
The Project Portfolio Selection and Scheduling Problem:
Mathematical Model and Algorithms

Bahman Naderi*
Assistant Professor, Young Researchers and Elite Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Received 19 May , 2012; Revised 26 July, 2012; Accepted 15 October, 2012

Abstract

This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several
tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical
formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialist competitive
algorithm, simulated annealing and genetic algorithm are developed to solve such a hard problem. The proposed algorithms employ
advanced operators. The performance of the proposed algorithms is numerically evaluated. The results show the high performance of the
imperialist competitive algorithm outperforms the other algorithms.
Keywords: Project portfolio selection and scheduling, imperialist competitive algorithm, simulated annealing, genetic algorithm, mixed
integer programming.

1. Introduction

A classical project scheduling problem deals with
planning a set of tasks that need to be executed in order to
complete the project. It is commonly assumed that these
tasks have fixed duration and need to meet some certain
precedence relations. The objective is to specify a set of
feasible schedules (starting or finishing times) for the
tasks that minimizes the project completion time.

There is also a resource feature to the classical project
scheduling problem. That is, the jobs commonly consume
resources while being executed. The simple project
scheduling problem, which considers unlimited available
resources, can be easily solved to optimality by the
critical path method (CPM) or the program evaluation and
review technique (PERT). CPM is a deterministic model
while PERT accepts the fact that activity durations are
random. The simple project scheduling problem can be
extended to the resource-constrained project scheduling
problem (RCPSP) when imposed by limited renewable
resources. That is, limited resources are available during
every period in which the project needs to be executed. It
is known that the RCPSP is NP-hard in the strong sense
(Hartmann and Briskorn, 2010).

Both exact and heuristic algorithms are extensively
studied (Brucker et al., 1998; Brucker et al., 1999;
Kolisch and Hartmann, 2006). Among exact methods, the
depth-first search implicit enumeration algorithm by
Demeulemeester and Herroelen (1992, 1997) provides a
current standard for solving the classical RCPSP problem.

Heuristic algorithms have also been studied by

researchers. The pioneer study by Davis and Patterson
(1975) proposes the minimum job slack (MINSLK) and
resource scheduling method (RSM). Metaheuristics found
to perform best are the methods of Montoya-Torres et al.
(2010) and Zhang et al. (2006).

Although project planning and control have attracted
considerable attention from both researchers and
practicing managers, most of this attention focuses on
individual projects rather than coordinated decision across
multiple projects. On the other hand, project portfolio
selection or capital budgeting problem is an active
research topic in the field of project management and
engineering management (Aaker and Tyebjee, 1978; Peng
et al., 2008; Talias, 2007; Stummer et al., 2009;
Henriksen and Palocsay 2008).

Project portfolio selection becomes a harder problem
if the project interactions are studied (Yu et al., 2010).
Considering its practical importance, several algorithms
have been proposed to solve this problem (Mavrotas et al.
2006; Peng et al. 2008; Stummer et al. 2009).

In accordance with the above analyses, it can be found
that the existing papers rarely consider both project
portfolio selection and resource constrained project
scheduling simultaneously. This paper studies the
problem where multiple projects are available. The
decision maker aims at selecting a subset of these projects
and scheduling their tasks subject to limited resources.

* Corresponding author Email: bahman.naderi@aut.ac.ir

Journal of Optimization in Industrial Engineering 13 (2013) 65-72

65

The objective is to maximize total benefit. The problem is
first mathematically formulated by a mixed integer linear
programming model. To effectively solve large sized
problems, the paper develops three metaheuristics based
on imperialist competitive algorithm, genetic algorithm
and simulated annealing.

The rest of the paper is organized as follows. Section 2
presents the mathematical model of the problem. Section
3 describes the imperialist competitive algorithm. Section
4 presents the experimental performance evaluation.
Finally, the conclusions are presented in Section 5.

2. Problem Formulation

The problem of selecting and scheduling projects can
be described as follows. There are a set of n projects
where each project has its own benefit. To perform each
project a set of m tasks has to be operated. To operate
each task, some resource types are required. All available
resource from one type is limited. There are some
precedence relationships among the tasks of a project. The
objective is to first select among the projects, a subset of
projects with a maximum total benefit, and then schedule
them so as to complete the projects in a given time
horizon. The process should be done in such a way
resource constraints are met.

