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Abstract  

This paper proposes a new mixed integer programming model for multi-item capacitated lot-sizing problem with setup times, safety stock 
and demand shortages in closed-loop supply chains. The returned products from customers can either be disposed or be remanufactured to 
be sold as new ones again. Due to the complexity of problem, three meta-heuristics algorithms named simulated annealing (SA) algorithm, 
vibration damping optimization (VDO) algorithm and harmony search (HS) algorithm have been used to solve this model. Additionally, 
Taguchi method is conducted to calibrate the parameter of the meta-heuristics and select the optimal levels of the algorithm’s performance 
influential factors. To verify and validate the efficiency of the proposed algorithms in terms of solution quality, the obtained results were 
compared with those obtained from Lingo 8 software for a different problem. Finally, computational results of these algorithms were 
compared and analyzed by producing and solving some small, medium and large-size test problems. The results confirmed the efficiency of 
the HS algorithm against the other methods. 
Keywords: Closed-loop supply chain, Lot-sizing, Safety stocks, Vibration damping, Harmony search. 

1. Introduction 

The production planning problems encountered in real-
life situations are generally intractable due to a number of 
practical constraints. The decision maker has to find a 
good feasible solution in a reasonable execution time 
rather than an optimal one. The lot-sizing problem (LSP) 
is a crucial step and well-known optimization problem in 
production planning which involves time-varying demand 
for set of N items over T periods. It is a class of 
production planning problems in which the availability 
amounts of the production plan are always considered as a 
decision variable. Two versions of the lot-sizing problems 
are capacitated and uncapacitated lot-sizing problem. 
In industrial applications, several factors may sophisticate 
making the best decisions. For this reason, the capacitated 
lot-sizing problem and its variations have received a lot of 
attention from academic researchers. On the other hand, 
backlogging, safety stocks, limited outsourcing and 
returned products are four complicating constraints to 
reach the desired solutions in lot-sizing problem. Chen 
and Thizy (1990) proved that the multi-item capacitated 
lot-sizing problem with setup times is strongly NP-hard. 
There are many references dealing with the capacitated 
lot-sizing problem and explanation of why it is one of the  
 

 
 
 
 
most popular among exact and approximate solution 
methods using Lagrangian relaxation of the capacity 
constraint and comparing this approach with every 
alternate relaxation of the classical formulation of the 
problem. 
 Absi and Kedad-Sidhoum (2009) addressed a multi-item 
capacitated lot-sizing problem with setup times, safety 
stock and demand shortages. Süral et al. (2009) 
considered a lot-sizing problem with setup times where 
the objective is to minimize the total inventory carrying 
cost only. Wu et al. (2011) proposed two new mixed 
integer programming models for capacitated multi-level 
lot-sizing problems with backlogging. They proposed a 
new and effective optimization framework that achieves 
high quality solutions in reasonable computational time. 
Kirca and kökten (1994) proposed a new heuristic 
approach for solving the single level multi-item 
capacitated dynamic lot- sizing problem. Their approach 
used an iterative item-by-item strategy for generating 
solutions to the problem. Özdamar and Barbarosoglu 
(2000) proposed a heuristic approach for the solution of 
the dynamic multi-level multi-item capacitated lot-sizing 
problem with general product structures. Rizk et al. 
(2006) studied a class of multi-item lot-sizing problems 
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with dynamic demands, as well as lower and upper 
bounds on a shared resource with a piecewise linear cost. 
The problem was formulated as a mixed-integer program. 
Absi et al. (2013) studied the multi-item capacitated lot-
sizing problem with setup times and lost sales. Because of 
lost sales, demands can be partially or totally lost. They 
proposed a non-myopic heuristic based on a probing 
strategy and a refining procedure. They also proposed a 
metaheuristic based on the adaptive large neighborhood 
search principle to improve solutions. Gutierrez et al. 
(2013) investigated the dynamic lot-sizing problem 
considering multiple items and storage capacity. They 
proposed a heuristic procedure based on the smoothing 
technique. 
Governmental and social pressures as well as economic 
opportunities have motivated many firms to become 
involved with the return of used products for recovery 
(Gungor and Gupta, 1999). The demands of a certain 
product for each period can be satisfied by items which 
have been either remanufactured from used products 
arriving at the beginning of every period, or have been 
newly manufactured. Golany et al. (2001) studied a 
production planning problem with remanufacturing. They 
proved the problem is NP-complete and obtained an O(T3) 
algorithm for solving the problem. Teunter and Pelin 
Bayındır (2006) addressed the dynamic lot-sizing problem 
for systems with product returns. They presented an exact, 
polynomial time dynamic programming algorithm. Li et 
al. (2007) analyzed a version of the capacitated dynamic 
lot-sizing problem with substitutions and return products. 
They first applied a genetic algorithm to determine all 
periods requiring setups for batch manufacturing and 
batch remanufacturing, and then developed a dynamic 
programming approach to provide the optimal solution to 
determine how many new products are manufactured or 
return products are remanufactured in each of these 
periods. Pan et al. (2009) addressed the capacitated 
dynamic lot-sizing problem arising in closed-loop supply 
chain where returned products are collected from 
customers. They assumed that the capacities of 
production, disposal and remanufacturing are limited, and 
backlogging is not allowed. Moreover, they proposed a 
pseudo-polynomial algorithm for solving the problem 
with both capacitated disposal and remanufacturing. 
Pin˜eyro and Viera (2010) investigated a lot-sizing 
problem with different demand streams for new and 
remanufactured items, in which the demand for 
remanufactured items can also be satisfied by new 
products, but not vice versa. They provided a 
mathematical model for the problem and demonstrated 
that it is NP-hard, even under particular cost structures. 
Zhang et al. (2012) investigated the capacitated lot-sizing 
problem in closed-loop supply chain considering setup 
costs, product returns, and remanufacturing. They 
formulated the problem as a mixed integer program and 
proposed a Lagrangian relaxation-based solution 
approach. 

