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Abstract 

Failure mode and effects analysis (FMEA) is a method based on teamwork to identify potential failures and problems in a system, design, 
process and service in order to remove them. The important part of this method is determining the risk priorities of failure modes using the 
risk priority number (RPN). However, this traditional RPN method has several shortcomings. Therefore, in this paper we propose a FMEA 
which uses generalized mixture operators to determine and aggregate the risk priorities of failure modes. In a numerical example, a FMEA 
of the LGS gas type circuit breaker product in Zanjan Switch Industries in Iran is presented to further illustrate the proposed method. The 
results show that the suggested approach is simple and provides more accurate risk assessments than the traditional RPN. 
Keywords: Failure mode and effects analysis (FMEA); Generalized mixture operators; Fuzzy set; Risk priority number (RPN).

1. Introduction 

Failure mode and effects analysis (FMEA) in design is a 
systematic method used to define, identify and eliminate 
known and/or potential failures, problems, and errors from 
the design of a product before the first product comes out of 
the production line. The FMEA is a proactive action, that is, 
the FMEA team predict potential problems and their causes 
and effects. They also define appropriate actions to remove 
or lessen the measure of occurrence. In other words, the main 
purpose of this method is to do a proactive action toward 
what will be happened in the future. In contrast with 
corrective reactions, proactive corrective actions have lower 
costs and take shorter time in the preliminary stages of 
product design. 

The FMEA was first proposed by NASA in the1960s for 
their obvious reliability requirements. Very soon it was used 
to improve safety in the processes involved in chemical 
industries. Then in 1977 it was similarly used and promoted 
by Ford Motor Company (Sharma et al., 2005; Chang and 
Wen, 2010). The FMEA improves the design process 
through the following techniques and strategies: 

1. Helping the designer team to assess the requirements 
of the design.            

2. Increasing the possibility of considering potential 
failure modes and their effects on the costumer.                   

3. Providing a framework for examining and 
evaluating decision makers' (DMs) suggestions and 
required actions to reduce the risk of failure.  

 

 
 
 
 
4. Providing a ranked list of potential failure modes to 

establish a scheme for improving the design and ratification 
of design control methods. 

Modifying the failure modes in a FMEA is based on the 
ranking that they do. In this regard, prioritization is done by a 
RPN which is determined as follows: 

RPN S O D                                                           
where (O) is the probability of failure occurrence, (S) is 

the severity of the failure, and (D) is the probability of the 
failure being detected. These three factors are measured 
using the scores from one to ten according to Tables 1-3 
where numbers one and ten show the least and the most 
important risk factor, respectively. A failure mode with a 
higher RPN has a higher priority and is assumed to be more 
important.  

However, the traditional RPN has some shortcomings 
and has been criticized on several grounds (Bowles and 
Peláez, 1995; Chang et al., 2001; Sankar and Prabhu, 2001; 
Chin et al., 2009). Some of these disadvantages are as 
follows:  

• Different combinations of O, S and D may produce 
exactly the same value of RPN, but their hidden risk 
implications may be totally different. For example, two 
different events with the values of 2, 3, 2 and 4, 1, 3 for O, S 
and D, respectively, have the same RPN value of 12. 
However, the hidden risk implications of the two events may 
not be necessarily the same. This may cause a waste of 
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resources and time, and in some cases the high risk event 
may go unnoticed. 

• Differences in the relative importance between O, S, 
and D are not considered and thus it is assumed that the three 
risk factors have equal importance. This may not be the case 
in a practical application of FMEA. 

• The mathematical formula for calculating the RPN is 
not incorrect but it is questionable and debatable. There is no 
rationale behind multiplying O, S, and D to produce the 
RPN. 

• The three risk factors are difficult to be precisely 
evaluated. Much information in the FMEA can be expressed 
in a linguistic or fuzzy way. 

• The RPN is not continuous with many holes and is 
widely distributed at the bottom of the scale from 1 to 1000. 
This causes problems in interpreting the meaning of 
differences between different RPNs. For example, is the 
difference between 1 and 2 the same as or less than the 
difference between 900 and 1000? 

• Small variations in one rating may lead to many 
different effects on the RPN, depending on the values of 
other factors (Liu et al., 2011). 

