
 

www.ausmt.org  45          auSMT Vol. 6 No. 1 (2016) 

Copyright © 2016 International Journal of Automation and Smart Technology 

ORIGINAL ARTICLE 

A Point Cloud Alignment Algorithm Based 

on Stereo Vision Using Random Pattern  

Projection 
 

 

 

 

 

Chin-Sheng Chen1,*, Mei-Yu Huang1, Chun-Wei Yeh1, and Chien-Liang 
Huang1 
1National Taipei University of Technology, Graduate Institute of Automation Technology, 1, Sec. 3, Zhongxiao E. Rd, Taipei, Taiwan R. 

O. C., 10608

(Received 30 September 2015; Accepted 27 November 2015; Published on line 1 March 2016)  

*Corresponding author: saint@mail.ntut.edu.tw 

DOI: 10.5875/ausmt.v6i1.1032 

Abstract: This paper proposes a point cloud alignment algorithm based on stereo vision using Random Pattern 

Projection (RPP). In the application of stereo vision, it is rather difficult to find correspondences between stereo images 

of texture-less objects. To overcome this issue, RPP is used to enhance the object’s features, thus increasing the accuracy 

of the identified correspondences of the stereo images. In the 3D alignment algorithm, the down sample technique is 

used to filter out the outliers of the point cloud data to improve system efficiency. Furthermore, the extracted features 

of the down sample point cloud data were applied in the matching process. Finally, the object’s pose was estimated by 

the alignment algorithm based on object features. In experiments, the maximum error and standard deviation of 

rotation are respectively about 0.031°and 0.199°, while the maximum error and standard deviation of translation are 

respectively about 0.565 mm and 0.902 mm . The execution time for pose estimation is about 230ms. 

Keywords: stereo vision random, pattern projection, object pose estimation, point cloud 

 

Introduction 

     Over the past few years extensive improvements 

have been made to 3D vision technology, which has been 

widely applied in many fields including manufacturing and 

object recognition. To obtain 3D geometry information, 

binocular stereo vision systems use two cameras to view 

an object from different viewpoints, thus creating stereo 

images which can be used to calculate 3D geometry 

information through trigonometry. After obtaining the 

camera calibration parameters by observing different 

orientations of a 2D planar calibration pattern [1], the 

main task is to determine correspondences between the 

stereo images along the epipolar lines. Methods to 

determine such correspondence in stereo vision can be 

divided into two classes: global and local methods [2, 3], 

The global method relies on an iterative scheme and 

obtains the disparity on the basis of the minimization of a 

global cost function [4, 5]. This method can produce an 

accurate and dense disparity map, but at a high 

computational cost as the local method is based on the 

relation between each pixel and its adjacent pixels. 

Therefore, choosing a small window size is not suitable for 

texture-less objects because the low variation of intensity 

may produce an inferior match. Compared to the global 

method, the local method is less accurate, but can be 

deployed in many real-time applications. The main 

difficulty of the local method lies in choosing a window 

with an appropriate size and shape. Veksler [6] proposed 

an algorithm to choose a window size and shape by 

comparing the window cost for different window sizes. 

However, this approach requires the ignition of many 

parameters for window cost computation. Yoon et al. [7] 

proposed a method to adaptively adjust the weight of the 

pixels in a window. This method uses color similarity and 

geometric proximity to reduce image ambiguity at points 

of depth discontinuity. In the stereo vision, it is sometimes 

difficult to work especially when objects do not contain 

obvious features. To overcome this issue, structured light 

is combined with stereo vision. The correspondences 

http://www.ausmt.org/
mailto:saint@mail.ntut.edu.tw
http://dx.doi.org/10.5875/ausmt.v6i1.1032


 ORIGINAL ARTICLE  A Point Cloud Alignment Algorithm Based on Stereo Vision Using Random Pattern Projection  

www.ausmt.org  46           auSMT Vol. 6 No. 1 (2016) 

Copyright © 2016 International Journal of Automation and Smart Technology 

between the stereo images can be identified more 

efficiently by observing how the projected pattern 

changes between the different viewpoints. Scharstein et 

al. [8] decoded light patterns to obtain unique codes at 

each pixel in each view to compute correspondences. Ishii 

et al. [9] proposed a method that measures the 3D shapes 

of moving objects using only a single projection pattern. 

