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Abstract

An algorithm is presented that returns the optimal pairwise gapped alignment of two sets of signed numerical sequence
values. One distinguishing feature of this algorithm is a flexible comparison engine (based on both relative shape and
absolute similarity measures) that does not rely on explicit gap penalties. Additionally, an empirical probability model is
developed to estimate the significance of the returned alignment with respect to randomized data. The algorithm’s utility
for biological hypothesis formulation is demonstrated with test cases including database search and pairwise alignment of
protein hydropathy. However, the algorithm and probability model could possibly be extended to accommodate other
diverse types of protein or nucleic acid data, including positional thermodynamic stability and mRNA translation efficiency.
The algorithm requires only numerical values as input and will readily compare data other than protein hydropathy. The
tool is therefore expected to complement, rather than replace, existing sequence and structure based tools and may inform
medical discovery, as exemplified by proposed similarity between a chlamydial ORFan protein and bacterial colicin pore-
forming domain. The source code, documentation, and a basic web-server application are available.
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Introduction

Determining the evolutionary relatedness of two protein

sequences is most successfully performed by amino acid sequence

comparison [1–5]. However, it is well known that structure can be

preserved even when sequence has diverged past the point of

amino acid similarity recognition [6], suggesting that sequences

can bestow local, subglobal, and global properties to a protein that

can be preserved in the absence of strict conservation of the side

chain atoms. In other words, similar properties could exist

horizontally in a sequence even when recognizable vertical

conservation is lost [7]. Even if such similarities are due to

analogy rather than homology [8], approaches are needed that

can augment sequence based analysis by matching patterns that

may be independent of amino acid conservation at each position.

Comparison of three-dimensional atomic structures [9–13] is

one example of such pattern matching. However, protein func-

tion and evolution arise from a manifold of physical, chemical,

and biological mechanisms, only partly accounted for by side

chain identity or structural similarity [14–18]. It may be the case

that proteins can also be meaningfully characterized by other

attributes, such as the energetic contributions to stability [19] or

the predicted codon translation efficiency along the mRNA [20–

22]. Yet, such attributes are not easily accommodated by simple

adaptation of current algorithms, largely because the scoring

systems for such algorithms are based on positional sequence

identity (amino acid substitution matrices) or absolute geometric

structural similarity (Euclidean distance).

As a result, properties other than sequence and structure, and

their additional potential biological insight into proteins, have not

been as thoroughly explored. For example, the local thermody-

namic stability of a protein, as experimentally measured by

deuterium-hydrogen exchange [23,24], is described by a one-

dimensional sequence of numerical values (i.e. amide protection

factors). These values are well-known to be a combination of

sequence, structure, and solvent effects [25], but no substitution

matrix or distance measure exists for the objective comparison of

two sets of protection factors. As such, important relationships

could be overlooked, or worse, erroneous knowledge could be

inferred from comparisons that separate the effects (e.g. comparing

side chain identity in the absence of information about the

thermodynamic stability at the same position).

One-dimensional software tools have been developed for the

special case of hydrophobicity analysis, such as identification and

alignment of the membrane spanning regions of non-globular

proteins [26–28]. Although useful, these tools have historically

incorporated family-specific scoring matrices [29] and empirical
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gap penalties. Such heuristics hinder the algorithms’ transferability

to different proteins or applicability to data types other than

transmembrane protein hydrophobicity. In addition, the scoring

functions for hydrophobicity analysis are often based on template-

based matching or absolute similarity [30], and while this is

effective at finding matches that are similar in both shape and

magnitude, two sets of data that describe the same shape, but are

offset by a scalar value, would be missed. For example, such a case

can arise for experimentally measured local thermodynamic

stabilities of proteins, where the relative stabilities of the same

structural region of two homologs are observed to be strikingly

similar, yet offset by a constant DDG value [31]. Finally, some of

these previous tools lack the capability for large database searches

or do not include estimates of statistical significance, limiting their

usefulness and effectiveness even for the appropriate input data.

To address these shortcomings, we have developed a tool to

compare the internal consistency of one-dimensional profiles

defined by arbitrary sequences of numerical data. To maximize

the flexibility of the tool, we have deliberately chosen in the design

to include two metrics that match both the relative shapes of the

two profiles as well as the absolute similarity of the numerical

values. Thus, the scoring system is designed to be independent of

the input data type (as opposed to the tool’s probability model

which is very much dependent on the data type). Since this design

emphasizes the closeness in shape of the two sets scanned over a

horizontal range of positions, in contrast to the vertical position-

by-position independent scoring of a standard amino acid

substitution matrix, the algorithm is named Horizontal Protein

Comparison Tool (HePCaT).

Materials and Methods

Detailed description of the HePCaT algorithm
The algorithm proceeds by creating internal signed distance

matrices from each of two sets of input numerical data vectors v

(Figure 1, Steps 1 and 2). The vector is composed of M elements

given a protein of length M residues. In the following develop-

ment, vi denotes an arbitrary numerical value at residue i. For a

protein of M residues, each element of its distance matrix D is

defined as

Di~1::M, j~1::M~sign vi{vj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi{vj

� �2
q

ð1Þ

The signed distance matrices, while not symmetric, are reflections

across the diagonal (Figure 1, Step 2). Thus, both shape and

magnitude information about each data set are encoded in these

matrices. For example, the Protein 2 matrix D2 (Figure 1, Step 2)

clearly indicates the strong local maximum in the N-terminal half

relative to the strong local minimum in the C-terminal half as

prominent red or blue regions.