A number of approaches have been proposed to solve the 
problems of FMEA. For example, Bowles and Peláez (1995) 
presented a fuzzy logic-based approach in order to prioritize 
failures in a system FMECA, which used linguistic terms to 
describe O, S, D and the riskiness of failure. The 
relationships between the riskiness and O, S, D were 
characterized by a fuzzy if–then rule base which was 
developed from expert knowledge and expertise. Then crisp 
ratings for O, S and D were fuzzified to match the premise of 
each possible if–then rule. All the rules that had any truth in 
their premises were fired to contribute to the fuzzy 
conclusion. The fuzzy conclusion was finally defuzzified by 
the weighted mean of the maximum method (WMoM) as the 
ranking value of the risk priority.  

In another study, Chang et al. (1999) applied fuzzy 
theory to eliminate the conversion debate by directly 
evaluating the linguistic assessment of factors. They used 
some fuzzy linguistic terms such as very low, low, moderate, 
high, and very high to evaluate the degrees of the risk factors 
O, S and D. They also used the grey theory to obtain the risk 
priority numbers by assigning the relative weighting 
coefficient without any utility function. 

Braglia (2000) developed a multi-attribute failure mode 
analysis (MAFMA) based on the analytic hierarchy process 
(AHP) technique, which considered the four different factors 
of O, S, D, and expected cost as decision attributes, possible 
causes of failure as decision alternatives, and the selection of 
failure cause as the decision goal. The goal, attributes and 
alternatives formed a three-level hierarchy, in which the 
pairwise comparison matrix was used to estimate the 
attribute weights and the local priorities of the causes with 
respect to the expected cost attribute. Moreover, the 
conventional scores of O, S and D were normalized as the 
local priorities of the causes with respect to O, S, and D, 
respectively, and the weight composition technique in the 
AHP was utilized to synthesize the local priorities into the 

global priority, based on which the possible causes of failure 
were ranked (Chin et al., 2009). 

Braglia et al. (2003) also used the fuzzy TOPSIS (a 
technique for determining order preference based on 
similarity to the ideal solution) for ranking failure modes. 
Through this method, the three risk factors O, S and D and 
their relative importance could be assessed by triangular 
fuzzy numbers instead of precise crisp numbers. 

Seyed-Hosseini et al. (2006) proposed a method called 
decision making trial and evaluation laboratory 
(DEMATEL) for reprioritization of failure modes in the 
FMEA, which prioritizes alternatives based on the severity 
of effect or influence and direct and indirect relationships 
between them. However, this approach could not address the 
shortcomings of the conventional RPN. In fact, when each 
cause of failure is assigned to only one potential failure 
mode, the risk ranking orders obtained by the DEMATEL 
approach corresponds with the ones obtained by the 
conventional RPN method.  

More recently, Chin et al. (2009) proposed a FMEA 
which uses data envelopment analysis (DEA) to determine 
the risk priorities of failure modes. Their proposed method 
measures the overall risks of failure modes. Then the risk 
priorities are determined in terms of the overall risks rather 
than maximum or minimum ones. 

Last but not least, Liu et al. (2011) suggested a FMEA 
using the fuzzy evidential reasoning (FER) approach for 
improving assessment grades obtained from team members 
and the grey theory in order to increase the accuracy of 
the prioritization of failure modes in the FMEA. A 
review and comparison of many of these methods can be 
found in Chin et al. (2009).  

In this article, we use generalized mixture operators to 
rank failure modes. Using generalized mixture operators, 
we can select the alternative with the best scores of the most 
important criteria instead of selecting the alternative with the 
best scores of most criteria. In the FMEA, (S) is usually the 
most important factor in the prioritization process and other 
criteria like (O) and (D) are less important. With applying 
generalized mixture operators to the FMEA, we can 
prioritize failure modes with respect to their scores for the 
most important attributes. Thus, the prioritization process 
is done respectively according to (S), (O) and (D). It 
should be pointed out that because of the sensitivity of this 
method; the prioritization process is very accurate. 
Table 1 
Traditional rating for the occurrence of a failure (Sankar and Prabhu, 
2001; Xu et al., 2002; Chin et al., 2009) 
Rating        Probability of occurrence Failure probability 

10 Very high: failure is almost inevitable 
 
>1 in 2 

9  1 in 3 
8 High: repeated failures 1 in 8 
7  1 in 20 
6 Moderate: occasional failures 1 in 80 
5  1 in 400 
4  1 in 2000 
3 Low: relatively few failures 1 in 15,000 
2  1 in 150,000 
1 Remote: failure is unlikely <1 in 1,500,000 
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Table 2 
Traditional rating for the severity of a failure (Sankar and Prabhu, 2001; 
Xu et al., 2002; Chin et al., 2009) 