Despite relatively low accuracy, this method is suitable for 

real-time applications. To improve 3D measurement 

accuracy, Jiang et al. [10] and Konolige [11] used a unique 

random speckle pattern. Jiang et al. also took advantage 

of temporal consistency to reduce the range of disparity 

updating to improve system efficiency. Base on the 

object’s 3D information, the point cloud library (PCL) can 

be used to simulate and estimate the object’s pose in 3D 

real world coordinates. Rusu and Cousins [12] showed 

that PCL is an advanced and extensive approach to 

improving 3D perception. PCL provides support for all the 

common 3D building blocks that applications need, 

including filtering, feature estimation, registration and 

segmentation. It has been widely used in 3D vision, 

CAD/CAM and machine vision, and has been deployed on 

Windows, Linux, and Android. In PCL applications, the key 

to pose estimation is to extract the features of the point 

cloud data through global or local methods. Alex and 

Adamson [13] showed how to use the local method to 

extract surface normal vector. Huang and You [14] 

proposed a way to compute normal vectors and 

curvatures to determine the similarity of point cloud data. 

Wahl et al. [15] proposed a four-dimensional feature 

called the point feature histogram (PFH) which calculates 

the angles and normal vectors of all neighboring points of 

the reference point to align the point cloud data [16-18]. 

To extend the PFH, Rusu et al. [19] proposed a method 

called the fast point feature histogram (FPFH) which 

reduced the angle calculation between neighboring points 

of the reference point, but at the cost of reduced feature 

precision. In the global method, Rusu et al. [20] proposed 

the viewpoint feature histogram (VFH), a descriptor of 3D 

point cloud data that encodes geometry and viewpoint. 

This method is derived from the extended FPFH. By 

computing the relative angles between each surface 

normal to the central viewpoint direction, it can be used 

to achieve object recognition and classification. Once the 

point cloud data features are extracted, one of the most 

popular registration methods is the iterative closest point 

(ICP) algorithm[21,22]. After comparing the features of 

point cloud data and determining the correspondences, 

ICP tries to determine the optimal transformation 

between all of correspondences by minimizing distance 

errors. Due to the ICP computation, Rusu et al. [19] 

proposed the sample consensus initial alignment (SAC-IA) 

method to give a first rough registration for ICP. The SAC-

IA selects correspondences randomly and computes a 

rigid transformation to find the optimal result with a 

minimum distance error. In this paper, we propose a point 

cloud alignment method based on stereo vision. The 

active illumination solution, RPP, is used to enhance the 

accuracy of 3D point clouds. Method efficiency is 

improved using a down sample technique and the local 

features descriptor of the point clouds. 

Architecture of the proposed method 

Figure 1 shows an overview of the proposed method. 

The method can be divided into two phases: offline and 

online. Prior to applying the object pose estimation 

algorithm, the point clouds of the template and the target 

objects must be generated by the stereo vision module. 

The down sample technique and the feature extraction 

method are applied to describe the template and target 

objects. The pose of the target object is then estimated 

using the SAC-IA method [19]. Details of the proposed 

method are described in the following subsections.  

Stereo vision module 

Before estimating object’s pose based on the point 

clouds, the point clouds must be known. The most 

important task in this module is the generation of an 

object’s point clouds, which are then fed into the point 

cloud alignment method. In general, the surfaces of 

texture-less objects have no discriminative textures, 

which makes it difficult to generate accurate and reliable 

point clouds. Therefore, the point clouds are generated by 

observing the object with an active illumination solution, 

RPP, from two cameras set at different angles. RPP allows 

for the extraction of more reliable and discriminate 

features for texture-less objects. Another key task is 

camera calibration which uses the cameras’ intrinsic and 

extrinsic parameters to generate accurate point clouds. 
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However, using RPP to project random laser points onto 

the object’s surface also increases the noise in the 

captured images. To reduce the noise and enhance the 

features, we apply an image process called the histogram 

equalization method. The final step in the stereo vision 

module is the generation of point clouds based on the 

corresponding points in the stereo images.  
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Figure 1. Architecture of the proposed method. 
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Figure 2. Stereo vision module. 