      Returned products are collected from customers. 
These returned products can either be disposed or be 
remanufactured to be sold as new ones again; hence, the 
market demands can be satisfied by either newly 
produced products or remanufactured ones. Due to the 
variety of products in the current manner under review, 
each product might be produced through different 
manners, and the costs of each unit and the value of 
resources used depend on the selected manner of 
production. In most wide industrial implications, one of 
the most important questions is to identify the best value 
of production. In this research, an integer linear 
programming model was developed for the multi-item 
capacitated lot-size by taking into consideration many 
industrial limitations. The goal is to maximize the profit 
against costs of production, inventory costs, shortage 
costs, safety stock deficit costs, setup costs, out-sourcing 
costs, disposing returned products costs, and 
remanufacturing returned products cost. 
      The rest of this paper is organized as follows: Section 
2 describes an MIP (mixed integer programing) 
formulation of the multi-item capacitated lot-sizing 
problem with safety stocks in closed-loop supply chain. 
The solution approach for solving the proposed model is 
introduced in Section 3. The Taguchi method for tuning 
the parameters and computational experiments are 
presented in Section 4. The conclusions and suggestions 
for future studies are included in Section 5. 

2. Mathematical Formulation 

Mehdizadeh and Fatehi kivi (2014) proposed an MIP 
model for Single-item Capacitated Lot-sizing Problem. In 
this section, we present an MIP formulation of the 
problem based on the last model.  

In order to close the gap between the conditions of the 
problem and the real world conditions in this research, the 
multi-item lot-size problem has been studied with 
considerations of production line equilibrium limitation 
and capacity limitation. Not only has there been a 
consideration of different production manners for 
products, but also the model has been designed in the 
conditions of having safety stock and shortage being 
allowed. Also the factory is responsible for processing 
used products returned from customers. Two options are 
available for these returned products: remanufacturing and 
disposal. Remanufactured products can be sold as new 
ones with the same quality commitment. The main goal is 
to present a mathematical model to optimize production, 
inventory, outsourcing, shortage, remanufactured and 
disposal quantities as well as to determine the best 
production manner. 
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2.1. Assumptions 

Before the formulation is considered, the following 
assumptions are made on the problem: 
 The demand is considered deterministic. 
 The amount of the returned products is regarded 

deterministic over the planning horizon. 
 Shortage is backlogged. 
 Shortage and inventory costs must be taken into 

consideration at the end. 
 Raw material resource with given capacities are 

considered. 
 The quantity of inventory and shortage at the 

beginning of the planning horizon is zero. 
 The quantity of inventory and shortage at the end of 

the planning horizon is zero. 

