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Introduction: Animal studies suggested that NFKB1, IKBKB, and SOCS3 genes could
be involved in the association between overnutrition and obesity. This study aims
to investigate interactions involving these genes and macronutrient intakes affecting
obesity-related phenotypes.

Methods: We used a traditional statistical method, logistic regression, and compared
it to alternative statistical method, multifactor dimensionality reduction (MDR) and
penalized logistic regression (PLR), to better detect genes/environment interactions
in the Toronto Nutrigenomics and Health Study (n = 1639) using dichotomized body
mass index (BMI) and waist circumference as obesity-related phenotypes. Exposure
variables included genotype on 54 single nucleotide polymorphisms (NFKB1: 18,
IKBKB: 9, SOCS3: 27), macronutrient (carbohydrates, protein, fat) and alcohol intakes
and ethno-cultural background.

Results: After correction for multiple testing, no interaction was found using logistic
regression. MDR identified interactions between SOCS3 rs6501199 and rs4969172,
and IKBKB rs3747811 affecting BMI in the Caucasian population; SOCS3 rs6501199
and NFKB1 rs1609798 affecting WC in the Caucasian population; and SOCS3
rs4436839 and IKBKB rs3747811 affecting WC in the South Asian population. PLR
found a main effect of SOCS3 rs12944581 on BMI among the South Asian population.

Conclusion: While MDR and PLR had discordant results, some models support
results from previous studies. These results emphasize the need to use alternative
statistical methods to investigate high-order interactions and suggest that variants in
the nutrient-responsive hypothalamic IKKB/NF-kB signaling pathway may be involved in
obesity pathogenesis.
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INTRODUCTION

During the last decades, the obesity epidemic has been a major
concern for public health. An estimated four million deaths
worldwide are due to excess of body weight in 2015 (The GBD
2015 Obesity Collaborators, 2017). In addition to sedentary
lifestyle, which is a well-known factor in obesity pathogenesis,
diet also has a major role in the development of body weight
excess, particularly due to the high accessibility of energy-dense
foods (Swinburn et al., 2011).

Animal studies on mice might have found a new lead on how
eating habits could influence the regulation of hunger and the
risk of developing body weight excess (Zhang et al., 2008; Meng
and Cai, 2011; Benzler et al., 2015; Dalvi et al., 2017; Douglass
et al., 2017). More specifically, they found that overnutrition
achieved by giving a chronic high fat diet as well as an acute
overload of glucose activated the IKKβ/NF-κB signaling pathway
in the hypothalamus, the central structure regulating energy
homeostasis (Zhang et al., 2008; Douglass et al., 2017). The
hypothalamic IKKβ/NF-κB signaling pathway is involved in the
inflammatory response, and contributes to the pathogenesis of
obesity by inducing an insulin and leptin resistance through
inflammation of the hypothalamic cells (Lee et al., 1996; Obici
et al., 2002; Zhang et al., 2008; Douglass et al., 2017). The
hypothalamic resistance to these hormones is also known to
be associated with appetite dysregulation, increased hunger, and
neuronal inflammation (Lehrke and Lazar, 2004; Hotamisligil,
2006; Zhang et al., 2008; Douglass et al., 2017). However, this
association has not been yet observed in humans.

This study aimed to investigate this phenomenon in human
subjects by exploring possible gene–gene and gene–environment
interactions of genes involved in the IKKβ/NF-κB signaling
pathway and macronutrient (carbohydrate, protein, and fat) and
alcohol intakes. The three genes of interest are nuclear factor
kappa B subunit 1 (NFKB1), inhibitor of kappa light polypeptide
gene enhancer in B-cells, kinase beta (IKBKB), and suppressor
of cytokine signaling 3 (SOCS3). NFKB1 codes for the subunit
1 of the NF-κB protein complex, and IKBKB codes for the
IKKβ protein that phosphorylates the inhibitor of the NF-
κB complex, allowing it to be activated (Arkan et al., 2005;
Zhang et al., 2008). Mice with astrocyte-specific deletion of
IKKβ in the mediobasal hypothalamus have been shown to have
reduced susceptibility to high fat diet induced hypothalamic
inflammation, and thus are at lower risk of diet induced obesity
(Douglass et al., 2017). The downstream gene of the IKKβ/NF-
κB hypothalamic signaling pathway, SOCS3, codes for a protein
of the same name acting as an inhibitor of insulin and leptin
signaling (Howard and Flier, 2006; Zhang et al., 2008). Only
SOCS3 has previously been investigated in humans, and few
studies have found evidence of an association with obesity-
related phenotypes (Talbert et al., 2009; Tang et al., 2011).
Although, multiple studies have investigated gene–gene and
gene–environment interactions involved in obesity pathogenesis
(Ordovás et al., 2011; Reddon et al., 2016; Rask-Andersen et al.,
2017; Mangum and Mangum, 2018), no study has yet investigate
potential interactions involving NFKB1, IKBKB, SOCS3 and
macronutrients and alcohol intakes.

