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Abstract  

This paper descript software for vehicle simulation and mathematical 

models that describe the motion of the vehicle. A dynamic simulation 

model of vehicle was developed using Matlab/Simulink and SimDriveline 

toolbox. The model has a configurable structure that is suitable to simu-

lation with multiple levels. The powertrain system model developed using 

Simulink and SimDrivline could also be used as a generic, modular and fle-

xible vehicle modeling platform to support the integration of powertrain 

design and control system optimization. 

 

 

1.  INTRODUCTION 

The dynamic behavior of vehicles can be analysed in several different ways. 

One way may be a simple spring mass system, through a three-degree of freedom 

(DoF) model, to a large degree of complexity using  a multibody system simu-

lation package such as MSC ADAMS or Modelica. Vehicle models are often 

simulated with advanced controller designs provided as software in the loop 

(SIL) with controller design software such as Simulink, or with physical 

hardware in the loop (HIL). The subject of modeling in Simulink and SimDriveline 
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was presented in (Tomasikova, Nieoczym & Brumercik, 2015; Tomasikova, 

Brumercik & Nieoczym, 2015). The issues of structural modeling and electric 

vehicle dynamics using Simulink are described in several publications.  

In (Cheng, Dong & Dong, 2013) powertrain model of a series-parallel, multiple-

regime plug-in hybrid electric vehicle (SPMR-PHEV) was introduced. Simu-

lation and control system was developed using rule-based load-leveling energy 

management strategy (EMS) under the MATLAB/Simulink and SimDriveline 

environment. The powertrain system model developed using Simulink and 

SimDrivline could also be used as a generic, modular and flexible vehicle 

modeling platform to support the integration of powertrain design and control 

system optimization.  

A dynamic simulation model of electric vehicle (EV) was developed using 

Matlab/Simulink and SimPowerSystem/SimDriveline toolbox. The EV model 

has a configurable structure that is suitable to simulation with multiple fidelity 

levels. This advantage will combine simulation models associated with deploy-

ment and test for different controllers to a single platform. It has multiple running 

rates and different solvers for subsystems in order to speed up simulation.  

The electrical system model is capable to simulate power electronics behavior 

both on average and switching level. An automated mechanical transmission 

(AMT) model and its controller were developed for heavy duty application, such 

as a city bus (Zhou , Shen & Liu, 2014). 

Mousavi, Saman, Pakniyat & Boulet (2014) focuses on the modeling, 

simulation and control of a two-speed transmission for electric vehicles which 

has seamless gear shifting specification. The transmission incorporates two-stage 

planetary gear sets and two braking mechanisms to control the gear shifting.  

The dynamic model is developed by using the kinematic equations of the plane-

tary gear trains and the Euler-Lagrange equations to derive the equations of motion. 

The mathematical model is validated by using the SimDriveLine library  

of MATLAB/Simulink. 

During construction work related to vehicle modeling, there are problems 

with formalizing the physical processes occurring in the vehicle. A test vehicle 

was created to validate the mathematical model. It ‘s experimental research and 

demonstration vehicle – Research Concept Vehicle (RCV) (Wallmark & Nybacka, 

2014). The vehicle is intended as a platform to implement, validate,  

and demonstrate research results from different research projects carried out  

at KTH. In (Fang et al., 2013; Pawlus, Hovland & Choux, 2015) characterized 

the driveline modelling techniques for development of new control algorithms. 

This paper presents the analysis of the current driveline modelling methods 

through comparison simulations in Matlab. A driveline model including the tyre 

dynamics is developed and its effectiveness has been demonstrated by simulations. 
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2.  VEHICLE MODEL  

 

Vehicle model is created in Matlab-SimDriveline. The blocks represent basic 

parts of vehicle like engine, gear, differential, tires. The model contains ele-

mentary information about vehicle geometry – dimensions and center of gravity 

position. These information about vehicle are sufficient for mathematical de-

scription of vehicle. 

