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Abstract. The most important factor responsible for the quality of energy 

production forecasts in wind farms is the accurate wind speed forecast. An 

extensive statistical analysis of meteorological data (NWP) from 16 base 

nodes of the "300" grid in the "Łódź" area was made. The intention of the 

statistical analysis was to select potential explanatory variables for models 

predicting wind speed in the remaining 206 nodes of the grid’s mesh. Next, 

tests of selected prognostic methods were performed in order to compare 

their effectiveness with bilinear method which is not computationally 

complex. It should be emphasized that the main problem in spatial wind 

speed forecasting is the very large number of nodes for which the forecasts 

are calculated. As a consequence, more advanced and computationally 

complex forecasting methods cannot be applied in practice due to too long 

calculations time and difficulties in huge amounts of data processing. 

Conclusions with proposals of preferred forecasting methods that could be 

used in practice were developed.  

1 Introduction  

Acquiring electrical energy from wind sector’s dynamic development (onshore and 

offshore) is intertwined with the need  for forecasting of wind speeds and total electrical 

energy production in the wind farms area as accurately as possible. Accurate forecasts 

enable more effective control of electrical power systems [1]. Costs minimization of 

conventional power plants production or costs minimization of energy bought in energy 

cluster area, in microgrid area or by prosumer can be given as examples of optimization 

objectives [2].  

It is also worth pointing out, that accurate wind speed forecasts have an important part 

to play in choosing the best time for performing wind turbines maintenance and potential 

repairs [3].  
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Methods of wind energy production depend on the forecast horizon and available data. 

These methods can be divided into two separate parts: energy production prediction using 

statistical and regression models and/or meteorological forecast determination using 

meteorological data from Numerical Weather Prediction (NWP) models. There are plenty 

of studies on the advanced statistical analysis of historical power records in order to 

develop new methods of wind speed or power generation forecast systems [4-13]. Authors 

of [14] introduce and evaluate two hybrid forecasting models for wind speed and power 

generation (ARIMA–SVM and ARIMA–ANN, where ARIMA - autoregressive integrated 

moving average, ANN – artificial neural network, SVN - support vector machine).  

ARIMA prediction model is used for the linear component of a time series and a nonlinear 

prediction model for the nonlinear component. This approach has advantages comparing to  

single ARIMA, ANN, and SVM forecasting models. Wind power generation prediction 

was based on historical time series. For wind speed forecasting 2-year hourly dataset was 

retrieved from a wind observation site. Study [15], used past values of the wind speed and 

directions and their spatio-temporal correlations measured at numerous geographical 

locations to produce simple prediction model for the hourly mean wind speed and direction 

from 1 to 6 h ahead at multiple sites in the UK.  

Use of precise meteorological forecasts for power generation determination is quite 

simple when analysing single or multiple locations. More complex analysis has to be done 

when large areas are taken into consideration, mainly because of the large amount of data 

and high cost of calculation.  

Statistical analyses and spatial forecasts that were carried out concerned  area with a 

codename „Łódź” for grid „300”. This area concerns environs of Łódź city with area size 

defined as a result of uniform deployment of circa 300 nodes on Poland’s territory (and 

adjacent parts of neighbouring countries). This way 196 computational meshes were 

obtained, one of which was „Łódź”. Schematic diagram of one mesh is shown in Fig. 1. 

One mesh consists of 206 nodes (pale blue color in Fig. 1) for which wind speed forecast 

are to be done (horizon from  +1 h to + 72 h). Base nodes A1..A4 and  B1..B12 are points  

for which values of meteo variables forecasted values are known. These variables are wind 

speed, air pressure, wind azimuth and solar irradiance, each one of them with horizons 

spanning from +1 h to +72 h. Between neighbouring nodes Ax-Ax, Bx-Bx, Ax-Bx there are 

12 nodes vertically and 13 nodes horizontally. 

 

 

Fig. 1. Mesh of grid “300” - schematic diagram. Source: Own elaboration.  
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2 Statistical analysis of data  

Statistical analysis of available data for the 300-nodes grid area (206 forecast grid nodes) 

for analysed area „Łódź” is performed. The Interdisciplinary Centre for Mathematical and 

Computational Modelling of the Warsaw University (ICM UW) provided the data 

(meterological foreasts) for the scientific research. All analysed  time series are from period 

of one year (1 hour values).  