This section formulates the problem under
consideration by a mixed integer linear programming
(MILP) model. The parameters and indices of the
proposed model are as follows.
푛 The number of projects
푚 The number of resources
푇 The planning time horizon.
 푖 Index for projects, 푖, ∈{1, 2, … , 푛}
푛 The number of tasks of project 푖
 푙 Index for tasks, 푙 ∈{1, 2, … , 푛 }
 푘 Index for resources, 푘 ∈{1, 2, … , 푚}
 푡, 푗 Index for time, 푡, 푗 ∈{1, 2, … , 푇}
푑 , The duration of task 푙 of project 푖.
푆 , The set of prerequisite tasks of task l of

project 푖
퐸 , The earliest possible starting of task 푙 of

project 푖
퐸 = max

(,) ,
퐸 , + 푑 , , 0

퐿 , The latest possible starting of task 푙 of
project 푖
퐿 , = max

(,) (,) ,
퐿 , − 푑 , + 1,푇 − 푑 ,

+ 1
푟 , The available resource 푘 at time period 푡.
푏 The benefit of project 푖.
푎 , , The resource 푘 necessary for task 푙 of project

푖 at each time period.
푈 , The set of all tasks must be performed after

task 푙 of project 푖.

Decision variables used in the model are

푋 , , =
1, if	task	푙	of	project	푖	starts	at	time	푡	
0, 																							otherwise																								 where

퐸 , ≤ 푡 ≤ 퐿 ,

 푌 = 1, if	project	푖	is	selected	
0, otherwise																						

The MILP model is as follows.

푀푎푥		푍 = 푏 푌

Subject to:

Equation (1) is the objective function that maximizes

the total benefit of selected projects. Constraint set (2)
specifies which projects are selected. Constraint set (3)
ensures that the limitations of resources are met.
Constraint set (4) assures that precedence relations of
tasks are satisfied if a task is for a selected project.
Constraint sets (6) and (7) define the decision variables.

3. The Proposed Algorithms

This section develops three metaheuristics to solve the
problem based on imperialist competitive algorithm,
genetic algorithm and simulated annealing.

3.1. The imperialist competitive algorithm

The imperialist competitive algorithm (ICA) is a novel
population based evolutionary algorithm to solve various
optimization problems. Very recently, several papers
report the great performance from ICA. Atashpaz and
Lucas (2007) and (2008) use ICA to solve the continuous
optimization problems. Bagher et al. (2011) uses ICA to
solve assembly line balancing problems. Banisadr et al.
(2012) employs ICA to solve single machine scheduling

푋 , ,

,

,

= 푌 ∀ (2)

푋 , ,

, ,

, , ,

푎 , ,

≤ 푟 ,

∀ , (3)

푋 , , ≤ 1 − 푌 + 푋 , ,

,

, , ,

 ∀ , ,(,)∈ , , (4)

푋 , , ∈ {0, 1} ∀ , , , , (6)

푌 ∈ {0, 1} ∀ (7)

Bahman Naderi/ The Project Portfolio Selection and...

66

problems. Zhou et al. (2012) develop ICA to deal with
assembly sequence planning problems.

This algorithm contains a population of agents, known
as countries where they are classified as imperialists and
colonies. A collection of one imperialist and several
colonies is called an empire. The basis of ICA is to
simulate three sociopolitical processes among the
empires: imperialistic behavior, imperialistic competition
and independence. The idea behind the imperialistic

behavior is that the imperialist attempts to penetrate the
colony by attracting the culture and the social structure of
each colony toward itself. During the imperialist
competition, weak empires collapse and powerful ones
take possession of their colonies. There is always a
probability for some colonies to jointly separate from
their empires and constitute a new empire. The outline of
the proposed ICA is shown in Figure 1.

Fig. 1. The outline of the proposed ICA

3.1.1. The Initialization Mechanism

ICA starts with a number of countries each of which
represents a possible solution for the problem. It selects
those with relative high fitness to be the imperialist, and
the remaining becomes the colonies of these imperialists.
The number of the colonies in each empire depends on the
power of its imperialist. Hence, powerful imperialists
have greater number of colonies while weaker ones have
less.

To encode a solution and form initial countries, we use
the permutation representation that determines the
selected projects as well as their schedule. For example,
consider a problem with 7 projects. One possible encoded
solution is {4,7,1,3,2,6,5}. In this scheme, project 4 is
scheduled according to a modified critical path method. In
this rule, tasks of projects, one by one from left to right,
are scheduled so as to start as early as possible while the
precedence relations and resource constraints are met.
Note that projects that cannot be completed in the given
time horizon are not selected.

