Biosci. Biotechnol. 

Biochem. 64, 2128–2137 (2000). 

268. Königshoff, M. et al. Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic 

pulmonary fibrosis: a rationale for therapeutic intervention. Thorax 65, 949–955 (2010). 

269. Jara, P. et al. Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic 

phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L511–22 (2015). 

270. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. 

Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014). 

271. de Arao Tan, I., Ricciardelli, C. & Russell, D. L. The metalloproteinase ADAMTS1: A 

comprehensive review of its role in tumorigenic and metastatic pathways. Int. J. Cancer 133, 2263–

2276 (2013). 

272. Kim, Y.-K. Understanding Depression: Volume 1. Biomedical and Neurobiological Background. 

(Springer, 2018). 

273. Singhania, A. et al. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma. 

PLoS One 12, e0168680 (2017). 

274. de Souza Junior, D. A., Santana, A. C., da Silva, E. Z. M., Oliver, C. & Jamur, M. C. The Role of 

Mast Cell Specific Chymases and Tryptases in Tumor Angiogenesis. Biomed Res. Int. 2015, 142359 

(2015). 

275. Jayakumar, A. et al. Consequences of C-terminal domains and N-terminal signal peptide deletions 

on LEKTI secretion, stability, and subcellular distribution. Arch. Biochem. Biophys. 435, 89–102 

(2005). 

276. Kouzaki, H. et al. Endogenous Protease Inhibitors in Airway Epithelial Cells Contribute to 

Eosinophilic Chronic Rhinosinusitis. Am. J. Respir. Crit. Care Med. 195, 737–747 (2017). 

277. Azouz, N. P. et al. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal 

epithelial inflammatory responses. Sci. Transl. Med. 10, (2018). 

http://paperpile.com/b/S6tSJ7/4IvhT
http://paperpile.com/b/S6tSJ7/4IvhT
http://paperpile.com/b/S6tSJ7/4IvhT
http://paperpile.com/b/S6tSJ7/4IvhT
http://paperpile.com/b/S6tSJ7/4IvhT
http://paperpile.com/b/S6tSJ7/4IvhT
http://paperpile.com/b/S6tSJ7/4IvhT
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/xqtJ6
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/ULFp1
http://paperpile.com/b/S6tSJ7/rx1zf
http://paperpile.com/b/S6tSJ7/rx1zf
http://paperpile.com/b/S6tSJ7/rx1zf
http://paperpile.com/b/S6tSJ7/rx1zf
http://paperpile.com/b/S6tSJ7/rx1zf
http://paperpile.com/b/S6tSJ7/rx1zf
http://paperpile.com/b/S6tSJ7/X8MZ0
http://paperpile.com/b/S6tSJ7/X8MZ0
http://paperpile.com/b/S6tSJ7/X8MZ0
http://paperpile.com/b/S6tSJ7/X8MZ0
http://paperpile.com/b/S6tSJ7/X8MZ0
http://paperpile.com/b/S6tSJ7/X8MZ0
http://paperpile.com/b/S6tSJ7/X8MZ0
http://paperpile.com/b/S6tSJ7/hjtrd
http://paperpile.com/b/S6tSJ7/hjtrd
http://paperpile.com/b/S6tSJ7/hjtrd
http://paperpile.com/b/S6tSJ7/hjtrd
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/gblih
http://paperpile.com/b/S6tSJ7/3GNEJ
http://paperpile.com/b/S6tSJ7/3GNEJ
http://paperpile.com/b/S6tSJ7/3GNEJ
http://paperpile.com/b/S6tSJ7/3GNEJ
http://paperpile.com/b/S6tSJ7/3GNEJ
http://paperpile.com/b/S6tSJ7/3GNEJ
http://paperpile.com/b/S6tSJ7/3GNEJ
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/gXGrS
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/Bdyqj
http://paperpile.com/b/S6tSJ7/WpjTz
http://paperpile.com/b/S6tSJ7/WpjTz
http://paperpile.com/b/S6tSJ7/WpjTz
http://paperpile.com/b/S6tSJ7/WpjTz
http://paperpile.com/b/S6tSJ7/WpjTz
http://paperpile.com/b/S6tSJ7/WpjTz
http://paperpile.com/b/S6tSJ7/WpjTz
http://paperpile.com/b/S6tSJ7/WpjTz


 

184 

278. El Khoury, L. et al. Polymorphic variation within the ADAMTS2, ADAMTS14, ADAMTS5, 

ADAM12 and TIMP2 genes and the risk of Achilles tendon pathology: a genetic association study. 

J. Sci. Med. Sport 16, 493–498 (2013). 

279. Saneyasu, T., Akhtar, R. & Sakai, T. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis. 

Biomed Res. Int. 2016, 2646212 (2016). 

280. Tossell, K. et al. Lrrn1 is required for formation of the midbrain-hindbrain boundary and organiser 

through regulation of affinity differences between midbrain and hindbrain cells in chick. Dev. Biol. 

352, 341–352 (2011). 

281. Warnecke, A. et al. Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone 

elastomers enhances survival of spiral ganglion cells in vitro and in vivo. Hear. Res. 289, 86–97 

(2012). 

282. Dudás, J. et al. Fibroblasts produce brain-derived neurotrophic factor and induce mesenchymal 

transition of oral tumor cells. Oral Oncol. 47, 98–103 (2011). 

283. Emanuele, N. et al. Effect of Recombinant Lubricin on Human Blood Coagulation Parameters and 

Platelet Aggregation. The FASEB Journal (2016). 

284. Uutela, M. et al. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood 

vessel maturation during angiogenesis. Blood 104, 3198–3204 (2004). 

285. Henneberry, A. L., Wistow, G. & McMaster, C. R. Cloning, genomic organization, and 

characterization of a human cholinephosphotransferase. J. Biol. Chem. 275, 29808–29815 (2000). 