Rating Effect Severity of effect 

10 Hazardous 
without warning 

Very high ranking when a potential 
failure mode affects the safe system 

operation without warning 

9 Hazardous with 
warning 

Very high severity ranking when a 
potential failure mode affects the safe 

system operation with warning 

8 Very high System inoperable with destructive 
failure without compromising safety 

7 High System inoperable with equipment 
damage 

6 Moderate System inoperable with minor 
damage 

5 Low System inoperable without damage 

4 Very low System operable with significant 
degradation of performance 

3 Minor System operable with some 
degradation of performance 

2 Very minor System operable with minimal 
interference 

1 None No effect 
 
Table 3 
Traditional rating for detection (Sankar and Prabhu, 2001; Xu et al., 
2002; Chin et al., 2009) 

Rating Detection Likelihood of detection by design control 

10 Absolute 
uncertainty 

The design control cannot detect the 
potential cause/mechanism and 

subsequent failure mode 

9 Very remote 

Very remote chance the design control 
will detect the potential 

cause/mechanism and subsequent failure 
mode 

8 Remote 
Remote change the design control will 

detect the potential cause/mechanism and 
subsequent failure mode 

7 Very low 
Very low chance the design control will 

detect the potential cause/mechanism and 
subsequent failure mode 

6 Low 
Low chance the design control will 

detect the potential cause/mechanism and 
subsequent failure mode 

5 Moderate 
Moderate chance the design control will 

detect the potential cause/mechanism and 
subsequent failure mode 

4 Moderately 
high 

Moderately high chance the design 
control will detect the potential 

cause/mechanism and subsequent failure 
mode 

3 High 
High chance the design control will 

detect the potential cause/mechanism and 
subsequent failure mode 

2 Very high 
Very high chance the design control will 
detect the potential cause/mechanism and 

subsequent failure mode 

1 Almost 
certain 

Design control will detect the potential 
cause/mechanism and subsequent failure 

mode 
 

The rest of this paper is organized as follows: section 2 
reviews the related literature especially some studies on 
fuzzy sets and generalized mixture operators. Section 3 
presents the proposed approach. Then in section 4 a 
numerical example is given to illustrate the potential 

applications of the new approach in the FMEA, and the final 
section provides conclusions.  

2. Preliminaries 

In this section, in addition to some background, we 
introduce the mathematical tools of fuzzy sets theory and 
generalized mixture operators used in the proposed method. 

2.1. Fuzzy sets 

Fuzzy sets which are the generalizations of crisp sets 
were first introduced by Zadeh (1965) as a way of solving 
problems involving imprecise or vague data. 

Unlike crisp sets, in fuzzy sets the degree of membership 
of each element is between zero to one. In other words, each 
fuzzy set is defined by a membership function which assigns 
a value within the unit interval [0, 1] to each element in the 
universe of discourse  

Some basic definitions of fuzzy sets used throughout 
this paper are as follows: 

Definition 1. (Fuzzy number). A fuzzy number A is a 
normal and convex fuzzy subset of X. Here, the 'normality' 
implies that (Deng et al., 2011): 
 

,    A 1 
 

and 'convex' means that: 
,     ,       0, 1 , 

1 min , .             (1) 
Definition 2.The trapezoidal A x, Ã |  fuzzy 
number can be denoted as A , , ,  where  and  
are the central values ( A 1 ,  is the left 
spread, and  is the right spread (Bashiri and Bardi, 
2011).  

 
Fig. 1. Trapezoidal fuzzy number A 

 

Note that if  = , then  is called a normal triangular 
fuzzy number. 

Definition 3.A linguistic variable is a variable whose 
values are linguistic terms (Palaneeswaran and 
Kumaraswamy, 2001). The concept of linguistic variable 
is very useful for dealing with situations which are too 
complex or too ill-defined to be reasonably described by 
the conventional quantitative expressions (Zadeh, 1975). 
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Linguistic values can also be represented by fuzzy 
numbers (Bashiri and Bardi, 2011). 