Equation 1 demonstrates a key conceptual difference from

structure comparison algorithms that are usually based on distance

or contact matrices restricted to only positive values [32,33]. This

difference reflects the nature of the information being compared.

For structure comparison, the distance between two atoms is

identical whether it is computed between the first and second atom

or vice versa, while in the case of thermodynamic stability, for

example, there may be a relative stabilization between the first and

second atoms, which becomes a relative destabilization between

second and first. The sign in Equation 1 thus represents this key

conceptual difference: a ‘‘distance’’ in HePCaT has both sign and

magnitude. (It is noted that Equation 1 may be extended to an

arbitrary number of mathematical dimensions, but the present

work only considers the one-dimensional case.)

A shape similarity matrix, S, is then constructed from the two

distance matrices (Figure 1, Step 3). To speed the calculation, a

heuristic window size, W, is introduced. (In this work, W is always

five residues, but we note that this is potentially an adjustable

parameter and a completely exhaustive search may be performed

with W = 1.) For each position i = M2(W21) in Protein 1 and

each position j = N2(W21) in Protein 2, the relative shape

similarity is computed between the two five-residue blocks

originating at positions i and j:

Si~1::M{(W{1),j~1::N{(W{1)~
1

W

XW{1

k~0

D1i,izk{D2j,jzk

�� �� ð2Þ

Equation 2 is simply the average absolute value of the difference of

equivalenced internal distances between the two blocks. If the

shape similarity is high this value will be small, if the shape

similarity is very different this value will be large. Such

dissimilarity can be readily viewed for the example proteins: the

Figure 1 similarity matrix contains strong positive values (darkest

red) where the large peak in the middle of the first protein

coincides with the deep valley in the C-terminal region of the

second (or vice versa).

In this implementation, the signed internal distances within each

block of W = 5 residues are scaled such that the longest absolute

value of the internal distance is one,

Di,izk~
Di,izk

max abs Di,izkð ÞDk~W
k~1

� � ð3Þ

Although this normalization can be disabled, we believe that

emphasizing comparison of relative shape improves detection of

relative trends in biological data, which can exhibit wide variations

in scale. Practically, normalization also intuitively simplifies the

choice of the user-defined alignment shape similarity cutoff, as

described below.

Author Summary

Trend discovery is an important way to generate under-
standing from large amounts of data. We have developed
a novel tool that discovers significantly similar trends
shared between two numerical data sets. Since the tool’s
algorithmic method compares both the relative shapes of
the ‘‘peaks’’ and ‘‘valleys’’ in the data, as well as the
absolute magnitudes of the numerical values, we believe
the tool is tolerant of imperfections and could be
applicable to a wide range of scientific, engineering,
social, or economic problems. In short, if measurements
can be converted to a series of numbers, our tool may
potentially be useful for trend discovery. Since we are a
protein biophysics group, we are most naturally interested
in discovering new similarities between proteins, and we
have discovered a particularly interesting, statistically
significant similarity between a protein unique to Chla-
mydia and a bacterial pore-forming protein, colicin. This
previously unreported similarity may have medical rele-
vance, and we are currently experimentally testing the
properties of the chlamydial protein in the laboratory. In a
second example, we demonstrate the tool’s ability to easily
recover a known, but difficult to detect, relationship
between two other GPCR proteins.

A Horizontal Tool for Numerical Trend Discovery
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The optimal alignment between Proteins 1 and 2 is found by

exhaustive search of the shape similarity matrix (Figure 1, Steps 4

and 5). ‘‘Optimal’’ is defined as the largest unique set of blocks of

size W, subject to at most GapMax skipped positions of the

similarity matrix between blocks, which exhibits the smallest

RMSD of all such sets passing a user-defined shape similarity

cutoff, C. If C = 0, exact shape matches only are permitted in the

alignment list. For this work, where Equation 3 applies, C was set

to 0.40, meaning that an alignment whose average normalized

distance between two five residue blocks was at most 40% different

was counted as a matching shape. If Equation 3 were disabled, C

would have to be adjusted empirically based on the dynamic

ranges of data compared.

