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CO2 Electroreduction in Ionic Liquids
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CO2 electroreduction is among the most promising approaches used to transform

this green-house gas into useful fuels and chemicals. Ionic liquids (ILs) have already

proved to be the adequate media for CO2 dissolution, activation, and stabilization of

radical and ionic electrochemical active species in aqueous solutions. In general, IL

electrolytes reduce the overpotential, increase the current density, and allow for the

modulation of solution pH, driving product selectivity. However, little is known about

the main role of these salts in the CO2 reduction process the assumption that ILs

form solvent-separated ions. However, most of the ILs in solution are better described

as anisotropic fluids and display properties of an extended cooperative network

of supramolecular species. That strongly reflects their mesoscopic and nanoscopic

organization, inducing different processes in CO2 reduction compared to those observed

in classical electrolyte solutions. The major aspects concerning the relationship between

the structural organization of ILs and the electrochemical reduction of CO2 will be critically

discussed considering selected recent examples.
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INTRODUCTION

The reduction of atmospheric carbon dioxide (CO2) is one of the major challenges of modern
life. This is due to the atmospheric increase in this gas by contemporary industrial activity and
its contribution to possible global warming issues, the consequences of which can affect the
future generation (Mac Dowell et al., 2017). Hence, alternative sources of energy that decrease the
use of fossil fuels, as well as the reduction of the CO2 concentration in the air atmosphere, are
required. One of the most elegant ways to achieve this objective is the catalytic transformation of
CO2 into C1 feedstocks and fuels.

Efforts have been undertaken to use the sustainable energy of sunlight, directly or indirectly, to
convert CO2 by photocatalytic chemistry (Sasirekha et al., 2006; Habisreutinger et al., 2013; Dong
et al., 2018; Lin et al., 2018), electrochemical (Dong et al., 2018; Francke et al., 2018; Resasco et al.,
2018; Yuan et al., 2018), and photo-electrochemical approaches (Barton et al., 2008; Kaneco et al.,
2009; Sahara et al., 2016). For a sustainable and high energy efficiency process, CO2 electrochemical
reduction reaction (CO2ERR) is expected to exhibit a high Faradaic efficiency at a low overpotential.
In this vein, ionic liquids (ILs) are among the most promising materials under investigation due
their unique physico-chemical properties.

This is mainly due to IL selectivity and relatively high CO2 absorption capacity, as well as
their ability to stabilize charged CO2 species (Shkrob and Wishart, 2009). ILs also present a wide
electrochemical window (Hayyan et al., 2013), thermal and chemical stability (Cao and Mu, 2014),
negligible volatility (Anthony et al., 2001), and possible use as electron transfer mediators for redox
catalysis (Balasubramanian et al., 2006), which makes them an interesting alternative to promote
the CO2ERR. The technology for using CO2 as a renewable energy carrier is still far from practical
application, making the design of novel electrochemistry technologies using ILs for the CO2ERR a
“hot” field for recent research.
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The real challenge for sustainable and high energy efficiency
processes, and turning them into practical alternatives, is to
develop a way to lower the energy barrier for CO2ERR due to
the high stability of this compound. Decreasing the overvoltage
of the reaction as much as possible will make the CO2 fixation
costs low enough for practical use (Haran et al., 1998).

The objective of the present review is to highlight the
use of ILs for CO2ERR, and the influence in the reactions
that have been attempted to this purpose. CO2ERR using ILs
is able to provide high product selectivity and conversion
efficiency (Alvarez-Guerra et al., 2015) (Table 1). There are
several reviews on electrochemistry in ILs, but the main aspects
related to the roles of these fluids are only marginally treated for
specific applications (Buzzeo et al., 2004; Silvester and Compton,
2006; Hapiot and Lagrost, 2008; Ohno and Fukumoto, 2008;
Rees and Compton, 2011).