286. Starke, R. D. et al. Endothelial von Willebrand factor regulates angiogenesis. Blood 117, 1071–1080 

(2011). 

287. Schmid, M. C. & Varner, J. A. Myeloid cell trafficking and tumor angiogenesis. Cancer Lett. 250, 

1–8 (2007). 

288. Randi, A. M., Laffan, M. A. & Starke, R. D. Von Willebrand factor, angiodysplasia and 

angiogenesis. Mediterr. J. Hematol. Infect. Dis. 5, e2013060 (2013). 

289. Tsai, H.-M. ADAMTS13 and microvascular thrombosis. Expert Rev. Cardiovasc. Ther. 4, 813–825 

http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/cMakC
http://paperpile.com/b/S6tSJ7/gAu4r
http://paperpile.com/b/S6tSJ7/gAu4r
http://paperpile.com/b/S6tSJ7/gAu4r
http://paperpile.com/b/S6tSJ7/gAu4r
http://paperpile.com/b/S6tSJ7/gAu4r
http://paperpile.com/b/S6tSJ7/gAu4r
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/gyqFE
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/F1H2M
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/bgj0w
http://paperpile.com/b/S6tSJ7/CcE63
http://paperpile.com/b/S6tSJ7/CcE63
http://paperpile.com/b/S6tSJ7/CcE63
http://paperpile.com/b/S6tSJ7/CcE63
http://paperpile.com/b/S6tSJ7/CcE63
http://paperpile.com/b/S6tSJ7/CcE63
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/jSeb4
http://paperpile.com/b/S6tSJ7/xfTp3
http://paperpile.com/b/S6tSJ7/xfTp3
http://paperpile.com/b/S6tSJ7/xfTp3
http://paperpile.com/b/S6tSJ7/xfTp3
http://paperpile.com/b/S6tSJ7/xfTp3
http://paperpile.com/b/S6tSJ7/xfTp3
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/VluH1
http://paperpile.com/b/S6tSJ7/utiXE
http://paperpile.com/b/S6tSJ7/utiXE
http://paperpile.com/b/S6tSJ7/utiXE
http://paperpile.com/b/S6tSJ7/utiXE
http://paperpile.com/b/S6tSJ7/utiXE
http://paperpile.com/b/S6tSJ7/utiXE
http://paperpile.com/b/S6tSJ7/p5JDZ
http://paperpile.com/b/S6tSJ7/p5JDZ
http://paperpile.com/b/S6tSJ7/p5JDZ
http://paperpile.com/b/S6tSJ7/p5JDZ
http://paperpile.com/b/S6tSJ7/p5JDZ
http://paperpile.com/b/S6tSJ7/p5JDZ
http://paperpile.com/b/S6tSJ7/vy60J
http://paperpile.com/b/S6tSJ7/vy60J
http://paperpile.com/b/S6tSJ7/vy60J
http://paperpile.com/b/S6tSJ7/vy60J
http://paperpile.com/b/S6tSJ7/vy60J


 

185 

(2006). 

290. Xu, H. et al. ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke 

recovery. Blood 130, 11–22 (2017). 

291. Muia, J. et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc. Natl. Acad. Sci. 

U. S. A. 111, 18584–18589 (2014). 

292. Libreros, S., Garcia-Areas, R. & Iragavarapu-Charyulu, V. CHI3L1 plays a role in cancer through 

enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol. Res. 

57, 99–105 (2013). 

293. Lundequist, A., Tchougounova, E., Abrink, M. & Pejler, G. Cooperation between mast cell 

carboxypeptidase A and the chymase mouse mast cell protease 4 in the formation and degradation of 

angiotensin II. J. Biol. Chem. 279, 32339–32344 (2004). 

294. de Souza Junior, D. A., Borges, A. C., Santana, A. C., Oliver, C. & Jamur, M. C. Mast Cell 

Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic 

Factors. PLoS One 10, e0144081 (2015). 

295. Roy, R., Dagher, A., Butterfield, C. & Moses, M. A. ADAM12 Is a Novel Regulator of Tumor 

Angiogenesis via STAT3 Signaling. Mol. Cancer Res. 15, 1608–1622 (2017). 

296. Lewis, C. E., Harney, A. S. & Pollard, J. W. The Multifaceted Role of Perivascular Macrophages in 

Tumors. Cancer Cell 30, 18–25 (2016). 

297. Wang, Y. et al. Regulation of Cholesterologenesis by the Oxysterol Receptor, LXRα. J. Biol. Chem. 

283, 26332–26339 (2008). 

298. McDonough, C. W. et al. Atenolol induced HDL-C change in the pharmacogenomic evaluation of 

antihypertensive responses (PEAR) study. PLoS One 8, e76984 (2013). 

299. STARD3 StAR related lipid transfer domain containing 3 [Homo sapiens (human)] - Gene - NCBI. 

Available at: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=10948. 

(Accessed: 27th August 2018) 

