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We study the effects of local and distance interactions in the unidimensional contact

process (CP). In the model, each site of a lattice is occupied by an individual, which

can be healthy or infected. As in the standard CP, each infected individual spreads the

disease to one of its first-neighbors with rate λ, and with unitary rate, it becomes healthy.

However, in our model, an infected individual can transmit the disease to an individual

at a distance ℓ apart. This step mimics a vector-mediated transmission. We observe

the host-host interactions do not alter the critical exponents significantly in comparison

to a process with only Lévy-type interactions. Our results confirm, numerically, early

field-theoretic predictions.
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1. INTRODUCTION

The contact process (CP) [1] is a stochastic epidemics model with spatial structure [2]. In the CP,
each individual inhabits a site on a d−dimensional lattice and can be in one of two states: healthy or
infected. Each infected individual transmits the disease to one of its nearest-neighbors with rate λ,
or become healthy with a unitary rate.When the transmission rate λ is varied, the system undergoes
a phase transition between disease-free and endemic phases.

Apart from its interest as an elementary spatial model of epidemic spreading, the critical
behavior of the CP (and its variations) is interesting in the study of non-equilibrium universality
classes. The disease-free state is an absorbing state, a frozen state with no fluctuations [3–7].
Non-equilibrium phase transitions into absorbing states have been a topic of much interest
in recent decades. In addition to their connection with epidemics, they appear in a wide
variety of problems, such as heterogeneous catalysis [8], interface growth [9], population
models, and ecology [10]. Recent experimental realizations in the liquid crystal electroconvection
[11], driven suspensions [12], and superconducting vortices [13] have heightened interest in
absorbing transitions.

It is expected that absorbing state phase transitions in models with a positive unidimensional
order parameter, short-range interactions, and without additional symmetries or quenched
disorder belong generically to the universality class of directed percolation (DP)[14, 15]. Including
long-range interactions in spreading processes can provide more realistic models, instead of
short-range models as the original CP, for example, to model spreading of vector-borne diseases
[16]. One of the first approaches was the model proposed by Grassberger [17], based on the original
idea presented in Mollison [18]. In his model, the infection probability obeys a Lévy flight decaying
as a power-law relation 1/rα+d with the distance r, where d is the spatial dimension of the system
and α is a control parameter. Simulational [19, 20] and field-theoretical renormalization group
analysis [21] revealed that such anomalous directed percolation presents critical exponents varying
continuously with the parameter α.
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A generalized version of the unidimensional CP where
inactive (healthy) sites can be activated (infected) over long
distance was introduced by Ginelli et al. [22, 23], inspired
by pinning-depinning transitions in non-equilibrium wetting
phenomena. In such model, an active site infects an inactive
with rate q/ℓα , where q is the coordination number and ℓ

is the distance between both sites. Depending on the value
of the control parameter α, the contact process with long-
range interactions exhibits a rich phase diagram, with distinct
universality classes and discontinuous phase transitions [20, 22–
24]. The robustness of these discontinuous phase transitions was
studied in Fiore and de Oliveira [25]. More recent studies focused
on the effects of quenched disorder [26] and diffusion [27].
Inspired by diseases that can spread via host-host in addition
to long-distance spreading, in this work, we examine the effects
of an additional local infection in the unidimensional CP with
Lévy flights.

The remainder of this paper is organized as follows. In section
2 we introduce the model and methods used in our analysis. In
section 3 we present our results. Section 4 is devoted to discussion
and conclusions.

2. MODEL AND METHODS

To begin, we modify the standard contact process to include long
distance infection. An infected host, placed at a site i on the
lattice, is signed by a state variable σi = 1. It infects one of its
healthy (signed by σj = 0) nearest-neighbors with rate λh, or
become healthy with rate µ = 1. In addition, the infected host
can infect a healthy individual located at some distance, with
rate λv. Here, λv and λh are the control parameters that govern
the epidemic spreading. Each flight is described by using a Lévy
distribution [28], which is characterized by an exponent α. These
events are schematically represented in Figure 1. Note that the
evolution occurs in two independent steps, one concerning direct
host-host infection, and the other, vector-mediated infection,
related to the flights.