2.2. Generalized mixture operators 

Generalized mixture operators are extended forms of 
weighted averaging in which weighting functions (f x  
are replaced with constant weights ( ). Weighted 
averaging or simple additive weighting (SAW) method is 
a scoring technique in the multiple attribute decision 
making (MADM) used for ranking alternatives and is 
defined as: 

∑

∑
                                                        (2) 

 Recently, within the generalized mixture approach, 
Marques-Pereira and Riberio (2003a, 2003b) proposed the 
linear and quadratic weight generating functions. They 
also studied the monotonicity of generalized mixture 
operators which are made by the weight generating 
functions. 
In this regard, the generalized mixture operator is defined 
as: 
 

, , … , ∑
∑                               (3) 

 
where , , … ,   is a vector of weighting 

functions which are supposed to be continuous and 
, , … ,  is a vector of satisfaction values. And 

we have: 
 

∑
                                                           (4) 

 are positive weighting functions with the 
normalization condition ∑ 1. 

The characteristics of weighting functions and 
generalized mixture operators are discussed by Marques-
Pereira and Riberio (2003a, 2003b). 

In this study, we use the quadratic weighting function 
because this kind of weighting function is more sensitive 
to the attribute satisfaction levels than the linear 
weighting function. The quadratic weighting function is 
defined as: 
 

1                 (5) 
and the effective weight generating function is:   
 

1
1

1                         (6) 

 
where  0 1   and   and 0 1. 
In addition, the critical beta function  is defined as: 

1  for 0 .5   and 
2 1  for 0.5 1 (Marques-Pereira and 
Riberio, 2003a, 2003b). 

It is obvious that 0 0 1⁄ 1
1 , so the parameter controls the value 1  when 

the criteria satisfaction value is one. The parametric 
condition 0 1 also controls the measure of 
curvature in the effective weight generating function, and 
the parameter  controls the ratio between the largest and 
the smallest values of the effective function (11) when the 
attribute satisfaction values are zero and one. 

The special characteristic of this method is that the 
weights of attributes depend continuously on the 
attributes satisfaction values. In some cases an important 
attribute with a low satisfaction value should necessarily 
have less effect on the overall evaluation of the alternative 
while a less important attribute with higher satisfaction 
values should have more effect on the overall evaluation 
of the alternative. 

In other words, the quadratic and linear weight 
generating functions introduced in Marques-Pereira and 
Riberio (2003a, 2003b) can penalize (or reward) 
alternatives that have lower (or higher) satisfaction values 
for the attributes, particularly when an attribute is of high 
or very high importance (Marques-Pereira and Riberio, 
2003b). Moreover, the generalized mixture operator is 
more sensitive to the variations of satisfaction values 
criteria than the ordered weighted average (OWA) 
operator and weighted averaging. Several examples of the 
mentioned quality are provided in Marques-Pereira and 
Riberio (2003a, 2003b). 

3. The Proposed Method 

3.1. Assessment of the risk factors using linguistic 
variables 

Linguistic variables are frequently used in the FMEA 
since there are superabundant uncertainties in the FMEA 
procedure and decision makers tend to do assessment 
through linguistic variables. Likewise, in this paper we 
use linguistic variables for assessing the risk factors and 
their relative weights. The evaluation grade set is defined 
as a fuzzy set as follows: 

, , … ,  = {very low (VL), low (L), 
slightly low (SL), medium (M), slightly high (SH), high 
(H), very high (VH)}.  

In the present paper, individual assessment grades are 
approximated by the trapezoidal fuzzy numbers (Table 4 
and Figure 2), and preliminary weights are approximated 
by the triangular fuzzy numbers (Table 5 and Figure 3) 
that are special forms of the trapezoidal fuzzy numbers.  
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Table 4 
Linguistic variables for the ratings 
 

Linguistic terms Fuzzy numbers 
Very low  (0, 0, 0.077, 0.154) 
Low (0.077, 0.154,0.231, 0.308) 
Slightly low (0.231, 0.308, 0.385, 0.462) 
Medium (0.385, 0.462, 0.3538, 0.615) 
Slightly high (0.538, 0.615, 0.692, 0.769) 
High (0.692, 0769, 0846, 0923) 
Very high (0.846,0923, 1, 1) 

 
In addition, membership function values are determined 
through results of a questionnaire administered to the 
FMEA team members.  
 

 
Fig. 2. The linguistic term set N with seven terms about rating 

 
In order to make generalizations, we assume that 

fuzzy individual assessment grades {  ,
1, 2, … , 7; 1, 2, … , 7 are not independent on each other 
and only two adjacent fuzzy individual assessment grades 
may intersect. 
 