300. Krakowiak, P. A. et al. Lathosterolosis: an inborn error of human and murine cholesterol synthesis 

http://paperpile.com/b/S6tSJ7/vy60J
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/2QX8E
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/WqirD
http://paperpile.com/b/S6tSJ7/0DU0e
http://paperpile.com/b/S6tSJ7/0DU0e
http://paperpile.com/b/S6tSJ7/0DU0e
http://paperpile.com/b/S6tSJ7/0DU0e
http://paperpile.com/b/S6tSJ7/0DU0e
http://paperpile.com/b/S6tSJ7/0DU0e
http://paperpile.com/b/S6tSJ7/0DU0e
http://paperpile.com/b/S6tSJ7/aKDst
http://paperpile.com/b/S6tSJ7/aKDst
http://paperpile.com/b/S6tSJ7/aKDst
http://paperpile.com/b/S6tSJ7/aKDst
http://paperpile.com/b/S6tSJ7/aKDst
http://paperpile.com/b/S6tSJ7/aKDst
http://paperpile.com/b/S6tSJ7/aKDst
http://paperpile.com/b/S6tSJ7/2XyJu
http://paperpile.com/b/S6tSJ7/2XyJu
http://paperpile.com/b/S6tSJ7/2XyJu
http://paperpile.com/b/S6tSJ7/2XyJu
http://paperpile.com/b/S6tSJ7/2XyJu
http://paperpile.com/b/S6tSJ7/2XyJu
http://paperpile.com/b/S6tSJ7/2XyJu
http://paperpile.com/b/S6tSJ7/nwNTd
http://paperpile.com/b/S6tSJ7/nwNTd
http://paperpile.com/b/S6tSJ7/nwNTd
http://paperpile.com/b/S6tSJ7/nwNTd
http://paperpile.com/b/S6tSJ7/nwNTd
http://paperpile.com/b/S6tSJ7/nwNTd
http://paperpile.com/b/S6tSJ7/FfCaN
http://paperpile.com/b/S6tSJ7/FfCaN
http://paperpile.com/b/S6tSJ7/FfCaN
http://paperpile.com/b/S6tSJ7/FfCaN
http://paperpile.com/b/S6tSJ7/FfCaN
http://paperpile.com/b/S6tSJ7/FfCaN
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/GCOvX
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/gmfFB
http://paperpile.com/b/S6tSJ7/dO59f
http://paperpile.com/b/S6tSJ7/dO59f
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=10948.
http://paperpile.com/b/S6tSJ7/dO59f
http://paperpile.com/b/S6tSJ7/dO59f
http://paperpile.com/b/S6tSJ7/nMGOs
http://paperpile.com/b/S6tSJ7/nMGOs
http://paperpile.com/b/S6tSJ7/nMGOs


 

186 

due to lathosterol 5-desaturase deficiency. Hum. Mol. Genet. 12, 1631–1641 (2003). 

301. Wei, E. et al. Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and 

increases energy expenditure. Cell Metab. 11, 183–193 (2010). 

302. Ross, M. K., Streit, T. M. & Herring, K. L. Carboxylesterases: Dual roles in lipid and pesticide 

metabolism. J. Pestic. Sci. 35, 257–264 (2010). 

303. Vigne, S. et al. IL-27-Induced Type 1 Regulatory T-Cells Produce Oxysterols that Constrain IL-10 

Production. Front. Immunol. 8, 1184 (2017). 

304. Racioppi, L. CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends 

Mol. Med. 19, 83–88 (2013). 

305. Asuthkar, S., Velpula, K. K., Elustondo, P. A., Demirkhanyan, L. & Zakharian, E. TRPM8 channel 

as a novel molecular target in androgen-regulated prostate cancer cells. Oncotarget 6, 17221–17236 

(2015). 

306. Aupperlee, M. D. et al. Epidermal growth factor receptor (EGFR) signaling is a key mediator of 

hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 155, 

2301–2313 (2014). 

307. Kariagina, A., Xie, J., Leipprandt, J. R. & Haslam, S. Z. Amphiregulin mediates estrogen, 

progesterone, and EGFR signaling in the normal rat mammary gland and in hormone-dependent rat 

mammary cancers. Horm. Cancer 1, 229–244 (2010). 

308. Lodoen, M. B. & Lanier, L. L. Viral modulation of NK cell immunity. Nat. Rev. Microbiol. 3, 59–69 

(2005). 

309. Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Series B Stat. Methodol. 

44, 139–177 (1982). 

310. Ferrari, S. & Cribari-Neto, F. Beta Regression for Modelling Rates and Proportions. J. Appl. Stat. 

31, 799–815 (2004). 

311. Cribari-Neto, F. & Zeileis, A. Beta Regression in R. 22 (2009). 

312. Zhang, P., Qiu, Z. & Shi, C. simplexreg: An R Package for Regression Analysis of Proportional Data 

http://paperpile.com/b/S6tSJ7/nMGOs
http://paperpile.com/b/S6tSJ7/nMGOs
http://paperpile.com/b/S6tSJ7/nMGOs
http://paperpile.com/b/S6tSJ7/nMGOs
http://paperpile.com/b/S6tSJ7/nMGOs
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/5Ghdi
http://paperpile.com/b/S6tSJ7/ZzNIt
http://paperpile.com/b/S6tSJ7/ZzNIt
http://paperpile.com/b/S6tSJ7/ZzNIt
http://paperpile.com/b/S6tSJ7/ZzNIt
http://paperpile.com/b/S6tSJ7/ZzNIt
http://paperpile.com/b/S6tSJ7/ZzNIt
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/1oKli
http://paperpile.com/b/S6tSJ7/6Oocj
http://paperpile.com/b/S6tSJ7/6Oocj
http://paperpile.com/b/S6tSJ7/6Oocj
http://paperpile.com/b/S6tSJ7/6Oocj
http://paperpile.com/b/S6tSJ7/6Oocj
http://paperpile.com/b/S6tSJ7/6Oocj
http://paperpile.com/b/S6tSJ7/MjYzR
http://paperpile.com/b/S6tSJ7/MjYzR
http://paperpile.com/b/S6tSJ7/MjYzR
http://paperpile.com/b/S6tSJ7/MjYzR
http://paperpile.com/b/S6tSJ7/MjYzR
http://paperpile.com/b/S6tSJ7/MjYzR
http://paperpile.com/b/S6tSJ7/MjYzR
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/mpmtv
http://paperpile.com/b/S6tSJ7/ccoiX
http://paperpile.com/b/S6tSJ7/ccoiX
http://paperpile.com/b/S6tSJ7/ccoiX
http://paperpile.com/b/S6tSJ7/ccoiX
http://paperpile.com/b/S6tSJ7/ccoiX
http://paperpile.com/b/S6tSJ7/ccoiX
http://paperpile.com/b/S6tSJ7/ccoiX
http://paperpile.com/b/S6tSJ7/lJn8e
http://paperpile.com/b/S6tSJ7/lJn8e
http://paperpile.com/b/S6tSJ7/lJn8e
http://paperpile.com/b/S6tSJ7/lJn8e
http://paperpile.com/b/S6tSJ7/lJn8e
http://paperpile.com/b/S6tSJ7/lJn8e
http://paperpile.com/b/S6tSJ7/lcrO9
http://paperpile.com/b/S6tSJ7/lcrO9
http://paperpile.com/b/S6tSJ7/lcrO9
http://paperpile.com/b/S6tSJ7/lcrO9
http://paperpile.com/b/S6tSJ7/lcrO9
http://paperpile.com/b/S6tSJ7/lcrO9
http://paperpile.com/b/S6tSJ7/JJXG1
http://paperpile.com/b/S6tSJ7/JJXG1
http://paperpile.com/b/S6tSJ7/JJXG1
http://paperpile.com/b/S6tSJ7/JJXG1
http://paperpile.com/b/S6tSJ7/JJXG1
http://paperpile.com/b/S6tSJ7/JJXG1
http://paperpile.com/b/S6tSJ7/vJVjd
http://paperpile.com/b/S6tSJ7/Ogb5t