This model can be interpreted as a prototypical model for
diseases which can spread via vectors which can transmit the

FIGURE 1 | Transition rates for the model. Red circles represent infected and

the blue ones represent the healthy individuals. (Top) Local infection (An

infected individual transmites the disease to one of its first neighbors with rate

λh/2, or become healthy with rate µ.). (Bottom) Long-distance infection (An

infected individual transmites the disease to another individual with rate λv/2ℓ,

where ℓ is the distance between the individuals).

pathogen over long distances, and also by direct host-host
contact. Since the CP is a spatial lattice model, it is in a core
of models used in Ecology to investigate criticality in process
determined by the local structure (configuration of trees) [29].
In nature, it is possible to occur long-range infections, as, for
example in orchards where flying parasites contaminate the
trees almost instantaneously in a widespread manner if the
timescale of the flights of the parasites is much shorter than
the mesoscopic timescale of the epidemic process itself [30].
We should remark, however that our model is not suitable for
modeling the spreading of human diseases such as the Zika virus,
which is transmitted by mosquitoes, and by parental or sexual
contact [31–33]. The length of intrinsic and extrinsic incubation
periods of human vector-mediated diseases can be up to 2 weeks,
and it is an essential factor that determines the transmission
dynamics. In addition, differently from trees, the human contact
network is not a lattice, but instead a complex network, which
also affects drastically the epidemic spreading [34–36]. Both
factors should be introduced in the model in a future work, if
one intends modeling such diseases.

In the simulation scheme, each step is divided in two events:
(i) local, where an infected individual infects one of its neighbors
(chosen at random) with probability q = λh/(1 + λh) or it
becomes healthy with probability ν = 1/(1+λh); (ii) long-range,
where an individual is infected with probability q′ = λv/(1+λv),
or nothing happens with probability v′ = 1/(1+λv). To improve
efficiency, we maintain a list of infected individuals, and time is
updated as1t = 1/Ninf at each iteration (hereNinf is the number
of infected individuals).

The implementation of the vector flies consider a Lévy-
distributed random variables. The strategy to obtain such
random flies is based on a non-linear transformation of Gaussian
random variables [37]. This strategy is based on the following
recipe: ( i) First, a random variable V distributed homogeneously
on (−π/2,π/2) is generated. (ii) Second, an exponential variable
W with unity mean is generated. (iii) Finally, we compute the
random variable ℓ [38], following

ℓ =
sin(αV)

[cos(V)]
1
α

{

cos[(1− α)V]

W

}

1− α

α , (1)

where α is a control parameter of the length of the flies (this
results in random flies with probability distribution function of
length decaying as ℓ−(1+α)) [38].

We have done dynamical and stationary simulations. The
dynamical simulations follow the system stochastic evolution
from spreading (where the system is initialized with a “seed”,
i.e., only one site is infected at t = 0), and initial decay studies
(here the system evolves from a full infected lattice). On the other
hand, in the stationary simulations, we are interested in the (long-
time) time independent behavior. Stationary analysis nearby
the critical point of systems with transitions into absorbing
states are hard to be done due to strong finite size effects.
This is consequence of that, in conventional simulations, small
systems quickly become trapped in the absorbing state (in this
case, we can say of a quasistationary state (since the only true
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FIGURE 2 | Phase diagram in the λv × λh plane, showing the inactive and

active phases, for α = 0.5, 1.0, 1.5, and 2.0 (from left to right).

stationary state is the absorbing one). In order to circumvent
such difficulties, we employ a simulation method that yields
quasistationary (QS) properties directly [39, 40]. The method
is based in maintaining, and gradually updating, a list of M
configurations visited during the evolution; when a transition
to the absorbing state is imminent, the system is instead placed
in one of the saved configurations. Otherwise, the evolution is
exactly that of a conventional simulation. This procedure results
in an unbiased sampling of the quasistationary distribution of the
process, and improve the statistics.

3. RESULTS AND DISCUSSION

In order to analyze the dynamical scaling of the model
at criticality, we employed initial decay simulations in a
unidimensional lattice of L sites (with periodic boundary
conditions). The initial decay studies use an initial configuration

with all sites occupied. The order parameter ρ(t) =
1

L

∑

σi is the

density of active sites, i.e., the fraction of infected individuals. At
the critical point, one expects to observe a power-law behavior of
the density

ρ(t) = t−δ , (2)

until it saturates at its QS value. The larger the system size, the
longer the period of power-law decay, and the more precise the
resulting estimate for the critical exponent δ. In the initial decay
studies, we have used systems with size up to L = 108, and
averages are taken over up to 106 runs.