The role of the IL has been described as mainly absorbing CO2

and stabilizing the CO•−

2 (radical anion) that is related to the
electronic properties imposed by both the cation and anion. It
appears that in ILs containing basic anions the role of the IL is
not only related to the formation and stabilization of CO•−

2 , but
also the pH control of the reaction mixture. We will first briefly
discuss the structural organization of bare ILs and solutions of
ILs. Second, the formation and stabilization of CO−

2 in solutions
(aqueous and organic) of ILs associated with non-basic anions
will be addressed. Thirdly, CO2ERR employing ILs containing
basic anions, in which the role of bicarbonate and buffering
will be detailed. Finally, the influence of the macroscopic and
nanoscopic properties of ILs in solution on CO2 diffusion and
electrochemical activation are discussed considering the most
recently published results.

BARE ILS AND IL SOLUTIONS

The well-known and unique physical-chemical properties cited
above are attributed to the structural organization of bare ILs,
which are highly ordered fluids described as a well-organized
hydrogen-bonded polymeric supramolecular structure in the
solid, liquid phase and is apparently maintained to a great extent
even in the gas phase. The most investigated classes of ILs are
imidazolium salts, and their properties can be finely tuned by
varying the N-alkylimidazolium substituents (Dupont, 2004).

However, taking into account that water-free ILs are extremely
difficult to obtain, it is expected that even traces of water may
present a profound effect on the organization and reactivity of
ILs at the nanoscopic level. Hence, it is important to consider
the presence of water when employing and analyzing physico-
chemical IL properties (Zanatta et al., 2016).

In the case of an aqueous system, the values of standard
reduction potentials (SRP) can be influenced by the water
and proton concentration. This effect can be derived from the
activity coefficients of the water and protons in solution. The
consequence of 18 mol% water in 1-butyl-3-methylimidazolium
tetrafluoroborate ([BMIM][BF4]) is a 6mV shift of the SRP
for the bare IL, and the addition of 0.1M HCl shifts the SRP
by 28mV (Kim et al., 2004; Matsubara et al., 2015). This

effect causes an imprecise determination of the real SRP in
CO2ERR, resulting in lower overpotentials in comparison to
the real decreasing overpotential, making a precise comparison
impossible (Matsubara et al., 2015).

When other molecules are introduced into this organization,
a disruption of the hydrogen bond network occurs, generating
nanostructures with polar and non-polar regions. Under
this condition, the concept of polarity of the solvent,
generally used to describe other solvents, cannot be applied
to ILs (Dupont, 2004). This collapsed macrostructure starts
to form contact ion pair structures, and in an infinite
diluted solution can form a solvent-separated ion pair
network (Stassen et al., 2015).

There is a general misunderstanding when correlating the
physical-chemical properties attributed to bare ILs when the
studies are made in a different concentration regime, i.e.,
with the addition of other species or solvents in the media
(MacFarlane et al., 2017).

CO•−

2 RADICAL IN ILS

After the confirmation in 2007 that ILs are able to boost
organic carbonate synthesis by electrochemistry under
ambient conditions (Zhang et al., 2008) (Table 1, entry 1),
CO2ERR with ILs has grown exponentially due to the kinetic
effects that minimize the energy necessary for intermediate
CO•−

2 formation.
The 1-ethyl-3-methyl-imidazolium trifluorochloroborate

([EMIM][BF3Cl]) IL can bind to CO2 through a Lewis base
adduct, becoming active for CO2ERR and showing a high
faradaic efficiency at low overpotentials (Snuffin et al., 2011)
(Table 1, entry 2). The capability of lowering the overpotential
for CO2ERR was also confirmed when using [EMIM][BF4] to
“stabilize” CO•−

2 (Rosen et al., 2011).
The studies presented in this review have shown

that ILs are among the most efficient materials as both
electrolytes and active functionalized materials for CO2ERR.
Therefore, they may constitute a key compound in the
development of new technologies for large-scale applicability.
The most recent report showed that methylimidazolium
groups can be attached to the periphery of an iron
porphyrin, providing a pre-organized environment that
presents excellent selectivity for CO production at low
overpotentials, with water as a solvent and proton
source (Khadhraoui et al., 2018).

However, until now, the precise mechanisms by which ILs
decrease the overpotential have not been completely elucidated.
In many cases, even the global electrochemical reactions were
not clarified, making it difficult to determine the SRP and
the real decrease in the reaction overpotential. It can be
demonstrated by the simple modification of the imidazolium
cation, able to act like a proton source to the CO2RR (Matsubara
et al., 2015), and changes the equilibrium potential of the
CO2/CO acting.

