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Abstract 

In this paper,  a heuristic algorithm is proposed in order to solve a nonlinear lexicography goal programming (NLGP) by using an efficient 
initial point. Some numerical experiments showed that the search quality by the proposed heuristic in a multiple objectives problem 
depends on the initial point features, so in the proposed approach the initial point is retrieved by Data Envelopment Analysis to be selected 
as an efficient solution. There are some weaknesses in classic NLGP algorithm that lead to trapping into the local optimum, so a simulated 
annealing concept is implemented during the searching stage to increase the diversity of search in the solution space. Some numerical 
examples with different sizes were generated and comparison of results confirms that the proposed solution heuristic is more efficient than 
the classic approach. Moreover the proposed approach was extended for cases with ordinal weights of inputs or outputs. The computational 
experiments for 5 numerical instances and the statistical analysis indicate that the proposed heuristic algorithm is a robust procedure to find 
better preferred solution comparing to the classic NLGP. 
Keywords: Nonlinear goal programming; Simulated Annealing; Data Envelopment Analysis; Heuristic algorithm; Efficient initial solution. 

1. Introduction 

In many real world problems, there are more than one 
objective. As a popular method, all objectives can be 
aggregated to a single one; however’ it’s not feasible or 
desirable to reduce all existing objectives of the problem 
to a single objective but we are interested in solving the 
problem regarding their respected goals. Goal 
programming is an extension of linear or nonlinear 
programming that involves deviation of all objectives 
from their goals. To deal with goals, we need to have the 
importance weight of each objective. Sometimes it is 
difficult to achieve their importance weights and the 
ordinal ranking of objectives can be used as an 
alternative. So by applying ordinal ranking, goal 
programming is applied as lexicographic procedure in 
which each goal is satisfied according to its importance 
order. The goal programming general formulation can be 
shown as following: 
Min (ݓ(ଵ)݂(݀ଵା, ݀ଵି), …	, ௠ା݀)݂(௠)ݓ , ݀௠ି ))	 (1) 
S.tܼ௜+݀௜ା−	݀௜ି= ௜ܶ  , ∀i =1,…,m (2) 
 
 
 

 
 
 
Where ݓ(௜) denotes priority of each objective, ܼ௜ is 
objective function, ௜ܶ stands for goal of each objective, 
݀௜ା-݀௜ିare deviations of objective from its goal. 
There is a classic algorithm to solve nonlinear 
lexicography goal programming which is called NLGP.  
This algorithm starts to find a solution with least deviation 
from the more important objective target. Then it is tried  
to improve other lower ranked objectives without more 
violation of the high ranked objectives. In classic NLGP, 
the initial point is chosen randomly which is very 
important in algorithm efficiency. Random selection of 
the initial solution will help us to find better final results 
during search iterations; however, the solution quality 
cannot be guaranteed. Employing of a method to find 
more efficient initial solution for NLGP among all 
possible solutions can be an alternative instead of using 
random initial solution.In this paper, a method is proposed 
to find efficient initial solution of the NLGP to improve 
its performance.  There are some methods for measuring 
of efficiency of decision making units. For example, Data 
envelopment analysis (DEA), developed by Charnes, 
Cooper et al. (1978) is a method for assessing the 
productive efficiency of decision making unit (DMUs) 

* Corresponding author E-mail: bashiri.m@gmail.com 

 

Journal of Optimization in Industrial Engineering 15 (2014) 77-83

77



which uses some inputs to produce some outputs. On the 
other hand,  DEA is a method for numerical comparisons 
of efficiencies of DMUs. Data envelopment analysis is a 
kind of mathematical technique that measures relative 
efficiencies of decision making units with multiple input-
output. Each of these DMUs consumes varying amounts 
of m inputs and s different outputs. Efficiencies of DMUs 
are calculated by ratio of their total weighted outputs to 
their total weighted inputs. In DEA model, there is a 
constraint that normalizes efficiencies and forces them to 
be less than or equal to unity. It’s clear that more ratios 
mean more efficiency of DMUs. Suppose that each DMU 
consumes m input to produce s outputs. Efficiency of each 
DMU (j=1, 2… n) is calculated by solving the following 
linear model: 

௥௢ݕ௥ݑ෍	ݔܽܯ

௦

௥ୀଵ

 
(3) 

s.t.  