2.2. Parameters 

T: Number of periods, indexed from 1 to T, involved in 
the planning horizon. 
N: Number of products, i = 1, …, N. 
J: Number of production manner, j = 1,…, J. 
dit: The demand for product i in the period t. 
Lit: The quantity of the safety stock of product i in the 
period t. 
rit: The selling price per unit of product i in the period t. 
Cijt: The production cost of each unit of product i in the 
period t through the manner j. 
Aijt: The setup cost of the production of product i in the 
period t through the manner j. 

:ith   The unit holding cost of product i in the period t. 

:ith   Unitary safety stock deficit cost of product i in 
period t. 

:it  Unitary shortage cost of product i in period t. 

Bkt: The capacity of the K source at hand in the period t 
αik: The quantity of the K source used by each unit of the 
product i. 
fijk: The quantity of wasted K source for product i  
produced through the manner j. 

:it  Unit out-sourcing cost of each unit of product i in the 
period t.  

Mi :  A large number. 
:ik  The K source consumption for repair of item i. 

vi : Space needs for per unit of product i. 
:t  The total available space in period t. 

Fit: The cost of disposing returned products for each unit 
of product i in period t. 

git: The cost of remanufacturing returned products for 
each unit of product i in period t. 

:it The unit holding cost of product i of returned 
products in period t. 

:d
itC The maximum number of returned products of 

product i that could be disposed in period t. 
:r

itC The maximum number of returned products of 
product i that could be remanufactured in period t. 
Rit: the number of returned products of product i in period 
t. 
2.3. Decision Variables 
Xijt: Production quantity for product i in the period t 
through the manner j. 

:f
itX  The number of returned products of product i that 

remanufactured in period t. 
:s

itX The number of returned products of product i that 
disposed in period t. 
yijt: Binary variable; 1 if the product i is produced in the 
period t through the manner j, otherwise ijty =0. 
Uit: Out-sourcing level of product i in the period t. 

:r
itI The number of returned products of product i held 

that in inventory at the end of period t. 
:itI   The quantity of shortage of product i in the period t.

  
:itS   The quantity of overstock deficit of product i in the 

period t.  
:itS   The quantity of safety stock deficit of product i in 

the period t. 
 
The objective function (1) shows the difference between 
selling price with the shortage costs, inventory costs, 
disposing costs, remanufacturing costs, production costs, 
safety stock costs and outsourcing costs. Constraints (2) 
are the inventory flow conservation equations through the 
planning horizon. Constraints (3) and (4) define, 
respectively, the demand shortage and the safety stock 
deficit for item i at the end period is zero. Constraints (5) 
are the inventory flow conservation equations for returned 
products. Constraints (6) are the capacity constraints; the 
overall consumption must remain lower than or equal to 
the available capacity. If we produce an item i at period t, 
then constraints (7) impose that the quantity produced 
must not exceed a maximum production level Mit. Mit 
could beset to the minimum between the total demand 
requirements for item i on section [t, T] of the horizon and 
the highest quantity of item i that could be produced 
regarding the capacity constraints, Mit is then equal Eq. 
(17) to: 
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2.4. The proposed Model 
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Constraints (8) and (9) define upper bounds on, 
respectively, the demand shortage and the safety stock 
deficit for item i in period t. Constraints (10) ensure that 
outsourcing level Uit at period t is nonnegative and cannot 
exceed the sum of the demand, safety stock of period t 
and the quantity backlogged, safety stock deficit from 
previous periods. Constraints (11) and (12) are the 
capacity constraints of disposal, remanufacturing. 
Constraints (13) are the Maximum space available for 
storage of items in excess. Constraints (14) and (15) 
characterize yijt is a binary variable and the variable's 
domains: , , , , , ,f s r

ijt it it it it it itX X X I I S S   are non-
negative  and integer for i ∈ N, j ∈ J and t ∈ T. 

