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Cell reprogramming has played important roles in medical science, such as tissue repair,

organ reconstruction, disease treatment, new drug development, and new species

breeding. Oct4, a core pluripotency factor, has especially played a key role in somatic

cell reprogramming through transcriptional control and affects the expression level of

genes by its combination intensity. However, the quantitative relationship between Oct4

combination intensity and target gene expression is still not clear. Therefore, firstly, a

generalized linear regression method was constructed to predict gene expression values

in promoter regions affected by Oct4 combination intensity. Training data, including Oct4

combination intensity and target gene expression, were from promoter regions of genes

with different cell development stages. Additionally, the quantitative relationship between

gene expression and Oct4 combination intensity was analyzed with the proposed model.

Then, the quantitative relationship between gene expression and Oct4 combination

intensity at each stage of cell development was classified into high and low levels.

Experimental analysis showed that the combination height of Oct4-inhibited gene

expression decremented by a temporal exponential value, whereas the combination

width of Oct4-promoted gene expression incremented by a temporal logarithmic value.

Experimental results showed that the proposed method can achieve goodness of fit

with high confidence.

Keywords: cell reprogramming, Oct4, transcription factor binding site (TFBS), combination intensity, generalized

linear regression model, gene expression pattern, prediction

INTRODUCTION

Somatic cells can be reverted to a pluripotent stem cell by cell reprogramming. Cell reprogramming
has been significant in many domains of biological and medical science, including tissue repair,
organ reconstruction, disease pathogenesis, and new drug development (Wernig et al., 2007; Park
et al., 2008). Earlier, the nuclear transfer method was the main method to cultivate new individuals.
However, this method was very controversial in terms of ethics (Gurdon, 1958; Campbell et al.,
1996; McCreath et al., 2000; Polejaeva et al., 2000). Recently, study of cells induced to reprogram
through specific transcription factors became a hotspot. This method solved the problem of
immune rejection of allogeneic cells. In this way, the patient-specific stem cells were obtained
without ethical controversy (Lv et al., 2018; Poli et al., 2018; Stadhouders et al., 2018).
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As an important regulatory element, transcription factor
(TF) was involved in the regulation of transcription initiation,
and binding sites of TFs in promoter regions affected gene
expression (Duren et al., 2017). Oct4, a core transcription factor,
played an important regulatory role in stem cell self-renewal and
pluripotency maintenance. It controlled the development and
differentiation of early embryos and was highly expressed in a
variety of stem cells, including germ cells, embryonic stem cells
(ESCs), embryonic germ cells (EGCs), and embryonic tumor
cells. In an experiment of mice, Oct4 was observed to play
a central role in the cellular pluripotency regulatory network,
which reprogramed somatic cells into induced pluripotent stem
cells (iPSCs) by expressing transcription factors Oct4, Sox2, Klf4,
and c-Myc ectopically (Chen et al., 2016). Another study showed
that pluripotent stem cells can be obtained by adding Oct3/4,
Sox2, c-Myc, and Klf4 to the fiber cells of mice (Boyer et al., 2005).
Regulation of these transcription factors on target genes was
achieved mainly through the interaction of feedforward systems,
self-regulatory networks and other signaling pathways (Boyer
et al., 2005).

Oct4-binding sites in promoter regions were closely related to
gene expression (Chen et al., 2016). However, the relationship
between Oct4 combination intensity in promoter regions and
gene expression remained unclear. Therefore, in this paper, a
generalized linear regression model was proposed to analyze
the relationship between gene expression and Oct4 combination
intensity in promoter regions.

The rest of paper was organized as follows. section Related
Work introduces related work on cell reprogramming and gene
expression; section Materials and Methods provides materials
and methods, including source of data, the proposed generalized
linear regression model and evaluation criteria of model
performance; section Results and Analysis contains detailed
experimental results and analysis, including the solution result
and performance analysis of our proposed model, analysis
of factors affecting gene expression on every stage of cell
development, and applications of our proposed model in gene
classification; and section Conclusion summarizes the contents
of this paper.