෍ݓ௜ݔ௜௢ = 1
௠

௜ୀଵ

 
(4) 

෍ݑ௥ݕ௥௝ −෍ݓ௜ݔ௜௝ ≤ 0
௠

௜ୀଵ

௦

௥ୀଵ

,										݆1,2,… , ݊ 
(5) 

௜ݓ ≥ ݅										,ߝ = 1,2,… ,݉ (6) 

௥ݑ ≥ ݎ										,ߝ = 1,2,… ,݉ (7) 

Where ݔ௜௝  ௥௝ are ith input and rth output of DMUݕ	݀݊ܽ	
jrespectively and ݋ is the index of selected DMU.ݓ௜is 
weight of ith input and ݑ௥ is rth output weight. Also ε is 
non-Archimedean infinitesimal value for preventing 
weights to be equal to zero. It’s clear that this model 
should be run for each DMU. From a general point of 
view, each DMU which can produce more outputs by 
consuming less inputs will have more efficiency. In this 
paper, the random generated initial solutions are assumed 
to be decision making units and we are interested in 
determining the efficient solutions among them to be used 
as an efficient initial solution of the NLGP algorithm. 
Another deficiency of the classic NLGP is it’s trapping 
into the local optimum in most of nonlinear problems. So 
in this paper a new heuristic nonlinear lexicographic goal 
programming is proposed in which the probability of its 
trapping into the local optimum will be reduced. Classic 
NLGP is so simple but it should solve all sub problems 
sequentially and throughout iteration within sub problem 
it cannot terminate by finding sub problem solution. 
Classic NLGP uses a method which is not capable of 
finding optimum solution while objectives are nonlinear. 
There can be a modification in classic algorithm to 
increase the probability of finding the optimum solution 
even if objectives are nonlinear. The schematic 
comparison of the proposed approach with the classic 
NLGP is illustrated in Figure 1. 

This paper is organized as follows; the literature review is 
presented in the following section. The proposed heuristic 
approach is illustrated in section 3. Numerical examples 
and the analysis of results are discussed in section 4. 
Finally, the conclusion is presented in the last section. 

 

Fig. 1. Schematic comparison of the proposed approach with the classic 
NLGP 

2. Literature Review 

Goal programming is used for solving an optimization 
problem with multiple conflicting goals. The aim of the 
goal programming is achieving as much goals as possible 
by minimizing their deviations from their targets. A 
detailed discussion about different aspects of goal 
programming (GP) is presented by Ignizio (1978) . As it 
was mentioned by Zanakis and Gupta (1985), there are 
some issues that cause the goal programming not to be 
capable of solving a large spectrum of the real world 
problems. Then they proposed four suggestions two of 
which are associated with GP structure. Their first 
concentration is on the goals priorities and assigning of 
weight to each goal. The second one is implementation of 
new algorithm to solve the large scale GP problems. 
Among various approaches of the GP, lexicographic GP 
(LGP) with assigning of ordinal weights to objectives is 
more popular. Tamiz et al.(1995)  argue that LGP is the 
most widely used GP variants and around 64% of the 
reported applications in the GP literature are related to 
LGP. According to the research of Köhn (2011), LGP 
takes places beside the weighted-sum and ε-constraint in a 
specific category of multi objective techniques that are 
categorized based on the solution methods. The main 
difference between the two mentioned methods and LGP 
is in extracting of the Pareto solutions. The preferred 
solution will be selected by using of the Lexicographic 
method instead of extracting the Pareto solutions. From 
another point of view, Köhn (2011) distinguishes between 
exact and approximated multi objective optimization 
solutions due to accuracy of the obtained solution. The 
exact methods are divided into scalarization and 
nonscalarization techniques. Scalarization methods 
convert multi objective optimization into one objective to 
solve it by conventional techniques. It should be noted 
that if objectives are not convex, weighted-sum method is 
incapable of solving a multiple objective problem but 
lexicographic method does not care that objectives are 
convex or not. 
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As mentioned before, lexicographic problems are usually 
used when there exist conflicting objectives in a decision 
problem and the objectives should be considered in the 
hierarchical manner. There are some recent examples 
which applied lexicographic goal programming 
techniques to solve real world problems such as Puente et 
al.(2013), Liberatore et al (2014) and Coshall and 
Charlesworth (2011). Moreover, some heuristics and 
metaheuristics have been proposed for solving of multiple 
objectives problems. According to the research of Jones, 
Mirrazavi et al. (2002), simulated annealing and Tabu 
search are two of the most popular meta heuristics used in 
solving multiple objectives (e.g. Mandow and Pérez de la 
Cruz, 2001;  Suman, 2004; Kulturel-Konak, Smith et al., 
2006; Suman, Hoda et al., 2010). Also there are some 
studies that have used the new algorithm to solve goal 
programming. Ghoseiri and Ghannadpour (2010) 
Proposed a new model and solution method for multi 
objective vehicle routing problem with time windows 
using goal programming and genetic algorithm. Their 
model tries to minimize the deviation of objectives from 
their goals. Modiri et al.(2010) used the mathematic goal 
programming model in the cement industry using fuzzy 
and absolute approach to answer which one presents the 
optimal solution. Du et al.(2014) proposed a multi-
objective optimization of reverse osmosis for seawater 
desalination. Lexicographic optimization and ε-constraint 
method are proposed to solve the multi-objective 
optimization problem. Then a fuzzy decision maker is 
introduced to derive the most efficient solution. Research 
done by Mandow and Pérez de la Cruz (2001) describes a 
new general algorithm for graph search problems with 
additive lexicographic goals. Using lexicographic goals in 
the formulations helps to provide greater control of 
solution paths. However, to the best of our knowledge, 
there is not any research that proposes a new simulated 
annealing based heuristic used to solve a lexicographic 
goal programming. Moreover, in this study, a sensitivity 
analysis has been done for initial point of lexicographic 
goal programming algorithm, so a method is proposed to 
find a proper initial solution during the proposed 
algorithm. Some numerical tests confirm that the 
proposed algorithm can be used for lots of goal 
programming problem types such as nonlinear goal 
functions. The research gap has been depicted in Table 1 
by comparing the previous studies with the presented 
research. 