We hypothesized that polymorphisms in genes involved
in the hypothalamic IKKβ/NF-κB signaling pathway (NFKB1,
IKBKB, and SOCS3), alone or in interaction with nutrients, are
associated with energy imbalance and obesity pathogenesis in
humans. Furthermore, since standard statistical methods have
difficulties handling high order interactions or lack power to
detect their effect, we hypothesize that these interactions may
be better detected using alternative approaches (Cordell, 2009;
Thomas, 2010) such as multifactor dimensionality reduction
(MDR) (Ritchie and Motsinger, 2005) and penalized logistic
regression (PLR) (Park and Hastie, 2008).

MATERIALS AND METHODS

Study Population
Participants were young adults aged 20–29 years participating
in the Toronto Nutrigenomics and Health Study, a multiethnic
cohort composed of 1,639 participants. They were recruited
through postings and advertisement around the area of the
University of Toronto campus between September 2004 and
July 2009. Participants completed a general health and lifestyle
questionnaire to assess physical activity levels, smoking habits,
and sociodemographic characteristics. Caloric, macronutrients,
and alcohol intakes were estimated using a 196-item semi-
quantitative food frequency questionnaire (García-Bailo et al.,
2012). Individuals who may have underreported (<800 kcal/day)
or overreported (>3,500 kcal/day for women, >4,000 kcal/day
for men) their daily energy intakes were excluded (n = 124).
These exclusion criteria are based on plausible intakes for this
age group as previously described in the Toronto Nutrigenomics
and Health Study. Participants with missing data for the outcome
variables were also excluded (n = 3). Thus, after exclusions, 1,512
participants remained in the sample (1,033 women and 479 men).

An open-ended question was used to determine the
participants’ ethnocultural status. Based on their self-reported
status, they were categorized into four ethnocultural groups:
733 Caucasians (237 men and 496 women), 509 East Asians
(142 men and 367 women), 160 South Asians (65 men
and 95 women), and 110 others (35 men and 75 women).
Caucasians included European, Middle Eastern, and Hispanic.
East Asians were composed of Chinese, Japanese, Korean,
Filipino, Vietnamese, Thai, and Cambodian. South Asians
comprised Bangladeshi, Indian, Pakistani, and Sri Lankan.
The “other” group was composed of participants belonging
to ≥2 of the four ethnocultural groups, or First Nations
Canadians or Afro-Caribbeans.

Dietary Assessment and Lifestyle
Variables
The average monthly food consumption was calculated
using a semi-quantitative 196-items Willett food frequency
questionnaire (García-Bailo et al., 2012). Participants were
given instructions on how to complete the food frequency
questionnaire, and an example of a commonly used portion size
(e.g., half a cup) was given to each item. Then, daily intakes
of carbohydrates, fat, protein and alcohol were estimated in
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kilocalories using the USDA Nutrient Database for Standard
Reference. By combining all the macronutrients and alcohol
intakes into daily intakes, a total calorie intake was also estimated
for each participant. As proposed by Willett and Stampfer (1986),
we adjusted each environmental variables (macronutrients and
alcohol) for total energy intake by using the residual of the
regression of macronutrient and alcohol on total caloric intake,
since energy intake is associated with obesity-related phenotypes.

The general health and lifestyle questionnaire was used to
assess the physical activity levels – quantified as modifiable
metabolic equivalent of task (MET) hours per week – and the
smoking status of the participants (current smoker or non-
smoker) (García-Bailo et al., 2012).

Anthropometric Measurements and
Outcome Variables
The two outcomes of interest (waist circumference and BMI)
were both measured by trained personnel with participants
dressed in light clothing without shoes (García-Bailo et al., 2012).
Waist circumference was measured between the lowest rib and
iliac crest and was measured twice to the nearest 0.1 cm. A third
measurement was taken when the difference between the two
measurements was ≥1 cm, and the two measurements with
the smallest difference were taken to calculate the mean waist
circumference. Weight was measured to the nearest 0.1 kg using
a digital scale (model Bellissima 841, Seca Corporation, Hanover,
MD, United States), and height was measured to the nearest
0.1 cm using a wall-mounted stadiometer (model Seca 206, Seca
Corporation, Hanover, MD, United States). Subsequently, BMI
(kg/m2) was calculated for each participant.