The algorithm starts at cell (1,1) of S (i.e. the lower left corner of

the matrix in Figure 1, Step 3), corresponding to the average

difference between the scaled intraprotein distances of residues 1–

5 in Protein 1 and residues 1–5 in Protein 2. If S1,1, = C, this

match is kept and position S6,6 is checked, until all cells of S are

evaluated up to the position SM-W+1,N-W+1 (i.e. the upper right

corner of the matrix in Figure 1, Step 3). If at any point Si,j.C,

single cell gaps are inserted in one or both sequences up to a

maximum of GapMax in an attempt to obtain the longest path

through S subject to C. A list of the longest gapped paths is kept at

this stage (Figure 1, Step 3, colored arrows). Therefore, all paths in

this list are comprised of equivalenced positions in the two proteins

such that, on average, the intraprotein distances seen at every

position match to at least degree C; this average value is named

Average Path Distance (APD, Figure 1, Step 4). GapMax was

empirically set to 4 for this work. No penalty is applied to APD for

insertion of a gap. Importantly, at this first stage only relative

Figure 1. Overview of the Horizontal Protein Comparison Tool (HePCaT) algorithm. The hydropathy profiles of two hypothetical proteins,
each of length M = N = 20 residues, are shown (Step 1). Intraprotein signed distances are computed within each protein according to Equation 1 in the
main text (Step 2). Positive distances, e.g. measured from a residue with a local minimum value to a residue with a local maximum value, are indicated
in red, negative distances in blue. The signed distance matrices are therefore square and symmetrically reflected across the diagonal. Distances for
protein 1 and protein 2 correspond to matrices D1 and D2, respectively. The similarity matrix S that ultimately compares the two proteins is
constructed from the average absolute distance differences of W = 5 residue blocks between D1 and D2, according to Equation 2 (Step 3). In S, light
colored squares indicate blocks of W = 5 residues starting at residue i in protein 1 and residue j in protein 2 with similarly shaped hydropathy, dark
squares indicate dissimilar shapes. (Si = 1,j = 1 is the lower left corner in the figure.) As described in the text, S is exhaustively searched and all longest
alignments with up to possibly GapMax gaps, whose squares (average path distance, APD) pass a user-defined average similarity cutoff C, are kept in
a list (set of colored arrows). The alignment of this list with the closest absolute shape (lowest RMSD) is defined as the optimal match (Step 5). An
Optimal Path Score (OPS), defined by Equation 4, is assigned to the alignment and its significance is computed with respect to the score distribution
of random alignments of identical length (Step 6). Note that the example alignment, while a reasonable visual match, is only marginally significant
with respect to random alignments of identical length, due to its short length of 10 residues.
doi:10.1371/journal.pcbi.1003247.g001

A Horizontal Tool for Numerical Trend Discovery
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shape similarity is checked; any systematic offset between the two

data sets is ignored because only the differences between

intraprotein distances are evaluated.

After S has been exhaustively searched, the list of longest

alignments passing the shape cutoff is filtered by RMSD of the

aligned positions (Figure 1, Step 5). The smallest RMSD alignment

is defined as the optimal (thus, the RMSD is effectively a magnitude

filter). If multiple alignments of identical longest length happen to

exhibit identical RMSD, only the first such one encountered is

returned. In HePCaT, the RMSD calculation is executed after

translation of both sets to data to their respective centers-of-mass,

thus effects of a global offset between each data set are again

minimized. Following Jia, et al. [34], we define an Optimal Path

Score (OPS) for this optimal alignment according to the formula:

OPS~
RMSD

L
1z

Gaps

L

� �
ð4Þ

In Equation 4, L is the alignment length and Gaps is the total

number of cells skipped in S to obtain that alignment. Note that, as

mentioned above, gaps are not explicitly penalized during

alignment, but gaps will penalize the final score according to

Equation 4, under the reasonable and common assumption that a

gapless match is a ‘‘better’’ match than a gapped one.

Alternatively, the GapMax parameter could be set to zero if

desired so that all gaps are forbidden.

A probability model to estimate the significance of an OPS score

s of an alignment of length L was derived from analysis of

randomly generated alignments (Figure 1, Step 6). It is important

to realize that a probability model is specific to the type of data

aligned and must also be recalibrated for a specific combination of

W, C, and GapMax. The probability model for Kyte-Doolittle

hydropathy [35], averaged over a 15-residue window, is listed in

Tables 1 and 2 and was built for the following HePCaT

parameters: W = 5 residues, GapMax = 4 residues, C = 0.4 with

the local scaling of Equation 3. (Other probability models have

been constructed and tested by the authors, including models

based on eScape predicted native state thermodynamic stability

[19], and predicted translation efficiency index tAI [20,21], and

are available upon request.)

Construction of probability model
Significance of the Equation 4 score of optimal HePCaT

alignments was estimated with respect to the scores of optimal

alignments of identical length between proteins of random amino

acid sequence. Two random proteins of equal lengths between 10

and 500 residues were generated according to background amino

acid frequencies as given by Robinson & Robinson. [36] Sets of at

least 20,000 such pairs for each length were optimally aligned

using HePCaT, and the distributions of Equation 4 scores for a

given optimal alignment length from the entire pool were

tabulated (Figure 2A). It was observed that these skewed unimodal

distributions exhibited a strong dependence on alignment length

(Figure 2B). Out of several possible two-variable formulae, it was

empirically determined that these score distributions were

statistically best fit by Scaled Inverse Chi-Squared probability

density functions (Figure 2, Tables 1 and 2) [37],

PDFInverseChiSquared x; v,s2DL
� �

~

s2n
2

� 	n
2
e
{s2n

2x

C n
2

� �
x

1zn
2

ð5Þ

In Equation 5, L is optimal alignment length, and C(x) is the

Gamma function. [38] Parameters n and s2 were estimated by

minimum chi-squared fits to the binned score data at each

observed alignment length (Figure 2A). Binning and parameter

estimation were performed using custom Mathematica 8.0 scripts,

such that each variable-width bin contained at least 20 points,

additional details are provided in Table 1.