Key features: 

 Common gear configuration models, including planetary, differential, and 

worm gears with meshing and viscous losses. 

 Clutch models. 

 Vehicle component models, including engine, torque converter, and 

vehicle dynamics models. 

 Models of translational elements.  

 Ideal and non-ideal model variants, enabling adjustment of model fidelity. 

 

2.1. Engine block  

 

The engine model is specified by an engine power demand function g(ω). 

The function provides the maximum power available for a given engine speed ω. 

The block parameters (maximum power, speed at maximum power and 

maximum speed) normalize this function to physical maximum torque and speed 

values. 

The engine power is nonzero when the speed is limited to the operating range 

 

𝜔𝑚𝑖𝑛 ≤  ω ≤  ωmax          (1) 

 

The absolute maximum engine power 𝑃𝑚𝑎𝑥 defines ω0 such that 𝑃𝑚𝑎𝑥 =

 𝑔(ω0). Define 𝑤 ≡  ω/ω0 and 𝑔(ω)  ≡  𝑃𝑚𝑎𝑥 · 𝑝(𝑤).  

Then 𝑝(1)  =  1 and 𝑑𝑝(1)/𝑑𝑤 =  0.  

The torque function is: 

 

𝜏 =  (𝑃𝑚𝑎𝑥/ω0 ) · [𝑝(𝑤)/𝑤]       (2) 

 

Generic engine uses a third-order polynomial form: 

 

𝑝(𝑤) =  𝑝1 · 𝑤 +  𝑝2 · 𝑤2 –  𝑝3       (3) 

 

In typical engines, the pi are positive. This polynomial has three zeros, one 

at w = 0, and a conjugate pair. One of the pair is positive and physical; the other 

is negative and unphysical: 
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𝜔± =  1
2⁄  (−𝑝2  ± √𝑝2

2 + 4 𝑝1𝑝2)     (4) 

 

For the engine power polynomial, there are restrictions on the polynomial 

coefficients pi, to achieve a valid power-speed curve. These restrictions are 

detailed below. If you use tabulated power or torque data, corresponding 

restrictions on P(ω) remain. 

Set: 

 𝑤 =  ω/ω0    and 𝑝 =  𝑃(ω)/𝑃0,  

  𝑤𝑚𝑖𝑛  =  ω𝑚𝑖𝑛/ω0 and 𝑤𝑚𝑎𝑥  =  ω𝑚𝑎𝑥/ω0.  

Then engine speed is restricted to a positive range above the minimum speed and 

below the maximum speed:  

 

0 ≤  𝑤𝑚𝑖𝑛  ≤  𝑤 ≤  𝑤𝑚𝑎𝑥       (5) 

 

The engine power at minimum speed must be nonnegative: 𝑝(𝑤𝑚𝑖𝑛)  ≥  0.  

If you use the polynomial form, this condition is a restriction on the pi: 

 

𝑝(𝑤𝑚𝑖𝑛)  =  𝑝1 · 𝑤𝑚𝑖𝑛  +  𝑝2 · 𝑤𝑚𝑖𝑛
2  – 𝑝3 · 𝑤𝑚𝑖𝑛

3  ≥  0   (6) 

 

The engine power at maximum speed must be nonnegative: 

 

𝑝(𝑤𝑚𝑎𝑥)  ≥  0. 

 

If you use the polynomial form, this condition is a restriction on: 

 

 𝑤𝑚𝑎𝑥: 𝑤𝑚𝑎𝑥  ≤  𝑤+. 

 

For the default parametrization, Generic Engine provides two choices of engine, 

each with different engine power demand parameters (Table 1). 