We dichotomized BMI and waist circumference into high and
low categories. The dichotomized BMI was based on the cut-off
points recommended by the National Institutes of Health [NIH]
(1998) and World Health Organization [WHO] (2008), which
yielded a high BMI group composed of participants considered as
overweight and obese (BMI≥ 25.0 kg/m2), and a low BMI group
composed of participants with normal BMI and underweight
(BMI < 25.0 kg/m2). For waist circumference, the definition
of high waist circumference proposed by WHO (≥102 cm for
men, ≥88 cm for women) was not used because few participants
were eligible to be categorize into the high waist circumference
group (World Health Organization [WHO], 2008) perhaps due
to the young age of the participants. Hence, we used the last
quartile of the waist circumference distribution to define the high
waist circumference group, stratified by sex. Therefore, the high
waist circumference group was defined as waist circumference
≥85.25 cm for men, and ≥74.73 cm for women. Otherwise
participants were considered to have a low waist circumference.

Since it is now recognized that standard BMI threshold might
not be appropriate for individuals of East Asian and South
Asian ethnicity, an alternate BMI definition was used to make
a comparison with the standard BMI definition in a sensitivity
analysis. This alternate BMI definition uses the dichotomized
BMI threshold stated before for white individuals but categorizes
East Asian and South Asian individuals in the high BMI
group if BMI ≥ 23.0 kg/m2, and others were categorized in

the low BMI group. This alternate BMI is based on a WHO
expert consultation, which recommended BMI cut-off points
for the Asian population of 23.0 kg/m2

≤ BMI < 27.5 kg/m2

for overweight individuals, and BMI ≥ 27.5 kg/m2 for obese
(World Health Organization [WHO], 2004). However, WHO
experts recommend to still use the current WHO BMI cut-off
points, particularly in countries with concurrent problems of
undernutrition and overnutrition, since the new cut-off points
are still up to debate, and more research is needed on this matter.

Selection of Tagging SNPs and
Genotyping
Tag SNP selection was made using HapMap release 27 and
Haploview 4.2, with a minimum minor allele frequency of 5%
and r2 threshold of 0.80 using pairwise tagging (De Bakker et al.,
2005). For quality control, 10% of the population was genotyped
a second time and a >99% concordance was achieved. An initial
54 single-nucleotide polymorphisms (SNPs) were selected among
the three genes of interest: 27 for SOCS3, 18 for NFKB1, and 9 for
IKBKB. First, we tested for Hardy-Weinberg equilibrium (HWE).
All tag SNPs were in HWE (HWE test p-value > 0.01). Afterward,
we excluded 30 SNPs with minor allele frequency < 5%. Finally,
four SNPs were excluded because they were in high linkage
disequilibrium (R2 > 0.8). The final SNPs selection was eight for
SOCS3, nine for NFKB1, and three for IKBKB. SNPs effects were
coded as an additive effect for logistic regression models, but were
considered as discrete variables for MDR (since it can only handle
discrete variables) and PLR (Park and Hastie, 2008).

Statistical Analysis
Three methods were used to analyze the data. We use a standard
statistical method, logistic regression, which was then compared
to two alternative statistical methods: MDR and PLR.

Firstly, we used logistic regression to investigate twofold gene–
gene interactions, and twofold gene–environment interactions.
Logistic regression models for gene–gene interaction models
were adjusted for age, sex and ethnocultural background, while
gene–environment interaction models were adjusted for age,
physical activity, ethnocultural background and sex.

Secondly, we used MDR to analyze twofold and threefold
gene–gene and gene–environment interactions. This technique
was developed by Ritchie et al. (2001) to detect high order
gene–gene and gene–environment interactions in common
genetic diseases for a dichotomous outcome. MDR is considered
a non-parametric and model-free method that transforms a
high-multilocus model (including genetic and/or environmental
factors) to a one dimensional model (Ritchie et al., 2001).
Succinctly, this method aims to find the best interaction order
and the best set of factors that determine a disease dichotomous
status. The MDR algorithm starts with a 10-fold cross-validation
for each possible set of factors to determine the best set of
factors. In this step, MDR divides the dataset into a training
part (9/10 of the data) and a testing part (1/10 of the data). For
all combinations of factors, it uses the training part to create
contingency tables based on cases and controls. Then, subjects
in cells with a cases/controls ratio greater than 1 are labeled as
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high-risk, while the other cells are labeled low-risk. Based on this
new categorization of the training part (9/10), the training error
is calculated. With the testing part (1/10), the prediction error
is calculated. These steps are repeated for each cross-validation
fold (by default, a 10-fold cross-validation). Then, the prediction
error and the cross-validation consistencies – how many times
a best set of factors was selected in the 10-fold cross-validation)
are compared. The selection of the best MDR model is done by
selecting the model with the smallest prediction error and/or the
largest cross-validation consistency. In this study, we considered
an MDR model valid if it had an average testing (1 – prediction
error) accuracy≥55% and if the cross-validation consistency of a
model was >6/10.