3. Solution Approaches 

3.1. Simulated Annealing Algorithm 
 
 Simulated annealing (SA) was presented by Kirkpatrick 
et al. (1983). The SA methodology draws its analogy from 
the annealing process of solids. In the annealing process, a 
solid is heated to a high temperature and gradually cooled 
to a low temperature to be crystallized. As the heating 
process allows the atoms to move randomly, if the cooling 
is done too rapidly, it gives the atoms enough time to 
align themselves in order to reach a minimum energy state 
that is named stability or equipment. This analogy can be 
used in combinatorial optimization in which the state of 
solid corresponds to the feasible solution; the energy at 
each state corresponds to the improvement in the 
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objective function and the minimum energy state will be 
the optimal solution. 
The steps of SA algorithm are shown below: 
Step 1: Generating feasible initial solution. Xbest = X0  
Step 2: Initializing the algorithm parameters which consist 
of initial temperatures (T0), rate of the current temperature 
decreases (α), max of iteration at each temperature (L), 
freezing temperature (Tf), in this paper Tf  = 0. 
Step 3: Calculating the objective value C(X0) for initial 
solution. 
Step 4: Initializing the internal loop 
In this step, the internal loop is carried out for S =1 and 
repeated while S < L. 
Step 5: Neighborhood generation 
Step 6: Accepting the new solution 
Set ( ) ( )nC C X C X   Now, if 0C  , accept 

the new solution, else if 0C   generate a random 
number r between      (0, 1); 

If 01
C

Tr e
 
 
   , then accept a new solution; otherwise, 

reject the new solution and accept the previous solution.  
If S ≥ L, go to step 7; otherwise S +1S and go back to 
step 5. 
Step 7: Adjusting the temperature 
In this step, 0T T    is used for reducing 
temperature at each iteration of the outer cycle of the 
algorithm. If T0 = Tf return to step 8; otherwise, go back 
to step 4.  
Step 8: Stopping criteria.  
Two important issues that need to be defined when 
adopting this general algorithm to a specific problem are 
the procedures to generate both initial solution and 
neighboring solutions. 
  
3.1.1. Representation schema 
    
To design simulated annealing optimization algorithm for 
the mentioned problem, a suitable representation scheme 
that shows the solution characteristics is required. In this 
paper, the general structure of the solution representation 
performed for running the simulated annealing for four 
periods with two production manners is shown in Figure 
1.  
Number of bets in Part 1= Product number × Number of 
periods × Number of production manner 
Number of bets in Part 2= Product number × Number of 
periods  
 

Y111 Y112 Y113 Y114 Y211 Y212 Y213 Y214 

0 1 1 0 0 1 1 0 

 

11
sX  12

sX  
13
sX  14

sX  
21
sX  22

sX  23
sX  24

sX  

2 2 0 1 3 0 1 2 

Fig. 1. Solution representation 
 

3.1.2. Neighborhood scheme   
 
 At each temperature level a search process is applied to 
explore the neighborhoods of the current solution. In this 
paper we use mutation scheme for produce neighborhood 
solution. Figure 2 illustrates this operation where there are 
four periods, two products and one production manner. In 
each iteration, we produce two new solutions from two 
old solutions. At first for new product (Part A), a 
chromosome is selected, one bit was randomly selected 
and the number of bit was changed to zero if it was one 
and was changed to one if it was zero, then, for 
remanufacturing products (Part B), one bit is selected 
randomly and its quantity changed across the authority 
range.   
 
       In part A, new products are shown; in this part one bit 
was randomly selected and the number of bit was 
changed. In part B remanufacturing products are shown; 
in this section all bits in chromosome are changing 
numbers, for per bit randomly selected from Authority 
range for each remanufacturing product.   
 
Part A: 
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Fig. 2. An example of the neighborhood structure 
 
3.1.3. Cooling schedule scheme  
   
The temperature is another basic characteristic of the SA 
which is gradually decreased when the algorithm 
progressed. Initially, T is set to a high value Ti, and it can 
be reduced with some patterns at each step of algorithm. 
The cooling schedule with Ti = α × Ti - 1 (where α is the 
cooling factor constant and belong to (0 1)) is considered 
as cooling pattern for this research. 
 