 
          Tab. 1. Engine power demand parameters 

Power demand 

coefficient 

Engine type 

Spark ignition Diesel 

p1 1 0.6256 

p2 1 1.6948 

p3 1 1.3474 
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2.2. Gear block  

 

The Simple Gear block represents a gearbox that constrains the two connected 

driveline axes, base (B) and follower (F), to co rotate with a fixed ratio that you 

specify. You can choose whether the follower axis rotates in the same or opposite 

direction as the base axis. If they rotate in the same direction, ωF and ωB have 

the same sign. If they rotate in opposite directions, ωF and ωB have opposite 

signs. 

Simple Gear imposes one kinematic constraint on the two connected axes: 

 

𝑟𝐹𝜔𝐹 =  𝑟𝐵𝜔𝐵          (7) 

 

The follower-base gear ratio 𝑢𝐹𝐵  =  𝑧𝐹/𝑧𝐵 , where z is the number of teeth on 

each gear. The two degrees of freedom reduce to one independent degree of 

freedom. The torque transfer is: 

 

𝑢𝐹𝐵𝑇𝐵 +  𝑇𝐹 –  𝑇𝑙𝑜𝑠𝑠 =  0        (8) 

 

In the ideal case moment of losses in the system 𝑇𝑙𝑜𝑠𝑠 =  0 .  

In a nonideal gear pair, the angular velocity, gear radii, and gear teeth 

constraints are unchanged. But the transferred torque and power are reduced by: 

 Coulomb friction between teeth surfaces on gears, characterized by 

efficiency η, 

 Viscous coupling parametrized by viscous friction coefficients μ: 

  

𝑇𝑙𝑜𝑠𝑠 =  𝑇𝐶𝑜𝑢𝑙 · 𝑡𝑎𝑛ℎ (
4𝜔𝑜𝑢𝑡

𝜔𝑡ℎ
) +  𝜇𝜔𝑜𝑢𝑡 ,     (9) 

𝑇𝐶𝑜𝑢𝑙  =  |𝑇𝐹| · (1 –  𝜂) .        (10) 

 

where: 𝑇𝑙𝑜𝑠𝑠 – moment of losses in the system, 

 𝑇𝐶𝑜𝑢𝑙 – moment on coupling. 

 

Conditions (Jeong & Lee, 2000):  

 Constant Efficiency: in the constant efficiency case, η is constant, 

independent of load or power transferred. 

 Load-Dependent Efficiency: in the load-dependent efficiency case, η 

depends on the load or power transferred across the gears. 

For either power flow: 

 

𝑇𝐶𝑜𝑢𝑙  =  𝑢𝐹𝐵𝑇𝑖𝑑𝑙𝑒  +  𝑘𝑇𝐹 ,       (11) 
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Factor k is a proportionality constant. Coefficients η is related to TCoul in the 

standard, preceding form but becomes dependent on load: 

 

𝜂 =  𝑇𝐹/[𝑢𝐹𝐵𝑇𝑖𝑑𝑙𝑒  +  (𝑘 +  1)𝑇𝐹] .      (12) 

 

This block has limitations, also: 

 Gear inertia is assumed negligible, 

 Gears are treated as rigid components. 

 

Differential gear block represents a gear mechanism that allows the driven 

shafts to spin at different speeds. Differentials are common in automobiles, 

where they enable the various wheels to spin at different speeds while cornering. 

Ports S, D1, and D2 represent the driving and driven shafts of the differential. 

Any of the shafts can drive the remaining two. 

The block models the differential mechanism as a structural component based 

on Simple Gear and Sun-Planet Bevel Simscape™ Driveline™ blocks. Fig. 1 

shows the block diagram of this structural component. 

Differential imposes one kinematic constraint on the three connected axes: 

 

𝜔𝐷 =  ±(1/2)𝑢𝐷(𝜔𝑆1 +  𝜔𝑆2) ,       (13) 

 

with the upper (+) or lower (–) sign valid for the differential crown to the right 

or left, respectively, of the center-line. The three degrees of freedom reduce to 

two independent degrees of freedom. The gear pairs are (1,2) = (S,S) and (C,D). 

C is the carrier. 