Thirdly, we used the PLR developed by Park and Hastie
(2008), a parametric approach using a L2 regularization to
detect gene–gene interactions. The L2 regularization is used to
reduce overfitting problems by preventing the model weights
from becoming too small or too large (Goeman, 2010; Goeman
et al., 2014). This method includes a forward stepwise procedure
variable selection (Park and Hastie, 2008; He et al., 2009). The
final model is the one with the smallest score C. This score is
C = deviance+ cp× df. Cp is the complexity parameter, which is
by default 2. Df is the effective degrees of freedom.

Multifactor dimensionality reduction and PLR include model
selection procedures and do not rely on individual p-values
to select significant interactions. Hence, these methods do
not require a separate procedure to account for multiple
comparisons. For our standard logistic regression analyses, we
used the false discovery rate (FDR) approach to account for
multiple comparisons (Storey, 2011).

RESULTS

Subject characteristics based on their dichotomized BMI and
waist circumference are provided in Table 1. Because the sample

had twice as many women as men, we were expecting about
66% of women in each group. However, the high BMI group
was roughly composed of 50% women, while the low BMI
group had a significant difference in sex proportion, with 73%
women Participants from the high BMI group were slightly
older on average [age difference (±standard deviation) = 0.56
(±2.5) years, p = 0.018]. No difference was found in smoking
status between the two groups. The proportions of participants
with high BMI among the different ethnocultural groups were
56% Caucasians, 19% East Asians, 14% South Asians, and 11%
others (p < 0.001). The proportion of subjects with a high
BMI varied highly within each ethnocultural backgrounds: 25%
of Caucasians, 12% of East Asians, 29% of South Asians, and
34% of others. The two BMI groups were similar in terms
of education (data not shown), which was expected since
participants were recruited around the area of the University
of Toronto campus, and physical activity levels (p > 0.05).
Total calorie, fat, protein, and alcohol intakes were higher for
the high BMI group then the low BMI group (p < 0.05).
No difference in the characteristics of the high and low waist
circumference groups was statistically significant, except for
the ethnocultural background (p < 0.001). The participants
characteristics of the high and low alternative BMI cut-offs
are shown in Table 2. These cut-offs adapted for Asian
populations resulted in more participants classified in the high
BMI group. There were also significant differences (p < 0.001)
between the high and low alternative BMI groups observed
for sex, ethnocultural background, protein intakes and alcohol
intakes (p < 0.05).

Using logistic regression, none of the twofold gene–gene
and gene–environment interaction models were statistically
significant for BMI, alternative BMI and waist circumference
after adjustment for multiple testing with FDR. Logistic
regression with significant p-values before adjustment with FDR
are shown in Table 3.

TABLE 1 | General characteristics of study participants by high/low BMI and high/low waist circumference categories (n = 1,512).

High BMI (n = 323) Low BMI (n = 1,189) p-value High waist circumference
(n = 376)

Low waist circumference
(n = 1,136)

p-value

Female 163 (50.5) 870 (73.2) <0.001 257 (68.4) 776 (68.3) 1.000

Age (years) 23.1 (2.7) 22.6 (2.4) 0.018 23.0 (2.6) 22.6 (2.5) 0.239

Smoking 29 (9.0) 69 (5.8) 0.054 24 (6.4) 74 (6.5) 1.000

Ethnocultural group <0.001 <0.001

Caucasians 180 (55.7) 553 (46.5) 226 (60.1) 507 (44.6)

East Asian 60 (18.6) 449 (37.8) 72 (19.2) 437 (38.5)

South Asian 46 (14.2) 114 (9.6) 48 (12.8) 112 (9.9)

Others 37 (11.5) 73 (6.1) 30 (8.0) 80 (7.0)

METS 6.3 (2.3) 6.2 (2.5) 0.233 6.3 (2.4) 6.2 (2.5) 0.333

Total calories (kcal/day) 2,003.6 (698.6) 1,960.8 (637.1) 0.033 1,956.7 (647.1) 1,974.3 (652.1) 0.867

Carbohydrates (kcal/day) 259.1 (99.6) 259.9 (92.1) 0.073 253.7 (92.5) 261.7 (94.1) 0.707

Fats (kcal/day) 67.1 (28.4) 65.3 (26.1) 0.047 66.00 (27.9) 65.6 (26.1) 0.119

Proteins (kcal/day) 88.2 (35.8) 84.7 (31.8) 0.007 85.6 (32.3) 85.3 (32.9) 0.697

Alcohol (kcal/day) 7.2 (11.6) 5.3 (8.5) <0.001 6.5 (9.3) 5.4 (9.3) 0.896

Data are n (%) or mean (standard deviation). P-values are from T-tests and chi-squared tests. Low BMI: <25.0 kg/m2; high BMI: ≥25.0 kg/m2. For men low waist
circumference: <85.25 cm; high waist circumference: ≥85.25 cm. For women low waist circumference: <74.73 cm; high waist circumference: ≥74.73 cm.
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TABLE 2 | General characteristics of study participants using alternate BMI
cut-offs (n = 1,512).