The lifetime of a radical is one important factor for the
major efficiency in CO2ERR. The lifetime of CO•−

2 was
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TABLE 1 | Selected examples of CO2ERR employing ionic liquids.

Entry Electrode Onset potential

(V)

Electrolysis potential

(V)

Faradaic

efficiency

product (%)

Current density

(mA cm−2)

Electrolyte References

1 Ag reductive peak

−1.61 V vs. Ag/AgI

−1.80V vs. Ag/AgI dimethyl

carbonate (74)

charge passed,

1.0 F.mol−1
Bare [BMIM][BF4] Zhang et al., 2008

2 Pt disk reductive peak

−1.8 V vs. silver

wire

−1.8 V vs. silver wire n/a 5.7 [EMIM][BF3Cl] Snuffin et al., 2011

3 Au n/a −1.16 vs. Ag/AgCl CO (85) 7 0.1mol dm−3 KHCO3 Ohmori et al.,

2001

4 Ag n/a −1.50 vs. cell potencial CO (96) n/a 18% [EMIM][BF4] in

water

Rosen et al., 2011

5 Bi-CMEC −1.80 vs. SCE −2.00 vs. SCE CO (82) 31 [EMIM][PF6] Medina-Ramos

et al., 2014

6 Bi-CMEC −1.80 vs. SCE −2.00 vs. SCE CO (82) 26 [EMIM][BF4] Medina-Ramos

et al., 2014

7 Bi-CMEC −1.80 vs. SCE −2.00 vs. SCE CO (79) 17 [BMIM][Cl] Medina-Ramos

et al., 2014

8 Bi-CMEC −1.80 vs. SCE −2.00 vs. SCE CO (74) 20 [BMIM][Br] Medina-Ramos

et al., 2014

9 Bi-CMEC −1.80 vs. SCE −2.00 vs. SCE CO (87) 25 [BMIM][OTf] Medina-Ramos

et al., 2014

10 Imidazole

incorporated into a

phosphonium-type

IL-modified

Au electrode

−0.32 vs. Ag/AgCl −0.80 vs. Ag/AgCl CH3OH (9)

HCOOH (30)

CO (5)

0.095 0.1mol dm−3 NaClO4 Iijima et al., 2018

11 Pb −2.30 vs.

Ag/AgNO3

−2.40 vs. Ag/AgNO3 Oxalate (78)

CO (10)

0.6 0.1mol dm−3

TEAP/ACN

Sun et al., 2014

12 Pb −2.12 vs.

Ag/AgNO3

−2.25 vs. Ag/AgNO3 Carboxylate (55)

CO (42)

0.6 0.1mol dm−3

[EMIM][NTf2]/ACN

Sun et al., 2014

13 MoO2/Pb −2.22 vs. Fc/Fc+ −2.45 vs. Fc/Fc+ HCO−

2 (38)

C2O
2−
4 (6)

CO (41)

20 0.3M [BMIM][PF6] in

ACN

Oh and Hu, 2015

14 MoO2/Pb −2.22 vs. Fc/Fc+ −2.45 vs. Fc/Fc+ HCO−

2 (18)

C2O
2−
4 (5)

CO (60)

H2 (12)

n/a 0.3mol dm−3

[BMIM][PF6] in ACN +

0.1mol dm−3 water

Oh and Hu, 2015

15 MoO2/Pb −2.22 vs. Fc/Fc+ −2.45 vs. Fc/Fc+ HCO−

2 (10)

C2O
2−
4 (5)

CO (52)

H2 (25)

n/a 0.3mol dm−3

[BMIM][PF6] in ACN +

0.2mol dm−3 water

Oh and Hu, 2015

15 MoO2/Pb −2.22 vs. Fc/Fc+ −2.45 vs. Fc/Fc+ HCO2− (6)

C2O
2−
4 (4)

CO (51)