Table 5 
Linguistic variables for the preliminary relative importance weights 

Linguistic terms Fuzzy numbers  
Very low (0, 0.1, 0.25) 
Low (0.15, 0.3, 0.45) 
Moderate (0.35, 0.5, 0.65) 
High (0.55, 0.7, 0.85) 
Very high (0.75, 0.9, 1) 

 
If { , 1, 2, … , 7 and { , 1  7;

1, 2, … , 7 are two adjacent fuzzy numbers, then {  ,
1, 2, … , 7; 1  will be the interval fuzzy number. 
Since { , 1, 2, … , 7 and { , 1 to 7;
1, 2, … , 7 are trapezoidal fuzzy numbers, we can assume 
that the interval fuzzy number   , 1, 2, … , 7;
1   is a trapezoidal fuzzy number, as shown in Figure 
4.  

 
Fig. 3. Five linguistic terms about preliminary weights 

When team members’ assessment grade is not exactly 
{  , 1, 2, … , 7 or { , 1 to 7;
1, 2, … , 7 and their assessment is something between 
{ , 1, 2, … , 7 and { , 1 to 7;
1, 2, … , 7, or they are not confident that their assessment 
grade is {  , 1, 2, … , 7 or { , 1 to 7;
1, 2, … , 7, evaluation will be more flexible through the 
aforesaid method.  

 
Fig. 4. The interval fuzzy grade set (Liu et al, 2011) 

3.2. Aggregating team members’ judgments  

Suppose there are L decision makers , , … ,  
in a FMEA team, who assess M failure modes 

, , … ,  with respect to G risk factors 
, , … , . The weights defined by the decision 

makers for the risk factors is shown by 
, ,  ; 1, 2, … ,  , too. The weight of each 

decision maker is denoted by  ; 1, 2, … , , in 
which ∑ 1. 

In order to simplify calculations of the aggregating 
procedure, team members’ assessments should be 
defuzzified through one of the defuzzification methods. 
The centroid defuzzification method defines the centroid 
coordinate of    just in the horizontal axis as its 
defuzzified value and can be expressed as follows 
(Uehara and Hirota, 1998; Wang, 2009): 
 

                                                         7  

Compared with other defuzzification methods, the 
centroid defuzzification is more advantageous as it 
considers the degree of membership of each element in 
the fuzzy set. Hence, we use this method for the 
defuzzification of team members’ opinions. Yet for 
simplification purposes, in this article the centroid 
formula for assessment grades and preliminary weights is:  

1
3                 (8) 

3                                                                       (9) 

The overall assessment grades and the preliminary 
weights of the risk factors can be obtained by the 
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arithmetic mean. For each assessment grade, the 
arithmetic mean can be shown as: 

́
∑

∑
                                                              (10) 

1, 2, … , 7 ;   1, 2, … , 7 

1, 2, … ,  

and the overall preliminary weight of the risk factor of 
L decision makers is denoted as: 

́
∑

∑
                                                              (11) 

1, 2, … ,  

1, 2, … ,  

3.3. Prioritizing failure modes by generalized mixture 
operators 

In this phase, the overall assessments obtained from 
equation (10) are used as different values of  in equation 
(6), and the overall preliminary weights resulted from 
equation (11) are used as the parameter  in equation (6). 
Values of the parameters  and  are arbitrary and depend 
on team members’ preferences and problems conditions. 
To facilitate the calculations,  and  are assumed to be 
equal for each criterion. If we suppose ́  ;
1, 2, … ,  are the overall assessment grades (that were 
obtained from equation (10)) with respect to the risk 
factor , then for each failure mode equation (6) turns 
out to be: 

́ ́
́

1 ́
1 ́ ́

1  

1, 2, … , 7 ;   1, 2, … , 7 

1, 2, … ,                                                                (12) 

As shown in equation (12), the effective weight 
generating function is composed of two different parts. 
One portion is made of the parameter  and the other 
portion is made of the fractional expression. In this 
function, the parameter  can be replaced by the pre-
weights given by experts and  variables can be replaced 
by the assessment grades of the decision making matrix. 
Thus, the weights of the risk factors depend on both the 
pre-weights given by experts and the values of the 
decision making matrix. Therefore, in this method we can 
use experience of experts with considering the particular 
circumstances of the issue according to the decision 
making matrix. Effective weight generating functions 
make a balance between the weights provided by experts 
and the weights resulted from the decision making matrix. 
In this method, if satisfaction values of the decision 

making matrix are high, we can conclude that the pre-
weight of that particular risk factor provided by the expert 
in the particular alternative is correct; otherwise, the pre-
weight must be corrected. 
By the aforesaid formula, generalized weights of each risk 
factor with respect to each failure mode can be calculated. 
The above-mentioned values are briefly shown in the 
following matrix:  