High BMI
(n = 444)

Low BMI
(n = 1,068)

p-value

Female 236 (53.2) 797 (74.6) <0.001

Age (years) 22.8 (2.6) 22.7 (2.5) 0.060

Smoke 33 (7.4) 65 (6.1) 0.358

Race <0.001

Caucasians 180 (40.5) 553 (51.8)

East Asian 152 (34.2) 357 (33.4)

South Asian 75 (16.9) 85 (8.0)

Other 37 (8.3) 73 (6.8)

METS 6.2 (2.4) 6.3 (2.5) 0.578

Total calories (kcal/day) 1,995.7 (685.8) 1,959.2 (635.6) 0.053

Carbohydrates (kcal/day) 261.0 (97.9) 259.2 (92.0) 0.116

Fats (kcal/day) 65.9 (27.3) 65.6 (26.3) 0.327

Proteins (kcal/day) 89.0 (35.9) 83.9 (31.2) <0.001

Alcohol (kcal/day) 5.8 (10.3) 5.63 (8.9) <0.001

Data are n (%) or mean (standard deviation). P-values are from T-tests and
chi-squared tests. For East and South Asian populations, low alternative BMI:
<23.0 kg/m2; high alternative BMI: ≥23.0 kg/m2.

TABLE 3 | Gene–gene interaction logistic regression models.

Outcome Gene–
gene

SNP–SNP Wald test
p-value

FDR
q-value

BMI SOCS3–
NFKB1

rs4436839–rs3774932 0.037 0.332

rs4436839–rs1599961 0.013 0.291

rs4436839–rs3774956 0.022 0.291

rs4436839–rs11722146 0.005 0.291

rs4436839–rs4698863 0.040 0.338

rs4436839–rs1609798 0.007 0.291

rs6501199–rs3774932 0.022 0.291

rs6501199–rs11722146 0.011 0.291

rs6501199–rs3774968 0.035 0.332

rs6501199–rs7674640 0.030 0.332

rs6501199–rs4698863 0.022 0.291

rs6501199–rs1609798 0.004 0.291

rs12944581–rs3774932 0.037 0.332

rs12944581–rs1599961 0.017 0.291

Waist
circumference

SOCS3–
NFKB1

rs4436839–rs11722146 0.041 0.597

rs4436839–rs1609798 0.032 0.597

rs6501199–rs3774932 0.023 0.597

rs6501199–rs11722146 0.019 0.597

rs6501199–rs3774968 0.034 0.597

rs6501199–rs7674640 0.038 0.597

rs6501199–rs4698863 0.018 0.597

rs6501199–rs1609798 0.006 0.597

Alternative
BMI

SOCS3–
NFKB1

rs9914220–rs3774956 0.032 0.469

Adjusted for age, sex, and ethnocultural background. FDR, false discovery rate.

With MDR, we looked at the best twofold and threefold
interaction models for each outcome of interest (BMI, alternative
BMI, waist circumference) including all the participants.

A stratified analysis followed based on the ethnocultural
background: Caucasians only, East Asians only, South Asians
only. We used the quartiles of the macronutrients and alcohol
residuals, based on ethnocultural background and sex, to evaluate
the gene–environment interactions with MDR.

Table 4 shows the three MDR models that were selected as
valid models, based on an average testing accuracy ≥55%, and
a cross-validation consistency ≥6/10. The first MDR model was
found in the Caucasian population. It was a twofold interaction
model for the waist circumference outcome composed of
rs6501199 (SOCS3) and rs160978 (NFKB1), with an average
testing accuracy of 55% and a cross-validation consistency of
7/10. Figure 1 shows the MDR graphical representation of
this model, where individuals with one or two rare alleles
of rs160978 (NFKB1) are identified by MDR to be more
likely to have a high waist circumference if they have the
common alleles for rs6501199 (SOCS3). The opposite effect
can be observed for Caucasians with one or two rare alleles
of rs6501199 (SOCS3) in the presence of the common alleles
of rs160978 (NFKB1). Heterozygotes and homozygotes for the
rare alleles of rs160978 (NFKB1) and rs6501199 (SOCS3) are
categorized by MDR to be less likely to have a high waist
circumference, except for individuals who are homozygotes for
the rare allele of rs160978 (NFKB1) and are heterozygotes for
rs6501199 (SOCS3).