The sum of the lateral motions is the transformed longitudinal motion. 

The difference of side motions 𝜔𝑆1 –  𝜔𝑆2 is independent of the longitudinal 

motion. The general motion of the lateral shafts is a superposition of these two 

independent degrees of freedom, which have this physical significance. 

One degree of freedom (longitudinal) is equivalent to the two lateral shafts 

rotating at the same angular velocity (𝜔𝑠1 =  𝜔𝑠2) and at a fixed ratio with 

respect to the longitudinal shaft. 
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Fig. 1. The structural component of differential block 

 
The other degree of freedom (differential) is equivalent to keeping the longi-

tudinal shaft locked (𝜔𝐷 =  0) while the lateral shafts rotate with respect to each 

other in opposite directions (𝜔𝑠1 = –𝜔𝑠2). 
The torques along the lateral axes, TS1 and TS2, are constrained to the longi-

tudinal torque TD in such a way that the power flows into and out of the gear, 

less any power loss Nloss, sum to zero: 

 

𝜔𝑆1𝑇𝑆1 +  𝜔𝑆2𝑇𝑆2 +  𝜔𝐷𝑇𝐷 –  𝑃𝑙𝑜𝑠𝑠 =  0     (12) 

 

When the kinematic and power constraints are combined, the ideal case yields: 

 

𝑢𝐷𝑇𝐷 =  2(𝜔𝑆1𝑇𝑆1 +  𝜔𝑆2𝑇𝑆2) / (𝜔𝑆1 +  𝜔𝑆2)    (13) 

 

2.3. Tire block  

 

The Tire Block models the tire as a rigid wheel-tire combination in contact 

with the road and subject to slip. When torque is applied to the wheel axle,  

the tire pushes on the ground (while subject to contact friction) and transfers  

the resulting reaction as a force back on the wheel. If you include the optional 

tire compliance, the tire also flexibly deforms under load. Table 2 defines the tire 

model variables. Forces and Characteristic Function: a tire model provides  

a steady-state tire characteristic function 𝐹𝑋 =  𝑓(𝜅, 𝐹𝑍), the longitudinal force 

Fx on the tire, based on vertical load Fz and wheel slip κ 
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   Tab. 2. The tire model variables 

Parameter Description 

rw Wheel radius 

vx Wheel hub longitudinal velocity 

u Tire longitudinal deformation 

Ω Wheel angular velocity 

Ω′ Contact point angular velocity = Ω if u = 0 

rwΩ' Tire tread longitudinal velocity 

vsx = rWΩ – vx Wheel slip velocity 

v'sx = rWΩ' – vx Contact slip velocity = vsx if u = 0 

κ = vsx/|vx| Wheel slip 

κ'= v′sx/|vx| Contact slip = κ if u = 0 

vth Wheel hub threshold velocity 

Fz Vertical load on tire 

Fx 
Longitudinal force exerted on the tire at the contact 

point. 

CFx = (∂Fx/∂u)0 Tire longitudinal stiffness under deformation 

bFx = (∂Fx/∂ů)0 Tire longitudinal damping under deformation 

Iw Wheel-tire inertia 

Tdrive Torque applied by the axle to the wheel 

 

Each tire in The Pacejka “Magic formula” (Pacejka, 2005) is characterized by 

10–20 coefficients for each important force that it can produce at the contact 

patch, typically lateral and longitudinal force, and self-aligning torque, as a best 

fit between experimental data and the model. These coefficients are then used to 

generate equations showing how much force is generated for a given vertical 

load on the tire, camber angle and slip angle. A problem with Pacejka's model  

is that when implemented into computer code, it doesn't work for low speeds 

(from around the pit-entry speed), because a velocity term in the denominator 

makes the formula diverge (Kucera, Lukac, Jurak & Brumercik, 2009).  