́ ́ ́
́ ́

                …  
́

́ ́ ́

 

Finally, aggregated assessment grades of each failure 
mode with respect to each risk factor are gained from 
equation (3) as follows: 

́
∑ ́ ́

∑ ́
                                      (13) 

1, 2, … , 7 ;   1, 2, … , 7 

1, 2, … ,   

Priorities of failure modes are based on their scores 
obtained from equation (13). In this regard, the highest 
score shows the highest priority of the identified failure 
modes.  

Another advantage of generalized mixture operators is 
the dominance effect of criteria. It means that if the 
satisfaction value of a criterion approaches a complete 
number (which in this paper is 1), the dominance effect of 
this particular criterion increases. For example, the 
dominance effect of criterion  with the satisfaction 
value of 0.9 is very bigger than that of another criterion 
with the satisfaction value of 0.8, because in generalized 
mixture operators generating functions depends 
constantly on the satisfaction values of criteria and they 
increase or decrease the role of each criterion in equation 
13 according to the parameters  and  and pre-weights 
provided by experts. 

This characteristic is very useful in the FMEA since, 
as we will show in section 4, it makes it easy to recognize 
the failure modes with higher satisfaction values, 
especially the risk factor S. 

3.4. The procedure of the proposed method 

The procedure of the proposed method can be 
condensed into nine steps and explained as follows: 

Step 1. Listing potential failure modes of the 
component or product by the FMEA team. 
Step 2. Listing all possible causes of each failure mode. 

Step 3. Defining a suitable scale and preliminary 
weight for each risk factor by the FMEA team. 

Step 4. Assessing each failure mode with respect to 
the risk factors.  
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Step 5. Converting linguistic assessments into fuzzy 
numbers through equations (8) and (9).  

Step 7. Aggregating the team members’ opinion into 
the overall opinion through equations (10) and (11). 

Step 8. Ranking failure modes through equation (13). 

4. Case Study 

In this section, this study uses a real world case in 
order to demonstrate the proposed approach. The 
proposed method is used to improve the quality of a 
product of Zanjan Switch Company which is one of the 
largest manufacturers of medium and high voltage circuit 
breakers and disconnectors in Iran.  

The product is LGS which is a live tank SF6 auto 
puffer circuit-breaker designed for 72.5 kV and a rated 
breaking current of 25-31.5 kA. In order to improve it, the 
Corporation plans to minimize its failures. Due to the high 
volume sale of the LGS, the company initially intends to 
rank the failures in this product. To do so, four decision 

makers are selected based on the extent of their 
familiarity with the product and their experience. More 
specifically, the FMEA team members are a system 
engineer, a design engineer, a manufacturing engineer, 
and a representative for the services purchased. These 
team members are assigned these relative weights, 
respectively: 0.2, 0.4, 0.25 and 0.15. According to the 
experience of the decision makers, the assessment grades 
and the preliminary weights of the risk factors S, O, and D 
are defined and organized in Tables 6 and 7. 

Now, the assessment grades of the team are 
defuzzified through equation (8). The defuzzified 
preliminary weights are presented in Table 8. 

Then, different opinions of the four members of the 
FMEA team are synthesized using equations (10) and 
(11). The aggregated assessments are reported in Table 9. 
The aggregated preliminary weights for S, O and D are 
0.853, 0.46 and 0.314, respectively. Having obtained the 
overall assessment grades and preliminary weights, now 
we can use equation (12) to determine the effective 
weights of each risk factor. 