RELATED WORK

Previous studies reported mechanisms and methods of cell
reprogramming. Earlier, Gurdon et al. applied the nuclear
transfer method to cell reprogramming of Xenopus laevis
(Gurdon, 1958). Campbell, McCreath, and Polejaeva cultivated
cloning animals using nuclear transfer technology (Campbell
et al., 1996; McCreath et al., 2000; Polejaeva et al., 2000).
Håkelien and Hochedlinger analyzed a cell recombination
mechanism based on nuclear fusion and nuclear transfer
technology (Håkelien et al., 2002; Hochedlinger and Jaenisch,
2002). Later, Stadtfeld and Zardo analyzed the effects of specific
transcription factors and epigenetic plasticity of chromatin
on cell reprogramming (Stadtfeld et al., 2008; Zardo et al.,
2008). Studies by Hanna and Li showed that overexpression of
transcription factor Oct4 had an effect on cell reprogramming

(Hanna et al., 2009; Li et al., 2009). Doege et al. elaborated the
effects of the interaction of Oct4, Sox2, Klf4, and c-Myc on
cell reprogramming in the early stages of cell reprogramming
(Doege et al., 2012). Apostolou and Chen found that the dynamic
mechanisms of chromatin change and DNA methylation had
important effects on cell reprogramming (Apostolou and
Hochedlinger, 2013; Chen et al., 2013). Koqa et al. analyzed the
role of transcription factor Foxd1 in cell reprogramming (Koga
et al., 2014). Recently, Poli and Stadhouders elaborated the roles
of specific transcription factors used as inducing factors in cell
reprogramming (Poli et al., 2018; Stadhouders et al., 2018).

The process of cell reprogramming was closely related to
the regulation of gene expression. Moreover, regulation of gene
expression is the molecular basis of many life activities, including
cell differentiation, morphogenesis, and ontogeny (Chen et al.,
2016). Earlier, Chen and Rimsky analyzed regulation effects of
cis- and trans-regulatory elements on gene expression (Rimsky
et al., 1989; Chen et al., 1990). Later, Ueda et al. analyzed
effects of diurnal variation of transcription factors on gene
expression (Ueda et al., 2002). Patricia et al. analyzed effects
of the interaction of cis- and trans-regulatory elements on
gene expression (Wittkopp et al., 2004). Sullivan CS et al.
studied the regulation effect of microRNAs encoded by SV40
on gene expression (Sullivan et al., 2005). Jeffery et al. found
factors related to gene expression using gene expression data
and binding sites of transcription factor (Jeffery et al., 2007).
Han et al. found that certain types of genomic organization
by SATB1 had an effect on gene expression (Han et al.,
2008). Afterward, Costa et al. predicted gene expression in T
cell differentiation by using histone modification and binding
affinity of transcription factor via a linear mixed model (Costa
et al., 2011). Maienscheincline et al. searched for target genes
regulated by transcription factors based on some information,
including binding sites of transcription factors and target genes
(Maienschein-Cline et al., 2012). MT and Holoch analyzed the
effects of specific transcription factors and the regulation effect
of RNA on gene expression, respectively (Lee et al., 2013; Holoch
and Moazed, 2015). Recently, Engreitz and Singh clarified effects
of lncRNA promoter, transcription factor, variable splicing, and
histone modification on gene expression, respectively (Engreitz
et al., 2016; Singh et al., 2016). Thomou and Wu analyzed
effects of miRNAs and histone modifications on gene expression
(Thomou et al., 2017; Wu et al., 2017). Additionally, Duren et al.
predicted gene expression based on chromatin accessibility data,
cis-acting and trans-acting element data by logistic regression
models (Duren et al., 2017). Neumann and Stadhouders analyzed
effects of LncRNA and the dynamic interaction of transcription
factors with expression of target genes (Neumann et al., 2018;
Stadhouders et al., 2018).