The Magic Formula is a specific form for the tire characteristic function, 

characterized by four dimensionless coefficients (B, C, D, E ), or stiffness, 

shape, peak, and curvature: 

 

𝐹𝑥 =  𝑓(𝜅, 𝐹𝑧) = 

= 𝐹𝑧 · 𝐷 · 𝑠𝑖𝑛( 𝐶 · 𝑎𝑟𝑐𝑡𝑎𝑛[ { 𝐵𝜅 –  𝐸 · [ 𝐵𝜅 –  𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝜅)]}])

 

(14) 
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A more general Magic Formula uses dimensionless coefficients that are func-

tions of the tire load. A more complex set of parameters p,I entered in the dialog 

box, specifies these functions: 

 

𝐹𝑥0 = 
 𝐷𝑥 · 𝑠𝑖𝑛( 𝐶𝑥 · 𝑎𝑟𝑐𝑡𝑎𝑛[ { 𝐵𝑥𝜅𝑥 –  𝐸𝑥[ 𝐵𝑥𝜅𝑥 –  𝑎𝑟𝑐𝑡𝑎𝑛 (𝐵𝑥𝜅𝑥) ] } ] ) 

+ 𝑆𝑉𝑥

 

(15) 

where: 𝑑𝑓𝑧  =  (𝐹𝑧 – 𝐹𝑧0)/𝐹𝑧 , 
       𝜅𝑥  =  𝜅 +  𝑆𝐻𝑥 , 
       𝐶𝑥  =  𝑝_𝐶𝑥1 , 
       𝐷𝑥  =  𝜇𝑥 · 𝐹𝑧 , 
       𝜇𝑥  =  𝑝_𝐷𝑥1 +  𝑝_𝐷𝑥2 · 𝑑𝑓𝑧 , 

       𝐸𝑥  =  (𝑝_𝐸𝑥1 +  𝑝_𝐸𝑥2 · 𝑑𝑓𝑧  +  𝑝_𝐸𝑥3 · 𝑑𝑓𝑧
2)[1 –  𝑝_𝐸𝑥4 · 𝑠𝑔𝑛(𝜅𝑥)] , 

       𝐾𝑥𝜅  =  𝐹𝑧 · (𝑝_𝐾𝑥1 +  𝑝_𝐾𝑥2 · 𝑑𝑓𝑧) · 𝑒𝑥𝑝(𝑝_𝐾𝑥3 · 𝑑𝑓𝑧) , 
       𝐵𝑥  =  𝐾𝑥𝜅/(𝐶𝑥𝐷𝑥  + 𝜀𝑥) , 
       𝑆𝐻𝑥  =  𝑝_𝐻𝑥1 +  𝑝_𝐻𝑥2 · 𝑑𝑓𝑧 , 
       𝑆𝑉𝑥  =  𝐹𝑧 · (𝑝_𝑉𝑥1 +  𝑝_𝑉𝑥2 · 𝑑𝑓𝑧) . 

 
SHx and SVx represent offsets to the slip and longitudinal force in the force-slip 

function, or horizontal and vertical offsets if the function is plotted as a curve. μx 

is the longitudinal load-dependent friction coefficient. εx is a small number 

inserted to prevent division by zero as Fz approaches zero. 

The block uses a representative set of Magic Formula coefficients. The block 

scales the coefficients to yield the peak longitudinal force Fx0 at the 

corresponding slip κ0 that you specify, for rated vertical load Fz0. 

Numerical values are based on empirical tire data. These values are typical 

sets of constant Magic Formula coefficients for common road conditions. 

 
    Tab. 3. Formula coefficient 

Surface B C D E 

Dry tarmac 10 1.9 1 0.97 

Wet tarmac 12 2.3 0.82 1 

Snow 5 2 0.3 1 

Ice 4 2 0.1 1 

 

2.4. Vehicle body block  

 

This block models a vehicle with two axles in longitudinal motion. The axles 

can have different wheel counts. The vehicle wheels are assumed identical in 

size. The vehicle axles are parallel and form a plane. The longitudinal x direction 

lies in this plane and perpendicular to the axles. The vehicle motion is 
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determined by the net effect of all the forces and torques acting on it. The 

longitudinal tire forces push the vehicle forward or backward. The weight mg of 

the vehicle acts through its centre of gravity (CG). Figure 2 and Table 4 define 

the vehicle motion model variables. 