The second MDR model represented in Figure 2, was also
found in the Caucasian population. It was a threefold interaction
model for the BMI outcome composed of rs6501199 (SOCS3),
rs4969172 (SOCS3), and rs3747811 (IKBKB), with an average
testing accuracy of 60% and cross-validation consistency of
10/10. This MDR model suggests Caucasians with the one or
two alleles for rs3747811 (IKBKB) are more generally likely
to have high BMI, depending of the combination of alleles
for rs6501199 (SOCS3) and rs4969172 (SOCS3). Although all
homozygotes for the common allele for rs3747811 (IKBKB)
are evaluated to be at low risk of having a high BMI, this is
not true for Caucasians heterozygotes for rs4969172 (SOCS3)
and homozygotes for rs6501199 (SOCS3). Heterozygotes for
rs3747811 (IKBKB) are identified to be more likely to have high
BMI when in the presence of one or two rare alleles for the

TABLE 4 | MDR models for twofold and threefold interactions.

Population Outcome Model Average
testing

accuracy

CV
consistency

Caucasian Waist
circumference

rs6501199 (SOCS3),
rs1609798 (NFKB1)

55% 7/10

Caucasian BMI rs6501199 (SOCS3),
rs4969172 (SOCS3),
rs3747811 (IKBKB)

60% 10/10

South Asian Waist
circumference

rs4436839 (SOCS3),
rs3747811 (IKBKB)

55% 8/10

The average testing accuracy is the proportion of individuals that are correctly
classified as being a case or a control, averaged across all CV intervals. The
CV consistency is the number of times a model is identified in each possible
9/10 of the data.
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FIGURE 1 | MDR contingency table of the best twofold gene–gene interaction
model of high/low waist circumference (Caucasians). MDR contingency tables
of the twofold gene–gene interaction model for waist circumference
considering only Caucasians. The interaction is composed of rs6501199
(SOCS3) and rs160978 (NFKB1). Each cell represents a specific combination
of both factors, where “0” represents individuals homozygous for the common
allele, “1” the heterozygous, and “2” the homozygous for the rare allele. The
number of individuals fitting of a specific combination of factors is represented
by bars within the cells. The left bar is the count of cases (high waist
circumference), and the right bar is the count of controls (low waist
circumference). Dark gray cells are cells that have been identified as “high risk”
by MDR, and the others are identified as “low risk” cells.

two other SNPs involved in this model, except for Caucasians
heterozygotes or homozygotes for the rare allele of rs4969172
(SOCS3) who are also heterozygotes for rs6501199 (SOCS3). As

for the homozygotes for the rare allele of rs3747811 (IKBKB),
they are generally more likely to have high BMI, according
to MDR, except for Caucasians who are homozygotes for the
rare allele of rs4969172 (SOCS3), and for heterozygotes for
rs4969172 (SOCS3) who also are homozygotes for the rare allele
of rs6501199 (SOCS3).

The last MDR model, shown in Figure 3, was found
in the South Asian population. This model was a twofold
interaction model assessing high or low waist circumference
composed of rs3747811 (IKBKB) and rs4436839 (SOCS3), with
an average testing accuracy of 55% and a cross-validation
of 8/10. This model suggests that South Asians who are
homozygote for the two SNPs involved are more likely to have
high waist circumference. Additionally, individuals with one
rare allele for one of these two SNPs are also considered to
be at high risk of having an increased waist circumference.
The other genotypes are less likely to have a high waist
circumference, except for heterozygotes for rs4436839 (SOCS3)
who are homozygote for the rare allele of rs3747811 (IKBKB).
None of the gene–environment MDR models had an average
testing accuracy ≥55%, and a cross-validation consistency
≥6/10. Therefore, no gene–environment MDR model was
considered as valid.

With the Park and Hastie PLR method, models stratified
by ethnocultural background detected no interaction. Only null
models were selected by this method, except for the South Asian
population, where the gene–gene and the gene–environment
PLR models for the alternative BMI both selected rs12944581
(SOCS3). This model suggests that individuals with the common
genotype for rs12944581 (SOCS3) have higher odds of having a
high alternative BMI (p < 0.001), while heterozygous (p = 0.322)
and homozygous (p = 0.088) for rs12944581 (SOCS3) rare allele
seems to reduce the odds of high alternative BMI.

FIGURE 2 | MDR contingency table of the threefold gene–gene interaction model of high/low BMI (Caucasians). MDR contingency tables of the threefold gene–gene
interaction model considering only Caucasians. The SNPs involved are rs6501199 (SOCS3), rs4969172 (SOCS3), and rs3747811 (IKBKB). Each cell represents a
specific combination of SNPs alleles, where “0” represents individuals homozygous for the common allele, “1” the heterozygous, and “2” the homozygous for the
rare allele. The number of individuals fitting of a specific genotype is represented by bars within the cells. The left bar is the count of cases (high BMI); and the right
bar is the count of controls (low BMI). Dark gray cells are cells that have been identified as “high risk” by MDR, and the others are identified as “low risk” cells.
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FIGURE 3 | MDR contingency table of the best twofold gene–gene interaction
model of high/low waist circumference (South Asians). MDR contingency
tables of the twofold gene–gene interaction model for waist circumference
considering only South Asians. The interaction is composed of rs3747811
(IKBKB) and rs4436839 (SOCS3). Each cell represents a specific combination
of both factors, where “0” represents individuals homozygous for the common
allele, “1” the heterozygous, and “2” the homozygous for the rare allele. The
number of individuals fitting of a specific combination of factors is represented
by bars within the cells. The left bar is the count of cases (high waist
circumference), and the right bar is the count of controls (low waist
circumference). Dark gray cells are cells that have been identified as “high risk”
by MDR, and the others are identified as “low risk” cells.