 

187 

Using the Simplex Distribution. Journal of Statistical Software, Articles 71, 1–21 (2016). 

313. Ng, A. Y. & Jordan, M. I. On Discriminative vs. Generative Classifiers: A comparison of logistic 

regression and naive Bayes. in Advances in Neural Information Processing Systems 14 (eds. 

Dietterich, T. G., Becker, S. & Ghahramani, Z.) 841–848 (MIT Press, 2002). 

314. Eliason, S. R. Maximum Likelihood Estimation: Logic and Practice. (SAGE, 1993). 

315. Stasinopoulos, D. M. & Rigby, R. A. Generalized additive models for location scale and shape 

(GAMLSS) in R. J. Stat. Softw. (2007). 

316. Rigby, R. A. & Mikis Stasinopoulos, D. Using the Box-Cox t distribution in GAMLSS to model 

skewness and kurtosis. Stat. Modelling 6, 209–229 (2006). 

317. Stasinopoulos, D. M., Rigby, R. A. & Akantziliotou, C. Instructions on how to use the GAMLSS 

package in R. Accompanying documentation in the current GAMLSS help files,(see also http://www. 

gamlss. org/) (2006). 

318. Connor, R. J. & Mosimann, J. E. Concepts of Independence for Proportions with a Generalization of 

the Dirichlet Distribution. J. Am. Stat. Assoc. 64, 194–206 (1969). 

319. Barndorff-Nielsen, O. E. & Jørgensen, B. Some parametric models on the simplex. J. Multivar. Anal. 

39, 106–116 (1991). 

320. Jorgensen, B. The Theory of Dispersion Models. (CRC Press, 1997). 

321. Gabry, J. & Goodrich, B. rstanarm: Bayesian applied regression modeling via Stan. R package 

version 2, (2016). 

322. Meraviglia, S. et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal 

cancer. Oncoimmunology 6, e1347742 (2017). 

323. Trella, E. et al. The interplay between neutrophils and CD8+ T cells improves survival in human 

colorectal cancer. Clin. Cancer Res. clincanres–2047 (2017). 

324. Bense, R. D. et al. Relevance of Tumor-Infiltrating Immune Cell Composition and Functionality for 

Disease Outcome in Breast Cancer. J. Natl. Cancer Inst. 109, (2017). 

325. Araujo, J. et al. CCL5 expression and tumor infiltrating immune cells in triple negative breast 

http://paperpile.com/b/S6tSJ7/Ogb5t
http://paperpile.com/b/S6tSJ7/Ogb5t
http://paperpile.com/b/S6tSJ7/Ogb5t
http://paperpile.com/b/S6tSJ7/Ogb5t
http://paperpile.com/b/S6tSJ7/Ogb5t
http://paperpile.com/b/S6tSJ7/65P0b
http://paperpile.com/b/S6tSJ7/65P0b
http://paperpile.com/b/S6tSJ7/65P0b
http://paperpile.com/b/S6tSJ7/65P0b
http://paperpile.com/b/S6tSJ7/65P0b
http://paperpile.com/b/S6tSJ7/xxPAp
http://paperpile.com/b/S6tSJ7/xxPAp
http://paperpile.com/b/S6tSJ7/xxPAp
http://paperpile.com/b/S6tSJ7/fWCbM
http://paperpile.com/b/S6tSJ7/fWCbM
http://paperpile.com/b/S6tSJ7/fWCbM
http://paperpile.com/b/S6tSJ7/fWCbM
http://paperpile.com/b/S6tSJ7/e9DAm
http://paperpile.com/b/S6tSJ7/e9DAm
http://paperpile.com/b/S6tSJ7/e9DAm
http://paperpile.com/b/S6tSJ7/e9DAm
http://paperpile.com/b/S6tSJ7/e9DAm
http://paperpile.com/b/S6tSJ7/e9DAm
http://paperpile.com/b/S6tSJ7/Juv0V
http://paperpile.com/b/S6tSJ7/Juv0V
http://paperpile.com/b/S6tSJ7/Juv0V
http://paperpile.com/b/S6tSJ7/Juv0V
http://paperpile.com/b/S6tSJ7/Juv0V
http://paperpile.com/b/S6tSJ7/k5g8e
http://paperpile.com/b/S6tSJ7/k5g8e
http://paperpile.com/b/S6tSJ7/k5g8e
http://paperpile.com/b/S6tSJ7/k5g8e
http://paperpile.com/b/S6tSJ7/k5g8e
http://paperpile.com/b/S6tSJ7/k5g8e
http://paperpile.com/b/S6tSJ7/lcGMU
http://paperpile.com/b/S6tSJ7/lcGMU
http://paperpile.com/b/S6tSJ7/lcGMU
http://paperpile.com/b/S6tSJ7/lcGMU
http://paperpile.com/b/S6tSJ7/lcGMU
http://paperpile.com/b/S6tSJ7/lcGMU
http://paperpile.com/b/S6tSJ7/6173l
http://paperpile.com/b/S6tSJ7/6173l
http://paperpile.com/b/S6tSJ7/6173l
http://paperpile.com/b/S6tSJ7/7yJQT
http://paperpile.com/b/S6tSJ7/7yJQT
http://paperpile.com/b/S6tSJ7/7yJQT
http://paperpile.com/b/S6tSJ7/7yJQT
http://paperpile.com/b/S6tSJ7/7yJQT
http://paperpile.com/b/S6tSJ7/7yJQT
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/7z5ir
http://paperpile.com/b/S6tSJ7/PtJaE
http://paperpile.com/b/S6tSJ7/PtJaE
http://paperpile.com/b/S6tSJ7/PtJaE
http://paperpile.com/b/S6tSJ7/PtJaE
http://paperpile.com/b/S6tSJ7/PtJaE
http://paperpile.com/b/S6tSJ7/PtJaE
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/wgCq6
http://paperpile.com/b/S6tSJ7/DnyU5
http://paperpile.com/b/S6tSJ7/DnyU5
http://paperpile.com/b/S6tSJ7/DnyU5


