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Abstract 

This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several 
tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical 
formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialist competitive 
algorithm, simulated annealing and genetic algorithm are developed to solve such a hard problem. The proposed algorithms employ 
advanced operators. The performance of the proposed algorithms is numerically evaluated. The results show the high performance of the 
imperialist competitive algorithm outperforms the other algorithms. 
Keywords: Project portfolio selection and scheduling, imperialist competitive algorithm, simulated annealing, genetic algorithm, mixed 
integer programming. 

1. Introduction 

A classical project scheduling problem deals with 
planning a set of tasks that need to be executed in order to 
complete the project. It is commonly assumed that these 
tasks have fixed duration and need to meet some certain 
precedence relations. The objective is to specify a set of 
feasible schedules (starting or finishing times) for the 
tasks that minimizes the project completion time. 

There is also a resource feature to the classical project 
scheduling problem. That is, the jobs commonly consume 
resources while being executed. The simple project 
scheduling problem, which considers unlimited available 
resources, can be easily solved to optimality by the 
critical path method (CPM) or the program evaluation and 
review technique (PERT). CPM is a deterministic model 
while PERT accepts the fact that activity durations are 
random. The simple project scheduling problem can be 
extended to the resource-constrained project scheduling 
problem (RCPSP) when imposed by limited renewable 
resources. That is, limited resources are available during 
every period in which the project needs to be executed. It 
is known that the RCPSP is NP-hard in the strong sense 
(Hartmann and Briskorn, 2010). 

Both exact and heuristic algorithms are extensively 
studied (Brucker et al., 1998; Brucker et al., 1999; 
Kolisch and Hartmann, 2006). Among exact methods, the 
depth-first search implicit enumeration algorithm by 
Demeulemeester and Herroelen (1992, 1997) provides a 
current standard for solving the classical RCPSP problem.  

 
 
 
 
Heuristic algorithms have also been studied by 

researchers. The pioneer study by Davis and Patterson 
(1975) proposes the minimum job slack (MINSLK) and 
resource scheduling method (RSM). Metaheuristics found 
to perform best are the methods of Montoya-Torres et al. 
(2010) and Zhang et al. (2006). 

Although project planning and control have attracted 
considerable attention from both researchers and 
practicing managers, most of this attention focuses on 
individual projects rather than coordinated decision across 
multiple projects. On the other hand, project portfolio 
selection or capital budgeting problem is an active 
research topic in the field of project management and 
engineering management (Aaker and Tyebjee, 1978; Peng 
et al., 2008; Talias, 2007; Stummer et al., 2009; 
Henriksen and Palocsay 2008).  

Project portfolio selection becomes a harder problem 
if the project interactions are studied (Yu et al., 2010). 
Considering its practical importance, several algorithms 
have been proposed to solve this problem (Mavrotas et al. 
2006; Peng et al. 2008; Stummer et al. 2009).  

In accordance with the above analyses, it can be found 
that the existing papers rarely consider both project 
portfolio selection and resource constrained project 
scheduling simultaneously. This paper studies the 
problem where multiple projects are available. The 
decision maker aims at selecting a subset of these projects 
and scheduling their tasks subject to limited resources. 
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The objective is to maximize total benefit. The problem is 
first mathematically formulated by a mixed integer linear 
programming model. To effectively solve large sized 
problems, the paper develops three metaheuristics based 
on imperialist competitive algorithm, genetic algorithm 
and simulated annealing. 

The rest of the paper is organized as follows. Section 2 
presents the mathematical model of the problem. Section 
3 describes the imperialist competitive algorithm. Section 
4 presents the experimental performance evaluation. 
Finally, the conclusions are presented in Section 5. 

2. Problem Formulation 

The problem of selecting and scheduling projects can 
be described as follows. There are a set of n projects 
where each project has its own benefit. To perform each 
project a set of m tasks has to be operated. To operate 
each task, some resource types are required. All available 
resource from one type is limited. There are some 
precedence relationships among the tasks of a project. The 
objective is to first select among the projects, a subset of 
projects with a maximum total benefit, and then schedule 
them so as to complete the projects in a given time 
horizon. The process should be done in such a way 
resource constraints are met. 