The Kolmogorov-Smirnov and Lilliefors tests show that the time series of wind speed 

forecasts for the analysed area do not have a normal distribution. The values of variance, 

standard deviation and coefficient of variation increase very significantly with the increase 

of the forecast horizon. The shape of the histograms also changes. With the increase in the 

forecast horizon, the value of kurtosis is becoming more and more negative. Probably 

forecasts with larger horizons used for research are less reliable as data because of 

disturbances in the algorithm that generates forecasts.  

The variation of wind speed (variance) should be similar regardless of the horizon of the 

forecast, especially when the average wind speeds for different horizons are not 

significantly different. Table 1 shows selected statistical measures of time series of wind 

speed forecasts.  

Table 1. Selected statistical measures of time series of wind speed forecasts.  Source: Own 

elaboration. 

Statistical 

measures 

Horizon of forecasts 

+1 h +3 h +6 h +12 h +18 h +24 h +48 h +72 h 

Max speed 

[m/s] 
15.00 14.96 16.07 15.92 18.74 16.98 14.95 16.92 

Average speed 

[m/s] 
8.35 10.01 10.63 11.92 8.30 10.14 7.79 7.63 

Median [m/s] 7.83 10.18 11.03 8.34 8.31 9.99 8.62 7.84 

Standard 

deviation [m/s] 
1.89 2.38 2.89 3.44 3.19 3.19 3.41 4.11 

Variation 3.58 5.70 8.37 11.87 10.17 10.15 11.65 16.92 

Coefficient of 

variation [%] 
22.66 23.79 27.22 28.85 38.42 31.41 43.77 53.92 

Skewness 1.22 -0.32 -0.28 0.25 -0.08 0.21 -0.26 0.17 

Kurtosis 1.05 -0.87 -1.03 -0.76 -0.35 -0.82 -1.15 -0.52 

 

Wind speed forecasts from 16 base grid nodes (B1..B12, A1..A4) have very large values 

of Pearson linear correlation coefficient to wind speed forecasts from all 206 nodes. It is 

difficult to explain the increase in the value of Pearson's linear correlation coefficients for 

the larger horizons of wind speed forecasts. The vast majority of calculated linear 

correlation coefficients is statistically significant - significance at 5% level (excluding the 

length of the day). Table 2 shows the values of Pearson linear correlation coefficients 

between forecasts  of wind speed from all 206 nodes and potential explanatory variables.  

For the analysed area there is quite a strong variation of wind speed forecasts  in the 

period of the day. The "hour" (a number from 1 to 24) appears to be a significant 

explanatory variable in the forecasting model using neural network - the multilayer 

perceptron (MLP). A large night peak is visible from 9 pm to 7 am. Figure 2 shows changes 

in the average wind forecast speed over the 24-hour period for data from all horizons from 

+1 h to +72 h.   
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Table 2. Values of Pearson linear correlation coefficients between forecasts  of wind speed from all 

206 nodes and potential explanatory variables. Source: Own elaboration.  

Potential explanatory variables 

Pearson linear correlation 

coefficient  

Horizon of the forecast 

+1 h +72 h 

Wind speed forecast - node B1 0.743 0.855 

Wind speed forecast - node B2 0.814 0.915 

Wind speed forecast - node B3 0.808 0.880 

Wind speed forecast - node B4 0.844 0.918 

Wind speed forecast - node B5 0.836 0.915 

Wind speed forecast - node B6 0.85 0.913 

Wind speed forecast - node B7 0.855 0.928 

Wind speed forecast - node B8 0.851 0.936 

Wind speed forecast - node B9 0.814 0.875 

Wind speed forecast - node B10 0.873 0.899 

Wind speed forecast - node B11 0.875 0.902 

Wind speed forecast - node B12 0.844 0.851 

Wind speed forecast - node A1 0.829 0.970 

Wind speed forecast - node A2 0.852 0.947 

Wind speed forecast - node A3 0.891 0.950 

Wind speed forecast - node A4 0.874 0.971 

Air temperature forecast - node A1 0.725 0.289 

Atmospheric pressure forecast - node A1 -0.712 -0.334 

The length of the day 0.162 -0.137 

Wind azimuth forecast - node A1 -0.240 -0.398 

Wind azimuth forecast - node A2 -0.256 0.119 

Wind azimuth forecast - node A3 -0.280 -0.651 

Wind azimuth forecast - node A4 -0.283 -0.675 

 

 

Fig. 2. Changes in the average wind speed forecast over the 24-hour period for data from all horizons 

from +1 h to +72 h for the analysed area. Source: Own elaboration.  