Many methods were proposed for deciphering regulation
mechanisms of cis-regulatory and trans-regulatory elements
based on gene expression. Studies showed that gene expression
was closely related to Oct4 combination intensity in promoter
regions (Machado et al., 2011; Machado, 2017; Yan et al.,
2017; Antão et al., 2018). However, the quantitative relationship
between gene expression and Oct4 combination intensity was
not considered. Therefore, firstly, a generalized linear regression
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model was proposed for quantifying the relationship of gene
expression and Oct4 combination intensity based on eight
gene datapoints. Then, testing data were applied to test the
generalization ability of themodel. On the one hand, experiments
of 27 genes, as well as all genes, fromGEOwere applied to analyze
the quantitative relationship between Oct4 combination intensity
and target gene expression at each stage of cell development by
our proposed model. On the other hand, 27 genes were divided
into positive and negative samples by our proposed method.

MATERIALS AND METHODS

Datasets
Experimental data came from mouse transcriptome data and
ChIP-seq data, which were downloaded from GEO database with
accession numbers GSE67462 and GSE67520, respectively. In
this paper, gene promoter regions were defined as −1.5 kb to
+0.5 kb of gene transcription start sites (TSSs). For quantifying
the relationship between gene expression and Oct4 combination
intensity, while testing the generalization ability of the proposed
model, experimental data were divided into training data and
test data.

Training data were related to genes Btbd8, Cnbp, Cyb5r3,
Dars2, Eef1a1, Hist1h2bf, Ptrh2, Zfp143, which were extracted
based on the following steps.

Step 1. All dynamic Oct4 combination intensity and
gene expression data related to genes Btbd8, Cnbp, Cyb5r3,
Dars2, Eef1a1, Hist1h2bf, Ptrh2, Zfp143 were extracted from
transcriptome and ChIP-seq data (Chen et al., 2016). Oct4
combination intensities were expressed as a series of peaks that
contained three characteristics, including height, distance and
width, which were defined as the value of the highest point
corresponding to the midpoint of the peak (height); distance
between the midpoint of the peak and transcription start site
(distance); and difference between the right and left boundaries
of the peak (width).

Step 2. Transcriptome and ChIP-seq data of the above genes
from Day 0, Day 1, Day 3, Day 5, Day 7, Day 11, Day 15, and Day
18 were selected for studying the relation between time and gene
expression (Chen et al., 2016).

Step 3. Promoter regions with the strongest signal were
extracted to avoid the influence of redundant data.

Testing data were composed of two parts, including data
of 27 genes and all genes. Firstly, 27 genes and all genes
were applied to analyze quantitative relationship between Oct4
combination intensity and target gene expression at each stage of
cell development by our proposed model. Then, 27 genes were
divided into high and low expression groups to classify.

In detail, 27 genes were obtained by searching for those data
that appeared in all eight different cell development stages from
GEO. These genes were Alyref2, Atn1, Btbd8, Btg2, Caprin1,
Cnbp, Ctgf, Cyb5r3, Dars2, Ddx5, Eef1a1, Fosb, Hes1, Hist1h2bb,
Hist1h2bf, Hist1h2bp, Hnrnpa2b1, Kmt2e, Lonp1, Nfe2l2, Pecr,
Phldb2, Ptrh2, Setd5, Trappc6b, Tti2, and Zfp143. In the bi-
classification experiment, expression values of 27 genes were
sorted by descending order. The top 30% of the sorted data were
defined as the high expression group, and the lowest 30% were

TABLE 1 | Number of genes at each cell development stage.

Cell development stage Number of genes at each

stage

Day 0 86

Day 1 4,062

Day 3 4,577

Day 5 4,101

Day 7 6,261

Day 11 7,984

Day 15 8,181

Day 18 6,485

defined as the low expression group. The value of the minimum
high expression was the threshold for classification.

The numbers of all genes at each stage of cell development are
shown in Table 1.

Generalized Linear Regression Model
In Figure 1, relations between height, distance, width, gene
expression of Oct4 combination intensity, and time were
provided, respectively.

Figure 1 shows different change trends with time of Oct4
combination intensity in promoter regions and gene expression
in the eight proposed genes. Figure 1A illustrates in detail that
change trends of height with time were nearly identical in these
genes. Similarly, Figure 1C demonstrates that change trends
of width with time in these genes were also nearly identical.
Figures 1B,D show that change trends of distance and gene
expression with time were disorganized.