H2 (29)

n/a 0.3mol dm−3

[BMIM][PF6] in ACN +

0.3mol dm−3 water

Oh and Hu, 2015

16 Ag ∼ −0.62 vs.

Ag/AgNO3

−0.70 vs. Ag/AgNO3 HCO−

2 (95) Charge (10C) 0.1mol dm−3

[P66614][124Triz] in ACN

+ 0.7mol dm−3 of water

Hollingsworth

et al., 2015

17 Ag ∼ −0.62 vs.

Ag/AgNO3

−1.90 vs. Ag/AgNO3 HCO−

2 (6)

CO (6)

H2 (41)

Charge (10C) 0.1mol dm−3

[P66614][124Triz] in ACN

+ 0.7mol dm−3 of water

Hollingsworth

et al., 2015

18 Ag reductive peak

−1.5 V vs. Cc+

/Cc

n/a n/a 0.7mA.cm−2 Bare [PMIM][NTf2] Tanner et al., 2016

(Continued)
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TABLE 1 | Continued

Entry Electrode Onset potential

(V)

Electrolysis potential

(V)

Faradaic

efficiency

product (%)

Current density

(mA cm−2)

Electrolyte References

19 Ag reductive peak

−1.5 V vs. Cc+

/Cc

n/a n/a −1.5 Bare [EMIM][NTf2] Tanner et al., 2016

20 Ag reductive peak

(−1.1 V vs.

Cc+/Cc)

n/a n/a −1.60 Bare [BMIM][NTf2] Tanner et al., 2016

21 Ag reductive peak

−1.05 V vs. Cc+

/Cc

n/a n/a −1.5 Bare[BMIM][NTf2] Tanner et al., 2016

22 Ag reductive peak

−1.05 V vs. Cc+

/Cc

n/a n/a −0.8 Bare [BMIM][BF4] Tanner et al., 2016

23 Ag reductive peak

−1.6 V vs. Cc+

/Cc

n/a n/a 0.75 Bare [BMIM][FAP] Tanner et al., 2016

24 Ag −2.20 V vs.

Fc+/Fc

−2.4 V vs. Fc+/Fc n/a ∼10.0 0.1M [Bu4N][PF6] +

0.02M [Ethyl 2-Methyl

Imimidazolium][BF4 ] +

Lau et al., 2016

25 Ag −2.15 V vs.

Fc+/Fc

−2.4 V vs. Fc+/Fc n/a ∼16.0 0.1M [Bu4N][PF6] +

0.02M [Ethyl 2,3-

dimethyl

Imimidazolium][BF4 ]

Lau et al., 2016

26 Ag −2.30 V vs.

Fc+/Fc

−2.4 V vs. Fc+/Fc n/a ∼5.5 0.1M [Bu4N][PF6] +

0.02M [Ethyl 2,3,4,5-

tetramethyl

Imimidazolium][BF4 ][BF4]

Lau et al., 2016

determined by pulse radiolysis time-resolved resonance
Raman spectroscopy to be 10 ns (Janik and Tripathi,
2016). Furthermore, the dynamic effect of recombination
depends on the surroundings (Figure 1A). A change
in the surroundings is possible by an alteration of the
ILs (Strehmel, 2012).

The physical absorption of CO2 is possible because of the
ability of ILs to confine CO2 inside cavities near alkyl groups
and aromatic protons (H4 and H5) of the IL, an interaction
that does not compete with the interaction of the IL counter ion
(Corvo et al., 2013).

ILs also play a role similar to surfactants near the electrode
(Figure 1D), where imidazolium cations help the stabilization
of CO2•−, avoiding the dimerization process, inhibiting oxalate
production, favoring CO, and decreasing the overpotential (Sun
et al., 2014) (Table 1, entry 11–12).

According to a proposed mechanism (Duong et al., 2004),
ILs can chemically adsorb CO2 through a carboxylation process
on the imidazolium C2 position for the decreases in CO2ERR
overpotential and posterior formation of CO. Following this
mechanism, other CO2ERR studies were made with the IL C2
position protected with amethyl group to avoid the carboxylation
process (Sun et al., 2014). Higher CO formation was observed,
indicating that the process does not depend exclusively on
carboxylation of the C2 position.