As the last element of statistical analysis, it was checked if the values of linear 

correlation coefficients between wind speed forecasts in subsequent nodes between base 

nodes and wind speed forecasts in base nodes A1,..,A4, B1, ... B12 may be useful as 

potential explanatory variables in statistical forecasting models. Calculations of linear 

correlation coefficients were made both separately for each wind speed forecasts horizon 

(from +1 h to +72)  and together for forecasts from all forecast horizons. The values of 

linear correlation coefficients are significantly different in each of the nodes for each 

horizon of forecasts.  The part of the values of linear correlation coefficients are statistically 
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insignificant at the significance level of 5%. Therefore, it can be concluded that only the 

values of linear correlation coefficients calculated separately for each of the forecast 

horizon can be potentially valuable as input data to the statistical forecasting model. 

Furthermore, there is no significant relationship between the distance of a given node to the 

base node, and the calculated values of linear correlation coefficients between the given 

node and the base node. Also it is visible that the values of linear correlation coefficients 

are very similar in each of the nodes for each horizon of forecasts for correlation 

coefficients calculated for all horizons together from  +1 h to +72 h (see Fig. 3). In this case 

all the values of linear correlation coefficients are statistically significant at the significance 

level of 5% but only slightly above the level of statistical significance.  

 

 

Fig. 3. The values of linear correlation coefficients between the base node A3 and subsequent nodes 

located to the right of it for the horizon +1 h, +72 h and all horizons together. Source: Own 

elaboration. 

As a result of the statistical analysis, it was assumed that all the analysed potential 

explanatory variables (excluding the length of day) may be useful in classic statistical 

forecasting models and forecasting models using artificial MLP neural networks. 

3 Initial tests of developed statistical models for spatial wind 
speed forecasting  

The goal of the tests is to find a improved  statistical forecasting method (not very 

computationally complex) better than the bilinear method. The bilinear method consists in 

subsequently executing linear interpolations in 2 orthogonal directions.  

Two proposed original forecasting models were tested, using wind speed forecasts at 

selected base nodes and the values of linear correlation coefficients between selected base 

nodes and a given node for which wind speed forecast is calculated. Figure 4 shows the 

comparison of tested three forecasting methods.  

For the „16-node model”, the wind speed forecast for single horizon in each of the n 

nodes (x,y coordinates) of the grid is calculated by 
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where yxAl
r , ,  is separately calculated (for a given single horizon of the forecast) Pearson's 

linear correlation coefficient between a node with x, y coordinates and a base node with 

 , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201984010011084 01 (

PE 2018

5



index l, 
lAv  is forecast of wind speed in the base node Al, and Al is subsequent base node 

(B1,..B12, A1,..A4).  

 

For the “2-node vertical / horizontal model”, the wind speed forecast for single horizon 

in each of the n nodes (x,y coordinates) of the grid between the two A-type base nodes with 

index k and l is calculated by 
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where ),( , yxAl
r  is separately calculated (for a given single horizon) Pearson's linear 

correlation coefficient between a node with x, y coordinates and a base node with index l 

(A type base nodes have indexes from 1 to 4), and 
lAv is forecast of wind speed in the base 

node Al. 

 

Fig. 4. The comparison of wind speed forecast errors for the horizon of +1 h for 13 nodes between the 

base nodes A3 and A4. Source: Own elaboration. 

Finally, the suitability of multiple regression models for forecasting wind speed was 

verified. The test results showed that “multiple regression model - all horizon” is  

inappropriate and generates higher wind speed forecasting errors than the simple bilinear 

method. In the next step, multiple regression models were tested (a single model for a given 

node for only one horizon). Thus, 72 separate models were built for each node. For the 

„multiple regression model – single horizon”, the wind speed forecast for single k horizon 

in each of the n nodes (x,y coordinates) of the grid is calculated by 
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where A1,t+k..A4, t+k, B1,t+k..B12,t+k are explanatory variables (wind speed forecasts in nodes 

A1..A4, B1..B12 in t+k period), a is the constant (offset), wA1..wA4, wB1..wB12 are 

parameters, and k is forecast horizon.  