The number of countries is the population size
indicated by pop. The initial countries are randomly
generated from the feasible solutions. To define the initial
imperialists, the first I best countries of the population are
selected as the imperialist and the rest as colonies.
Therefore, there are 퐼 empires. To rank the countries, we
need to calculate the fitness. The fitness of a country (an
encoded solution) is set to its objective function.

To assign colonies to imperialist, a stochastic
procedure in which more chance is given to more
powerful imperialists. To chance of empire k to hold each
colony is as follows.

푝 =
푓푖푡(푘)

∑ 푓푖푡(ℎ)

3.1.2. The Imperialist Behavior Mechanism

After forming initial empires, the imperialist behavior
mechanism commences and the colonies of an empire
move towards their imperialist. While a colony
approaches its imperialist, it might become more powerful
(better fitness) than its imperialist. In this case, the colony
overcomes the imperialist and takes the control of the
whole empire. In fact, the colony and the imperialist swap
their positions. Then, the procedure continues by the new
imperialist and colonies change their path and start
moving toward this new imperialist. After the exchanging
step, the total power of each empire is recalculated which
depends on both the power of the imperialist and its
colonies.

To take a colony towards its imperialist, we define a
new country that inherits from both the colony and
imperialist. In fact, we combine the colony and imperialist
to form a new country. This is done through a cyclic
operator with the following steps.
Step 1: Find the first project number in the imperialist that

is not equal with the colony.
Step 2: Go to the same position in the colony and find its

project number.

Initialization

Is the stopping
criterion met?

Imperialist behavior mechanism

Imperialist competition
mechanism

END

Start

Yes

No

Journal of Optimization in Industrial Engineering 13 (2013) 65-72

67

Step 3: Find the same project number in the imperialist,
go to its position.

Step 4: If this project number is not reached before, go
step 2; otherwise, go to step 5.

Step 5: The reached project numbers in the imperialist are
copied into new country.

Step 6: The remaining project numbers are inserted into
empty positions according to the colony.

Figure 2 shows the cyclic operator applied to a problem
with 10 projects.

Imperialist 5 9 7 1 6 2 10 3 8 4

Colony 2 8 6 4 3 10 7 5 1 9

New country 5 8 7 4 6 2 10 3 1 9

Fig. 2. The cyclic operator applied to a problem with 10 projects

After colonies are taken towards the current

imperialist, the imperialist of the empire is updated. In
other words, it is checked whether any of the new
countries can beat the imperialist or not. If this is the case,
the imperialist is replaced with that new country. We
check if net improvement of this new country versus its
imperialist is positive or not. If it is positive, we conclude
that it is more powerful. The net improvement is
calculated by the following formula.

∆=
푓푖푡(푖) − 푓푖푡(푐)

푓푖푡(푖)

Where 푓푖푡(푖) and 푓푖푡(푐) are the makespan of imperialist
and new country, respectively. If ∆> 0, then the new
country becomes the new imperialist. Then, the total
power of empire is reevaluated. It is recommended to use
both power of imperialist and colonies to calculate the
total power. We use the following formula to obtain the
total power (tp) of empire 푘.

푡푝 = 푓푖푡 1 +
∑ 푓푖푡
∑ 푓푖푡

where 푠 is the number of countries in empire 푘.

3.1.3. The imperialist competition mechanism

In the imperialistic competition process, empires endeavor
to conquer colonies of other empires and control them.
When an imperialist broadens its empire by conquering
more colonies, it becomes more enhanced. On the other
hand, the imperialist losing its colonies becomes weaker.
Once an empire loses all of its colonies, it is collapsed.
After a while, all the empires, one by one with exception
of the most powerful one, will vanish.

When all the colonies of the single remaining empire
have the same position with their imperialist,
consequently the same fitness, the algorithm converges to
the best solution. To implement this concept, at each
iteration, the weakest empire is selected and its weakest
colony is given to the most powerful empire.

3.2. The simulated annealing

The simulated annealing (SA) is a local search based
metaheuristic simulating the annealing process
(Kirlpatrick et al., 1983; Kolon, 1999). SA includes a
mechanism, called acceptance criterion, which enables it
to partially avoid getting trapped in local optima. The
acceptance criterion decides if the new generated solution
is accepted or not. In this mechanism, even inferior
solutions might be accepted.