For quantifying the relationship between gene expressions
and Oct4 combination intensity, correlations between height,
distance, width, time, and gene expressions were analyzed by
using their correlation coefficients, which is defined as Equation
(1) with two random variables, X and Y.

r (X,Y) = cov (X,Y)√
var (X) var (Y)

(1)

In Equation (1), r (X,Y) represents the correlation coefficient
between X and Y , cov (X,Y) represents covariance between
X and Y , var (X), and var (Y) represent variance of X and
Y , respectively.

The correlation coefficients between gene expression and
Oct4 combination intensity are shown in Table 2. In addition,
correlation coefficients for Oct4 combination intensity and the
gene expression, height, distance, width, and time of each gene
are provided in Figure 2.

Table 2 and Figure 2 indicate that the correlation coefficients
for gene expression and time were the largest. Correlation
coefficients for time and other variables were also strong.
However, goodness of fit was low when the predicted model
was constructed using height, distance, and width as explanatory
variables, and gene expression as explained variable. Due to
the strong relationship between time and Oct4 combination
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FIGURE 1 | Dynamic change trends for expressions of different genes and their combination intensity. Dynamic change trends of height, distance, width and

expression are shown in (A–D), respectively. X axis represents time with 0, 1, 3, 5, 7, 11, 15, and 18 day(s). Y axis represents corresponding values of eight genes.

TABLE 2 | Correlation coefficients between gene expression and Oct4

combination intensity for selected genes.

Gene name A11 A12 A12 A14

Btbd8 −0.1983129 0.1048461 0.0906912 0.6349461

Cnbp 0.85966104 −0.61927824 0.30350817 −0.05763255

Cyb5r3 −0.5934541 −0.3768864 −0.4585991 0.1329110

Dars2 0.4509573 −0.2217020 0.2176128 0.1436256

Eef1a1 0.3075134 0.4400668 0.5909714 0.4070609

Hist1h2bf 0.09321187 0.25428558 0.30178739 0.56638550

Ptrh2 0.1068043 −0.3149051 −0.2933016 −0.6536589

Zfp143 0.5607069 −0.3091457 0.1798487 0.9387029

A11, A12, A13, and A14 refer to correlation coefficients between gene expression and

height, distance, width, and time, respectively. Bold text represents absolute values of

correlation coefficients that are > 0.5.

intensity, several time-dependent derived combination variables
were used as explanatory variables of the proposed model.

Firstly, new derived combination variables were obtained by
multiplication operations between height, distance, width and a
function of time t, including et , log10 (t + 1) and tk (k = 1,2,3).
In this way, a set V = {H × t, H × t2, H × t3, H × et , H × 0.5t ,
H × log10 (t + 1), D × t, D × t2, D × t3, D × et , D × 0.5t ,
D × log10 (t + 1), W × t, W × t2, W × t3, W × et , W × 0.5t ,

W × log10 (t + 1)} was constructed as the set of explanation
variables, where H denotes height, D denotes distance and W
denotes width. Then, stepwise regression method was used to
determine explanatory parameters of the proposed regression
model. Finally, six explanatory variables were selected from V,
including H × et , D × t, D × t2, D × t3, D × 0.5t and W ×
log10 (t + 1).

Therefore, a generalized linear regression model was
constructed by using selected explanatory variables, in which
gene expression was the explained variable. In this paper,
four generalized linear regression models, Models 1–4, were
constructed by Equations (2–5).

Model 1 : Exp = β1 ×H × et + β2 × D× t

+β3 ×W × log10 (t + 1) + ε (2)

Model 2 : Exp = β1 ×H × et + β2 × D× t2

+β3 ×W × log10 (t + 1) + ε (3)

Model 3 : Exp = β1 ×H × et + β2 × D× t3

+β3 ×W × log10 (t + 1) + ε (4)

Model 4 : Exp = β1 ×H × et + β2 × D× 0.5t

+β3 ×W × log10 (t + 1) + ε (5)

Frontiers in Genetics | www.frontiersin.org 4 March 2019 | Volume 10 | Article 120

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu et al. Gene Expression Patterns With GLR