3. The Proposed Heuristic Algorithm  

One of the major problems of classic NLGP is its trapping 
into the local optimum (Saber and Ravindran 1993). Since 
the classic algorithm tries to search in a special direction 
with a limited step, so the search in the mentioned 
direction continues until the objective improvement stops; 
then, the other direction according to the other variables 

Table 1 
Comparison of the presented research approach and previous studies 

 Year Search 
step 

Initial 
solution 

Search 
method Data 

(Mandow and Pérez de 
la Cruz) 2001 Fix Random Classic Crisp 

(Modiri et al.) 2010 Fix Random Classic Fuzzy 
(Liao and Kao) 2010 Fix  Random  Classic  Fuzzy 
(Arbaiy and Watada) 2011 Fix  Random  Classic  Fuzzy 
Coshall and 
Charlesworth 2011 Fix Random Classic Crisp 

(Soliman and Sarker) 2011 Variable  Random  Differential 
evolution  Fuzzy 

(Chen and Xu 2012) 2012 Fix Random  Classic  Crisp  
(Puente et al.) 2013 Fix Random Classic Crisp 
(Liberatore et al.) 2014 Fix Random Classic Crisp 
(Du et al.) 2014 Variable Random ε-constraint Crisp 

This research  Variable 

Efficient 
initial 

solution 
by DEA 

SA based Crisp 

changes is selected and the algorithm is iterated until the 
stopping condition is met. However, in the proposed 
approach the variables change step is not limited and can 
be more during the search. Moreover, non-improved 
directions can be accepted by a probability distribution. 
So the proposed approach has inherited the main 
characteristic of the simulated annealing in its search 
algorithm. These features help the algorithm to increase 
its search diversity among solution space and increase 
probability of finding the most preferred solution or at 
least better solution compared with classic NLGP. The 
pseudo code of the proposed algorithm has been depicted 
in Figure 2. In each iteration, by choosing the objective 
with the highest priority, one dimension of the start point 
is increased in a special direction. Each time that 
deviation from the goal is decreased, the point is saved as 
the temporary best one. Moreover, non-improved 
solutions can be accepted by a probability distribution as 
illustrated in the pseudo code. Finally, this procedure is 
stopped by the stopping condition.  In the next step, the 
search is continued in the reverse direction till the stop 
condition is met. Then, this procedure is resumed by 
choosing the next dimension and using the last best point. 
These stages should be repeated for the next lower ranked 
objectives, considering that violation of high ranked 
objectives is not acceptable. The selection of efficient 
initial solution has led to having a more reliable algorithm 
to solve multiple objectives problems with ordered 
preferences. More explanation on using the efficient 
initial solution has been illustrated in the next sections. 