This section formulates the problem under 
consideration by a mixed integer linear programming 
(MILP) model. The parameters and indices of the 
proposed model are as follows. 
푛 The number of projects 
푚 The number of resources 
푇 The planning time horizon. 
 푖 Index for projects, 푖, ∈{1, 2, … , 푛} 
푛  The number of tasks of project 푖 
 푙 Index for tasks, 푙 ∈{1, 2, … , 푛 } 
 푘 Index for resources, 푘 ∈{1, 2, … , 푚} 
 푡, 푗 Index for time, 푡, 푗 ∈{1, 2, … , 푇} 
푑 ,  The duration of task 푙 of project 푖. 
푆 ,  The set of prerequisite tasks of task l of 

project 푖 
퐸 ,  The earliest possible starting of task 푙 of 

project 푖  
퐸 = max

( , ) ,
퐸 , + 푑 , , 0  

퐿 ,  The latest possible starting of task 푙 of 
project 푖  
퐿 , = max

( , ) ( , ) ,
퐿 , − 푑 , + 1,푇 − 푑 ,

+ 1  
푟 ,  The available resource 푘 at time period 푡. 
푏  The benefit of project 푖. 
푎 , ,  The resource 푘 necessary for task 푙 of project 

푖 at each time period. 
푈 ,  The set of all tasks must be performed after 

task 푙 of project 푖. 

 
Decision variables used in the model are 

푋 , , =
1, if	task	푙	of	project	푖	starts	at	time	푡	
0, 																							otherwise																								 where 

퐸 , ≤ 푡 ≤ 퐿 ,  

  푌 = 1, if	project	푖	is	selected	
0, otherwise																						 

 
The MILP model is as follows. 

푀푎푥		푍 = 푏 푌  

Subject to: 

 
Equation (1) is the objective function that maximizes 

the total benefit of selected projects. Constraint set (2) 
specifies which projects are selected. Constraint set (3) 
ensures that the limitations of resources are met. 
Constraint set (4) assures that precedence relations of 
tasks are satisfied if a task is for a selected project.  
Constraint sets (6) and (7) define the decision variables. 

3. The Proposed Algorithms 

This section develops three metaheuristics to solve the 
problem based on imperialist competitive algorithm, 
genetic algorithm and simulated annealing. 

3.1. The imperialist competitive algorithm 

The imperialist competitive algorithm (ICA) is a novel 
population based evolutionary algorithm to solve various 
optimization problems. Very recently, several papers 
report the great performance from ICA. Atashpaz and 
Lucas (2007) and (2008) use ICA to solve the continuous 
optimization problems. Bagher et al. (2011) uses ICA to 
solve assembly line balancing problems. Banisadr et al. 
(2012) employs ICA to solve single machine scheduling 

푋 , ,

,

,

= 푌  ∀  (2)

푋 , ,

, ,

, , ,

푎 , ,

≤ 푟 ,  

∀ ,  (3)

푋 , , ≤ 1 − 푌 + 푋 , ,

,

, , ,

 ∀ , ,( , )∈ , ,  (4)

푋 , , ∈ {0, 1} ∀ , , , ,  (6)

푌 ∈ {0, 1} ∀  (7)
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problems. Zhou et al. (2012) develop ICA to deal with 
assembly sequence planning problems. 

This algorithm contains a population of agents, known 
as countries where they are classified as imperialists and 
colonies. A collection of one imperialist and several 
colonies is called an empire. The basis of ICA is to 
simulate three sociopolitical processes among the 
empires: imperialistic behavior, imperialistic competition 
and independence. The idea behind the imperialistic 

behavior is that the imperialist attempts to penetrate the 
colony by attracting the culture and the social structure of 
each colony toward itself. During the imperialist 
competition, weak empires collapse and powerful ones 
take possession of their colonies. There is always a 
probability for some colonies to jointly separate from 
their empires and constitute a new empire. The outline of 
the proposed ICA is shown in Figure 1. 

 
 

 
 

Fig. 1. The outline of the proposed ICA
 

3.1.1. The Initialization Mechanism 

ICA starts with a number of countries each of which 
represents a possible solution for the problem. It selects 
those with relative high fitness to be the imperialist, and 
the remaining becomes the colonies of these imperialists. 
The number of the colonies in each empire depends on the 
power of its imperialist. Hence, powerful imperialists 
have greater number of colonies while weaker ones have 
less. 

To encode a solution and form initial countries, we use 
the permutation representation that determines the 
selected projects as well as their schedule. For example, 
consider a problem with 7 projects. One possible encoded 
solution is {4,7,1,3,2,6,5}. In this scheme, project 4 is 
scheduled according to a modified critical path method. In 
this rule, tasks of projects, one by one from left to right, 
are scheduled so as to start as early as possible while the 
precedence relations and resource constraints are met. 
Note that projects that cannot be completed in the given 
time horizon are not selected. 