3.2. Vibration Damping Optimization 
 
Recently, a new heuristic optimization technique based on 
the concept of the vibration damping in mechanical 
vibration was introduced by Mehdizadeh and Tavakkoli-
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Moghaddam (2009), named vibration damping 
optimization (VDO) algorithm. They already utilized the 
algorithm to solve parallel machine scheduling problem. 
The VDO algorithm is illustrated in the following steps: 
Step 1: Generating feasible initial solution. 
Step 2: Initializing the algorithm parameters which consist 
of: initial amplitude (A0), max of iteration at each 
amplitude (lmax), damping coefficient (γ), and standard 
deviation (σ). Finally, parameter t is set in one (t=1)  
Step 3: Calculating the objective value U0 for initial 
solution. 
Step 4: Initializing the internal loop 
 In this step, the internal loop is carried out for l =1 and 
repeated while l < lmax. 
Step 5: Neighborhood generation. 
Step 6: Accepting the new solution 
Set 0U U    Now, if ∆ < 0, accept the new solution, 
else if ∆ > 0 generate a random number r between (0, 1); 

If 

2
1 exp 22

Atr


      
 

, then accept a new solution; 

otherwise, reject the new solution and accept the previous 
solution. 
If l > lmax, then t +1 t and go to step 7; otherwise l 
+1 l and go back to step 5. 
Step 7: Adjusting the amplitude 

In this step, exp( )0 2
tA At


 
is used for reducing 

amplitude at each iteration of the outer cycle of the 
algorithm. If At = 0 return to step 8; otherwise, go back to 
step 4. 
Step 8: Stopping criteria 
In this step, the proposed algorithm will be stopped after 
the predetermined number of iterations. At the end, the 
best solution is obtained. 
 
3.2.1.  Representation schema 
    
To design vibration damping optimization algorithm for 
the mentioned problem, a suitable representation scheme 
that shows the solution characteristics is needed. In this 
paper, the general structure of the solution representation 
performed for running the vibration damping for two 
products, four periods with one production manner is 
shown in Fig 1. 

 
3.2.2.   Neighborhood scheme 
 
In this paper we use mutation scheme, Figure 2 illustrates 
this operation on the two products, four periods with one 
production manner. 

 
 
 

 

3.3. Harmony Search algorithms 
    
Harmony search (HS), proposed by Geem et al. (2001),  is 
a new heuristic method that mimics the improvisation of 
music players. Inspiration was drawn from musical 
performance processes that occur when a musician 
searches for a better state of harmony, improvising the 
instrument pitches towards a better aesthetic outcome. 
The HS algorithm imposes fewer mathematical 
requirements and does not require specific initial value 
settings of the decision variables (Yadav et al, 2012) 
(2012). Because the HS algorithm is based on stochastic 
random searches, the derivative information is also not 
necessary. In the HS algorithm, musicians search for a 
perfect state of harmony determined by aesthetic 
estimation, as the optimisation algorithms search for the 
best state (i.e., global optimum) determined by an 
objective function. Each musician corresponds to a 
decision variable; a musical instrument’s pitch range 
corresponds to a range of values for the decision 
variables; musical harmony at a certain time corresponds 
to a solution vector certain iteration; and an audience’s 
aesthetics correspond to the objective function. Just as 
musical harmony is incrementally improved, a solution 
vector is also improved iteration by iteration. To 
understand the design principle of the HS algorithm, let us 
first idealize the improvisation process adopted by a 
skilled musician. When a musician is improvising, he or 
she has three possible choices: (1) playing any famous 
tune exactly from his or her memory, (2) playing 
something similar to the aforementioned tune (thus 
adjusting the pitch slightly) or (3) composing new or 
random notes. In this section, various steps of the HS 
algorithm and a description of how the HS is designed 
and applied are presented.  
Step 1: Initialize the optimisation problem and algorithm 
parameters to apply HS, in the first step, the optimization 
problem are specified as follows: 
 
Minimize (or Maximize) f(x)                                           

(17) 
Subject to  i ix X  ,    i = 1, 2, …, N 
 
where f (x) is an objective function to be optimized, x is a 
solution vector composed of decision variables, xi e Xi is 
the set of possible range of values for each decision 
variable xi (continuous decision variable), that is Lxi ≤ Xi 
≤ Uxi, where Lxi and Uxi are the lower and upper bounds 
for each decision variable, respectively, and N is the 
number of decision variables. Furthermore, the control 
parameters of HS are specified in this step. These 
parameters are the harmony memory size (HMS), 
harmony memory consideration rate (HMCR), and pitch 
adjusting rate (PAR).  
Step 2: In the second step, each component of each vector 
in the parental population (harmony memory) is 
initialized with a uniformly distributed random number 
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between the upper and lower bounds [Lxi, Uxi], Where 1 < 
i < N. The ith component of the jth solution vector is 
given by 

j
ix   Rand [possible range of values for xi] 