Ad-hoc analytical expressions were fitted to the collected best-fit

parameters of Equation 5 as a function of optimal alignment

length L (Figure 2B):

n LDW ,C,GapMaxð Þ~m Lð Þ ð6Þ

s2 LDW ,C,GapMaxð Þ~eazb ln Lzcð Þ ð7Þ

Determination of coefficients a, b, c, and m only employed

reasonably well-fit Equation 5 values whose null hypotheses (i.e.

that the simulated data were drawn from Inverse Chi Square

Distributions) could not be rejected at p,0.05. Equations 6 and 7

coefficients for protein hydropathy are given in Table 2, all

resulted from excellent fits of R2 = 0.99 or better using gnumeric

spreadsheet software (Figure 2B).

Therefore, given an observed optimal HePCaT alignment of

length L with Equation 4 score s, the probability p of observing

that alignment of protein hydropathy by chance could be

estimated from the corresponding Scaled Inverse Chi-Squared

cumulative distribution function as:

p sjL,W ,C,GapMaxð Þ~
ðxvs

0

PDFInverseChiSquared x,n Lð Þ,s2 Lð Þ
� �

dx~

ðxvs

0

Q
n

2
,
s2n

2x

� �
dx
ð8Þ

In Equation 8, Q(a,x) is the complement of the regularized

Gamma function [38]; n and s2 were estimated from Equations 6

and 7, using coefficients of Table 2.

Clustering of membrane protein structures based
on hydropathy

All 1604 amino acid sequences corresponding to every

membrane protein structure in SCOP 1.73 (class f ) [39] were

obtained from the ASTRAL domain database [40] and clustered

at 70% sequence identity by the cd-hit server [41], resulting in 214

representative sequences. The Kyte-Doolittle hydropathy values

[35] for each sequence were averaged over a window size of 15

residues, with the average being assigned to the middle position of

the window. These 214 hydropathy profiles were then compared

using HePCaT in an all-vs-all manner, with the probability value

for each optimal match computed using the model coefficients

listed in Table 2. For each protein, a vector of length 214

containing the probability values against all other proteins was

constructed. These 214 vectors were then clustered by Manhattan

Distance and Ward’s minimum variance criterion as implemented

in the Hierarchical Clustering Package of Mathematica 8.0

(Wolfram Research) to create a dendrogram. A similar tree was

computed from FASTA [42] E-values of all pairwise sequence

comparisons. Significance of each grouping was estimated using

the bootstrap ‘‘Gap Test’’ option of the software.

Hydropathy database search of the human proteome
using adenosine receptor A2a as query

The human proteome was obtained from translation of the

DNA sequences contained in the NCBI CDDS [43] build 36.3

A Horizontal Tool for Numerical Trend Discovery
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(April 30, 2008). Each amino acid in every protein was assigned

a value according to the Kyte-Doolittle hydropathy scale.[35] The

values for each protein were averaged using a 15 residue sliding

window; averaged values for the first and last seven residues in

each protein were subsequently ignored. The averaged values for

the G-protein coupled receptor (GPCR) human adenosine

receptor A2a (CCDS 13826.1, gi|5921992) were used as query

against the human proteome, i.e. the averaged hydropathy values

of each protein in the proteome were optimally pairwise aligned

to A2a using HePCaT with the following parameters: W = 5

residues, C = 0.4, GapMax = 4 residues. P-values for each alignment

were computed using the probability model specific to these data

as described above. GPCRs were checked and annotated in our

local copy of the human proteome by FASTA-aligning [42] amino

acid sequences of the proteome with amino acid sequences of

known GPCRs obtained from the GPCRDB [44]. Modeling was

performed with a local installation of I-TASSER software [45]

using default parameters. Structural similarity between the first

I-TASSER model and known proteins was assessed using the

DALI server [46].

Discovery of similarity between ORFan protein TC0624
and colicin pore-forming domain

A dataset of 8812 ORFan protein sequences was obtained from

Yomtovian, et al. [47] As described above, HePCaT was used to

optimally align the Kyte-Doolittle averaged hydropathy profiles of

each ORFan protein with the profile of each member of the non-

redundant set of 214 membrane proteins of known structure

described above Secondary structure prediction was performed

using the PSIPRED server [48] [49] and Hidden Markov Model

sequence profile comparison was performed using the HHpred

server [50], both with default parameters. Modeling was performed

with a local installation of I-TASSER software [45] using default

parameters. Structural similarity between the first I-TASSER

model and known proteins was assessed using the DALI server [46].

Table 1. Goodness of fit statistics between Scaled Inverse Chi
Squared probability distribution function (Equation 5) and
OPS score distributions of various length optimal HePCaT
alignments of random amino acid sequences.