 

188 

cancer. J. Clin. Orthod. 35, 11553–11553 (2017). 

326. Hawinkels, L. J. A. C. et al. Interaction with colon cancer cells hyperactivates TGF-β signaling in 

cancer-associated fibroblasts. Oncogene 33, 97–107 (2014). 

327. Tommelein, J. et al. Cancer-associated fibroblasts connect metastasis-promoting communication in 

colorectal cancer. Front. Oncol. 5, 63 (2015). 

328. Busch, S. et al. TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast 

cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. 

Oncogene 34, 27–38 (2015). 

329. Slebe, F. et al. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast 

cancer growth. Nat. Commun. 7, 11199 (2016). 

330. Wang, C.-A., Harrell, J. C., Iwanaga, R., Jedlicka, P. & Ford, H. L. Vascular endothelial growth 

factor C promotes breast cancer progression via a novel antioxidant mechanism that involves 

regulation of superoxide dismutase 3. Breast Cancer Res. 16, 462 (2014). 

331. Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their 

relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017). 

332. Zhao, Y. & Adjei, A. A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular 

Endothelial Growth Factor. Oncologist 20, 660–673 (2015). 

333. Bovy, N. et al. Endothelial exosomes contribute to the antitumor response during breast cancer 

neoadjuvant chemotherapy via microRNA transfer. Oncotarget 6, 10253–10266 (2015). 

334. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages 

as treatment targets in oncology. Nat. Rev. Clin. Oncol. (2017). doi:10.1038/nrclinonc.2016.217 

335. Dougan, M. & Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 27, 83–117 (2009). 

336. Becker, R. A., Chambers, J. M. & Wilks, A. R. The new S language. Pacific Grove, Ca.: Wadsworth 

& Brooks, 1988 (1988). 

337. Bennett, K. P. & Campbell, C. Support Vector Machines: Hype or Hallelujah? SIGKDD Explor. 

Newsl. 2, 1–13 (2000). 

http://paperpile.com/b/S6tSJ7/DnyU5
http://paperpile.com/b/S6tSJ7/DnyU5
http://paperpile.com/b/S6tSJ7/DnyU5
http://paperpile.com/b/S6tSJ7/DnyU5
http://paperpile.com/b/S6tSJ7/DnyU5
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/813wu
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/axTMJ
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/mpP9w
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/eELlC
http://paperpile.com/b/S6tSJ7/80Sv0
http://paperpile.com/b/S6tSJ7/80Sv0
http://paperpile.com/b/S6tSJ7/80Sv0
http://paperpile.com/b/S6tSJ7/80Sv0
http://paperpile.com/b/S6tSJ7/80Sv0
http://paperpile.com/b/S6tSJ7/80Sv0
http://paperpile.com/b/S6tSJ7/80Sv0
http://paperpile.com/b/S6tSJ7/lllzY
http://paperpile.com/b/S6tSJ7/lllzY
http://paperpile.com/b/S6tSJ7/lllzY
http://paperpile.com/b/S6tSJ7/lllzY
http://paperpile.com/b/S6tSJ7/lllzY
http://paperpile.com/b/S6tSJ7/lllzY
http://paperpile.com/b/S6tSJ7/y1H0V
http://paperpile.com/b/S6tSJ7/y1H0V
http://paperpile.com/b/S6tSJ7/y1H0V
http://paperpile.com/b/S6tSJ7/y1H0V
http://paperpile.com/b/S6tSJ7/y1H0V
http://paperpile.com/b/S6tSJ7/y1H0V
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/p5bad
http://paperpile.com/b/S6tSJ7/hoAmS
http://paperpile.com/b/S6tSJ7/hoAmS
http://paperpile.com/b/S6tSJ7/hoAmS
http://paperpile.com/b/S6tSJ7/hoAmS
http://dx.doi.org/10.1038/nrclinonc.2016.217
http://paperpile.com/b/S6tSJ7/vX9bQ
http://paperpile.com/b/S6tSJ7/vX9bQ
http://paperpile.com/b/S6tSJ7/vX9bQ
http://paperpile.com/b/S6tSJ7/vX9bQ
http://paperpile.com/b/S6tSJ7/vX9bQ
http://paperpile.com/b/S6tSJ7/sW8n9
http://paperpile.com/b/S6tSJ7/sW8n9
http://paperpile.com/b/S6tSJ7/sW8n9
http://paperpile.com/b/S6tSJ7/sW8n9
http://paperpile.com/b/S6tSJ7/UShpz
http://paperpile.com/b/S6tSJ7/UShpz
http://paperpile.com/b/S6tSJ7/UShpz
http://paperpile.com/b/S6tSJ7/UShpz
http://paperpile.com/b/S6tSJ7/UShpz
http://paperpile.com/b/S6tSJ7/UShpz


 

189 

338. Chen, L. et al. CAM-CM: a signal deconvolution tool for in vivo dynamic contrast-enhanced 

imaging of complex tissues. Bioinformatics 27, 2607–2609 (2011). 