3.2.1. The structure and acceptance criterion

Simulated annealing starts from an initial solution,
and a series of moves are made until a stopping criterion
is met. The basic idea of SAs is to generate a new
permutation s by an operator from the neighborhood of
the current permutation x. This new sequence is accepted
or rejected by another random rule. A parameter t, called
the temperature, controls the acceptance rule. The
variation between objective values of two candidate
solutions is computed Δ = fit(s) – fit(x). If Δ≤0,
permutation s is accepted. Otherwise, permutation 푠 is
accepted with probability equal to exp(Δ/ti). The
algorithm proceeds by trying a fixed number of
neighborhood moves at each temperature ti, while
temperature is gradually decreased. We use exponential
cooling schedule, ti =α .ti-1 (where α ∈ (0, 1) is
temperature decrease rate). The initial temperature is set
to be 50 and α = 0.97.

3.2.2. The move operator

In this research, to generate new solution from the
current solution an operator based on insertion
neighborhood search is utilized. In this operator, one
randomly selected project in the permutation is randomly
relocated into a new position. Consider a problem with 10
projects. Figure 3 shows the numerical example. In this
example. The randomly selected project is 4 and it is
relocated into position 8.

Current
solution 5 8 7 4 6 2 10 3 1 9

New

solution 5 8 7 6 2 10 3 4 1 9

Fig. 3. The example of move operator

3.3. The genetic algorithm

Genetic algorithms (GA) arose towards 70s by the
work of Holland (1975). They were intended to tackle
some problems of industry which were difficult to solve
with methods available that time. Nowadays, GA is
considered as one of the typical metaheuristic approaches
tackling both discrete and continuous optimization
problems. The idea behind GA comes from Darwin’s
‘‘survival of the fittest’’ concept, meaning that good
parents produce better offsprings.

Bahman Naderi/ The Project Portfolio Selection and...

68

3.3.1. The general structure

GA searches a problem space with a population of
chromosomes each of which represents an encoded
solution. A fitness value is assigned to each chromosome
according to its performance. The more desirable the
chromosome is, the higher this value becomes. The
population evolves by a set of operators until some
stopping criterion is visited. A typical iteration of a GA,
generation, proceeds as such: The best chromosomes of
current population are directly copied to next generation
(reproduction). A selection mechanism chooses
chromosomes of the current population in such a way that
a chromosome with the higher fitness value has more
probability to be selected. The selected chromosomes
mate and generate new offspring (crossover). After
mating process, each offspring might mutate by another
mechanism called mutation. Afterwards, the new
population is evaluated again and the whole process is
repeated.

3.3.2. The crossover and mutation

New solutions or offsprings are produced by crossing
two other parents through an operator called crossover.
The crossover operators must avoid generating infeasible
solutions. The purpose is to generate “better” offsprings,
i.e. to create better sequences after combining the parents.
We use two-point crossover which can be described as
follows.
Step 1: Select two cut points randomly.
Step 2: Copy directly the permutation before cut point 1

and after cut point 2 from parent 1 into offspring.
Step 3: Copy the remaining projects into offspring

according parent 2

Figure 4 shows the two-point crossover applied to a
problem with 10 projects.

Parent 1 5 9 7 1 6 2 10 3 8 4

Parent 2 2 8 6 4 3 10 7 5 1 9

Offespring 5 9 7 2 6 10 1 3 8 4

Fig. 4. The two-point crossover applied to a problem with 10 projects.

A mutation operator is utilized to slightly change the

sequence, i.e. generating a new but similar sequence. The
main purpose of applying mutation is to avoid
convergence to a local optimum and diversify the

population. Mutation operator can also be seen as a
simple form of local search. In this research, we use the
following mutation operator. The positions of two
randomly selected projects are swapped. Figure 5 shows
the procedure of the mutation applied to a problem with
10 projects.

Current
solution 5 8 7 4 6 2 10 3 1 9

New solution 5 8 2 4 6 7 10 3 1 9

Fig. 5. The example of move operator

4. Numerical Experiment

This section evaluates the performance of the
proposed algorithms. We first tune the parameters of the
tested algorithms, then, a set of instances are generated
and performance of the algorithms are compared. The
algorithms are implemented in C++ and ran on a PC with
2.0 GHz Intel Dual Core CPU and 2 GB of RAM
memory. We set the stopping criterion used when testing
the algorithms is set to a fixed time limit of n/2 seconds.
To generate a set of instances we consider n = {10, 30, 50,
100} and m={2,4}. The duration of tasks is generated
from a uniform distribution between [5 30]. The benefit of
each project is randomly generated from a uniform
distribution between [10 30]. For each combination of n
and m, we generate 10 different instances. It sums up to
80 instances.