BASIC ILS AND THE BICARBONATE
EFFECT

Anion basicity is also an important issue. By adjusting this
property, it is possible to obtain high adsorption values and,
in some cases, a positive effect in the presence of water
(Wang et al., 2011; Taylor et al., 2015). Reversible carbonate
formation when using gasmixture ILs has already been proposed,
considering that CO2 capture can form bicarbonate species in
solution (Ma et al., 2011; Anderson et al., 2015). Bicarbonate
species formation is more efficient and more frequent than
expected when there is water contribution to the reactivity
and self-organization of ILs, providing a third kind of sorption
mechanism (Simon et al., 2017; Qadir et al., 2018).

The absorption parameters of CO2 by ILs can make efficient
diffusion mass transport to the electrode surface with high
adsorption possible. There are two main processes of CO2

adsorption by ILs: non-covalent interactions, i.e., physical
adsorption of CO2, mainly in ILs with non-basic nucleophilic
anions, such as hexafluorophosphate and bis(trifluoromethyl)
sulphonyl amide (Figure 1A), and chemical adsorption by
carboxylation and CO2 conversion to bicarbonate in proton-
rich media, occurring mainly in ILs with acid protons for easy
deprotonation and basic anions, such as acetate and imidazolium
(Figure 1B) (Simon et al., 2017).
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FIGURE 1 | (A) CO2 adsorption phenomena in ILs, (B) bicarbonate equilibrium for the acetate anion in the presence of water and CO2, (C) Effect of lower viscosity

and higher current density in ILs solutions and (D) a supramolecular-like effect near the electrode.

The role of water on CO2ERR has been described (Simon
et al., 2017), where depending on the IL anion structure, the
reaction of CO2 with the confined and “activated” water can shift
the equilibrium to bicarbonate (Figure 1B). Water activation can
even occur in some IL aqueous solutions that act as a neutral base
catalyst as well as a proton buffer.

In the same study, it was also reported that basic ILs
with acetate and imidazolate anions in aqueous solutions can
have buffer properties. It is possible, considering that the
retained water molecules by the contact ion couple are active
and react reversibly with CO2, to form bicarbonate species
in solution. Therefore, water and CO2 are active species in
these solutions and can modify the mechanistic steps from the
bicarbonate formation.

NEAR ELECTRODE ORGANIZATION ILS

For desired applications, better understanding of the self-
organization of ILs is crucial. Some properties, such as viscosity,
conductivity, polarity, and thermic properties, are important
for better understanding the ILs influences on the radical
stabilization process for CO2ERR (Strehmel, 2012).

The diffusion of species in ILs may be strongly affected
by both the macroscopic viscosity of ILs and molecular
parameters related to structural phenomena, like the
microviscosity (Yago and Wakasa, 2011; Strehmel, 2012).
These regions play an important role when confining species
near the electrode in the Helmholtz plane and diffusion layer,
favoring synergistic effects capable of inducing and catalyzing
specific reactions.

It was proposed that the reduction in the overpotential
for CO2ERR when using [EMIM][BF4] was a result of the
cation complexing with CO•−

2 (Rosen et al., 2011). Indeed,
when using 1-butyl-1-methylpyrrolodinium, a cation unable
to realize π- π interactions (Tanner et al., 2016) (Table 1,
entries 18–23), the overpotential decreases at comparable value
than using cations able to realize it. This suggests that the
interaction previously proposed by Rosen et al. (2011) is
probably unlikely in the reduction of the overpotential. This
leads to another assumption proposed by a different mechanism,
which is an inner-sphere process (Tanner et al., 2016). This
mechanism involves the previous desorption of the cation
from the silver electrode surface, allowing CO2 to access
the surface, before the irreversible CO2ERR. However, it is
assumed in this case that ILs are free ions and not structured
as ion pairs and aggregates, as usually observed in solution
(Stassen et al., 2015).

When the anion of the [BMIM] IL was varied, the current
density increase was observed in the following order: 1-butyl-
3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate
([BMIM][FAP]), [BMIM][BF4], and 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide
([BMIM][NTf2]) (Tanner et al., 2016) (Figure 1C). For the
[BMIM] ILs with different anions the increase of density current
(at high dilution) follows the same trend of viscosity decreasing
(at low dilution) (Paduszynski and Domanska, 2014).