DISCUSSION

In this study, we investigated gene–gene and gene–environment
interactions in the association between variants of three genes
(NFKB1, IKBKB, SOCS3), macronutrient and alcohol intakes,
and obesity-related phenotypes (BMI, alternative BMI cut-offs
for East and South Asians, and waist circumference). These three
genes are involved in the hypothalamic IKKβ/NF-κB/SOCS3
signaling pathway, which has been previously identified to play
an important role in obesity pathogenesis through its activation
by overnutrition in mice (Zhang et al., 2008). The activation
of the hypothalamic IKKβ/NF-κB signaling pathway disrupts
the normal hypothalamic regulation of satiety and hunger. The
objective of this study was to investigate this phenomenon in
humans using logistic regression (a traditional statistical method)
and alternative statistical methods, such as PLR and MDR.

With standard MDR, we detected three different interactions.
Two of these models were detected among the Caucasian
population. One was a twofold gene–gene interaction model
involving rs6501199 (SOCS3) and rs1609798 (NFKB1) on
the outcome of high or low waist circumference. The first
MDR model found among the Caucasian population was a
twofold interaction model for the waist circumference outcome
composed of rs6501199 (SOCS3) and rs160978 (NFKB1).
Although, there is no study that has investigated the involvement

of rs160978 (NFKB1), this MDR model suggests that the rare
allele of rs160978 (NFKB1) may increase the activation of the
NF-κB complex, which may contribute to an increased risk
of obesity-related phenotypes in the presence of the wild type
genotype (i.e., two common alleles) for rs6501199 (SOCS3).
However, the rare allele of rs6501199 (SOCS3) seems to interact
by generally canceling the deleterious effect of the rs160978
(NFKB1) rare allele. Hence, the SOCS3 protein, which is
downstream of the hypothalamic IKKβ/NF-κB pathway, of an
individual heterozygous or homozygous for the rare allele would
be harder to activate.

The second MDR model, represented in Figure 2, found
among the Caucasian population suggested a threefold gene–
gene interaction between rs6501199 (SOCS3), rs4969172
(SOCS3), and rs3747811 (IKBKB) on the outcome of high or
low BMI. Of these three SNPs, only rs6501199 (SOCS3) had
been found to be weakly associated with visceral adipose tissue
in a previous study (Talbert et al., 2009). In the same study,
rs4969172 (SOCS3) was also investigated for association with
multiple obesity-relate traits phenotypes (including BMI, and
waist circumference), but none was found. As for rs3747811
(IKBKB), it has not been yet investigated in previous studies
for its involvement in the development of obesity-related
phenotypes, and was only found to decrease the risk of colorectal
cancer combined with rs4648110 (NFKB1) (Seufert et al.,
2013). A possible biological interpretation is that the rare allele
of rs3747811 (IKBKB) triggers the activation of the NF-κB
complex, thus also inducing SOCS3 expression, resulting in
insulin/leptin resistance. The two other SNPs in this 3-way
interaction (rs6501199 and rs4969172) are part of the same gene,
SOCS3. By looking at the MDR model contingency table their
interpretation is less clear, but these two SOCS3 polymorphisms
or other unmeasured polymorphisms in high LD might modify
the coded protein that contributes to insulin/leptin resistance.

The last MDR model found was among the South Asian
population. It suggested a twofold interaction between rs4436839
(SOCS3) and rs3747811 (IKBKB) on the outcome of high or low
waist circumference, where the common alleles of both SNPs
seem to contribute to potentially through a better activation of
the NF-κB complex activity by the IKBKB protein and increased
insulin/leptin resistance by the SOCS3 protein. However, this
MDR model is less reliable on its biological interpretation,
since several cells have low frequencies (particularly cells for the
homozygous of the rare allele of rs3747811).

Although, we did not find any interaction with PLR through
the forward stepwise selection procedure proposed by Park and
Hastie (2008), a main effect of rs12944581 (SOCS3) on the
alternative BMI was found among the South Asian population,
suggesting that individuals with the common genotype had
higher odds of being in the high alternative BMI group. This SNP
has been previously investigated in a Hispanic cohort, but no
association with obesity-related traits (including BMI and waist
circumference) was found.