Where j = 1, 2, 3, . . ., HMS.  Each row consists of a 
randomly generated solution vector for the formulated 
optimization problem, and the objective function value for 
the jth solution vector is denoted by f(xj). The matrix 
formed is governed by 
HM (j, 1: N) = xj 

HM (j, N + 1) = f (xj)  
The HM with the size of HMS × (N + 1) can be 
represented by a matrix, as: 
 
 
 
 
 
                                                                                                                                                                         
 
 
 
 
 
Step 3: Improvise a new harmony from the HM 
after defining the HM as shown in Equation 15; for the 
optimization problem, the improvisation of the HM is 
performed by generating a new harmony vector x' = 
( ' ' '

1 2, ,.........., Nx x x ). Each component of the new 
harmony vector is generated using 
 
           ' ( )ix HM i  With probability HMCR 

'
ix                                                                               (19)                                                                                  

           '
i ix X  With probability (1 - HMCR) 

 
Where HM (i) is the ith column of the HM, HMCR is 
defined as the probability of selecting a component from 
the HM members, and (1 - HMCR) is, therefore, the 
probability of generating a component randomly from the 
possible range of values. If '

ix is generated from the HM, 
then it is further modified or mutated according to PAR. 
PAR determines the probability of a candidate from the 
HM mutating, and (1 - PAR) is the probability of no 
mutation. Here the pitch adjustment for the selected '

ix  is 
given by 

              
'
ix = Rand  '

i ix X With probability PAR 
'
ix  

                '
ix  With probability (1 - PAR)         (20)    

                                                                                                                                                                                                                           
Step 4: Update the HM 

The newly generated harmony vector (x0) is evaluated in 
terms of the objective function value. If the objective 
function value for the new harmony vector is better than 
the objective function value for the worst harmony in the 
HM, then the new harmony is included in the HM and the 
existing worst harmony are excluded from the HM. 
Step 5: If the stopping criterion (maximum number of 
improvisations) is satisfied, computation is terminated. 
Otherwise, steps 3 and 4 are repeated. 

4.  Results 

In this paper, all tests are conducted on a notebook with 
Intel Core i5 Processor 2.53 GHz and 4 GB of RAM and 
the proposed algorithms; namely, SA, VDO and HS are 
coded in Visual Basic 2000. 
 
4.1. Parameter calibration 
    
Appropriate design of parameters has a significant impact 
on efficiency of meta-heuristics. In this paper, Taguchi 
method (Taguchi, 2000) was applied to calibrate the 
parameters of the proposed methods; namely, SA, VDO 
and HS algorithms.  This method is based on maximizing 
performance measures called signal-to-noise ratios in 
order to find the optimized levels of the effective factors 
in the experiments. The S/N ratio refers to the mean-
square deviation of the objective function that minimizes 
the mean and variance of quality characteristics to make 
them closer to the expected values. For the factors that 
have a significant impact on S/N ratio, the highest S/N 
ratio provides the optimum level for that factor. As 
pointed out earlier, the purpose of Taguchi method is to 
maximize the S/N ratio. In this subsection, the parameters 
for experimental analysis are determined.  

Table 1 lists different levels of the factors for SA, 
VDO and HS.  In this paper, according to the levels and 
the number of the factors, respectively, the Taguchi 
method L9 is used for the adjustment of the parameters for 
the SA and HS and L27 is used for the VDO. 
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Table 1 
Factors and their level 

Factor Algorithm Notation Level Value 
Initial temperature SA 

0T  3 800, 1000, 1200 

Number of iteration at each  
temperature 

L 3 40, 60, 80 

Rate cooling   3 0.9, 0.95, 0.99 

Initial amplitude  
 
 

VDO 

A0  3 6, 8, 10 

Max of iteration at 
each amplitude 

lmax  3 20, 30, 40 
 

Damping coefficient   3 0.05, 0. 1, 0.5 

Stopping criteria   tmax  3 400, 600, 800 

standard deviation    3 0.5, 1, 1.5 
Pitch-adjusting rate  

 
 