 

The estimation of the parameters of the "multiple regression model - single horizon" 

models was performed twice by the cross-validation method. At first, estimation of model 

parameters was made on the first half of available data (the other half of the data was the 

test range of the quality of forecasts). Then, the ranges of data were exchanged and the 

model parameters were re-estimated. The final errors of the wind speed forecasts (MAE 

error) were calculated as the mean values of the MAE error pairs from the test data ranges. 

 , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201984010011084 01 (

PE 2018

6



The multiple regression models for shorter forecast horizons have evidently lower MAE 

errors than the bilinear method. In particular, it is visible for the horizons of forecasts from 

+1 h to +6 h. Figure 5 shows the example of results for node coordinates (251.297).  

 

Fig. 5. The comparison of wind speed forecast MAE errors  for the (251,297) node for chosen 

horizons of forecasts. Source: Own elaboration.  

Multiple regression models with additional exogenous explanatory variables were also 

tested but unfortunately they were generating higher MAE forecast errors than models that 

use only wind speed forecasts in the base nodes as explanatory variables. Table 3 shows the 

comparison of forecasts for +1 h horizon for 12 nodes between the base node A3 and the 

base node A4.  

Table 3. The comparison of forecasts for +1 h horizon for 12 nodes between the base node A3 and 

the base node A4. Source: Own elaboration.  

Forecasting method MAE error [m/s] 

Blinear method 0.6000 

Multiple regression model – single horizon 

Explanatory variables: wind speed forecasts in base nodes A1..A4, B1..B12 
0.5996 

Multiple regression model – single horizon 

Explanatory variables: wind speed forecasts in base nodes A1..A4 
0.6292 

Multiple regression model – single horizon 

Explanatory variables : wind speed forecasts in A1..A4, B1..B12 (all 16 base 

nodes), air temperature forecast in node A1, atmospheric pressure forecast in 

node A1, the length of the day, wind azimuth forecasts in base nodes A1..A4 

0.6336 

 

It was also observed that for each tested forecasting method, the largest errors of 

forecasts occur for the +18 h forecast horizon. This occurrence is repeatable for each of the 

analysed nodes. The reason for this phenomenon could not be determined.  

Finally, it could be concluded that multiple regression model should be unique for each 

node and each horizon (14832 models in total). It results from dissimilarities of times series 

features for each horizon and each node. 

4 Propositions of effective solutions for spatial wind speed 
forecasting problem  

For the purpose of problem solving („Łódź” area containing 206 nodes), multiple 

regression models (14832 models in total) and single neural network type MLP type 

generating forecasts for each node and each forecast horizon were proposed. Parameters of 

multiple regression models (3) were optimized by PSO algorithm. For the MLP learning 

purpose BP algorithm with  adaptive learning coefficient, momentum technique, periodic 
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facts shuffling and periodic weight values disruption were used. Estimation, testing and 

validation were performed on the same periods for multiple regression models and  MLP. 

During calculations MLP used 10% of total data, whereas multiple regression models used 

100% of total data.  

The problem is composed of n=206 nodes for which wind speed forecasts are to be 

done. For each node forecasts are done for horizons spanning from +1 h to +72 h. Number 

of explanatory data sets for MLP used for forecasting is considerable. It is equal to product 

of  number of full data days, number of nodes, number of forecasts horizons 

(365x206x72=5143680). Consequently, there is a problem (mainly great temporal 

computational complexity) related to insufficient computational power of computer (64-bit 

processing) on  which MLP learning is carried out. Hence, it seems appropriate to  search 

for learning data sets number reduction methods with minimizing risk of lowering MLP 

forecasting accuracy at the same time.  

First, reduction methods possibilities were studied. ”Random selection from blocks” 

method was proposed for data reduction effects testing. In this method k-learning data sets 

are split into inseparable blocks. One block consists of 206 data sets (number of nodes) 

containing information about given m-th day’s (where m is number from 1 to 365) weather 

forecast with +s horizon (where s is number from 1 to 72). Therefore, number of blocks 

equals 26280 (365*72) and each block contains 206 data sets. Objective of method is 

uniform selection of blocks, characterized by large, medium and small variation and large, 

medium  and small mean. Due to that, it could be expected that blocks selected for MLP 

learning would be the most representative (carrying the most information). For 100-times 

reduction of learning data sets 1% of them was chosen from created 26280 sets. For each 

block (out of 26280), containing 206 information  about  forecasted wind speed in 206 

forecasting nodes,  variation and mean value was computed.  Blocks were then sorted in 

ascending order in regard to variations corresponding to blocks and thereafter 0.5% of 

blocks  was chosen  by the means of uniform selecting every 200th block, starting with 

block of the smallest variation. The next step was sorting blocks in ascending order, this 

time in regard to means corresponding to blocks. Subsequently 0,5% of blocks was chosen 

using the same method as before, but with the use of means. Algorithm of block choosing 

prevented blocks repetitions.  

