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Abstract Southeast Asia is recognized as a climate-change 
vulnerable region as it has been significantly affected by many 
extreme events in the past. This study carried out a rainfall analysis 
over the Malay Peninsula region of Southeast Asia utilizing 
historical (1981-2007) gridded rainfall datasets (0.5°×0.5°). The 
rainfall variability was analyzed in an intra-decadal time series 
duration. The uncertainty involved in all datasets was also checked 
based on the comparison of multiple global rainfall datasets. 
Rainfall gap filling analysis was conducted for producing more 
accurate rainfall time series after testing multiple mathematical 
functions. Frequency-based rainfall extreme indices such as Dry 
Days and Wet days are generated to assess the rainfall variability 
over the study area. Our results revealed a notable variation existed 
in the rainfalls over Malay Peninsula as per the long historical 
duration (1981-2007).     

1 Introduction 
Southeast Asia has corresponded with two major types of monsoon systems, i.e. 
South Asia Summer Monsoon (SASM) and Boreal Winter Season (BWS) or Asian 
Winter Monsoon [1]. These two monsoon systems are accountable for the wet and 
dry seasons in the SEA [1]. Malay Peninsula is mostly influenced by BWS (North-
East) which brings heavy rainfalls mostly during November to March [2, 3]. The 
resolution and time step of rainfall data imply the accuracy of any rainfall-based 
analysis outcomes. The missing values in rainfall time series is common but long data 
gaps could be critical since these gaps in rainfall time series can produce biased 
results [4, 5]. To reduce the uncertainty in the filled rainfall time series, the main 
prominence should be maintaining rainfall frequency, extremity and their patterns 
[6]. The objective of this study is to analyse rainfall variabilities over the Malaya 
Peninsula region in a relatively long-term (1981-2007) duration using gridded rainfall 
dataset at a resolution of 0.50°×0.50°. The gridded rainfall dataset is corrected using 
various gap-filling methods. The seasonality and rainfall patters are also explored.  

2 Study area and data 
The selected study area covers the upper and lower bounds within Malay Peninsula 
region, namely between -1°S to 7°N (latitude) and 100°E to 104°E (longitude). The 
seasonality of SEA region including Malay Peninsula and their complexities was 
discussed by Mandapaka et al. [7]. The daily high resolution observed gridded rainfall 
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dataset (SA-OBS), generated under the Southeast Asian Climate Assessment and 
Dataset (SACA&D) project [8], was adopted in this study. The SACA&D used more 
than 1393 rainfall gauges in the preparation of SA-OBS gridded rainfall datasets. In 
this study, we utilized the SA-OBS data from 1981 to 2007 produced at 0.50°×0.50° 
grid scale (see Fig. 1). 

 

 

 

 

 

 

 

 

 

Fig. 1. The study Area map of Southeast Asia covering Malay Peninsula region. The rainfall 
grids used in the study are highlighted within the Malay Peninsula region.  

The Terrestrial Hydrology Research Group Princeton University provides 
the gridded daily rainfall dataset (1981-2007) at 0.50°×0.50° grid scale for the whole 
world (http://hydrology.princeton.edu/data.pgf.php) and it was also utilized in our 
study [9]. This dataset has been utilized in various hydro-climatological studies 
around the world and proven their applicability in different regions [9, 10]. The 
APHRODITE data (APHRO_MA_050deg_V1101) at 0.50°×0.50° grid scale from 
1981 to 2007 was also utilized [11]. This gridded rainfall dataset has been prepared 
using gauged-based rainfalls and the angular distance weighting interpolation method 
was used for the gridding of rainfall observations [11]. 

3 Methodology  
This study utilizes standard mathematical methods for filling the rainfall data gaps in 
SA-OBS after a careful review of literatures [6, 12]. Initially, the minor data gaps 
(<2%) in the SA-OBS data is filled by using the average of the nearest neighbouring 
rainfall grids. In terms of greater gaps (>2%), we applied four different methods to 
correct: (i) distance power (DP) method [12], (ii) distance power with high correlation 
coefficient (DPHCC) [12], (iii) linear regression (LR) method [12] and (iv) multiple 
linear regression (MLR) method [13]. Fig. 1 shows four grids that have data gaps 
greater than 2%.  

The applicability of these methods in filling rainfall gaps is evaluated at one 
grid station (as testing grid with no data gaps) as shown in Fig. 1. We create some 

artificial data gaps for applying these methods and the relevant results are analysed 
and compared with original record. The data-gaps are created as per the reference of 
grids which have large data gaps (Green colour grids in Figure 1). Ten indicators are 
used for performance evaluation, such as coefficient of determination (R2), 
percentage (%) of change, mean absolute error (MAE), root mean squared error 
(RMSE) and Akaike information criterion (AIC) [13]. For the spatial interpolation, 
we fix the cell resolution according to the actual grid resolution (i.e. 0.5°×0.5° grid 
scale), which is almost equivalent to 50 km2. The standard rainfall extreme indices 
(REIs) such as Wet Days and Dry Days were generated as per the guidelines provided 
in previous studies [7]. The main purpose of generating REIs is to explore the rainfall 
extreme level changes in Malay Peninsula region. 

4 Results and discussion 
Table 1 shows the results of four different infilling methods (i.e. DP, DPHCC, LR, 
and MLR) for filling up rainfall data gaps present in the SA-OBS. Each method shows 
a reliable computation of missing rainfalls. Different statistical functions (as shown 
in Table 1) are utilized to test their applicability and strength over Malay Peninsula 
region, as the rainfall over this region is found highly inconsistent throughout the 
year.  