The number of countries is the population size 
indicated by pop. The initial countries are randomly 
generated from the feasible solutions. To define the initial 
imperialists, the first I best countries of the population are 
selected as the imperialist and the rest as colonies. 
Therefore, there are 퐼 empires. To rank the countries, we 
need to calculate the fitness. The fitness of a country (an 
encoded solution) is set to its objective function. 

To assign colonies to imperialist, a stochastic 
procedure in which more chance is given to more 
powerful imperialists. To chance of empire k to hold each 
colony is as follows. 

푝 =
푓푖푡(푘)

∑ 푓푖푡(ℎ)
 

3.1.2. The Imperialist Behavior Mechanism 

After forming initial empires, the imperialist behavior 
mechanism commences and the colonies of an empire 
move towards their imperialist. While a colony 
approaches its imperialist, it might become more powerful 
(better fitness) than its imperialist. In this case, the colony 
overcomes the imperialist and takes the control of the 
whole empire. In fact, the colony and the imperialist swap 
their positions. Then, the procedure continues by the new 
imperialist and colonies change their path and start 
moving toward this new imperialist. After the exchanging 
step, the total power of each empire is recalculated which 
depends on both the power of the imperialist and its 
colonies. 

To take a colony towards its imperialist, we define a 
new country that inherits from both the colony and 
imperialist. In fact, we combine the colony and imperialist 
to form a new country. This is done through a cyclic 
operator with the following steps. 
Step 1: Find the first project number in the imperialist that 

is not equal with the colony. 
Step 2: Go to the same position in the colony and find its 

project number. 

Initialization 

Is the stopping 
criterion met? 

Imperialist behavior mechanism 

Imperialist competition 
mechanism 

END 

Start 

Yes 
 

No 
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Step 3: Find the same project number in the imperialist, 
go to its position. 

Step 4: If this project number is not reached before, go 
step 2; otherwise, go to step 5. 

Step 5: The reached project numbers in the imperialist are 
copied into new country. 

Step 6: The remaining project numbers are inserted into 
empty positions according to the colony. 

Figure 2 shows the cyclic operator applied to a problem 
with 10 projects.  
 
Imperialist 5 9 7 1 6 2 10 3 8 4 

 
Colony 2 8 6 4 3 10 7 5 1 9 
 
New country 5 8 7 4 6 2 10 3 1 9 

 
Fig. 2. The cyclic operator applied to a problem with 10 projects 

 
After colonies are taken towards the current 

imperialist, the imperialist of the empire is updated. In 
other words, it is checked whether any of the new 
countries can beat the imperialist or not. If this is the case, 
the imperialist is replaced with that new country. We 
check if net improvement of this new country versus its 
imperialist is positive or not. If it is positive, we conclude 
that it is more powerful. The net improvement is 
calculated by the following formula. 

∆=
푓푖푡(푖) − 푓푖푡(푐)

푓푖푡(푖)  

Where 푓푖푡(푖) and 푓푖푡(푐) are the makespan of imperialist 
and new country, respectively. If ∆> 0, then the new 
country becomes the new imperialist. Then, the total 
power of empire is reevaluated. It is recommended to use 
both power of imperialist and colonies to calculate the 
total power. We use the following formula to obtain the 
total power (tp) of empire 푘. 

푡푝 = 푓푖푡 1 +
∑ 푓푖푡
∑ 푓푖푡

 

where 푠  is the number of countries in empire 푘.  

3.1.3. The imperialist competition mechanism 

In the imperialistic competition process, empires endeavor 
to conquer colonies of other empires and control them. 
When an imperialist broadens its empire by conquering 
more colonies, it becomes more enhanced. On the other 
hand, the imperialist losing its colonies becomes weaker. 
Once an empire loses all of its colonies, it is collapsed. 
After a while, all the empires, one by one with exception 
of the most powerful one, will vanish.  

When all the colonies of the single remaining empire 
have the same position with their imperialist, 
consequently the same fitness, the algorithm converges to 
the best solution. To implement this concept, at each 
iteration, the weakest empire is selected and its weakest 
colony is given to the most powerful empire. 