A B

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D H W E
x
p

t

D

H

W

Exp

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D t W H E
x
p

D

t

W

H

Exp

C D

E F

G H

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
x
p

H W D t
Exp

H

W

D

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
x
p

H W D t

Exp

H

W

D

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H D W E
x
p

t

H

D

W

Exp

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H D W E
x
p

t

H

D

W

Exp

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
x
p

D H W t

Exp

D

H

W

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H E
x
p

t D W

H

Exp

t

D

W

FIGURE 2 | Correlation coefficients for Oct4 combination intensity and the gene expression, height, distance, width, and time of each gene. (A–H) represents the

correlation coefficients in genes Btbd8, Cnbp, Cyb5r3, Dars2, Eef1a1, Hist1h2bf, Ptrh2 , Zfp143, respectively.
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In Equations (2–5), Exp represents the value of gene expression;
β1, β2, β3 are regression coefficients, which are calculated by the
Least Squares Method (LSM), and LSM is defined as the sum of
squares of differences between predicted value and true value; a
random disturbance ε is a normal distribution that was applied
to represent other factors affecting gene expression except height,
distance and width.

H × et andW × log10 (t + 1) were selected in the final model
because they were common items in Equations (2–5). Therefore,
a general model of gene expression patterns was obtained by
Equation (6), and the correctness of the model will be verified
in section Analysis of Factors Affecting Gene Expression at Every
Stage of Cell Development.

Exp = β1 ×H × et + β2 × D× f (t)

+β3 ×W × log10 (t + 1) + ε (6)

In Equation (6), f (t) represents a function of time t, which
was selected from {t, t2, t3, 0.5t}; β1, β2, and β3 are regression
coefficients calculated by LSM.

Evaluation Criteria of Model Performance
F-test, t-test, and goodness of fit R̄2 were used to evaluate the
performance of linear regression model (Huang and Pan, 2003;
Zhou et al., 2003; Xu et al., 2008;Wang and Lee, 2010;Wang et al.,
2012). More precisely, F-test was used to test significance of the
entire regression model and t-test was used to test significance
of regression coefficients in the model. Goodness of fit R̄2 was
used to measure the approximation degree between fitted curve
and original data. Meanwhile, R̄2, a generation from original
coefficient of determination R2, was an adjusted coefficient of
determination. It was eliminated the influence of coefficient of
determination generated by number of explanatory variables.
In this paper, F-test statistic, t-test statistic, adjusted coefficient
of determination R̄2, original coefficient of determination R2,
total sum of squares (TSS), explained sum of squares (ESS), and
residuals sum of squares (RSS) are defined as Equations (7–13)
(Huang and Pan, 2003; Zhou et al., 2003; Xu et al., 2008; Wang
and Lee, 2010; Wang et al., 2012).

F = ESS/k

TSS/
(
n− k− 1

) ˜F
(
k, n− k− 1

)
(7)

t =
β̂j

se
(
β̂j

) ˜ t
(
n− k− 1

)
(8)

R̄2 = 1−
(
1− R2

) n− 1

n− k− 1
(9)

R2 = 1− RSS

TSS
= 1−

∑ (
Yi − Ŷi

)2

∑ (
Yi − Ȳ

)2 (10)

TSS =
∑

yi
2 =

(
Yi − Ȳ

)2
(11)

ESS =
∑

ŷ2i =
(
Ŷi − Ȳ

)2
(12)

RSS =
∑

ei
2 =

(
Yi − Ŷi

)2
(13)

In Equations (7–13), k is the number of variables; n is the

number of samples; β̂i and se
(
β̂i

)
are estimated value and

standard deviation of estimated value of regression coefficient;
and Yi, Ŷi, Ȳ represent true, estimated and mean values of
explained variable.

Accuracy (Acc), Sensitivity (Sn), specificity (Sp), and
Mathew correlation coefficient (Mcc) were used to measure
the performance of the classification model (Xu et al., 2013;
Guo et al., 2014; Awazu, 2016). Which were defined as
Equations (14–17).