4. Numerical Examples and Analysis 

It is shown that classic NLGP is dependent to the initial 
point. It means that by choosing different initial points 
classic algorithm may spend more or less time to find the 
preferred solution. In contrast, the proposed heuristic 
algorithm is less dependent and less sensitive to the initial 
point. To prove it, we solved several examples using the 
proposed heuristic and classic NLGP, some of which are 
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reported in Table 2. The reported examples include linear 
and nonlinear objective functions. Each example is solved 
using both algorithms by different initial points in 50 
runs. Then the final results variations are compared. The 
analysis show that the proposed algorithm contains less 
variation in the obtained results comparing to the classic 
approach as illustrated in Figures 2 and 3. It confirms that 
the proposed algorithm is more robust and independent of 

the initial solution comparing to the classic NLGP. The 
first reason is that the change step is not restricted to a 
limited size and the second one is related to the nature of 
accepting non improvement directions during the search 
in the proposed approach. Feature of accepting the non-
improvement direction helps the algorithm to decrease the 
chance of being trapped in to the local optimum. 

 

Initial ݔ଴ and compute corresponding objective functions values (0ݖ௟ 	, ݈ = 1,2, . . ,݉) 
k: the step size of moving in any dimension 

݀௟ି௕௘௦௧ = ݀௟ି௚௢௟ௗ = ∞ 
௥ି௕௘௦௧ݔ = ௥ି௚௢௟ௗݔ =  ଴ݔ

Repeat 
               Repeat  

If not improve in all dimensions then k=k/2 
                            Repeat  

                                        Repeat  
 ௥ + t*k (move in dimension r)ݔ = ௥ݔ

Compute ∆݀௟ = ݀௟ − ݀௟ି௕௘௦௧ for ݈ = 1,2, . . , ݆ 
“݀௟:l-th priority objective function deviation of ݔ௥  from its target” 

If ∆݀௟ ≤ ௟݀	ݎ݋	0 	≤ 0  , ݈ = 1,2, . . , ݆ 
௥ି௕௘௦௧ݔ = ௥&݀௟ି௕௘௦௧ݔ = ݀௟ 

Terminate replication for this dimension 
Else if ∆݀௟ ≤ 0  , ݈ = 1,2, . . , ݆ − 1 

Compute ∆ݖ௟ = ௟ݖ −  ௟ି௕௘௦௧ݖ

Prob1=exp(
ష
∆೥೗
೥బ೗
೅ ) 

Prob2=random (0, 1) 
If prob2 > prob1 Then ݔ௥ 	= 	 ௥ି௕௘௦௧ And ݀௟ି௕௘௦௧ݔ = ݀௟ 

End 
Update repeat counter  

                                        Until (terminate a certain number of repeat in any dimension) 
௥ݔ =  ݈݀݋݃_௥ݔ

Repeat  
 ௥ - t*k (move in reverse direction in dimension r)ݔ = ௥ݔ

Compute ∆݀௟ = ݀௟ − ݀௟ି௕௘௦௧  for ݈ = 1,2, . . , ݆ 
If ∆݀௟ ≤ ௟݀	ݎ݋	0 	≤ 0݈ = 1,2, . . , ݆ 
௥ି௕௘௦௧ݔ = ௥ And ݀௟ି௕௘௦௧ݔ = ݀௟ 

Terminate replication for this dimension 
Else if ∆݀௟ ≤ 0݈ = 1,2, . . , ݆ − 1 

Compute ∆ݖ௟ = ௟ݖ −  ௟ି௕௘௦௧ݖ

Prob1=Exp(
ష
∆೥೗
೥బ೗
೅ ) 

Prob2=random between 0, 1 
If prob2 > prob1 Then ݔ௥ 	= 	 ௥ି௕௘௦௧ And ݀௟ି௕௘௦௧ݔ = ݀௟ 