339. Cressie, N., Calder, C. A., Clark, J. S., Ver Hoef, J. M. & Wikle, C. K. Accounting for uncertainty in 

ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19, 

553–570 (2009). 

340. de Valpine, P. Shared challenges and common ground for Bayesian and classical analysis of 

hierarchical statistical models. Ecol. Appl. 19, 584–588 (2009). 

341. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination 

in human B cell development. Cell 157, 714–725 (2014). 

342. Bolstad, B. Probe level quantile normalization of high density oligonucleotide array data. 

Unpublished manuscript (2001). 

343. Boldstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A Comparison of Normalization 

Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 

19, 185–193 (2003). 

344. Inference of extrinsic rates of change from simplex space using a Dirichlet regression model. Google 

Docs Available at: https://docs.google.com/document/d/1VpuljFJOs4VR-

__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit. (Accessed: 23rd February 2018) 

345. Team, R. C. & Others. R: A language and environment for statistical computing. (2013). 

346. Hoffman, M. D. & Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in 

Hamiltonian Monte Carlo. arXiv [stat.CO] (2011). 

347. Neal, R. M. & Others. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte 

Carlo 2, (2011). 

348. GDC. Available at: http://portal.gdc.cancer.gov. (Accessed: 20th July 2018) 

349. cBioPortal for Cancer Genomics. Available at: http://cbioportal.org/public-portal. (Accessed: 20th 

July 2018) 

350. Cox, D. R. Regression models and life-tables (with discussions). Jr Stat Soc B 34, 187–220 (1972). 

http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/B2j96
http://paperpile.com/b/S6tSJ7/l4KOX
http://paperpile.com/b/S6tSJ7/l4KOX
http://paperpile.com/b/S6tSJ7/l4KOX
http://paperpile.com/b/S6tSJ7/l4KOX
http://paperpile.com/b/S6tSJ7/l4KOX
http://paperpile.com/b/S6tSJ7/l4KOX
http://paperpile.com/b/S6tSJ7/l4KOX
http://paperpile.com/b/S6tSJ7/Op6w8
http://paperpile.com/b/S6tSJ7/Op6w8
http://paperpile.com/b/S6tSJ7/Op6w8
http://paperpile.com/b/S6tSJ7/Op6w8
http://paperpile.com/b/S6tSJ7/Op6w8
http://paperpile.com/b/S6tSJ7/Op6w8
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/i4Pl4
http://paperpile.com/b/S6tSJ7/phPYU
http://paperpile.com/b/S6tSJ7/phPYU
http://paperpile.com/b/S6tSJ7/phPYU
http://paperpile.com/b/S6tSJ7/phPYU
http://paperpile.com/b/S6tSJ7/YvtRc
http://paperpile.com/b/S6tSJ7/YvtRc
http://paperpile.com/b/S6tSJ7/YvtRc
http://paperpile.com/b/S6tSJ7/YvtRc
http://paperpile.com/b/S6tSJ7/YvtRc
http://paperpile.com/b/S6tSJ7/YvtRc
http://paperpile.com/b/S6tSJ7/YvtRc
http://paperpile.com/b/S6tSJ7/LM42H
http://paperpile.com/b/S6tSJ7/LM42H
http://paperpile.com/b/S6tSJ7/LM42H
http://paperpile.com/b/S6tSJ7/LM42H
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit.
https://docs.google.com/document/d/1VpuljFJOs4VR-__ZvJZlw0X6cTOCVmDPOTr6D0okr-w/edit.
http://paperpile.com/b/S6tSJ7/LM42H
http://paperpile.com/b/S6tSJ7/9lpWt
http://paperpile.com/b/S6tSJ7/3qC4H
http://paperpile.com/b/S6tSJ7/3qC4H
http://paperpile.com/b/S6tSJ7/3qC4H
http://paperpile.com/b/S6tSJ7/3qC4H
http://paperpile.com/b/S6tSJ7/6a675
http://paperpile.com/b/S6tSJ7/6a675
http://paperpile.com/b/S6tSJ7/6a675
http://paperpile.com/b/S6tSJ7/6a675
http://paperpile.com/b/S6tSJ7/6a675
http://paperpile.com/b/S6tSJ7/6a675
http://paperpile.com/b/S6tSJ7/jsBOc
http://portal.gdc.cancer.gov./
http://paperpile.com/b/S6tSJ7/jsBOc
http://paperpile.com/b/S6tSJ7/1QApd
http://cbioportal.org/public-portal.
http://paperpile.com/b/S6tSJ7/1QApd
http://paperpile.com/b/S6tSJ7/1QApd
http://paperpile.com/b/S6tSJ7/VZ6xO
http://paperpile.com/b/S6tSJ7/VZ6xO
http://paperpile.com/b/S6tSJ7/VZ6xO
http://paperpile.com/b/S6tSJ7/VZ6xO
http://paperpile.com/b/S6tSJ7/VZ6xO


 

190 

351. Lanciotti, M. et al. The role of M1 and M2 macrophages in prostate cancer in relation to 

extracapsular tumor extension and biochemical recurrence after radical prostatectomy. Biomed Res. 

Int. 2014, 486798 (2014). 

352. Rydström, A. et al. Dynamics of myeloid cell populations during relapse-preventive immunotherapy 

in acute myeloid leukemia. J. Leukoc. Biol. 102, 467–474 (2017). 