3.2. The simulated annealing 

The simulated annealing (SA) is a local search based 
metaheuristic simulating the annealing process 
(Kirlpatrick et al., 1983; Kolon, 1999). SA includes a 
mechanism, called acceptance criterion, which enables it 
to partially avoid getting trapped in local optima. The 
acceptance criterion decides if the new generated solution 
is accepted or not. In this mechanism, even inferior 
solutions might be accepted. 

3.2.1. The structure and acceptance criterion 

Simulated annealing starts from an initial solution, 
and a series of moves are made until a stopping criterion 
is met. The basic idea of SAs is to generate a new 
permutation s by an operator from the neighborhood of 
the current permutation x. This new sequence is accepted 
or rejected by another random rule. A parameter t, called 
the temperature, controls the acceptance rule. The 
variation between objective values of two candidate 
solutions is computed Δ = fit(s) – fit(x). If Δ≤0, 
permutation s is accepted. Otherwise, permutation 푠 is 
accepted with probability equal to exp(Δ/ti). The 
algorithm proceeds by trying a fixed number of 
neighborhood moves at each temperature ti, while 
temperature is gradually decreased. We use exponential 
cooling schedule, ti =α .ti-1 (where α ∈ (0, 1) is 
temperature decrease rate). The initial temperature is set 
to be 50 and α = 0.97. 

3.2.2. The move operator 

In this research, to generate new solution from the 
current solution an operator based on insertion 
neighborhood search is utilized. In this operator, one 
randomly selected project in the permutation is randomly 
relocated into a new position. Consider a problem with 10 
projects. Figure 3 shows the numerical example. In this 
example. The randomly selected project is 4 and it is 
relocated into position 8. 

 
Current 
solution 5 8 7 4 6 2 10 3 1 9 

 
New  

solution 5 8 7 6 2 10 3 4 1 9 

 
Fig. 3. The example of move operator 

3.3. The genetic algorithm 

Genetic algorithms (GA) arose towards 70s by the 
work of Holland (1975). They were intended to tackle 
some problems of industry which were difficult to solve 
with methods available that time. Nowadays, GA is 
considered as one of the typical metaheuristic approaches 
tackling both discrete and continuous optimization 
problems. The idea behind GA comes from Darwin’s 
‘‘survival of the fittest’’ concept, meaning that good 
parents produce better offsprings. 
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3.3.1. The general structure 

GA searches a problem space with a population of 
chromosomes each of which represents an encoded 
solution. A fitness value is assigned to each chromosome 
according to its performance. The more desirable the 
chromosome is, the higher this value becomes. The 
population evolves by a set of operators until some 
stopping criterion is visited. A typical iteration of a GA, 
generation, proceeds as such: The best chromosomes of 
current population are directly copied to next generation 
(reproduction). A selection mechanism chooses 
chromosomes of the current population in such a way that 
a chromosome with the higher fitness value has more 
probability to be selected. The selected chromosomes 
mate and generate new offspring (crossover). After 
mating process, each offspring might mutate by another 
mechanism called mutation. Afterwards, the new 
population is evaluated again and the whole process is 
repeated. 

3.3.2. The crossover and mutation 

New solutions or offsprings are produced by crossing 
two other parents through an operator called crossover. 
The crossover operators must avoid generating infeasible 
solutions. The purpose is to generate “better” offsprings, 
i.e. to create better sequences after combining the parents. 
We use two-point crossover which can be described as 
follows. 
Step 1: Select two cut points randomly. 
Step 2: Copy directly the permutation before cut point 1 

and after cut point 2 from parent 1 into offspring. 
Step 3: Copy the remaining projects into offspring 

according parent 2  
 
Figure 4 shows the two-point crossover applied to a 
problem with 10 projects.  
 
Parent 1 5 9 7 1 6 2 10 3 8 4 

 
Parent 2 2 8 6 4 3 10 7 5 1 9 

 
Offespring 5 9 7 2 6 10 1 3 8 4 

 
Fig. 4. The two-point crossover applied to a problem with 10 projects. 

 
A mutation operator is utilized to slightly change the 

sequence, i.e. generating a new but similar sequence. The 
main purpose of applying mutation is to avoid 
convergence to a local optimum and diversify the 

population. Mutation operator can also be seen as a 
simple form of local search. In this research, we use the 
following mutation operator. The positions of two 
randomly selected projects are swapped. Figure 5 shows 
the procedure of the mutation applied to a problem with 
10 projects. 