End 
Update repeat counter  

                                        Until (terminate a certain number of repeat in any dimension) 
                            If ݀௟ି௕௘௦௧ ≤ ݀௟ି௚௢௟ௗthen ݔ௥ି௚௢௟ௗ = ௥ି௕௘௦௧ And ݀௟ି௚௢௟ௗݔ = ݀௟ି௕௘௦௧  

 Update r(dimension counter) 
                            Until (end search in all dimensions)  

  
               Until (end condition for objective function with priority j) 

Update j (selected objective functions counter) 
Until (end number of priorities, j=m)  

 

Fig. 2. Pseudo code of the proposed algorithm based on the NLGP in multiple objectives optimization 
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Table 2 
Numerical examples for comparison of the proposed NLGP and the classic NLGP 
Example 1 Example 2 Example 3 

૚(࢞)ࢌ = −૞࢞૚ + ૛࢞ ≤ ૞૙ 
૛(࢞)ࢌ = ૟࢞૚࢞૛ ≥ ૚૙૙ 
૜(࢞)ࢌ = ૞࢞૚ + ૛૛࢞ ≤ ૟૙ 
૝(࢞)ࢌ = ૚૛࢞ + ૛࢞ ≥ ૟૙ 

૚࢞ ≥ ૙ 
૛࢞ ≥ ૙ 

 

(݂௫)
ଵ = ଶݔ + ଵݔ ≤ 1000 

(݂௫)
ଶ = ଵଷݔ− + ଶଶݔ4 ≥ 5000 

(݂௫)
ଷ = 10 ∗ ଵݔ + ଶଶݔ ≤ 1000 

(݂௫)
ସ = ଶݔଵݔ− ≥ 40 
(݂௫)
ହ = ଶݔଵଶݔ5 ≤ 700 

ଵݔ ≤ 0 
ଶݔ ≥ 0 

(݂௫)
ଵ = ଵݔ)ଶݔ + 1) ≤ 100 

(݂௫)
ଶ = ଵଶݔ− + ଶଶݔ4 ≥ 5000 

(݂௫)
ଷ = ଵݔ√ + ଶଷݔ ≤ 100 
(݂௫)
ସ = ଶଶݔଵଷݔ− ≥ 40 

ଵݔ ≤ 0 
ଶݔ ≤ 0 

 
Example 4 Example 5  

૚(࢞)ࢌ = ૜࢞૚ + ૛࢞ ≤ ૝૙૙ 
૛(࢞)ࢌ = −૟࢞૚ + ૝࢞૛ ≥ ૚૙૙ 
૜(࢞)ࢌ = ૚࢞ + ૛࢞ ≤ ૟૙૙ 

૚࢞ ≥ ૙ 
૛࢞ ≥ ૙ 

 

(݂௫)
ଵ = ଵଷݔ3 + ଶݔ ≤ 600 

(݂௫)
ଶ = ଵଶݔ6− + ଶଶݔ4 ≥ 100 
(݂௫)
ଷ = ଵݔ + ଶݔ ≤ 600 

(݂௫)
ସ = ଵଶݔ− + ଶݔ3 ≥ 400 

ଵݔ ≥ 0 
ଶݔ ≥ 0 

 

 

 

Fig. 3. Robustness of two algorithms results on different initial points for numerical examples in both variables 

5. Selecting of Efficient Initial Solution in the 
Proposed Algorithm 

Figure 3 illustrates that both algorithms are sensitive to 
the initial solution, however, the classic approach has 
more sensitivity to the initial point, so in this study it is 
tried to find a proper initial solution. Moreover, it is clear 
that the proposed heuristic algorithm increases the 
diversity of search in the solution space to find the better 
solution, so efficient initial point can decrease the number 
of iterations to find the preferred solution. As it was 
mentioned before, the DEA concept can be used to find 
the most efficient DMU where it can produce more 
outputs by consuming fewer inputs. So we can set 
different initial points as decision making units and profit 
and cost objectives as outputs and inputs, respectively. 
But it is important to note that the importance level of 
each objective is different lexicographically. This 
difference causes classic DEA not to be able to find real 
efficient points corresponding to the ordinal weighted 
inputs and outputs. In this paper, a method is proposed to 
determine weighted inputs and outputs in the classic DEA  
 
 