353. Pulsoni, A. et al. M4 acute myeloid leukemia: the role of eosinophilia and cytogenetics in treatment 

response and survival. The GIMEMA experience. Haematologica 93, 1025–1032 (2008). 

354. Lafont, V. et al. Plasticity of γδ T Cells: Impact on the Anti-Tumor Response. Front. Immunol. 5, 

622 (2014). 

355. Aswald, J. M. et al. Flow cytometric assessment of autologous gammadelta T cells in patients with 

acute myeloid leukemia: potential effector cells for immunotherapy? Cytometry B Clin. Cytom. 70, 

379–390 (2006). 

356. Todaro, M. et al. Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. 

J. Immunol. 182, 7287–7296 (2009). 

357. Pan, X.-Q. The mechanism of the anticancer function of M1 macrophages and their use in the clinic. 

Chin. J. Cancer 31, 557–563 (2012). 

358. Erreni, M., Mantovani, A. & Allavena, P. Tumor-associated Macrophages (TAM) and Inflammation 

in Colorectal Cancer. Cancer Microenviron. 4, 141–154 (2011). 

359. Gül, N. et al. Macrophages mediate colon carcinoma cell adhesion in the rat liver after exposure to 

lipopolysaccharide. Oncoimmunology 1, 1517–1526 (2012). 

360. Gabrielson, A. et al. Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free 

Survival in HCC. Cancer Immunol Res 4, 419–430 (2016). 

361. Zhang, Y.-L. et al. SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular 

Carcinoma Metastasis by Distinct Integrin-Rho GTPase-Hippo Pathways. Cancer Res. 78, 2305–

2317 (2018). 

362. Soo, R. A. et al. Prognostic significance of immune cells in non-small cell lung cancer: meta-

http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/M46A6
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/MT2mf
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/SZHIW
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/fz67d
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/cX6nl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/SvNGl
http://paperpile.com/b/S6tSJ7/5GJFG
http://paperpile.com/b/S6tSJ7/5GJFG
http://paperpile.com/b/S6tSJ7/5GJFG
http://paperpile.com/b/S6tSJ7/5GJFG
http://paperpile.com/b/S6tSJ7/5GJFG
http://paperpile.com/b/S6tSJ7/5GJFG
http://paperpile.com/b/S6tSJ7/vjmSn
http://paperpile.com/b/S6tSJ7/vjmSn
http://paperpile.com/b/S6tSJ7/vjmSn
http://paperpile.com/b/S6tSJ7/vjmSn
http://paperpile.com/b/S6tSJ7/vjmSn
http://paperpile.com/b/S6tSJ7/vjmSn
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/Rhbtp
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/xRTW8
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/mjl9y
http://paperpile.com/b/S6tSJ7/SssJT
http://paperpile.com/b/S6tSJ7/SssJT
http://paperpile.com/b/S6tSJ7/SssJT


 

191 

analysis. Oncotarget 9, 24801–24820 (2018). 

363. Remark, R. et al. The non-small cell lung cancer immune contexture. A major determinant of tumor 

characteristics and patient outcome. Am. J. Respir. Crit. Care Med. 191, 377–390 (2015). 

364. Jackute, J. et al. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to 

prognosis of non-small cell lung cancer. BMC Immunol. 19, 3 (2018). 

365. Hedbrant, A., Wijkander, J., Seidal, T., Delbro, D. & Erlandsson, A. Macrophages of M1 phenotype 

have properties that influence lung cancer cell progression. Tumour Biol. 36, 8715–8725 (2015). 

366. Karakhanova, S. et al. Prognostic and predictive value of immunological parameters for 

chemoradioimmunotherapy in patients with pancreatic adenocarcinoma. Br. J. Cancer 112, 1027–

1036 (2015). 

367. Daley, D. & Miller, G. The role of γδ T cells in pancreatic cancer: what could this mean for the 

clinic? Expert Rev. Gastroenterol. Hepatol. 11, 609–610 (2017). 

368. Guo, X. et al. Mast Cell Tryptase Contributes to Pancreatic Cancer Growth through Promoting 

Angiogenesis via Activation of Angiopoietin-1. Int. J. Mol. Sci. 17, (2016). 

369. Yuan, X. et al. Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-

analysis. Gynecol. Oncol. 147, 181–187 (2017). 

370. Wang, X., Zhao, X., Wang, K., Wu, L. & Duan, T. Interaction of monocytes/macrophages with 

ovarian cancer cells promotes angiogenesis in vitro. Cancer Sci. 104, 516–523 (2013). 

371. Kang, B. W., Kim, J. G., Lee, I. H., Bae, H. I. & Seo, A. N. Clinical significance of tumor-

infiltrating lymphocytes for gastric cancer in the era of immunology. World J. Gastrointest. Oncol. 

9, 293–299 (2017). 

372. Liu, H. et al. Decreased expression of granulocyte-macrophage colony-stimulating factor is 

associated with adverse clinical outcome in patients with gastric cancer undergoing gastrectomy. 

Oncol. Lett. 14, 4701–4707 (2017). 

 