 
Current 
solution 5 8 7  4 6 2 10 3 1 9 

 
New solution 5 8 2 4 6 7 10 3 1 9 

 
Fig. 5. The example of move operator 

4. Numerical Experiment 

This section evaluates the performance of the 
proposed algorithms. We first tune the parameters of the 
tested algorithms, then, a set of instances are generated 
and performance of the algorithms are compared. The 
algorithms are implemented in C++ and ran on a PC with 
2.0 GHz Intel Dual Core CPU and 2 GB of RAM 
memory. We set the stopping criterion used when testing 
the algorithms is set to a fixed time limit of n/2 seconds. 
To generate a set of instances we consider n = {10, 30, 50, 
100} and m={2,4}. The duration of tasks is generated 
from a uniform distribution between [5 30]. The benefit of 
each project is randomly generated from a uniform 
distribution between [10 30]. For each combination of n 
and m, we generate 10 different instances. It sums up to 
80 instances.  

To compare the methods, we use relative percentage 
deviation (RPD). This is a common performance measure 
which is calculated as follows: 

(8) 푅푃퐷 =
푀푎푥 − 퐴푙푔

푀푎푥 × 100 

where 푀푎푥  and 퐴푙푔  are the best objective value 
obtained for each instance and solution of an algorithm in 
that given instance. 

5.1. Parameter setting 

The parameter of ICA and GA is the population size. 
The parameter of SA is cooling rate. The considered 
population sizes are {20, 40, 70, 100}. The considered 
levels for cooling rate are {0.95, 0.90, 0.85, 0.8}. We 
generate 20 different instances. Then we solve them by 
the obtained algorithms. Figure 6 shows the results. As it 
can be seen, for ICA the best population size is 70 while 
this value for GA is 40. The best cooling rate is also 0.9. 
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a) ICA 

 
b) GA 

 
c) SA 

Fig. 6. The average RPD and LSD intervals for the tested algorithms 

5.2. Comparative experiment 

This section the proposed algorithms are evaluated 
and compared on the set of instances mentioned earlier. 
Table 1 shows the results obtained by the algorithm, 
averaged by each combination n and m. Figure 7 shows 
the average RPD and least significant difference (LSD) 
intervals for the three tested algorithms. The best 
performing algorithm is ICA with the average RPD of 
0.68%. GA obtains the second rank with the average RPD 
of 1.56% while the worst performing algorithm is SA 
with average RPD of 2.60%. 

 
Table 5 
The average RPDs obtained by the algorithms 

n m 
Algorithms 

GA ICA SA 

10 2 1.11 0.72 1.92 
 4 1.23 1.06 1.84 
30 2 2.26 1.04 3.06 
 4 1.02 0.94 2.29 
50 2 1.49 0.17 2.92 
 4 1.86 0.45 3.27 
100 2 1.56 0.57 2.95 
 4 1.93 0.49 3.25 

average 1.56 0.68 2.69 

 
 

 
Fig. 7. Means plot and LSD intervals (at the 95% confidence level) for 

the different algorithms 
 
To further analyze the results, we study the effect of 

problem characteristics such As the number of projects 
and the number of resources on the performance of the 
tested algorithms. Figures 8 and 9 show the performance 
of algorithms versus the number of projects and the 
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number of resources, respectively. The performance of 
ICA becomes better while increasing the number of 

projects. Regarding the number of resources, ICA keeps 
its robust performance in different sizes.

 
 

 

 
Fig. 8. The average RPD of the algorithms versus the number of projects 

 

 
Fig. 9. The average RPD of the algorithms versus the number of resources 

6. Conclusion and Future Research 

This paper studied the problem of resource 
constrained project selection and scheduling. Each project 
requires consists of a set of tasks each of which consumes 
some resource to complete. There is a given time limit 
and the decision maker should select and schedule a 
subset of available projects that maximize the total profit. 
We first formulate the problem by a mixed integer linear 
programming model. Then to solve the problem, we 
developed three algorithms based on imperialist 
competitive algorithm, simulated annealing and genetic 
algorithm. An experiment was conducted and the 
performances of the algorithms are compared. The results 
showed that the imperialist competitive algorithm 
outperforms the other ones. 

 
 
As a future research lead, it is interesting to develop 

the problem with some additional assumptions such as the 
interaction among the projects since commonly projects 
can share the resources. The multi-mode case is also 
interesting to work on. That is, a project can be performed 
in different model where each model needs different 
levels of resource and provide different profits. 
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