Hydropathy

Kyte-Doolittle Hydropathy,
averaged over 15 residues

W = 5 residues

GapMax = 4 residues

C = 0.4

HePCaT Alignment
Length n ln s2 x2 d.o.f. P-Value N

20 20.030 24.092 19.4 20 0.37 433

25a

30 20.444 24.266 2.3 9 0.94 205

35 18.771 24.305 9.8 15 0.71 322

40 22.152 24.371 16.8 17 0.33 365

45

50 23.895 24.507 10.2 14 0.60 309

55 31.086 24.556 23.7 17 0.07 368

60 27.883 24.634 17.9 19 0.39 414

65 31.871 24.675 9.1 17 0.87 379

70 34.017 24.751 11.3 15 0.58 339

75 37.144 24.752 16.0 19 0.52 405

80 40.667 24.860 15.5 19 0.56 419

85 39.468 24.851 19.2 17 0.21 374

90 40.866 24.903 15.1 16 0.37 343

95 50.460 24.935 19.0 18 0.27 386

100 58.710 24.974 16.3 16 0.29 352

105 48.502 25.033 15.0 15 0.31 329

110 50.481 25.038 5.4 11 0.80 254

115 60.850 25.074 6.9 14 0.86 315

120 52.309 25.114 8.6 12 0.57 267

125 56.929 25.160 7.4 13 0.76 295

130 73.921 25.170 11.6 12 0.31 279

135 66.086 25.231 3.7 13 0.98 282

140 91.441 25.262 8.4 11 0.50 251

145 75.360 25.265 4.6 12 0.92 276

150 74.003 25.289 5.2 13 0.92 296

155

160 82.535 25.341 8.7 14 0.73 308

165 74.069 25.378 7.9 15 0.85 331

170 87.990 25.403 12.0 14 0.45 319

175 78.128 25.437 19.1 17 0.21 362

180 84.227 25.449 22.2 17 0.10 360

185 92.662 25.472 9.8 15 0.71 332

190 85.812 25.493 12.0 16 0.61 343

195 86.967 25.531 12.7 16 0.55 344

200 108.592 25.540 12.5 14 0.41 319

205 104.753 25.565 13.1 15 0.44 332

210 109.308 25.603 9.8 14 0.64 317

215

Table 2. Parameters used in Equations 6 and 7 to estimate
length-dependent random protein data probability
distributions based on the Inverse Chi-Squared Distribution.

Data Type m a b c

Hydropathy 0.497609 0.160379 21.04167 38.9045

doi:10.1371/journal.pcbi.1003247.t002

Table 1. Cont.

HePCaT Alignment
Length n ln s2 x2 d.o.f. P-Value N

220 103.593 25.631 11.9 12 0.29 262

225 106.655 25.651 9.2 12 0.51 260

230 108.842 25.658 5.1 9 0.65 213

235 106.144 25.687 9.1 9 0.25 203

240 147.619 25.705 6.2 9 0.52 201

245 111.964 25.717 4.7 7 0.45 173

aBlank rows for certain alignment lengths indicate that the null hypothesis (i.e.
that the distribution of OPS scores for randomly generated sequences was
drawn from an underlying inverse chi square distribution) was rejected at the
p,0.05 level.
doi:10.1371/journal.pcbi.1003247.t001

A Horizontal Tool for Numerical Trend Discovery
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Figure 2. Empirically determined probability model for protein hydropathy. A. Inverse Chi-Squared model for the distribution of
observed scores. Distributions of Equation 4 scores for HePCaT alignments of length L = 100 obtained from parameters W = 5 residues, GapMax = 4
residues, C = 0.4. Pairs of random sequences were generated, their Kyte-Doolittle amino acid hydropathies averaged over a 15-residue window, and
subjected to optimal alignment using HePCaT, as described in the text. Binned data in each case was reasonably fit to the Inverse Chi-Squared
probability distribution function (PDF, Equation 5), as described in Methods and tabulated in Table 1. B. Analytical parameters to estimate
statistical significance. Parameters n and s2 for the PDF were observed to vary smoothly as a function of HePCaT alignment length, allowing the
parameters, and thus alignment significance, to be analytically estimated for arbitrary alignment length using Equations 6 and 7 and parameters in
Table 2. Discrete best-fit parameters for n and s2 are given in Table 1. Equations for displayed best-fit curves are as follows: y = 0.497609x
(Hydropathy, n), y = 0.160379–1.04167 ln(x+38.9045) (Hydropathy, s2).
doi:10.1371/journal.pcbi.1003247.g002

A Horizontal Tool for Numerical Trend Discovery
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Results

The biological utility of HePCaT was assessed by exploring three

different questions relating to protein hydropathy: sequence

clustering of known membrane protein structures, similarity

search against a database, and structure prediction of an ORFan

protein. Results described below provided biological insight and

testable hypotheses from these common bioinformatics tasks.

However, it is emphasized that the results are not intended to

demonstrate improvement of HePCaT over current state-of-the-art

methods for sequence and structure comparison, rather, the results

do illuminate strengths and weaknesses of the algorithm’s current

implementation.

Clustering of known membrane protein structures based
on common hydropathy patterns

Unlike most globular proteins, most membrane protein structures

can be classified, independent of evolutionary relationships, into two

main groups, ‘‘all-alpha’’ and ‘‘all-beta’’, based on structural

characteristics alone [51,52]. One dominant characteristic is the

requirement for stability within the nonpolar interior of the

membrane, and this is reflected in recurring patterns of defined

length hydrophobic segments, imposed by the physical constraints of

alpha-helical or beta-strand secondary structure elements. Such

patterns can be used for the effective prediction of transmembrane

spanning segments and fold topology of the inserted protein [53–55].