The MDR and PLR models did not provide convergent results
except for the involvement of the SOCS3 gene. With logistic
regression before adjustment for multiple testing, we found one
model that was similar to the MDR model involving a twofold
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interaction between rs6501199 (SOCS3) and rs1609798 (NFKB1)
on waist circumference. However, these similar models did not
have the same interpretation. While the rs6501199 heterozygous
the common genotype for rs1609798 have higher odds of having
a high waist circumference according to the logistic regression
model, the opposite relationship can be seen in the MDR
model. Hence, we cannot confirm that MDR support the logistic
regression model.

The alternative statistical methods that we considered –
MDR and PLR – did not detect any interaction involving
environmental factors, based on our MDR criteria or on PLR’s
forward stepwise selection procedure. Although it could suggest
that there is no gene–environment interaction between diet and
SOCS3, IKBKB, and NFKB1, it could also be explained by the four
levels categorization of macronutrient intake we used with MDR
or a poor assessment of macronutrient intakes by the FFQ (Kipnis
et al., 2003; Howard and Flier, 2006).

A strength of this study is the use of alternative statistical
methods, which enabled us to detect interaction that would
not have been detected with traditional logistic regression. In
addition, this study is one of the first to investigate gene–gene and
gene–environment interactions between NFKB1, IKBKB, SOCS3
and macronutrient intakes on human and their effect on obesity-
related phenotypes. Our results will help to guide future research
on this pathway.

Several potential limitations need to be acknowledged. First,
we had a limited sample size to detect interactions. We thus
chose to use methods like MDR and PLR that were specifically
developed to circumvent the lack of power offered by traditional
methods like logistic regression with usual multiple comparison
correction. Estimating power for MDR or the PLR is not
straightforward and would require extensive simulations, which
were outside the scope of this study. The power of these methods
was investigated previously (Edwards et al., 2009; He et al., 2009;
Molinaro et al., 2011) and greatly depends on the disease model.
However, these studies show that sample of sizes comparable
to ours would allow the detection of interactions in realistic
situations. We used the QUANTO software (Gauderman, 2002;
Gauderman and Morrison, 2009) to estimate the power of our
largest sub-sample (Caucasians) to detect a range of effect sizes
in a logistic regression context, setting our significance level to
0.000035 to account for multiple comparisons. For gene–gene
interactions among the 54 SNPs considered, we estimated that
we had over 80% power to detect an interaction odds ratio
(OR) of 1.7 or more, with remaining parameter values based
on those observed in our data. We had approximately 30–50%
power using logistic regression to detect an interaction OR of 1.4–
1.5, which is in the range of values observed for the interaction
models detected by MDR. For gene–environment interactions,
with parameter values based on those observed in our data,
we had over 80% power to detect an interaction OR of 1.05
or greater, indicating that we had good power to detect gene–
environment interactions.

Other limitations included the fact that participants were
young (20–29 years) and educated, due to the recruitment
taking part through advertisement on the University of Toronto
campus. These characteristics might explain why few participants
were obese, since young adults are less overweight compared to

adults aged more than 35 years, and educated individuals in high-
income countries are usually less likely to be obese (Cohen et al.,
2013). In addition, the multi-ethnic nature of the participants
introduced problems of population heterogeneity. Stratification
by ethno-cultural background, needed for adjustment, drastically
reduced the number of participants in the MDR and PLR
models. The subjective definitions used to categorize participants
into an ethno-cultural group might not represent accurately
their ethno-cultural background and does not consider possible
population stratification of sub-ethnicity within one category. In
addition, given our limited sample size, we chose not to assess
interactions with sex in addition to gene–gene or gene–nutrient
intake interactions. Effect modification by sex would need to
be investigated in future studies, ideally with larger sample size.
Lastly, an important limitation is the utilization of the FFQ for
the assessment of macronutrient and alcohol intakes. FFQs have
been found to be prone to important measurement errors, which
has created a fair number of debates in the field of nutritional
epidemiology (Subar et al., 2015). Ultimately, replication of our
results in an independent sample will be required to confirm the
potential interactions found in our study.

CONCLUSION

In conclusion, interaction involving gene part of the
hypothalamic IKKβ/NF-κB signaling pathway were identified
using alternative statistical methods – MDR and PLR. However,
both methods found different models, and no gene–environment
interaction was found with macronutrient and alcohol intakes.
Because of this discrepancy, these results should be carefully
interpreted. Further investigation is needed in order to
determine whether any effects are real. However, this study
is the first to investigate gene–gene and gene–environment
interactions between polymorphism in NFKB1, IKBKB,
SOCS3, macronutrient and alcohol intakes, in the association
between overnutrition and obesity-related phenotypes in
human subjects. Hence, our findings offer suggestions for
future investigation of this phenomenon and contribute to the
understanding of the role of insulin and leptin resistance in
obesity pathogenesis in humans.
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