To determine which percentage of blocks chosen from all data would be representative, 

MLP  generalization ability tests were performed for number of blocks equal to 1/2/5/10% 

of total block number containing learning data. Tests were carried out for 26-input MLP  

(16 wind speeds forecasts from nodes A1..A4 and B1..B12, 2 geographical coordinates of 

output node, 4 wind directions forecasts from nodes A1..A4, number of hour of forecast, 

length of day, atmospheric pressure and air temperature forecasts for nodes A1). Data was 

divided into learning, testing and validation sets. These  sets had similar wind speed mean 

values. Structure of MLP was composed of 26 inputs, 1 output, and 60, 40 and 30 neurons 

respectively in next hidden layers. MLP constructed this way includes 5190 weights in total 

–circa 45 times less of modifiable parameters when compared to all 14832 multiple 

regression models (237312 parameters in total). Huge data volumes (several dozen MB) 

processed during MLP learning and, consequently, high computational complexity induced 

creation of original computer program written in C++ language. MLP learning when done 

in MATLAB/OCTAVE type software would take more than 700 h according to 

estimations. 

Quality test of MLP  using reduced 100-times number of sets shown quality 

deterioration so great, that method was deemed as ineffective. The most probable 

explanation, is that each of 14832 (206*72) sub-models of MLP had insufficient number of 

data sets- in practice few data sets for single sub-model. 10% blocks turned out to be the 

most appropriate and they facilitated achieving suitably low error on test data. It is worth 
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mentioning that size of learning data files exceeded 30 MB, whereas validation data set 

(100% blocks)  had a volume of circa 3 GB. Table 4 shows the comparison of forecasts for 

all horizons and all 206 nodes.  

Table 4. The comparison of forecasts for all horizons and all 206 nodes. Source: Own elaboration.  

Forecasting method 
MAE error 

[m/s] 

Percentiles of MAE errors [m/s] 

50% 95% 100% 

14832 multiple regression models 

– single horizon 
0.471 0.307 1.454 26.266 

Blinear method 0.489 0.324 1.482 27.034 

Neural network type MLP 0.533 0.375 1.551 28.388 

5 Conclusions  

Most accurate spatial forecasts were achieved by multiple regression models (14832 models 

in total). Accuracy differences for all of three methods were however minute and at the 

level of few percents. Slightly greater values of MAE error for MLP stems from 

considerably bigger number of parameters in multiple regression models and from explicit 

problem decomposition (each node and each horizon had its separate model). 

Decomposition was really significant, because wind speed forecasts in 16 base nodes were 

considerably different in regard to variation and mean for respective forecasts horizons. 

Importantly, change of MLP structure (number of hidden layers and neurons in layers) did 

not improve results. Aside from decomposition and greater number of parameters, cause of 

achieving better results by multiple regression models was using full volume of data by 

multiple regression models.  

 Computational cost was obviously the lowest for bilinear method. Usage of many 

multiple regression models or the single MLP means approximately similar  cost that is a 

couple orders of magnitude greater than cost of bilinear method. Due to this cost, bilinear 

method should be preferred for typical calculations. MLP or multiple regression models 

should be used in special cases for chosen locations. These could include very important 

locations where lowest possible error is needed and locations with non-typical terrain 

orography (e.g. places with big difference of heights, lakes, etc.) where bilinear method 

forecasts accuracy clearly deteriorates.  

 
The article was based on the results of the project "Spatial forecasting of energy generation from 

renewable energy sources including its impact on loads in network nodes",  

co-financed by the European Union through The National Center for Research and Development 

under the  Operational Programme Smart Growth 2014-2020. 

The Interdisciplinary Centre for Mathematical and Computational Modelling of the Warsaw 

University (ICM UW) provided the data (meteorological forecast) for the scientific research. 
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