HS 

PAR  3 0.1, 0.3, 0.5 

Harmony memory considering 
rate 

HMCR 3 0.1, 0.7, 0.9 

harmony memory size HMS 3 20, 30, 40 

Stopping criteria  STOP 3 50, 100, 150 
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Fig. 5. The SN ratios for Harmony Search 
 

Figures 3, 4 and 5 show S/N ratios. According to these 
figures, 1000, 80, 0.99, 8, 40, 0.05, 600, 1, 0.1, 0.9, 30 
and 100 are the optimal level of the factors T0, L, α, A0, 
lmax, ,  tmax,  , PAR, HMCR, HMS and STOP.  
 
4.2. Computational results  
  
 Computational experiments were conducted to validate 
and verify the behavior and the performance of the meta-
heuristic algorithms employed to solve the considered 
multi-item capacitated lot-sizing problem with safety 
stocks in closed-loop supply chain. We tried to test the 
performance of the SA, VDO and HS in finding good 
quality solutions in reasonable time for the problem. For 
this purpose, 30 problems with different sizes are 
generated. These test problems are classified into three 
classes: small size, medium size and large size. 
The number of manners, products and periods have the 
most impact on problem hardness. The proposed model 
coded with Lingo (ver.8) software using for solving the 
instances. The approaches are implemented to solve each 
instance in five times to obtain more reliable data. The 
best results are recorded as a measure for the related 
problem. Table 2 shows details of computational results 
obtained by solution methods for all test problems.  
The results of running SA, VDO and HS are compared 
with the optimal solution of the instances, obtained from 
Lingo software, in rows 1 to 10 of Table 2. The presented 
statistical analyses (the variance analysis outcome) were 
reported for problems with small, medium, and large 
dimensions, in Tables 3, 4, and 5. According to the values 

of the survey (or P-Value), we can conclude that the HS 
showed its usefulness in different problems as compared 
to the SA and VDO, and statistical results also are 
significantly different for problems with medium and 
large dimensions. To clarify the matter further, 
confidence distances for different sizes are illustrated in 
Figures 6, 7 and 8.  
In addition, Figure 9 depicts the comparison between 
solution quality of the SA and HS of the instances. Figure 
10 depicts the comparison between solution quality of the 
VDO and HS of the instances. Figure 11 depicts the 
comparison between solution quality of the SA and VDO 
of the instances. A general review of the results illustrated 
in Tables 3, 4 and 5, and Figures 6, 7 and 8 reveal that:  
      
 The SA, VDO and HS can solve all test problems.  
 The computational time required to solve problems 

with SA is smaller than HS. 
 The SA, VDO and HS can find good quality solutions 

for small size problems. 
 The objective values obtained by HS are also better 

than SA and VDO results. 
 For small size test problems, VDO algorithm has to 

find good quality solutions. However, its results will 
be worse when the problem size increases. 

 The objective values obtained by VDO and HS are 
closer to each other and are also better than SA results. 

 The computational time required to solve problems 
with SA is smaller than VDO. 

 The objective values obtained by HS are better than 
VDO and SA results when the problem size increases.
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Table 2  
Details of computational results for all test problems 

No Class P.M.T Objective Function Value (OFV) 