 
   Table 6 
   Assessment information on the fifteen failure modes by the four members of the FMEA team 

 
Failure mode 

Risk factor 
     Severity (S)             Occurrence (O) Detection (D) 

                     
Gas leak      

Engine failure              
High ohmic resistance      

Damper oil leaks      
Numerator failure      

Coil failure              
Failure density manometer              

Limit switches do not charging the spring              
Failure to stay connected              

Reset command              
Performance indicator      

Disconnecting and connecting 
simultaneously 

             

Permanent alarm      
Going over the handle              

Impossibility of closure density manometer      
 
          Table 7 
          Preliminary weights considered by the FMEA team members 

DFMEA team members Severity (S) Occurrence (O) Detection (D) 
 0.88 0.5 0.30 
 0.88 0.3 0.12 
 0.70 0.5 0.30 
 0.88 0.5 0.50 
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         Table 8 
         Defuzzied crisp numbers for fuzzy assessment grades of the FMEA team members 

 
 

Failure mode 
Risk factor 

Severity (O) Occurrence (O) Detection (D) 

                                                             
 

Gas leak 0.577 0. 500 0.839 0.500  0.623 0.577 0.500 0.577  0.500 0.136 0.192 0.192
Engine failure 0.807 0.839 0.940 0.940  0.060 0.060 0.060 0.060  0.136 0.060 0.136 0.060
High ohmic 
resistance 0.346 0.269 0.269 0.192  0.192 0.192 0.136 0.136  0.500 0.423 0.500 0.423 

Damper oil leaks 0.060 0.136 0.269 0.269  0.136 0.192 0.136 0.060  0.060 0.192 0.060 0.136
Numerator failure 0.423 0.423 0.500 0.423  0.060 0.136 0.060 0.060  0.423 0.500 0.423 0.346

Coil failure 0.807 0.839 0.807 0.807  0.807 0.730 0.623 0.623  0.807 0.730 0.730 0.807
Failure density 

manometer 0.500 0.577 0.423 0.500 0.346 0.346 0.423 0.423  0.423 0.423 0.423 0.500 

Limit switches are 
not charging the 

spring 
0.730 0.623 0.500 0.623  0.060 0.060 0.060 0.136  0.060 0.192 0.192 0.136 

Failure to stay 
connected 0.623 0.500 0.730 0.500  0.136 0.060 0.192 0.136  0.136 0.136 0.060 0.136 

Reset command 0.500 0.577 0.500 0.500  0.136 0.060 0.060 0.060  0.060 0.346 0.269 0.192
Performance 

indicator 0.060 0.136 0.136 0.060  0.060 0.060 0.136 0.136  0.623 0.623 0.500 0.730 

Disconnect and 
connect 

simultaneously 
0.500 0.423 0.730 0.623  0.346 0.269 0.136 0.136  0.500 0.423 0.346 0.346 

Permanent alarm 0.060 0.136 0.136 0.060  0.192 0.060 0.136 0.192  0.269 0.346 0.192 0.269
Going over the 

handle 0.060 0.192 0.136 0.060  0.577 0.500 0.577 0.577  0.136 0.192 0.136 0.060 

Impossibility of 
closure density 

manometer 
0.500 0.500 0.577 0.577  0.423 0.346 0.346 0.269  0.500 0.346 0.423 0.500 

 
As mentioned in section 3, values of the parameters  

and  are arbitrary, so we assume the values of  and  
are 1.5 and 0.7, respectively. Thus, for example, the 
effective weight of the risk factor (S) with respect to the 
failure mode of engine failure can be calculated as 
follows: 

0.867 0.853
0.867

1

0.853
1 1.5 0.7 0.867 0.7 0.867

1 1.5
       0.757     

Now, we should normalize the pre-weights to obtain 
the normalized weights as shown below: 

. Engine failure  0.757/ 0.757 0.193 0.137
0.696 

   Table 9  
   Aggregated assessment grades of the FMEA team members 

Failure modes Severity (S) Occurrence (O) Detection (D) 
1 0.477 0.584 0.307 
2 0.867 0.060 0.102 
3 0.281 0.170 0.465 
4 0.159 0.128 0.105 
5 0.434 0.075 0.419 
6 0.813 0.718 0.780 
7 0.504 0.377 0.442 
8 0.647 0.079 0.125 
9 0.584 0.129 0.125 
10 0.515 0.090 0.182 
11 0.087 0.090 0.630 
12 0.550 0.247 0.423 
13 0.087 0.157 0.273 
14 0.134 0.562 0.128 
15 0.531 0.356 0.458 

 
The pre-weights and normalized weights are reported 

in Table 10.  
 