Such effects are also observed when varying the IL cation, with
the same trend of increasing current density with the decrease in
viscosity (Figure 1C) (Reche et al., 2014).

The solubility of CO2 in conventional ILs, such as [BMIM]
and [EMIM], can increase according to the alkyl chain increase
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(Reche et al., 2014). The solubility is also correlated with
the anion nature, increasing with the fluorination nature
from the anion, indicating that CO2 solubility increases with
charge delocalization.

The viscosity effect on lifetime, mobility, dimerization, and
radical coordination in ILs was evaluated (Strehmel, 2012),
where the radical lifetime and the recombination dynamic are
extremely dependent on the environment. An example of this
recombination is that the increase in the IL concentration
caused a decrease in oxalate production from CO2ERR and an
increase in CO (Sun et al., 2014). This indicated that the IL
was able to immobilize CO•−

2 at the electrode surface, making
the dimerization process more difficult and, consequently,
decreasing oxalate production.

The interaction between [IM]+ and CO•−

2 was also studied
(Lau et al., 2016) and the 4 and 5 positions of [IM]+ were able to
make hydrogen bonds with the radical, providing higher current
density compared to the substituted [IM]+ at the same positions
(Table 1, entries 24–26).

The radical stabilization, increase in lifetime, mobility, and the
observation that ILs of [IM]+ can promote hydrogen bonds with
the radical lead to the idea that reactive microregions could be
formed at the electrode surface.

The concept of microregions was demonstrated through
theoretical calculations (Lim et al., 2018), wherein the formation
of microenvironments promotes the formation of a “cage”
capable of promoting CO2ERR. It was also demonstrated
through calculations that instead of the conventional idea
of an intermolecular bond between the IL and CO•−

2 , the
microregion effect promotes better catalytically efficiency, even
in diluted conditions. This mechanism suggests that even in high
diluted solutions, there is an important relationship between the
volume properties, such as resistance, solubility, gas diffusivity,
and viscosity.

This corroborates the idea of a microenvironment, similar
to the supramolecular structures formed in low diluted ILs.
The increase in IL concentration near the electrode surface was
proven by the Helmholtz and diffusion layer, which considerably
increases the electrolyte concentration in this region (Figure 1D).

The idea that the electric field effect at near electrode
surface leads to a local rise of the IL concentration (Lim
et al., 2018), is supported by the relationship among current
density, viscosity, reduction of dimerization effect, and
microenvironments formation.

These increases in concentration, even in diluted solutions, are
able to induce the formation of a thin organized structure on the
double layer region and diffusion layer, promoting considerable

local concentration increase in the solution (Yochelis et al., 2015).
The concept presented here brings a new point of view

to CO2ERR based on concepts already known regarding the
supramolecular structures of ILs, taking a step forward toward
the precise determination of the CO2ERR mechanism in ILs
based on macro and microstructuration.

CONCLUSIONS

For CO2ERR, ILs play a significant role due their distinct
physical chemistry properties, the tuning of the reactions
conditions, the assistance with CO•−

2 stabilization, the decrease
in overpotential, and the increase in faradaic efficiency and
current density.

The basicity of the anion has been shown to play an important
role in CO2ERR, helping to obtain high adsorption values and
positive effects in the presence of water. The CO2 capture and
formation of bicarbonate species combined with the reactivity
and self-organization of ILs can exhibit a different sorption
process in proton-rich media, occurring mainly in ILs with acid
protons and basic anions, such as acetate and imidazolate. This
equilibrium with bicarbonate can be shifted with confined water
activation by the IL anion structure, which acts like a neutral base
catalyst as well as a proton buffer.

ILs have shown notorious participation in CO2ERR, being
involved in distinct ways, from diluted to bare ILs. This capacity
of self-organization is able to confine species and favor synergistic
effects that are capable of inducing and catalyzing specific
reactions. When ILs are exposed to an electric field in the case
of electrocatalysis, the cited self-organization is able to form a
microenvironment, even in diluted conditions, increasing the IL
concentration near the electrode surface.

Further efforts are needed for understanding the global
reaction mechanism, with the aim of improving the research and
helping solve atmospheric CO2 problems, especially with regards
to the generation of clean energy carriers.
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