http://paperpile.com/b/S6tSJ7/SssJT
http://paperpile.com/b/S6tSJ7/SssJT
http://paperpile.com/b/S6tSJ7/SssJT
http://paperpile.com/b/S6tSJ7/SssJT
http://paperpile.com/b/S6tSJ7/SssJT
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/Xqamv
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/TN0jM
http://paperpile.com/b/S6tSJ7/bPImL
http://paperpile.com/b/S6tSJ7/bPImL
http://paperpile.com/b/S6tSJ7/bPImL
http://paperpile.com/b/S6tSJ7/bPImL
http://paperpile.com/b/S6tSJ7/bPImL
http://paperpile.com/b/S6tSJ7/bPImL
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/2UbcQ
http://paperpile.com/b/S6tSJ7/SZTdh
http://paperpile.com/b/S6tSJ7/SZTdh
http://paperpile.com/b/S6tSJ7/SZTdh
http://paperpile.com/b/S6tSJ7/SZTdh
http://paperpile.com/b/S6tSJ7/SZTdh
http://paperpile.com/b/S6tSJ7/SZTdh
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/RVf87
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/x4v8A
http://paperpile.com/b/S6tSJ7/sfyrG
http://paperpile.com/b/S6tSJ7/sfyrG
http://paperpile.com/b/S6tSJ7/sfyrG
http://paperpile.com/b/S6tSJ7/sfyrG
http://paperpile.com/b/S6tSJ7/sfyrG
http://paperpile.com/b/S6tSJ7/sfyrG
http://paperpile.com/b/S6tSJ7/rdMlS
http://paperpile.com/b/S6tSJ7/rdMlS
http://paperpile.com/b/S6tSJ7/rdMlS
http://paperpile.com/b/S6tSJ7/rdMlS
http://paperpile.com/b/S6tSJ7/rdMlS
http://paperpile.com/b/S6tSJ7/rdMlS
http://paperpile.com/b/S6tSJ7/rdMlS
http://paperpile.com/b/S6tSJ7/3talW
http://paperpile.com/b/S6tSJ7/3talW
http://paperpile.com/b/S6tSJ7/3talW
http://paperpile.com/b/S6tSJ7/3talW
http://paperpile.com/b/S6tSJ7/3talW
http://paperpile.com/b/S6tSJ7/3talW
http://paperpile.com/b/S6tSJ7/3talW
http://paperpile.com/b/S6tSJ7/3talW


 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

MANGIOLA, STEFANO

 

Title: 

Investigation of the tumour microenvironment of prostate cancer

 

Date: 

2018

 

Persistent Link: 

http://hdl.handle.net/11343/222422

 

File Description:

Thesis

 

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.


	Table of contents
	Context

	Literature review
	The prostate tumour microenvironment
	Cell cycle perturbation and proliferation
	Cell mobility, immune cell infiltration and immune suppression
	Epithelial to mesenchymal transition
	Angiogenesis
	The metastatic tumour microenvironment
	The migration to the bone metastatic site and the initiation of the “vicious cycle”
	Bone formation, osteoblasts migration, activation and proliferation.
	Bone resorption, osteoclast activation and proliferation

	Therapeutic opportunities
	The study of the tissue microenvironment: an evolving concept
	The mathematics behind the modelling of the tissue microenvironment
	Ab initio methods
	Inference of tissue composition
	Least square error linear regression through QR factorization
	E-insensitive loss linear regression through Maximal margin optimization
	Linear regression through quadratic programming
	Mixed membership model through Markov Chain Monte Carlo
	Gene enrichment through non-parametric statistics

	Inference of cell type specific transcriptome
	Least square error linear regression
	Linear regression through quadratic programming


	De novo methods
	Least square error linear regression
	Minimum ratio

	Comparative analysis of the methods for transcriptional signature deconvolution
	Methods
	Compilation of the novel training data set signatures
	Gene marker selection
	Calculation of the performance score

	Conclusions
	Supplementary figures
	Summary
	Context

	Periprostatic fat tissue transcriptome reveals a signature diagnostic for high-risk prostate cancer
	Introduction
	Materials and methods
	Ethics statement

	Study cohort selection
	Gene expression screen
	Data pre-processing and differential expression analysis
	Classification using quantitative qRT-PCR
	Analysis of TCGA data
	Data and computational algorithms

	Results
	Patient characteristics
	Gene expression of adipose tissue in prostate cancer patients
	qRT-PCR refinement of the gene signature
	Specificity of the gene signature to fat

	Discussion
	Supplementary data
	Context

	Androgen deprivation therapy promotes an inflammatory and obesity-like microenvironment in periprostatic fat
	Introduction
	Materials and Methods
	Ethics statement.
	Study cohort selection
	Gene expression screen
	Data pre-processing and mapping
	Differential expression and gene set enrichment analyses
	Differential tissue composition analyses
	qRT-PCR validation

	Results and discussion
	Patient characteristics
	Differentially transcribed genes represent three main functional groups
	Enriched inflammatory signature
	Enriched obesity signature

	Conclusions
	Online methods and raw data
	Supplementary material
	Probabilistic Bayesian inference model

	Context

	The interplay among cell types in the prostate tumour microenvironment contributes to the activation of key hallmarks
	Introduction
	Methods
	Tissue sampling and processing
	Antibody labelling, flow cytometry and cell storage
	RNA extraction, library preparation and RNA sequencing
	Sequencing data quality control, mapping and gene counting
	Statistical inference
	Gene annotation

	Results and discussion
	Quality control
	Differential transcription analyses
	Gene annotation
	The pro- and anti-inflammatory balance evolves during tumour progression
	The epithelial pro-migratory phenotype is promoted by three complementary hallmarks
	The synergy among cell populations to promote angiogenesis evolves during disease progression
	Hormonal homeostasis

	Conclusions
	Supplementary material
	Context

	Inference of extrinsic changes in simplex space under parsimony assumption
	Introduction
	Beta distribution and Beta regression
	Dirichlet distribution and Dirichlet regression
	Simplex distribution

	Methods
	The probabilistic model
	Benchmark

	Results and discussion
	Benchmark
	Probabilistic model implementation
	Interface
	Plots

	Conclusions
	Context

	Differential tissue composition analyses from whole tissue transcriptional levels
	Introduction
	Methods
	Hierarchical structure of the data
	Transcriptional signatures of cell type categories
	Gene markers selection
	Structural design of the differential tissue composition analysis
	The probabilistic model
	Implementation
	Regression benchmarks
	Comparative benchmark
	Inference of associations between tissue composition and cancer relapse

	Results and discussion
	Regression benchmark
	Comparative benchmark
	Landscape of associations between cell types and cancer relapse

	Conclusions

	Conclusions
	Future work
	Final remarks

	References