Analysis and clustering of a set of diverse membrane protein

structures, based on similarities in the proteins’ average hydrop-

athy patterns using HePCaT, reflects this major level of structural

organization (Figure 3A). In this dendrogram, the ‘‘all-beta’’

proteins clearly segregate into distinct and statistically significant

sub-branches of the tree. Finer levels of overall fold similarity,

including the G-protein coupled receptors (f.13), toxins’ mem-

brane translocation domains (f.1), and the transmembrane beta

barrels (f.4), can also largely be resolved only on the basis of

hydropathy similarity (labeled sub-branches in Figure 3A). Inter-

estingly, proteins belonging to f.13, annotated as ‘‘single

transmembrane helix’’ and thus ‘‘not a true SCOP fold’’ [56],

are spread among several dispersed sub-branches, consistent with

this provisional expert curation.

Figure 3. Clustering of known membrane protein structures by hydropathy similarity. Dendrogram leaves are members of a set of 214
representative membrane protein structures taken from SCOP 1.73, as described in the text. Blue colors denote proteins of all (or mostly) alpha helical
secondary structure, red colors denote proteins of all (or mostly) beta strand secondary structure, and green colors indicate proteins of mixed
structure. Identical shades of color denote identical SCOP fold. Particular sub-branches that significantly cluster according to known evolutionary or
structural relationships are labeled by SCOP fold. Vertical dashed red lines indicate statistical significance of the clustering. A. Dendrogram based
on hydropathy similarity. Branch lengths are inversely proportional to the HePCaT significance of the pairwise similarity between hydropathy
patterns (i.e. shorter branch lengths indicate higher similarity). B. Dendrogram based on sequence similarity. Branch lengths are inversely
proportional to FASTA E-value of pairwise sequence similarity. For these diverse proteins, both sequence and hydropathy similarity differentiate beta
proteins from alpha proteins. However, the HePCaT beta dendrogram cluster is evidently more homogenous than the FASTA beta cluster, and more
individual protein folds are segregated based on hydropathy similarity than by sequence similarity. Both observations suggest that meaningful
information about protein structure and evolution can be objectively detected by the HePCaT algorithm.
doi:10.1371/journal.pcbi.1003247.g003
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In contrast, clustering of the identical proteins based on pairwise

amino acid sequence similarity alone appears less resolved at levels

higher than pairs of highly similar sequences (Figure 3B). In

particular, the ‘‘all-beta’’ proteins, while also resolved to a

particular statistically significant sub-branch, are not cleanly

segregated from other ‘‘all-alpha’’ proteins. Few fold families are

clustered at statistical significance, probably due to the overall low

level of sequence similarity in this diverse set (approximately 30%

identity over 40 residues on average). Clearly, patterns of

hydropathy, reflecting the well-known idea that protein structure

similarity is more conserved than sequence similarity [57,58], can

be objectively recovered using pairwise HePCaT alignments in

conjunction with the appropriate probability model described

above.

Database search using human adenosine receptor A2a
as query

Given the ability of HePCaT to match expected hydropathy

patterns, an exploratory search was initiated to discover unknown

matches. The hydropathy profile of the human adenosine A2a

7Tm G-protein coupled receptor (GPCR) was used to search the

human proteome for close unreported matches. As expected,

hundreds of known 7Tm GPCRs were significantly matched by

HePCaT (p,0.01, data not shown). The most significant ten

matches are displayed in Figure 4. These hits fell into two

categories: those that matched the transmembrane region [59] of

A2a (Figure 4, blue) and those that mostly matched the tail region

(Figure 4, red).

The longest match to the transmembrane region was the A2b

isoform, which is also 59% sequence identical to A2a (Figure 5A).

Unexpectedly, a Type 2 taste receptor also exhibited a significant

match to this region (Figure 4). As this taste receptor has

insignificant pairwise sequence identity to A2a (Figure 5B) and its

structure has not been experimentally determined [60], this

observed similarity was consistent with an independently produced

model of the taste receptor, constructed using no HePCaT

information (Figure 5C). Additionally, the original HePCaT match

was demonstrated to be a useful template for a homology model

[61] based on the A2a structure (data not shown). The validity of

the hydropathy similarity between A2a and the taste receptor was

further demonstrated to be robust with respect to the particular

hydrophobicity scale used (Text S1; Figures S1 and S2 in Text S1).