From the spreading simulations, we observe there is a critical
value of (λh,λv) above which the activity survives, while for values
below such critical point, the system becomes trapped in the
absorbing state. The phase diagram obtained in the λh × λv
plane is plotted in Figure 2. As expected, the absorbing phase
is larger when α increases, since small values of α favor the
epidemic spreading.

FIGURE 3 | Decay of ρ from an initial configuration with all sites infected for

distinct values of λh, for α = 1.5. The straight lines are linear regressions from

the data. The inset shows that ρ/tδ converges to constant values in all cases,

confirming the accuracy of the regressions.

In Figure 3, we show the critical decay of the density of active
sites, for distinct values of λh and α = 1.5. In all cases, we
observe a power law decay at criticality. Analysis from the data
obtained yields the values of the critical exponent (δ) reported
in Table 1. The inset in Figure 3 shows that ρ/tδ converges
to a constant value, therefore confirming the accuracy of the
exponents obtained. We note the transient behavior is longer for
larger values of λh. Also, the increase of λh alters only slightly
the value of the exponent δ. Figure 4 shows the evolution of the
average density of infected sites for distinct values of α. Increasing
α, we observe a slower decay, as expected, since in such case, the
flights are short-ranged. Increasing α, the results become close to
the original CP, with the critical exponent δ converging to the DP
value, δ = 0.159, as shown in Table 1.

From the data in Table 1, we observe that higher values of α

recover the DP critical behavior, which presents δ = 0.15947 [3].
On the other hand, decreasing the value of α, the exponent δ

approaches the mean-field value δ = 1. The critical exponent
δ varies continuously between these limits. We observe that
the effects of λh are more pronounced for lower values of α,
since the exponent δ varies from 0.95 to 0.82 when α = 0.5.
We note, however, that α = 0.5 is a crossover point, where
the dynamical behavior is often plagued by huge corrections to
scaling. Otherwise, for higher values of α the exponent does not
alter significantly. Finally, in comparison with the results for the
CP with only Lévy-type infection (i.e, with λh = 0.0) [19], we
observe the non-universal critical exponents are closer the DP
values (for the same value of α) when the host-host infection
is introduced. For example, in [19] it was found δ = 0.21 for
α = 2.0 and δ = 0.94 for α = 0.5, in contrast to δ = 0.16 and
δ = 0.82, respectively, in the present work with λh = 3.0.

Now, we turn to the static, long-time behavior, represented by
the quasi-stationary state. In the QS simulations, we have used
system sizes ranging from L = 102 to L = 105. Each simulation
ran until t = 108, and averages were taken over 103 runs. We
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TABLE 1 | Critical values of the control parameter, λ∗v , and critical exponent δ as a function of λh for α = 0.5, 1.0, 1.5, and 2.0.

α

0.5 1.0 1.5 2.0

λh λv δ λv δ λv δ λv δ

0.1 7.68415 (5) 0.94 (1) 13.5159 (5) 0.50 (1) 28.8596 (5) 0.29 (2) 77.98 (1) 0.16 (1)

0.5 1.24847 (5) 0.91 (1) 2.0433 (1) 0.51 (2) 3.4256 (1) 0.28 (1) 5.8545 (5) 0.16 (1)

1.0 0.446503 (5) 0.89 (1) 0.764393 (5) 0.49 (1) 1.2614 (1) 0.29 (1) 1.9832 (5) 0.16 (1)

1.5 0.19355 (1) 0.89 (1) 0.36126 (1) 0.49 (1) 0.6185 (1) 0.26 (1) 0.9578 (1) 0.16 (1)

2.0 0.081827 (1) 0.89 (2) 0.1728 (1) 0.49 (2) 0.3177 (1) 0.26 (1) 0.4972 (1) 0.16 (1)

2.5 0.027251 (1) 0.85 (2) 0.07132 (1) 0.49 (2) 0.1477 (1) 0.26 (1) 0.2378 (1) 0.16 (1)

3.0 0.003903 (1) 0.82 (2) 0.015922 (5) 0.48 (2) 0.0425 (1) 0.23 (2) 0.07258 (1) 0.16 (1)

FIGURE 4 | Decay of the density of infected sites ρ from an initial

configuration with all sites infected for distinct values of α, with λh = 1.0. The

straight lines are linear regressions from the data.

used a list of sizeM = 2, 000. At the critical point, the finite-size
theory [3] implies the quasistationary order parameter ρqs decays
with the system size as a power law

ρqs ∼ L−β/ν⊥ . (3)

In Figure 5, we show the QS density of infected sites (ρqs) as
a function of the system size L, for α = 1.5. We observe
that at criticality, ρqs scales as a power law with exponent ratio
β/ν⊥ = 0.45, 0.42, 0.42, 0.43, 0.42, 0.41, and 0.44 for λh =

0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, respectively. Hence, we can
conclude that the exponent β/ν⊥ is independent of λh.