Sn = TP

TP + FN
(14)

Sp = TN

TN + FP
(15)

Acc = TP + TN

TP + FN + TN + FP
(16)

Mcc = TP × TN − FP × FN√
(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)

(17)

In Equations (14–17), TP represents the number of positive
samples that are correctly predicted as positive samples; TN
represents the number of negative samples that are correctly
predicted as negative samples; FP represents the number of
negative samples that are incorrectly predicted as positive
samples; and FN represents the number of positive samples that
are incorrectly predicted as negative samples (Zhang et al., 2014,
2018; Wang et al., 2017, 2018a,b).

RESULTS AND ANALYSIS

Solution Result of Our Proposed Model
Gene expression patterns of the eight selected genes were
analyzed by using Models 1–4. More specifically, Model 1 was
applied to describe the expression pattern of gene Zfp143,
Model 2 was applied to describe the expression pattern of
gene Hist1h2bf; Model 3 was applied to describe the expression
patterns of genes Dars2 and Eef1a1, and Model4 was applied
to describe the expression patterns of genes Btbd8, Cnbp,
Cyb5r3, and Ptrh2. Both Model 2 and Model 3 were used
to express the expression pattern of gene Eef1a1. Parameter
values of the models are shown in Table 3. Parameter values
of Model 2 and Model 3 for gene Eef1a1 were shown
in Table 4.

Table 3 showed that regression coefficients β2 and β3

were large, which indicated that both distance and width
had important influences on gene expression. Furthermore,
distance had an effect on gene expression in the form of
exponential function of time, and width had an effect on
gene expression in the form of logarithmic function of time
without other factors. Additionally, Table 4 shows that the
difference of the regression coefficients between Model 2 and
Model 3 were small. In both Model 2 and Model 3, β3 has
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the largest absolute values in regression coefficients for gene
Eef1a1, which indicated that width was a key factor affecting
gene expression.

TABLE 3 | Parameter values of model for eight genes.

Gene name Regression coefficient

β1 β2 β3

Btbd8 6.690e-10 8.420e-02 1.053e-02

Cnbp −3.104e-08 −3.539e-01 −6.857e-02

Cyb5r3 3.785e-08 8.065e-01 5.937e-01

Dars2 −1.853e-07 3.554e-04 4.985e-02

Eef1a1 3.348e-08 −1.443e-04 5.105e-01

Hist1h2bf −7.915e-08 6.322e-02 1.346e-01

Ptrh2 −3.072e-09 −5.625e-01 −6.945e-02

Zfp143 4.503e-09 −1.123e-02 6.652e-02

Model of expression pattern for gene Eef1a1 is Model 3 in Table 3. The bold text

represents the largest absolute values of weight in the regression coefficients of

each gene.

TABLE 4 | Parameter values of model for gene Eef1a1.

Gene name Model Regression coefficient

β1 β2 β3

Eef1a1 2 2.510e-08 −2.282e-03 5.448e-01

Eef1a1 3 3.348e-08 −1.443e-04 5.105e-01

The thickened data represent the largest absolute values of weight in regression

coefficients of Model 2 and Model 3, respectively.

Performance Analysis of Our
Proposed Model
Goodness of fit for proposed model was calculated to evaluate
the performance of these models. In addition, performance of the
models was tested by F-test and t-test. Results of goodness of fit,
F-test and t-test are shown in Table 5. Results of goodness of fit,
F-test and t-test of gene Eef1a1 are shown in Table 6.

Table 5 demonstrates that goodness of fit reached at least 80%
for all genes except Dars2 by using our proposed method. In
addition, the p-value of F-test and t-test were <0.1, which meant
that our proposed model was effective with 90% confidence.

As shown in Table 6, R̄2 from Model 3 was larger than Model
2, which means that distance had a greater influence on gene
expression than time for gene Eef1a1.

As shown in Tables 3–6, absolute values of regression
coefficients β2and β3were large in all regression coefficients.
Additionally, the absolute value of regression coefficients for
β3 was the largest in all regression coefficients with Model 2
and Model 3 for gene Eef1a1. Therefore, width was considered
to be the most important factor affecting gene expression,
and width had an effect on gene expression in the form of a
logarithmic function.