This are the motion equations: 

 

𝑚 𝑉̇𝑋 =  𝐹𝑋 − 𝐹𝑑 − 𝑚𝑔 sin 𝛽         (16) 

 

𝐹𝑋 = 𝑛(𝐹𝑋𝑓 +  𝐹𝑋𝑟)          (17) 

 

𝐹𝑑 =
1

2
 𝐶𝑑𝜌𝐴(𝑉𝑋 − 𝑉𝑊)2            (18) 

 

 

 

 
 

Fig. 2. Scheme of the vehicle model 
 

Zero normal acceleration and zero pitch torque determine the normal force on 

each front and rear wheel: 

 

 

  𝐹𝑧𝑓 =  
−ℎ (𝐹𝑑+𝑚𝑔 sin 𝛽+𝑚 𝑉̇𝑋)+𝑏 𝑚𝑔 cos 𝛽

𝑛(𝑎+𝑏)
       (19) 

 

 𝐹𝑧𝑟 =  
+ℎ (𝐹𝑑+𝑚𝑔 sin 𝛽+𝑚 𝑉̇𝑋)+𝑎 𝑚𝑔 cos 𝛽

𝑛(𝑎+𝑏)
      (20) 
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     Tab. 4. The vehicle motion model variables  

Parameter Description 

β Incline angle 

h Height of vehicle CG above the ground 

a, b Distance of front and rear axles, respectively, from the normal 

projection point of vehicle CG onto the common axle plane 

vx Longitudinal vehicle velocity 

vW Headwind speed 

n Number of wheels on each axle 

Fxf, Fxr Longitudinal forces on each wheel at the front and rear 

ground contact points, respectively 

Fzf, Fzr Normal load forces on the each wheel at the front and rear 

ground contact points, respectively 

A Effective frontal vehicle cross-sectional area 

Cd Aerodynamic drag coefficient 

ρ Mass density of air ρ = 1.2 kg/m3 

Fd Aerodynamic drag force 

 

 The Vehicle Body block lets you model only longitudinal dynamics, parallel 

to the ground and oriented along the direction of motion. The vehicle is assumed 

to be in pitch and normal equilibrium. The block does not model pitch or vertical 

movement. As such, the equations assume that the wheels never lose contact. 

This constraint can result in negative normal forces. 

Vehicle model in SimDriveline is simplified 4 wheels car (Figure 3). We can 

measure and explore some dynamic properties of vehicle like vehicle velocity, 

normal forces on tire, wheel rpm. The model is limited. We can simulate only 

driving in direct direction, not turning. The Tire (Magic Formula) block assumes 

longitudinal motion only and includes no camber, turning, or lateral motion. 
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Fig. 3. Vehicle model 
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3.  CONCLUSIONS 
 

The methodology for designing the propulsion and driving system using  

the Simulink program has been presented. The analyzed driving system was 

divided into functional components: engine, clutch, gearbox and powertrain  

with rubber wheels. For each component, key features and model limitations 

were identified. The basic formulas and the mathematical relationships used  

in modeling have been demonstrated. Mathematical formulas are written  

in a parametric manner using coefficients. The coefficients values are given for 

the calculation of the propulsion engine, the driving wheels and the dynamic 

effects on the vehicle. The equations described above allow for quick analysis  

of the output when changing certain coefficients. A model vehicle built from 

Simulink blocks. This model takes into account the kinematic dependence  

on vehicle units and enables analysis of dynamic vehicle characteristics. Limitation 

of the described model is the analysis of its motion on the straight line. 
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