In Figure 6, we evaluate the behavior of the lifetime τ of the
QS state at the criticality, which is expected to scale as

τ ∼ Lz , (4)

with z = ν‖/ν⊥ (here, we evaluate the lifetime as the time
between two consecutive visits to the absorbing state). Analysis
from the data yields z = 0.84, 0.83, 0.83, 0.80, 0.82, 0.84, and
0.83 for λh = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, respectively.

FIGURE 5 | Finite size scaling of the QS density ρqs, for α = 1.0 and

λh = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0.

FIGURE 6 | Finite size scaling of the QS lifetime τqs, for α = 1.5 and

λh = 0.5, 1.0, 2.0, and 3.0.

Therefore, this exponent also is not affected by the host-host
interaction. Results of the QS simulations for distinct values of
α are reported in Table 2. We observe that in all cases the critical
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TABLE 2 | Critical values of the control parameter, λ∗v , and critical exponent δ as a function of λh for α = 0.5, 1.0, 1.5 and 2.0.

α

0.5 1.0 1.5 2.0

λh β/ν⊥ z β/ν⊥ z β/ν⊥ z β/ν⊥ z

0.1 0.55 (2) 0.56 (1) 0.45 (1) 0.84 (2) 0.36 (2) 1.20 (3) 0.26 (2) 1.60 (3)

0.5 0.52 (2) 0.56 (1) 0.42 (2) 0.82 (2) 0.35 (2) 1.18 (4) 0.26 (2) 1.53 (2)

1.0 0.51 (1) 0.56 (1) 0.42 (2) 0.82 (1) 0.34 (1) 1.16 (4) 0.25 (2) 1.56 (4)

1.5 0.50 (1) 0.56 (1) 0.43 (1) 0.80 (1) 0.35 (2) 1.09 (3) 0.26 (3) 1.60 (3)

2.0 0.49 (1) 0.58 (1) 0.42 (2) 0.82 (1) 0.34 (3) 1.14 (3) 0.23 (4) 1.67 (3)

2.5 0.50 (2) 0.58 (2) 0.42 (2) 0.83 (2) 0.33 (2) 1.17 (3) 0.26 (3) 1.53 (3)

3.0 0.50 (2) 0.60 (2) 0.43 (2) 0.83 (2) 0.34 (6) 1.24 (3) 0.27 (3) 1.52 (3)

exponents obtained from the QS simulations are not significantly
affected by the host-host infection.

In resume, we conclude that the introduction of a local
host-host interaction in epidemics with Lévy-type long-range
interactions does not affect the long-time critical behavior. On
the other hand, we observe an anomalous spreading observed for
the dynamical critical exponent for α = 0.5.

4. CONCLUSIONS

We have proposed a variation of the contact process that includes
both local (host-host) and long-distance (vector-mediated)
interactions. We observe the host-host interactions does not
alter the static and dynamical critical exponents significantly in
comparison to a process with only Lévy-type interactions. Our
results are in agreement with early field-theoretic results [30],
which revealed that the relative strength of short-and long-range
interactions do not affect the critical behavior. Our results also
show an anomalous spreading, with the dynamical exponent
varying continuously with the host-host infection rate, when α =

0.5. However, we should remark that at this crossover point, the
dynamical behavior is affected by huge corrections to scaling, and
we cannot discard that this difference could vanish for sufficient
long times (note that the static simulations show the same set of
exponents for all values of α). Finally, in the limit in which the
host-host infection vanishes, ourmodel reduces to the anomalous

contact process proposed in [19], and our results in this limit
confirm the critical behavior obtained previously in the literature.

A promising extension of the present work includes the
study of the model under the influence of temporal disorder
[41, 42], that could, for example, affect only the vector-mediated
infection, reflecting seasonal variations [16]. Another critical
issue is the effect of local interaction in the robustness of the
discontinuous phase transition exhibited by some classes of long-
range models [22, 23, 43].
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