Analysis of Factors Affecting Gene
Expression in Whole-Cell
Developmental Stage
In this paper, the relationship between gene expression and
Oct4 combination intensity in promoter regions at the whole-
cell developmental stage was analyzed based on the generalized
linear regression model. Experimental results showed that the

TABLE 5 | Goodness of fit, F-test and t-test for eight genes.

Gene name R̄2 F test T-test

p1 p2 p3

Btbd8 0.9774 0.0003106 9.65e-05 0.019382 0.093871

Cnbp 0.9917 4.244e-05 4.75e-05 2.60e-05 0.0595

Cyb5r3 0.8929 0.006875 0.00590 0.00453 0.06944

Dars2 0.7298 0.04233 0.0771 0.0875 0.0154

Eef1a1 0.958 0.00107 0.016934 0.004609 0.000275

Hist1h2bf 0.8448 0.01431 0.00838 0.00518 0.00988

Ptrh2 0.8856 0.007835 0.0128 0.0105 0.0238

Zfp143 0.9046 0.005466 0.008996 0.077009 0.027986

p1, p2 and p3 are p-values of t-test. Results of gene Eef1a1 in Table 5 are calculated by Model 3.

TABLE 6 | Goodness of fit, F-test and t-test for gene Eef1a1.

Gene name Model F test T-test

p1 p2 p3

Eef1a1 2 0.92 0.003858 0.07615 0.01737 0.00125

Eef1a1 3 0.958 0.00107 0.016934 0.004609 0.000275

p1, p2, and p3 are p-values of t-test.
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proposed model was effective for gene expression pattern of all
eight selected genes except for Eef1a1. For exploring the effects
of each model on the different genes, expression data of selected
eight genes and Oct4 combination intensity in promoter regions
were substituted into the models. Experimental results are shown
in Figure 3.

Figure 3 demonstrated that differences in goodness of fit
between different models for the same gene were large, which
indicated that distance had strong effects on the gene expression
of different genes with different levels. Strong correlation
between gene expression and D × 0.5t , W × log10 (t + 1)
was found in Table 3, which indicated that distance had an
effect on gene expression in the form of an exponential
function of time, and width had an effect on gene expression
in the form of a logarithmic function of time without other
factors. However, goodness of fit from D × 0.5t and W ×
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FIGURE 3 | Effect of different models on gene expression patterns. Models

1–4 are represented from 1 to 4 on the x-axis, respectively. The y-axis

represents corresponding goodness of fit.
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of cell development after 0, 1, 3, 5, 7, 11, 15, and 18 day(s). Y-axis represents parameter value. Curves in red, green, blue, and black represent values of parameters

β1, β2, β3 and ε from the proposed generalized linear regression model, respectively.

log10 (t + 1) was lower than for the selected six derived
combination variables, which indicated that gene expression
was promoted by the interaction of height, distance, width,
and time.

Analysis of Factors Affecting Gene
Expression at Every Stage of
Cell Development
Oct4 combination intensity and time had different effects on gene
expression in different cell development stages. The goodness
of fit obtained by Model 4 was higher than that obtained by
Models 1–3 in the prediction of gene expression. Therefore,
differences were analyzed based on Model 4 with testing data
including 27 genes and all genes. Experimental results are shown
in Figures 4, 5.

Figures 4, 5 show that the absolute value of β3 was larger
than that of β1, β2, and e. Absolute values of β1and β2

were close to zero except for a few points, which indicated
that width influenced gene expression in the form of a
logarithmic function of time. However, change trends of β1