Table 10 
Pre-weights and normalized weights of each criterion with respect to 
each failure mode 
Failure 
mode

Pre- weight                                            
Normalized weight 

Severity 
(S) 

Occurrence 
(O) 

Detection 
(D) 

 Severity 
(S) 

Occurrence 
(O) 

Detection 
(D) 

 
1 

 
0.526 

 
0.314 

 
0.165 

  
0.5234 

 
0.3124 

 
0.1642 

2 0.757 0.193 0.137  0.696 0.178 0.126 
3 0.436 0.213 0.192  0.519 0.253 0.228 
4 0.390 0.205 0.137  0.533 0.280 0.187 
5 0.504 0.196 0.184  0.570 0.222 0.208 
6 0.721 0.356 0.258  0.540 0.267 0.193 
7 0.539 0.258 0.188  0.547 0.262 0.191 
8 0.618 0.196 0.139  0.648 0.206 0.146 
9 0.582 0.205 0.139  0.629 0.221 0.150 
10 0.545 0.198 0.147  0.612 0.223 0.165 
11 0.367 0.198 0.225  0.465 0.250 0.285 
12 0.563 0.228 0.184  0.577 0.234 0.189 
13 0.367 0.210 0.160  0.498 0.285 0.217 
14 0.380 0.307 0.140  0.460 0.371 0.169 
15 

 
0.553 0.253 0.191  0.555 0.254 0.191 

 

The ranks of failure modes are acquired by equation (13), 
and are presented in Table11.  
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Table 11 
Aggregated assessment grades of the FMEA team members, results of 
the proposed method and the risk priority ranking 

Failure 
mode 

Generalized 
mixture 
operator 

Priority 
ranking 

Traditional 
RPN 

Priority 
ranking 

 
1 

 
0.482 

 
3 

 
0.085 

 
3 

2 0.626 2 0.005 12 
3 0.295 11 0.022 6 
4 0.141 15 0.002 14 
5 0.351 10 0.014 7 
6 0.781 1 0.455 1 
7 0.459 5 0.084 4 
8 0.453 7 0.006 11 
9 0.415 8 0.009 9 
10 0.365 9 0.008 10 
11 0.242 13 0.005 12 
12 0.455 6 0.057 5 
13 0.147 14 0.004 13 
14 0.292 12 0.010 8 
15 0.472 4 0.086 2 

 
As shown in Table 11, the failure mode numbered 6 

has the top priority for correction. The failure mode 
numbered 2 is the second main priority as identified by 
the generalized mixture operators but is the twelfth 
priority in the traditional RPN. But as shown in Table 9, 
the satisfaction value of the risk factor S in the failure 
mode numbered 2 is 0.867 and it has the highest 
assessment grade for the risk factor S among the other 
failure modes.  

Practically, the risk factor S has the most important 
role among the three risk factors in the FMEA. Thus, this 
satisfaction value for the failure mode numbered 2 shows 
the hazard of error. But, the traditional RPN is not able to 
consider a priority higher than 12 for the failure mode 
numbered 2 as it does not take account of the weights of 
risk factors. Besides, if we consider the SAW method as 
an aggregation method, it can consider priority 3 for this 
failure mode, because weights of values in this method 
are constant. Therefore, it fails to distinguish between 
high and low satisfaction values. This shows that the 
generalized mixture operator which is made of the 
quadratic weighting function is more complete and 
realistic than the traditional RPN. 

As mentioned in section 3.3, using weight generating 
functions, we can also make decisions by considering 
experts’ experiences and circumstances of the problem. 
Furthermore, we can make weight generating function for 
each criterion and towards each alternative without any 
interference caused by other criteria and alternatives. As 
a result, through this method we counteract any virtual 
increases and decreases of criteria in the aggregating 
process. In short, generalized mixture operators have 
special characteristics which cannot be found in other 
MADM methods. 

5. Conclusion 

This paper proposed a novel method for assessing the 
risk of failures in the FMEA. The suggested method helps 
with the two main controversial parts of the FMEA that 
are the aggregation of team members’ opinions and 
ranking the failure modes. Because of difficulty in 
acquiring precise assessment information on failure 
modes, we proposed a method which allows the risk 
factors and their important weights to be evaluated in a 
linguistic manner and fuzzy rule. The main part of this 
paper used the generalized mixture operators through 
which the weights of the risk factors can be dependent on 
the satisfaction values of the risk factors and experts’ 
experiences. This method allowed us to penalize the risk 
factors with low satisfaction values and reward criteria 
with well- satisfaction values. Finally the results showed 
that the proposed method provides more accurate and 
responsible data for decision makers to identify the most 
critical failure modes and assign limited resources to the 
most serious risk items. 
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