   Lingo T SA T VDO T HS T 
١ 

Small 

2.2.3 1366849 0 1373991 9 1366849  13 1366849 7 

٢ 2.2.5 2170470 0 2170470 11 2170470 22 2170470 15 

3  2.3.5 2180288 0 1983830  11 2165478  21 2150365 17 

4 5.3.5 4692306  0 3726211 27 4136639  47 3959751 18 

5 5.2.6 5497372 0 4052009 32 4921411 51 4845100 27 

6  5.3.6 5621934 42 4386065  31 4836306 51 4613509 26  

7  5.3.8 7696358 55  7696358 41 7696358 61 7696358 31 

9 6.4.11 14610520 90 13980417 68 13868797  80 14030655  81  

11 6.4.12  15545650 508 14879737  72 14746709  85 14841150 80  

10  6.4.15 19599720 1134 19599720 88 19599720 118 19599720  91  

11 

Medium 

6.4.20 ----------- ---- 24370398 114  25422376 127  25924788  126 

12 5.7.20 ----------- ---- 23131730  95  23616685 106  24137117 129 

13 5.5.27 ----------- ---- 21976304 120  30252478 160  31345533 154 

14  6.5.18 ----------- ---- 22144555  106  25028195 143  25635024  157  

15  5.5.20 ----------- ---- 21159175  90  23028121  119  23556950  159 

16 7.6.18 ----------- ---- 24256977  135  28400108  154  29415116 165 

17 5.5.24 ----------- ---- 22477120 106  27500560 151  28637867  168 

18 6.5.17 ----------- ---- 21473228  101  23464365  134  24299040 172  

19 6.4.17 ----------- ---- 21470110 101  23775301  135  24260212 176  

20 5.5.30 ----------- ---- 26205622  139  34801172  174  36133719 178 

21 

Large 

8.6.18 ----------- ---- 30261061 159  33088207  171  33718440  192 

22 6.8.30 ----------- ---- 26402966  174  41647320 220  43398938 205 

23 7.5.25 ----------- ---- 26722266 186  39377083  191  40581142 228 

24 8.6.20 ----------- ---- 31393122  172  36621457 198  37354221 243  

25 6.4.24 ----------- ---- 27781380 135  33130214 285  34223254 250  

26 8.6.24 ----------- ---- 28169230  208  43837475 220  45056702 237 

27 7.6.20 ----------- ---- 28965910  141  31786688  167  32914558  241  

28  6.4.27 ----------- ---- 30352647 153  362572206  188  37497164  249 
29  7.6.24 ----------- ---- 28441443 169  38667467  206  39612415  283 
٣٠ 8.6.30 ----------- ---- 51742301  260  55903827  263  58126552  406 

— Means that a feasible solution has not been found after 3600 s of computing time. 
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Table 3  
Analysis of variance for small size problem  

Source DF SS MS F P 
Small Size 2 1.61382E+11 80691069755 0.00 0.998 

Error 27 1.09951E+15 4.07224E+13   
Total 29 1.09967E+15    

 
 

 
Fig. 6. The output of analysis of variance for small size test problem 

 
 

Table 4 
Analysis of variance for medium size problem  

Source DF SS MS F P 

Medium 
Size 

2 1.13418E+14 5.67090E+13 5.12 0.013 

Error 27 2.99191E+14 1.10811E+13   

Total 29 4.12609E+14    

 

 
Fig. 7. The output of analysis of variance for medium size test problem 

 
Table 5 
Analysis of variance for large size problem  

Source DF SS MS F P 

Large 
Size 

2 5.02440E+14 2.51220E+14 4.67 0.018 

Error 27 1.45281E+15 5.38078E+13   
Total 29 1.95525E+15    

 

 
Fig. 8. The output of analysis of variance for large size test problem 
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Fig. 9. Comparison between solution quality of the HS and SA 

 
Fig. 10. Comparison between solution quality of the HS and VDO 

 

 
Fig. 11. Comparison between solution quality of the SA and VDO 

5. Conclusion 

In this paper, we proposed a mathematical formulation for 
a new multi-item capacitated lot-sizing problem with 
setup times in closed-loop supply chain. This formulation 
takes into account several industrial constraints such as 
shortage costs, safety stock deficit costs, limited 
outsourcing and return products. Due to the complexity of 
the problem, three meta-heuristic algorithms named 
simulated annealing (SA) algorithm, vibration damping  

 
 
optimization (VDO) algorithm and harmony search (HS) 
algorithm were used to solve problem instances. 
Additionally, an extensive parameter setting with 
performing Taguchi method was conducted for selecting 
the optimal levels of the factors that affect algorithm’s 
performance. For showing the performance of the 
proposed algorithms, 30 problems with different sizes 
were generated. These test problems were classified into 
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three classes: small size, medium size and large size. The 
comparison between the proposed algorithms and results 
obtained from Lingo software showed the efficiency of 
the algorithms. Also, the three algorithms were statically 
compared. The objective values obtained by HS are better 
than VDO and SA results when the problem size 
increases. One straightforward opportunity for future 
research is extending the assumption of the proposed 
model for including real conditions of production systems 
such as limited inventory, fuzzy demands, etc. Also, 
developing a new heuristic or meta-heuristic to construct 
better feasible solutions is recommended. 
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