 

To find the corresponding points between stereo 

images, a simple and efficient method called local stereo 

matching is applied. We assume that the left image is 

reference image l  and right image is target image r . In 

local stereo matching, the correspondences can be 

computed by summing up the absolute differences (SAD) 

in a small region cropped around each point. 

 ( , , ) ( , ) ,
y nx m

i x m j y n

SAD x y d L i j R i d j


   

      (1) 

where ( , )L i j  and ( , )R i j  are the respective intensity 

values of reference image l   and target image r   at 

position ( , )i j  . m   and n   define the size of the 

matching window. d  is the amount of window shift in 
r   along a scan line. The correspondences can then be 

obtained by minimizing the error at each pixel along the 

scan line. 

min max[ , ]

arg min ( , , )
d d d

SAD x y d


   (2) 

where min max[ , ]d d  limits the search range. After finding 

the correspondences, the point clouds will be generated 

by triangulation. 

l r

Bf Bf
Z

x x d
 


    (3) 

where B   is the distance between two cameras. f   is 

the focal length of the cameras. Z   is the estimated 

depth value of the object. When the point clouds are 

found, the point clouds of an object can be generated by 

the commonly used triangular method.  

Details of proposed method 

According to Fig. 1, this method consists of offline and 

online parts. The main task of the offline phase is training 

the features extracted from the template object to 

estimate the target’s pose in the latter phase. In the online 

phase, the features of the target object are also extracted 

to estimate its pose. The key problem with point clouds is 

they are not well suited for time-critical applications with 

huge data sets. For this reason, the down sample 

technique is designed to increase the computation 

advantage. There are three steps in the down sample 

technique: 

1. Remove outliers: By calculating the number of 

neighbors in the point cloud data, the system 

removes the point whose number of neighbor is 

lower than predefined threshold. 

2. Reduce the number of points: The huge point cloud 

data set requires a voxel grid to be created for each 

point. All points are then down sampled with their 

centroid in each voxel. The point cloud data still can 

maintain accurate surface measurements despite 

using significantly fewer points. 

3. Plane model segmentation: In this paper, the object 

sits on a work table. The plane model of the work 

table does not include any features that need to be 

considered. Accordingly, this system segments and 

removes the plane model of the work table to 

improve system efficiency. 

For the alignment method for estimating object pose, 

this paper extracts local features called FPFH, which is an 

extension of PFH. A PFH representation is based on the 

relationships between the points in the k-neighborhood 

and the surface normal vector. The relationship between 

two points sD   and tD   is shown in Figure 3. To 
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compute the relative difference between two pints and 

normal sN  and tN , the fixed coordinate frame UVW  

is defined as follows:  

sU N ,      (4) 

,        (5) 

 ,        (6) 

[D D ] U

D D

t s

t s

V
 


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V
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




t sD D

 

Figure 3. Relationship of the features of two points 

 

The difference between the two normals sN   and tN  

can be expressed as angular and distance features as 

follows using the UVW  frame: 

,        (7) 

,    (8) 

,       (9) 

         (10) 

As shown in Fig. 4, the features of qD  can be expressed 

by calculating the four angular and distance features of all 
point pairs in the k-neighborhood. The four features are 
categorized using a histogram as follows: 

  (11) 
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Figure 4. Neighborhood of PFH. 