Figure 4. Most significant similarities in the human proteome to the Kyte-Doolittle hydropathy profile of adenosine receptor A2a.
Pairwise HePCaT alignments are shown for A2a (black, gi|5921992) and the top nine most significant nonredundant hits in the human proteome. Blue
color indicates known seven transmembrane spanning region proteins as annotated by the GPCRDB database, red mostly indicates hits to the tail
region of A2a. The hits are shown from top to bottom in order of most to least significant: hematological and neurological expressed protein-like 1
(gi|21700763, p = 4.061026), ephrin-A4 isoform a precursor (gi|4885197, p = 7.661025), NSFL1 cofactor p47 isoform a (gi|20149635, p = 9.161025),
metallothionein-1E (gi|83367075, p = 9.761025), taste receptor type 2 member 19 (gi|28882035, p = 4.161024), B- and T-lymphocyte attenuator
isoform 1 precursor (gi|145580621, p = 5.461024), WD-repeat domain-containing protein 83 (gi|153791298, p = 6.561024), dual specificity protein
phosphatase 26 (gi|13128968, p = 7.761024), adenosine receptor A2b (gi|4501951, p = 8.361024). Thick lines indicate residue positions included in
the optimal HePCaT alignment to A2a, and thin lines indicate unaligned positions. Rainbow colored cylinders from N- to C-terminus indicate the
approximate sequence locations of the seven experimentally determined transmembrane spanning helices of A2a.
doi:10.1371/journal.pcbi.1003247.g004
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Figure 5. Pairwise sequence alignment does not detect significant similarity between human A2a and Taste Receptor Type 2,
Member 19, yet a similar structure can be modeled based on the HePCaT match. A. FASTA pairwise sequence alignment between
human adenosine receptor A2a and its known homolog human adenosine receptor A2b. Alignment was extracted from a sequence
search of the human proteome. Sequence similarity is 59% over 330 amino acids, with a highly significant E-value of 6.6e-53. Note that the
hydropathy similarity between these two proteins is also significant, as given in Figure 4. B. FASTA pairwise sequence alignment between
human A2a and human taste receptor type 2, member 19. Sequence similarity is 21% over 305 amino acids. Although extensive, the similarity
is not significant, with an E-value of 5.1e+3, in contrast to the significant hydropathy similarity displayed in Figure 4. This result suggests that
hydropathy similarity, as assessed by HePCaT, may be able to detect remote relationships in the absence of sequence similarity. C. Model of Taste
Receptor Type 2, Member 19 is similar to the experimental structure of A2a. Experimental structure of A2a (left panel) is based on PDB
identifier 3rey. I-TASSER [45] model of Taste Receptor Type 2, Member 19 (right panel) achieved an I-TASSER C-score of 0.67 and a DALI Z-Score [46] of
24.9 against the 3rey structure, indicating a confident model that is significantly similar to A2a. Rainbow colored helices follow the colors of Figure 4,
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We attempted to rationalize the best matches to the A2a tail

region in terms of sequence, structure, or function. However, in

contrast to the transmembrane region matches, biological

explanations for these remain unknown. The shortest hit to the

tail region was possibly a statistical artifact: this metallothionein is

naturally short and contains a high frequency of cysteine residues;

such low-complexity sequences are normally filtered out of amino

acid sequence searches [62], which was not done in the present

study. Some of the proteins in this group are medically important,

such as the hematological and neurological expressed-1 like

protein, ephrin A4 isoforms, and the B and T-lymphocyte

attenuator precursor. Structural information, where available

about the matches, could not be confidently transferred to the

putatively disordered tail region of A2a, which is thought to be

involved in ligand specificity of the GPCR [63]. These tail matches

may also result from the local scaling (Equation 3), which could

potentially be disabled, illustrating the sensitivity vs. specificity

tradeoffs inherent to relative shape matching.

Predicted remote similarity between the pore forming
domain of bacterial colicin and Chlamydia
TC0624 protein

A third example of the utility of HePCaT concerns the possible

discovery of remote similarity with medical importance. The C.

muridarum protein TC0624, classified as an ‘‘ORFan’’ due to the

absence of significant sequence similarity between any other

known proteins [47], nonetheless exhibited a significant HePCaT

hydropathy match to the pore forming domain of E. coli colicin A

(Figure 6A). This match spanned the entire chain length of the

ORFan protein and the experimentally-determined minimal

length region of functional importance of the pore-forming

domain [64]. The validity of the hydropathy similarity between

colicin and TC0624 was further demonstrated to be robust with

respect to the particular hydrophobicity scale used (Text S1;

Figures S1 and S2 in Text S1).

Secondary structure prediction was consistent with the proposed

tertiary structural similarity (Figure 6A), and sensitive sequence

profile search using hidden Markov models revealed marginal

(maximum HHPred P-Value 30% [50]), but repeated, similarity to

the sequence of colicin implicated in the hydropathy match

(Figure 6B). Thus, a total of four lines of evidence (hydropathy,

secondary structure prediction, sensitive sequence similarity, and

the regional correspondence between the sequence and structure

matches) all converged on similarity between TC0624 and the pore

forming domain of colicin. Modeling [45] of TC0624 also resulted

in a low-confidence fold prediction consistent with colicin (data not

shown). However, these conclusions would have not been possible

without the original statistical significance of the HePCaT

hydropathy match.

Importantly, the hydrophobic region of colicin implicated in this

match has long been thought to be functionally crucial for colicin’s

lethal ability to travel from a hydrophilic extracellular environ-

ment, insert into the hydrophobic membrane interior, and form

toxic pores in its host [65]. TC0624 has independently been placed

[66] in a class unique to Chlamydiae that is observed by experiment

to also similarly partition into the membrane interior of the

chlamydial inclusion [67]. These so-called ‘‘Inc’’ proteins, difficult

or impossible to predict using existing computational tools [66],

are nonetheless important for chlamydial survival and maturation

within its human or animal hosts. It appears that the extreme

hydrophobicity exhibited by the Inc proteins [67] facilitates their

computational prediction using HePCaT.