To compare the methods, we use relative percentage
deviation (RPD). This is a common performance measure
which is calculated as follows:

(8) 푅푃퐷 =
푀푎푥 − 퐴푙푔

푀푎푥 × 100

where 푀푎푥 and 퐴푙푔 are the best objective value
obtained for each instance and solution of an algorithm in
that given instance.

5.1. Parameter setting

The parameter of ICA and GA is the population size.
The parameter of SA is cooling rate. The considered
population sizes are {20, 40, 70, 100}. The considered
levels for cooling rate are {0.95, 0.90, 0.85, 0.8}. We
generate 20 different instances. Then we solve them by
the obtained algorithms. Figure 6 shows the results. As it
can be seen, for ICA the best population size is 70 while
this value for GA is 40. The best cooling rate is also 0.9.

Journal of Optimization in Industrial Engineering 13 (2013) 65-72

69

a) ICA

b) GA

c) SA

Fig. 6. The average RPD and LSD intervals for the tested algorithms

5.2. Comparative experiment

This section the proposed algorithms are evaluated
and compared on the set of instances mentioned earlier.
Table 1 shows the results obtained by the algorithm,
averaged by each combination n and m. Figure 7 shows
the average RPD and least significant difference (LSD)
intervals for the three tested algorithms. The best
performing algorithm is ICA with the average RPD of
0.68%. GA obtains the second rank with the average RPD
of 1.56% while the worst performing algorithm is SA
with average RPD of 2.60%.

Table 5
The average RPDs obtained by the algorithms

n m
Algorithms

GA ICA SA

10 2 1.11 0.72 1.92
 4 1.23 1.06 1.84
30 2 2.26 1.04 3.06
 4 1.02 0.94 2.29
50 2 1.49 0.17 2.92
 4 1.86 0.45 3.27
100 2 1.56 0.57 2.95
 4 1.93 0.49 3.25

average 1.56 0.68 2.69

Fig. 7. Means plot and LSD intervals (at the 95% confidence level) for

the different algorithms

To further analyze the results, we study the effect of

problem characteristics such As the number of projects
and the number of resources on the performance of the
tested algorithms. Figures 8 and 9 show the performance
of algorithms versus the number of projects and the

0.6

0.8

1

1.2

1.4

1.6

1.8

R
P

D

20 40 70 100
1

1.2

1.4

1.6

1.8

2

R
P

D

20 40 70 100
The population size

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0.8 0.85 0.9 0.95
The cooling rate

R
P

D

0

0.5

1

1.5

2

2.5

3

R
P

D

GA ICA SA

Bahman Naderi/ The Project Portfolio Selection and...

70

number of resources, respectively. The performance of
ICA becomes better while increasing the number of

projects. Regarding the number of resources, ICA keeps
its robust performance in different sizes.

Fig. 8. The average RPD of the algorithms versus the number of projects

Fig. 9. The average RPD of the algorithms versus the number of resources

6. Conclusion and Future Research

This paper studied the problem of resource
constrained project selection and scheduling. Each project
requires consists of a set of tasks each of which consumes
some resource to complete. There is a given time limit
and the decision maker should select and schedule a
subset of available projects that maximize the total profit.
We first formulate the problem by a mixed integer linear
programming model. Then to solve the problem, we
developed three algorithms based on imperialist
competitive algorithm, simulated annealing and genetic
algorithm. An experiment was conducted and the
performances of the algorithms are compared. The results
showed that the imperialist competitive algorithm
outperforms the other ones.

As a future research lead, it is interesting to develop

the problem with some additional assumptions such as the
interaction among the projects since commonly projects
can share the resources. The multi-mode case is also
interesting to work on. That is, a project can be performed
in different model where each model needs different
levels of resource and provide different profits.

7. References
[1] Aaker D.A., Tyebjee T.T., (1978). A model for the

selection of interdependent R&D projects. IEEE
Transactions on Engineering Management, 25, 30–36.

[2] Atashpaz-Gargari E., Lucas C., (2007). Imperialist
competitive algorithm: an algorithm for optimization

0

0.5

1

1.5

2

2.5

3

3.5

٣٠ ١٠ ۵١٠٠ ٠

GA

ICA

SA

R
P

D

The number of projects

0

0.5

1

1.5

2

2.5

3

3.5

٢ ۴

GA

ICA

SA

R
P

D

The number of resources

Journal of Optimization in Industrial Engineering 13 (2013) 65-72

71

inspired by imperialistic competition. IEEE Congress
Evolutionary Computers, Singapore, 4661–4667.