 
 

Here, 2f  means the distance between two points; 

1f   and 3f   are dot products between normalized 

vectors. Their values are between 1  because of the 

cosine angles. The value of 4f   is between 2  

because of the arctangent angle. The ( , )i istep s f  is 0 if 

i if s  and 1 otherwise. This means that the algorithm 

classifies each feature in two parts by setting is  to the 

center of the interval of if . By dividing the feature values 

into two parts, a 42   bins of combination between the 

four features can be obtained. Therefore, the value of 

idx  is from 0 to 15. Furthermore, the FPFH is proposed 

to speed up the computation. As shown in Figure 5, the 

feature of qD   can be obtained by computing the four 

features between only itself and its neighbors to simplify 

the histogram feature computation. Then, the k-

neighborhood is re-determined and the neighboring SPFH 

values also used to weight the final histogram of qD  : 

 ,  (12) 

,          (13) 

where kw  represents the distance between qD   and its 

neighbor point kD .  
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Figure 5. Neighborhood of FPFH. 

Experimental results 

A texture-less object, made of 30mm steel gage, is 

used to assess the rotation and the translation accuracy of 

the proposed approach (Fig. 6). All experiments were 

performed in Visual Studio 2010 on a personal computer 

(PC) with an Intel Core i5 2.8 GHz and 4GB memory. The 

hardware of the cameras and RPP are shown in Fig. 7. 

Figure 8 shows the RPP, modeled as Osela RPP016, and the 

projected pattern with a field of view (FOV) of 35 35  . 

The corresponding number of projected laser points is 

about 23,880. The cameras (Sony XCG-V60E) have a CCD 

resolution of 640 480  pixels. To estimate the rotation 

accuracy, the point cloud data is successively rotated from 

0  to 90 in 5 step increments. To estimate translation 

accuracy, the point cloud data is successively translated 

from 0 to 90 mm in 5mm step increments. There are 6859 

rotation and translation experimental data points. To 

evaluate overall accuracy, two performance indices, the 
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average (Aver.) and the standard deviation (Std. dev.), are 

used to quantitatively show the performance of the 

proposed method. The rx  , ry   and rz   respectively 

represent the error of rotation angle with respect to the 

x, y and x axes. The tx  , ty   and tz  respectively 

represent the error of translation in the x, y and x 

directions. The experimental results are shown in Table 1. 

Extracted 
feature 

PFH FPFH 

Aver. error of 

rotation( ) 

      

0.047 0.011 -0.042 0.031 0.016 -0.031 

Aver. error of 
translation 

(mm) 

      

0.371 -0.109 0.865 -0.109 0.067 0.565 

Std. dev. of 

rotation( ) 

      

0.309 0.029 0.312 0.193 0.030 0.199 

Std. dev. of 
translation 

(mm) 

      

1.152 0.987 1.852 0.616 0.902 0.830 

time (ms) 1064 230 

Table 1. Pose estimation errors. 

 

Figure 6. Texture-less gage. 

 

Figure 7. Camera and RPP hardware. 

 

Figure 8. RPP and projected pattern. 

As shown in Table 1, FPFH extraction results in a 

maximum error and standard deviation of rotation of 

about 0.031 ( rx ) and 0.199 ( rz ). The maximum error 

and standard deviation of translation are about 0.565

mm and 0.902  mm. The execution time of pose 

estimation is about 230 ms. The execution time of FPFH is 

about one-fourth that of PFH. FPFH also provides accurate 

and efficient pose estimation results by simplifying and 

extending the calculation of the neighboring points. These 

results indicate that the proposed method can be reliably 

used on real word 3D objects. 

Conclusion 

A method is proposed to apply an active 

illumination solution and RPP to increase reliable and 

discriminate features for texture-less objects. After 

obtaining the object’s point cloud, the extracted FPFH 

features of the down sample point cloud data were 

applied to the 3D alignment algorithm. Experimental 

results found a maximum error and standard deviation of 

rotation of about 0.031   and 0.199  , while the 

maximum error and standard deviation of translation is 

about 0.565 mm and 0.902 mm, with a pose estimation 

execution time of about 230ms. Thus, the proposed 

method is an efficient and accurate point cloud alignment 

algorithm suitable for use in real-time applications. 
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