Table 1. The statistical evaluation of infilling rainfall gaps based on four methods. 

Statistical 
methods 

SA-OBS 
(Original) 

SA-OBS 
(Gaps) DP DPHCC LR MLR 

Mean  9.70 9.57 9.55 9.62 7.97 9.80 
% Change NA NA -1.55 -0.81 -17.81 1.08 
One Day 

Max 
139.00 139.00 142.80 146.80 109.70 145.50 

Std. Dev. 11.04 11.18 10.62 10.91 8.39 10.86 
Std. Error 0.12 NA 0.12 0.12 0.09 0.12 

R2 NA NA 0.97 0.98 0.86 0.98 
MAE NA NA 1.08 1.00 2.45 0.92 
MSE NA NA 3.09 2.73 16.82 2.29 

RMSE NA NA 1.76 1.65 4.10 1.51 
AIC NA NA 9048.20 8053.11 22654.89 6649.07 

*NA = Not Applicable 
 

 Among all four methods, the DPHCC and the MLR methods give more 
satisfactory performance, as they recorded lower MSE, RMSE and higher R2 than 
others. The DPHCC and MLR computed the lowest AIC values than other methods 
(Table 1). These two methods are also able to well capture the extreme rainfall events 
during the time series (1981-2007). Results showed that the methods which are 
selected for the rainfall gap filling could reasonably capture the one day maximum 
rainfall (1981-2007) as compared to SA-OBS (original). Therefore, these two 
methods are utilized for filling the rainfall data gaps at four grids of the SA-OBS data.  
Fig. 2 shows the results of the comparison of all datasets used in the study. Fig. 2(a) 
shows the difference in the daily mean rainfall (1981-2007) by taking the average of 
27-year daily rainfall data. The comparison is conducted based on the same-time 
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series length (i.e. 1981-2007) of all datasets across all grids. In Figs. 2(a), 2(b) and 
2(c), the y-axes show the variations in daily mean, standard deviation and maximum 
rainfalls, respectively, across all grids. The PRINCETON rainfall shows relatively 
higher values than APHRODITE and SA-OBS in terms of mean, standard deviation, 
and maximum. The APHRODITE shows the lowest values for all on the contrarily. 
However, the PRINCETON data shows large variability in their ranges than other 
two datasets. Overall, in terms of average of all indicators, the SA-OBS is found 
relatively closer to PRINCETON.  

 
 
 

 

 

 

Fig. 2. The comparative statistical evaluation of SA-OBS, APHRODITE and PRINCETON 
rainfall datasets: (a) Mean Rainfall (daily mean), (b) Standard Deviation and (c) Maximum 
Rainfall.  

The applicability and uncertainty with these datasets are also evaluated by 
using different statistical parameters as shown in Fig. 3. The results intend to explore 
the data characteristics of rainfalls based on their frequencies and mean behavior 
during the study period (1981-2007). Fig. 3(a) shows the spatial distribution of mean 
rainfall across the Malay Peninsula region. Overall, all plots indicate a notable 
variability across the whole region; especially, the APHRODITE shows slightly 
higher mean in the Northeastern side of Malay Peninsula. The SA-OBS and 
PRINCETON rainfalls are found relatively closer to each other. From Fig. 3(b), the 
DRY Days are recorded the highest in the case of PRINCETON and lowest in the 
one of APHRODITE as compared to SA-OBS. The Wet Days, as shown in Fig. 3(c), 
are recorded the highest in case of APHRODDITE, while SA-OBS and PRINCETON 
demonstrate a better consistency (Fig. 3c).  

Fig. 4 shows the monsoon characteristics of Malay Peninsula region as 
explored by the three sources of datasets. The spatial plots are prepared based on the 
daily mean of rainfalls (1981-2007). The Malay Peninsula region is influenced by 
two monsoon systems including SASM and BWS, but it receives relatively more 
rainfalls during BWS. Fig. 4(a) clearly shows a higher mean of rainfalls across all the 
region in all datasets. The Malaya Peninsula region receives the lowest rainfall during 
JJA months as can be seen in Fig. 4(b). Overall, each dataset shows variability in their 
means across the entire region. PRINCETON and SA-OBS are found more 

comparable in SON and DJF, but APHRODITE and SA-OBS seems to be closer in 
MAM and JJA.  

 

 
Fig. 3. The comparison of three datasets based on the (a) mean, (b) Dry Days (DRYD) and 
(c) Wet Days (WETD).  
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Fig. 4. The monsoon characteristics of Malay Peninsula region by three datasets in four 
seasons: (a) September-October-November (SON) & December-January-February (DJF) and 
(b) March-April-May (MAM) and June-July-August (JJA).   

 

5 Conclusion  
This study firstly carried out correction of the SA-OBS gridded rainfalls by filling the 
missing record in Malay Peninsula region. The availability of other standard global 
rainfall datasets, namely APHRODITE and PRINCETON, was also evaluated due to 
their wide applications around the world and in SEA. In this study, we utilized around 
27 years daily time series rainfall datasets as per their availability and the data found 
sufficient to highlight our objectives, especially in SEA which has a large data 
limitations. The DPHCC and MLR are performed well in filling large rainfall gaps 
and similar approach may be applicable to other regions of the world in case of 
rainfall data scarcity. The seasonality of Malay Peninsula monsoon system has been 
explored and the spatial distribution of rainfall was analyzed over the region. The 
general findings were quite consistent from all datasets utilized in the study, although 
some variations in rainfall were found.  
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