[3] Atashpaz-Gargari E., Hashemzadeh F., Rajabioun R.,
Lucas C., (2008), Colonial competitive algorithm, a novel
approach for PID controller design in MIMO distillation
column process. International Journal of Intelligent
Computation and Cyberntic, 1(3), 337–355.

[4] Bagher M., Zandieh M., Farsijani H., (2010). Balancing of
stochastic U-type assembly lines: an imperialist
competitive algorithm. International Journal of Advanced
Manufacturing Technology, 54, 271–285.

[5] Banisadr A.H., Zandieh M., Mahdavi I., (2013), A hybrid
imperialist competitive algorithm for single-machine
scheduling problem with linear earliness and quadratic
tardiness penalties. DOI 10.1007/s00170-012-4233-x.

[6] Brucker P., Knust S., Schoo A., Thiele O., (1998). A
branch and bound algorithm for the resource-constrained
project scheduling problem. European Journal of
Operational Research 107(2), 272–288.

[7] Brucker P., Drexl A., Mohring R., Neumann K., Pesch E.,
(1999). Resource-constrained project scheduling:
Notation, classification, models, and methods. European
Journal of Operational Research 112(1), 3–41.

[8] Demeulemeester E., Herroelen W., (1992). A branch-and-
bound procedure for the multiple resource-constrained
project scheduling problem. Management Science 38 (12),
1803–1818.

[9] Demeulemeester E., Herroelen W., (1997). A branch-and-
bound procedure for the generalized resource-constrained
project scheduling problem. Operations Research 45 (2),
201–212.

[10] Davis, E.W., Patterson, J.H., (1975). A comparison of
heuristic and optimum solutions in resource-constrained
project scheduling. Management Science 21 (8), 944–955.

[11] Hartmann S., Briskorn D., (2010). A survey of variants
and extensions of the resource-constrained project
scheduling, European Journal of Operational Research,
207(1), 1-14.

[12] Henriksen, A.D.P., Palocsay S.W., (2008). An Excel-
based decision support system for scoring and ranking
proposed R&D projects, International Journal of
Information Technology and Decision Making, 7(3), 529–
546.

[13] Holland J., (1975). Adaptation in natural and artificial
systems. Ann Arbor: University of Michigan Press.

[14] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., (1983).
Optimization by Simulated Annealing. Science 220, 671–
680.

[15] Kolisch R., Hartmann S., (2006). Experimental
investigation of heuristics for resource-constrained project
scheduling: An update. European Journal of Operational
Research 174 (1), 23–37.

[16] Kolon M., (1999). Some new results on simulated
annealing applied to the job shop scheduling problem.
European Journal of Operational Research, 113, 123–136.

[17] Mavrotas G., Diakoulaki D., Caloghirou Y. (2006), Project
prioritization under policy restrictions: a combination of
MCDA with 0–1 programming. European Journal of
Operational Research, 171, 296–308.

[18] Montoya-Torres J.R., Gutierrez-Franco E., Pirachicán-
Mayorga C., (2010). Project scheduling with limited
resources using a genetic algorithm, International Journal
of Project Management, 28(6) 619-628.

[19] Peng Y., Kou G., Shi Y., Chen Z., (2008). A descriptive
framework for the field of data mining and knowledge

discovery. International Journal of Information
Technology and Decision Making, 7(4), 639–682.

[20] Stummer C., Kiesling E., Gutjahr W.J. (2009). A multi
criteria decision support system for competence driven
project portfolio selection, International Journal of
Information Technology and Decision Making, 8(2), 379–
401.

[21] Talias M.A., (2007). Optimal decision indices for R&D
project evaluation in the pharmaceutical industry: Pearson
index versus Gittins index. European Journal of
Operational Research 177, 1105–1112.

[22] Yu L., Wang S. Wen F., Lai K.K., (2010). Genetic
algorithm-based multi-criteria project portfolio selection,
Annals of Operations Research, DOI 10.1007/s10479-010-
0819-6.

[23] Zhang H., Li H., Tam C.M., (2006), Particle swarm
optimization for resource-constrained project scheduling,
International Journal of Project Management, 24(1) 83-92.

[24] Zhou W., Yan J., Li Y., Xia C., Zheng J., (2013).
Imperialist competitive algorithm for assembly sequence
planning. International Journal of Advanced
Manufacturing Technology, DOI 10.1007/s00170-
0124641-y.

Bahman Naderi/ The Project Portfolio Selection and...

72