 
 
to find the efficient initial point. This algorithm is 
illustrated in Figure 4. 
In the mentioned algorithm of Figure 4, i  and i are 
the coefficients that are determined based on the 
importance level of objective functions. As described 
before, the classic DEA assumes that the inputs or outputs 
have the same importance. However, in lexicographic 
goal programming we need to assign an ordinal weight to 
each objective, so the mentioned coefficients will change 
the real outputs and inputs to enter their importance to the 
efficiency calculation model. The DEA is insensitive to 
the coefficients of outputs and inputs, however, it is 
sensitive to adding some values to outputs and inputs. In 
other words, by adding a large number to an input/output 
in all DMUs, the input/output effect is decreased in 
efficiency calculation. So the coefficients should be tuned 
according to the objectives ordinal weights. 
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Step1 t tDM U x (start pointt) 

Step2 Sort objectives according to their priories (
(1) (2) (3), , ,...f f f ) 

Step3 Ask the decision makerto Determine ( )i , ( )i as 
importance factor of inputs and outputs respectively, where 

(1) (2) ( )... m     and (1) (2) ( )... m     . 

Step4 According to the goal type if decreasing the itd  is of 

interest go to step 5, Else go to step 6. ( itd   is the deviation from target 

for the i-th objective in considering of t-th initial point according to the 
equations 1 and 2)  
Step5   Calculate itF as following :

( )
min( | |)

it
it i i

i it

dF T
all t d






   

Step6 Calculate itO as following: 

( )
min( | |)

it
ij i i

i it

dO T
all t d






   

Step7 put itF as ith input of tDM U  and itO ith as output of 

tDM U . 

Step8 Run DEA 
Fig. 4. Proposed pseudo code for determining the ordinal weighted 

inputs and outputs of DEA 
Different examples have been solved by classic NLGP 
and the proposed algorithm in 50 runs. Then the average 
number of iterations during the search to find the 
preferred solution is calculated in each example. We 
applied our method to produce inputs and outputs and 
applied DEA to find the efficient initial point. Results of 
searching iterations for both algorithms are reported in 
Table 3. Finally, we did a paired comparison test with the 
null hypothesis of ݀̅≥0. The statistical test result confirms 
that the algorithms with efficient initial point need less 
computational time when we use DEA to find the initial 
solution as illustrated in Table 4. Moreover, results show 
that the t statistic value for the proposed NLGP is greater 
than the t statistic value of the classic NLGP; this means 
that null hypothesis is accepted with more probability for 
the proposed NLGP. 
Table 3 
Examples of applying DEA to find the best initial solution of classic and 
proposed NLGP 

 Proposed NLGP Classic NLGP 
 Average 

number of 
iterations 

Points 
found by 
DEA(A. 

number of 
iteration) 

Average 
number of 
iterations 

Points 
found by 
DEA(A. 

number of 
iteration) 

Example 1 4320.833 573 1951.233 36 
Example 2 2635.13 1 564.8667 1 
Example 3 5312.62 938 1600.36 122.5 
Example 4 3426.1 2416.88 1691.46 1559.66 
Example 5 3101.72 1 1130.46 1 
Example 6 1744.14 542 328.24 255.5 
Example 7 2105.92 1371.5 239 211 
Example 8 4288.18 3438.667 1422.32 1169 
 

Table 4 
Results of paired comparison test with the null hypothesis of 0̅≤܌ 

 d  .S D  
0t  valuep  

Proposed 
NLGP 

2207 1440 4.33 0.998 

Classic 
NLGP 

697 722 2.73 0.985 

6. Conclusion 

This paper proposes a new simulated annealing based 
heuristic to solve the nonlinear lexicography goal 
programming. The literature review on the heuristic 
solutions of the multiple objectives indicates that 
developing of a solution approach with variable step size 
during the search stages with considering of efficiency 
concept for initial solution is a research gap which 
stimulated this research. The use of this algorithm causes 
to find a better preferred solution compared to the classic 
NLGP. Furthermore, we showed that choosing an 
efficient initial point may affect the number of search 
iterations to find the final preferred solution and its effect 
on the proposed NLGP is more than the classic NLGP. In 
this study, 5 numerical examples were analyzed and 
finally the comparisons were tested by pairwise 
comparison statistical test. Selection of more initial points 
by other efficiency calculation methods and using 
evolutionary algorithms with multiple starting points in 
the searching stage can be considered as future directions 
of this study. 
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