Taken together, the results suggest a novel functional hypothesis

for these medically important proteins: the Incs may form

membrane-spanning pores that obtain nutrition from the host

cytoplasm. This example also suggests that this particular ORFan

may actually belong to a known protein family. Experiments are

currently in progress to test these hypotheses.

Discussion

Most protein and nucleic acid data contained within the

avalanche of next-generation genome sequencing can be expressed

as sequentially numeric ‘‘peaks’’ and ‘‘valleys’’. These data

include, but are not limited to, gene expression, ribosomal

profiling, ChIPSeq, RNASeq, mRNA translation efficiency, thermo-

dynamic stability of protein or mRNA, and physico-chemical

properties such as hydropathy. A gap exists among software

algorithms for analysis of such data, and the HePCaT algorithm

described in this work is designed to help fill this gap. To facilitate

such analysis and discovery, a webtool that allows execution of

the algorithm, visualization of the result, and access to the raw and

analyzed data is freely available at http://best.bio.jhu.edu/

HePCaT. (A detailed manuscript describing the use and

capabilities of this web portal is in preparation.) Due to patent

and license restrictions, information about access to source code

is available through The Johns Hopkins University Office of

Technology Transfer from the corresponding author.

There are at least three distinguishing features of the HePCaT

algorithm. First, the input is completely arbitrary: if the data can

be expressed in numeric form regardless of its source, patterns can

potentially be detected. Second, its scoring system is sensitive to

both shape and magnitude similarity, allowing some degree of

pairwise alignment flexibility. Third, the W parameter emphasizes

a horizontal matching of patterns, as contrasted with the vertical

matching that commonly occurs with amino acid substitution

matrices or profile PSSMs.

In our view, vertical evolutionary conservation of amino

acids has been thoroughly explored using tools such as BLAST

[4,5] and FASTA [42], while horizontal conservation of other

protein properties has not. Thus, non-local properties of proteins,

depending on correlations across residue positions, such as

thermodynamic stability, can now be potentially explored with

HePCaT. The case studies presented in Figures 5 and 6 suggest

that substantial horizontal similarity can be detected in one pass

through a database, minimizing the need for longer iterative

searches when the vertical similarity may be weak or statistically

impossible to detect.

Importantly these anecdotal examples are not intended to

demonstrate the superiority of the HePCaT algorithm, or the

information contained in horizontal conservation, over current

state-of-the-art methods for remote homology detection that are

based on vertical conservation. To the contrary, HePCaT is

intended as a complementary tool that would be most usefully

applied to cases where vertical conservation is weak or absent.

Furthermore, although the tool formally returns a pairwise

positional alignment, it is not clear if such an alignment, could or

should be quantitatively compared to existing amino acid

sequence alignment tools. The HePCaT input is subject to possible

indicating the seven structurally aligned transmembrane spanning helices. The RMSD of the 269 DALI-aligned residues is 3.1 Å between modeled and
experimental structures.
doi:10.1371/journal.pcbi.1003247.g005
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Figure 6. Observed hydropathy and predicted structure similarity between ORFan C. muridarum TC0624 and bacterial colicin pore-
forming domain. A. Significant similarity between hydropathy of TC0624 and E. coli colicin A (SCOP domain d1cola_). The likelihood of
obtaining this match by chance is p = 1.561025. The blue cylinders indicate PSIPRED confidently predicted helical secondary structure of TC0624, the
red cylinders indicate the actual helical secondary structure of d1cola_ domain as assessed by DSSP [69]. Numbers indicate the functionally important
helical elements, as annotated by Cramer, et al. [65] Reasonable correspondence between the type and locations of secondary structure elements is
observed. Gapped regions of colicin helices are connected with dotted lines to guide the eye. B. Tertiary structure location of the hydrophobic
similarity (left) and the sequence similarity (right) matches between TC0624 and colicin. In both molecular cartoons, helices are colored
red, strands yellow, and loops green. Locations of a match between TC0624 and colicin are colored blue. The left figure is based on d1cola_, colored
according to the HePCaT alignment in Figure 6A, and the right figure is based on the homolog d1rh1a2 SCOP domain observed in the marginally
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averaging over one window size (e.g. the hydropathy is averaged

over 15 positions) and the output is matched using quantized

blocks of a second multi-residue window size (e.g. 5 positions).

Future work is necessary to determine whether HePCaT can

substantially improve upon the accuracy of the best current

pairwise alignment methods.

Rigorous evaluation of the statistical significance of a result is an

essential piece of scientific data that is often neglected in

bioinformatics tools. The significances returned by HePCaT allow

prioritization of matches and aid expert interpretation. As with

other tools, the HePCaT statistical significances require calibration

specific to the input data and algorithm parameters. Although

recalibration for random simulation data not covered by Table 2

parameters is straightforward and has been achieved for other

types of numerical data, an alternative estimate of statistical

significance is available. Specifically, the non-parametric statistics

of the MIC score reported by Reshef, et al. [68] could potentially be

used to evaluate a match returned by HePCaT. In this way, the

significances of arbitrary pattern associations reported by Reshef,

et al. could be greatly leveraged by using HePCaT as a ‘‘front-end’’

for other types of numerical data. Although this idea has not yet

been thoroughly studied, we believe that the applicability of the

MIC statistics would be maximized with HePCaT parameters of

GapMax = 0 and W = 1.
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