and β2 were different for Figures 4, 5. More specifically, the
absolute value of β1 obtained by 27 genes decreased with
time, and the value of was negative when time was equal
to 0; the absolute value of obtained by all genes decreased
with time and the value of was positive when time was equal
to 0; the value of obtained by 27 genes was positive while
value of obtained by all genes was negative due to partially
missing data, which was contradictory and indicated that
time had an important impact on gene expression. Incorrect
conclusions were obtained when data of some certain time were
missing. Therefore, Figures 4, 5 showed that width and time
had important effects on gene expression. Furthermore, width
influenced gene expression in the form of a logarithmic function
of time.
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Application of Our Proposed Model in
Gene Classification
Gene classification experiments were provided to test the
generalization ability of the proposed model. Firstly, in order
to avoid the influence of random disturbance on experimental
results, the data of 27 genes, including height, distance, width
and gene expression, were normalized. Then, Models 1–4 were
applied to predict gene expression for 27 genes. Finally, the
27 genes were divided into two categories by comparing gene
expression with a threshold; meanwhile, 10-fold cross-validation
was used to test the model’s performance. Comparison results
of Models 1–4 showed Model 4 had a high goodness of fit.
Therefore, 27 genes were classified by Model 4.

Gene groups of high and low expression were defined in
an artificial way; meanwhile, threshold setting was random in
the classification process. A BP neural network was used to
classify positive and negative samples in order to prove that the
randomness had little effect on experimental results. In this paper,
the hidden layer of the BP neural network was set to one layer,
and the number of hidden layer neurons was set to 2. In 10-fold
cross-validation, regression coefficients and random disturbance
of Model 4 were shown in Table 7. The prediction performance
obtained by Model 4 and the BP neural network are shown
in Table 8.

Table 8 showed that the Acc, Sn, Sp, and Mcc obtained
by Model 4 were the largest of the two different methods.
Therefore, randomness of the threshold setting had little effect
on experimental results, and our proposed method was effective
in predicting gene expression.

CONCLUSION

Cell reprogramming has been a hot issue in the field of life
sciences and has played a significant role in medicine, such as
in tissue repair, organ reconstruction, disease pathogenesis, and

TABLE 7 | Parameter values of Model 4 in 10-fold cross-validation.

Serial

number

Regression coefficient Random

disturbance

β1 β2 β3 ε

1 −0.19040 0.36415 1.94849 0.09097

2 −0.14777 0.34997 1.62791 0.08391

3 −0.19283 0.36895 1.34126 0.11151

4 −0.22430 0.32751 1.30305 0.12252

5 −0.17221 0.33449 1.45765 0.11442

6 −0.20314 0.35796 1.38494 0.11671

7 −0.15862 0.29230 1.26788 0.11184

8 −0.18597 0.36363 1.39271 0.10367

9 −0.20482 0.36602 1.37014 0.11242

10 −0.18064 0.34205 1.15955 0.11336

1–10 represents the serial number of 10-fold cross-validation.

TABLE 8 | Prediction performance of different methods using 10-fold

cross-validation.

Methods Performance evaluation standard

Acc Sn Sp Mcc

Model 4 0.7643 0.8126 0.6947 0.5111

BP neural

network

0.7238 0.7585 0.6923 0.4537

Bold text represents the maximum value of every performance evaluation criterion.

new drug development. Oct4 has especially played an important
regulatory role in the process of cell reprogramming. However,
there was no scientific method to quantify the relationship
between Oct4 combination intensity and gene expression.
Therefore, data from the eight selected typical genes were
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extracted from mouse transcriptome data and ChIP-seq data for
quantifying the relationship between gene expression values and
Oct4 combination intensity in promoter regions.

Firstly, a generalized linear regression model was constructed
based on gene expression with eight different time periods during
cell development and Oct4 combination intensity in promoter
regions. Then, the relationship between Oct4 combination
intensity and gene expression at whole and each stage of cell
development was analyzed. Finally, the 27 genes were divided
into positive and negative samples based on Model 4 and the
BP neural network. Experimental results showed that width
of combination influenced gene expression by a logarithmic
function of time (day). Additionally, accuracy obtained by the
models was 4.05% higher than that obtained by the BP neural
network, which indicated that our proposed model was effective
in predicting gene expression.

Several additional factors, including extent of histone
modification, degree of chromatin opening, strength of promoter
and binding sites of transcription factors and promoter regions,
also affected gene expression. Non-linear relations between gene
expression andOct4 combination intensity were also ignored due
to large non-linear relations. Therefore, in the future, multiple
factors and non-linear relations should be considered to analyze
key factors affecting gene expression.
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